

 Sentry

 v10.2.0

 [image: Logo]

 Table of contents

 	README

 	Changelog

 	Integrations

 	Setup with Plug and Phoenix

 	Oban Integration

 	Upgrade Guides

 	Upgrade to Sentry 8.x

 	Upgrade to Sentry 9.x

 	Upgrade to Sentry 10.x

 	Modules

 	Sentry

 	Sentry.Attachment

 	Sentry.CheckIn

 	Sentry.Context

 	Sentry.DefaultEventFilter

 	Sentry.Event

 	Sentry.EventFilter

 	Sentry.HTTPClient

 	Sentry.HackneyClient

 	Sentry.PlugCapture

 	Sentry.PlugContext

 	Sentry.LoggerBackend

 	Sentry.LoggerHandler

 	Sentry.Interfaces

 	Sentry.Interfaces.Breadcrumb

 	Sentry.Interfaces.Exception

 	Sentry.Interfaces.Exception.Mechanism

 	Sentry.Interfaces.Message

 	Sentry.Interfaces.Request

 	Sentry.Interfaces.SDK

 	Sentry.Interfaces.Stacktrace

 	Sentry.Interfaces.Stacktrace.Frame

 	Sentry.Interfaces.Thread

 	Sentry.Test

 	Mix Tasks

 	mix sentry.package_source_code

 	mix sentry.send_test_event

README

 Changelog - Sentry v10.2.0

Changelog

10.2.0
	No documented changes.

10.2.0-rc.2
Various fixes & improvements
	Support RCs in bump-version.sh script (42cc5d6f) by @whatyouhide
	Improve behavior of :test_mode/:dsn (7f8442ee) by @whatyouhide
	Bump nimble_ownership dep to make testing better (#700) by @whatyouhide

10.2.0-rc.1
Various fixes & improvements
	Add Cron support for Quantum jobs (#699) by @whatyouhide
	Add cron integration for Oban (#698) by @whatyouhide
	Introduce manual check-ins for crons (#697) by @whatyouhide
	Fix Dialyzer error (47e2d65d) by @whatyouhide
	Clean up --output flag for "mix sentry.package_source_code" (711236f4) by @whatyouhide
	Allow --output argument in "mix sentry.package_source_code" (#691) by @razielgn
	Don't list optional dependency on plug_cowboy (1ac4b930) by @whatyouhide
	Speed up tests by ~450% (#690) by @whatyouhide
	Remove Sentry.Interfaces.Span (#689) by @whatyouhide
	Fix a couple of flaky tests in CI (#688) by @whatyouhide
	Add url_scrubber for redacting URLs (#687) by @paulstatezny
	Update stuff in CI (#684) by @whatyouhide
	Introduce Sentry.Test (#681) by @whatyouhide
	Improve error message on unavailable config (05c4c226) by @whatyouhide
	Add Sentry.Interfaces.Span (#679) by @whatyouhide
	Fix crash with custom scrubber in Sentry.PlugContext (#678) by @paulstatezny
	Add exception mechanism set handled/unhandled (#677) by @whatyouhide
	Ignores unknown request fields (#676) by @whatyouhide
	Accept anything that is "stringable" when interpolating (#675) by @whatyouhide

10.1.0
Various fixes & improvements
	Add Sentry.Interfaces.Thread to fix stacktraces in messages.
	Add the --type and --no-stacktrace flags to mix sentry.send_test_message.
	Add support for interpolating messages (with %s) placeholders. See Sentry.capture_message/2.
	Add support for attachments; see Sentry.Attachment and Sentry.Context.add_attachment/1.

10.0.3
Various fixes & improvements
	No "app.config" in "mix sentry.package_source_code" (#661) by @whatyouhide
	Add upgrade guide links to the changelog (#659) by @axelson

10.0.2
Various fixes & improvements
	Fix infinite logging loop (#657) by @whatyouhide
	Remove reference to "before_send_event" in README (f1650502) by @whatyouhide
	Don't report events if DSN is not configured (#655) by @whatyouhide

10.0.1
Various fixes & improvements
	Fix reading of config in "mix sentry.package_source_code" (#653)
	Don't ship Dialyzer PLTs with releases (#654)

10.0.0
9.x -> 10.0 Upgrade Guide
	:report_deps now reports all loaded applications at the time the :sentry application starts. This is not a compile-time configuration option anymore.
	Add the mix sentry.package_source_code Mix task. See the upgrade guide for more information.
	Add ~r"/test/" to the default source code exclude patterns (see the :source_code_exclude_patterns option).
	:environment_name now defaults to production (if it wasn't configured explicitly and if the SENTRY_ENVIRONMENT environment variable is not set).
	Hard-deprecate :included_environments. To control whether to send events to Sentry, use the :dsn configuration option instead. :included_environments now emits a warning if used, but will still work until v11.0.0 of this library.
	Hard-deprecate :before_send_event in favor of the new :before_send. This brings this SDK in line with all other Sentry SDKs.

