

 seg_seg

 v1.0.0

 Table of contents

 	Modules

 	SegSeg

SegSeg

Calculates the type of relationship between two line segments AB and
CD and the location of intersection (if applicable).
[image: Classification of segment-segment intersection]

 Anchor for this section

 Summary

 Types

 intersection_result()

 intersection_type()

 point()

 Functions

 intersection(a, b, c, d, options \\ [])

 Returns a tuple representing the segment-segment intersection with three
elements

 Anchor for this section

Types

 Link to this type

 intersection_result()

 @type intersection_result() :: {boolean(), intersection_type(), point() | nil}

 Link to this type

 intersection_type()

 @type intersection_type() :: :interior | :disjoint | :edge | :vertex

 Link to this type

 point()

 @type point() :: {number(), number()}

 Anchor for this section

Functions

 Link to this function

 intersection(a, b, c, d, options \\ [])

 @spec intersection(point(), point(), point(), point(), keyword()) ::
 intersection_result()

Returns a tuple representing the segment-segment intersection with three
elements:
	Boolean true if the two segments intersect at all, false if they are
disjoint
	An atom representing the classification of the intersection:

	:interior - the segments intersect at a point that is interior to both
	:vertex - the segments intersect at an endpoint of one or both segments
	:edge - the segments are parallel, collinear, and overlap for some non-zero length
	:disjoint - no intersection exists between the two segments

	A tuple {x, y} representing the point of intersection if the intersection
is classified as :interior or :vertex, otherwise nil.

 float-precision-issues

 Float Precision Issues

It is possible that floating point math imprecision can cause incorrect results for
certain inputs. In situations where this may cause issues, an epsilon options is
available. When set to true intersection comparisons are made with a very small epsilon based on the minimum
of the lengths of the provided segment times a very small number (currently 0.0000000001). epsilon can also be set to a specific number that will be used as the epsilon value.
This eliminates most rounding error, but of course could cause false results in certain
situations. This currently only effects :vertex results but might be expanded to :edge
in the future.
SegSeg.intersection({4, 3}, {4, 7}, {6.05, 9.05}, {3.95, 6.95}) #=> {true, :interior, {4.0, 6.999999999999998}}
SegSeg.intersection({4, 3}, {4, 7}, {6.05, 9.05}, {3.95, 6.95}, epsilon: true) #=> {true, :vertex, {4, 7}}

 examples

 Examples

iex> SegSeg.intersection({2, -3}, {4, -1}, {2, -1}, {4, -3})
{true, :interior, {3.0, -2.0}}
iex> SegSeg.intersection({-1, 3}, {2, 4}, {-1, 4}, {-1, 5})
{false, :disjoint, nil}
iex> SegSeg.intersection({-1, 0}, {0, 2}, {0, 2}, {1, -1})
{true, :vertex, {0, 2}}
iex> SegSeg.intersection({-1, 0}, {0, 2}, {1, 4}, {-1, 0})
{true, :edge, nil}

This doesn't behave as expected because of floating point error.
iex> SegSeg.intersection({4, 3}, {4, 7}, {6.05, 9.05}, {3.95, 6.95})
{true, :interior, {4.0, 6.999999999999998}}

Adding the default epsilon causes this to act more as expected.
iex> SegSeg.intersection({4, 3}, {4, 7}, {6.05, 9.05}, {3.95, 6.95}, epsilon: true)
{true, :vertex, {4, 7}}

Specifying a very small epsilon shows the floating point error again.
iex> SegSeg.intersection({4, 3}, {4, 7}, {6.05, 9.05}, {3.95, 6.95}, epsilon: 0.00000000000000000001)
{true, :interior, {4.0, 6.999999999999998}}

 OEBPS/dist/epub-75RCTLK3.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);var a="hll";function c(){u()}function u(){o("[data-group-id]").forEach(e=>{let t=e.getAttribute("data-group-id");e.addEventListener("mouseenter",n=>{i(t,!0)}),e.addEventListener("mouseleave",n=>{i(t,!1)})})}function i(r,e){o(`[data-group-id="${r}"]`).forEach(n=>{n.classList.toggle(a,e)})}c();})();