9.1.0
Various fixes & improvements
	Attempt to scrub all Plug.Conns in Sentry.PlugCapture (#619) by @whatyouhide
	Fix typespec for the Sentry.Context.t/0 type (#618) by @whatyouhide
	Apply :sample_rate after event callbacks, rather than before (ab5c7485) by @whatyouhide

9.0.0
8.x -> 9.0 Upgrade Guide
Breaking changes
	Removed Sentry.Sources
	Removed Sentry.Client, as it's an internal module
	Removed the Sentry.Event.sentry_exception/0 type
	Removed Sentry.Event.add_metadata/1
	Removed Sentry.Event.culprit_from_stacktrace/1
	Removed Sentry.Event.do_put_source_context/3
	Removed the :async value for the :result option in Sentry.send_event/2 (and friends)
	Removed Sentry.CrashError — now, crash reports (detected through Sentry.LoggerBackend) that do not contain exceptions are reported as messages in Sentry
	Changed the shape of the Sentry.Event struct - check out the new fields (and typespec for Sentry.Event.t/0)

Various fixes & improvements
	Add Sentry.LoggerHandler, which is a :logger handler rather than a Logger backend
	Make the Sentry.HTTPClient.child_spec/0 callback optional
	Add :all as a possible value of the :metadata configuration option for Sentry.LoggerBackend
	Add :all as a possible value for the :included_environment configuration option
	Add Sentry.Interfaces with all the child modules, which are useful if you're working directly with the Sentry API
	Fix an issue with JSON-encoding non-encodable terms (such as PIDs, which are pretty common)

Deprecations
	Soft-deprecate Sentry.EventFilter in favour of :before_send_event callbacks.

Various fixes & improvements
	Remove manually-entered entries from the CHANGELOG (48cf37d9) by @whatyouhide
	Don't cover test/support in tests (8cfe14b1) by @whatyouhide
	Make two more funs private in Sentry.Event (340ba143) by @whatyouhide
	Add excoveralls for code coverage (58d94cf2) by @whatyouhide
	Clean up Sentry.Config (f996c7d3) by @whatyouhide
	Revert default :included_environments to [:prod] (d33bf19d) by @whatyouhide
	Send async events right away without queueing (#612) by @whatyouhide
	Make Sentry.Interfaces.Request a struct (#611) by @whatyouhide
	Improve some tests (59e8ebb0) by @whatyouhide
	Add Sentry logo to the docs (6d27eacf) by @whatyouhide
	Polish docs for "mix sentry.send_test_event" (903aeb93) by @whatyouhide
	Update changelog and error messages (f6f577f4) by @whatyouhide
	Soft-deprecate Sentry.EventFilter (#608) by @whatyouhide
	Improve Sentry.Event struct definition (#609) by @whatyouhide
	Clean up docs and tests for "mix sentry.send_test_event" (#610) by @whatyouhide
	Add Sentry.LoggerHandler (#607) by @whatyouhide
	Remove Sentry.CrashError and improve EXIT reporting (#606) by @whatyouhide
	Support :all in Sentry.LoggerBackend's :metadata (#605) by @whatyouhide
	Optimize JSON sanitization step (b96d6cfd) by @whatyouhide
	Accept all environments by default (#604) by @whatyouhide
	Add example about alternative HTTP client to docs (38e80edf) by @whatyouhide
	Make Sentry.HTTPClient.child_spec/0 optional (#603) by @whatyouhide
	Clean up a bunch of little non-important things (18e83ae9) by @whatyouhide
	Simplify test GenServer (30a9828e) by @whatyouhide

8.1.0
Various fixes & improvements
	Bump min craft version to 1.4.2 (795bfd12) by @sl0thentr0py
	Add github target to craft (ef563cc5) by @sl0thentr0py
	Bump min craft version (56516be2) by @sl0thentr0py
	Improve deprecation of Sentry.Config.root_source_code_path/0 (#558) by @whatyouhide
	Wrap HTTP requests in try/catch (#515) by @ruslandoga
	Remove extra config files (#556) by @yordis
	Remove use of deprecated Mix.Config (#555) by @whatyouhide
	Add release/** branches to ci for craft (dfaffb9f) by @sl0thentr0py
	Fix typo in moduledoc (#534) by @louisvisser
	Check :hackney application when starting (#554) by @whatyouhide
	feat(event): filter more exceptions by default (#550) by @gpouilloux
	Fix example configuration for Sentry.Sources (#543) by @scudelletti
	Use module attribute for dictionary key consistently (#537) by @tmecklem
	Fix send_event/2 typespec (#545) by @ruslandoga
	Update badges in the README (#548) by @ruslandoga
	Update ex_docs to 0.29+ (#549) by @ruslandoga
	Fix Elixir 1.15 warnings (#553) by @dustinfarris
	Add :remote_address_reader PlugContext option (#519) by @michallepicki
	Traverse full domain list when checking for excluded domains (#508) by @martosaur
	Add craft with target hex (#532) by @sl0thentr0py
	Add Sentry to LICENSE (#530) by @sl0thentr0py
	Update ci setup-beam action name (#531) by @sl0thentr0py
	allow logging from tasks (#517) by @ruslandoga
	Improve DSN parsing and Endpoint building (#507) by @AtjonTV

Plus 14 more
8.0.6 (2021-09-28)
	Bug Fixes	Remove function that disables non-group leader logging (#467)
	Handle :unsampled events in Sentry.send_test_event (#474)
	Fix dialyzer reporting unmatched_return for Sentry.PlugCapture (#475)
	Use correct Plug.Parsers exception module (#482)

8.0.5 (2021-02-14)
	Enhancements
	Support lists in scrubbing (#442)
	Send Sentry reports on uncaught throws/exits (#447)

	Bug Fixes
	Deprecate Sentry.Config.in_app_module_whitelist in favor of Sentry.Config.in_app_module_allow_list (#450)
	Update outdated Sentry.Plug documentation (#452)
	Update Sentry.HTTPClient documentation (#456)

8.0.4 (2020-11-16)
	Bug Fixes	Do not read DSN config at compile time (#441)

8.0.3 (2020-11-11)
	Enhancements
	Update package & docs configuration (#432)
	Add Plug.Status filter example (#433)
	Support multiple source code root paths in Sentry.Sources (#437)

	Bug Fixes
	Fix dialyzer reporting unmatched_return for Sentry.PlugCapture (#436)
	Align Sentry event levels with Elixir logging levels (#439)

8.0.2 (2020-09-06)
	Enhancements	Log error when JSON is unencodable (#429)
	Set logger event level to logger message level (#430)
	Limit breadcrumbs on add_breadcrumb (#431)

8.0.1 (2020-08-08)
	Enhancements	Add plug parsing errors to list of default excluded params (#414)
	Make Sentry.PlugContext.scrub_map public (#417)
	Allow users to configure maximum number of breadcrumbs (#418)

8.0.0 (2020-07-13)
7.x -> 8.0 Upgrade Guide
	Bug Fixes	Fix documentation for Sentry.PlugContext (#410)

8.0.0-rc.2 (2020-07-01)
	Bug Fixes	Fix trying to transform erlang error coming from PlugCapture (#406)

8.0.0-rc.1 (2020-06-29)
	Bug Fixes	Remove changes that were unintentionally included in build

8.0.0-rc.0 (2020-06-24)
	Enhancements
	Cache environment config in application config (#393)
	Allow configuring LoggerBackend to send all messages, not just exceptions (e.g. Logger.error("I am an error message"))

	Bug Fixes
	fix request url port in payloads for HTTPS requests (#391)

	Breaking Changes
	Change default included_environments to only include :prod by default (#370)
	Change default event send type to :none instead of :async (#341)
	Make hackney an optional dependency, and simplify Sentry.HTTPClient behaviour (#400)
	Use Logger.metadata for Sentry.Context, no longer return metadata values on set_* functions, and rename set_http_context to set_request_context (#401)
	Move excluded exceptions from Sentry.Plug to Sentry.DefaultEventFilter (#402)
	Remove Sentry.Plug and Sentry.Phoenix.Endpoint in favor of Sentry.PlugContext and Sentry.PlugCapture (#402)
	Remove feedback form rendering and configuration (#402)
	Logger metadata is now specified by key in LoggerBackend instead of enabled/disabled (#403)
	Require Elixir 1.10 and optionally plug_cowboy 2.3 (#403)
	Sentry.capture_exception/1 now only accepts exceptions (#403)

7.2.4 (2020-03-09)
	Enhancements	Allow configuring gather feedback form for Sentry.Plug errors (#387)

7.2.3 (2020-02-27)
	Enhancements	Allow gathering feedback from Sentry.Plug errors (#385)

7.2.2 (2020-02-13)
	Bug Fixes	Ensure stacktrace is list in LoggerBackend (#380)

7.2.1 (2019-12-05)
	Bug Fixes	Improve documentation for Sentry.Client.send_event/2 (#367)
	Fix potential Logger deadlock (#372)
	Pass the same exception for NoRouteError in Sentry.Phoenix.Endpoint (#376)
	Handle new MFA for duplicate Plug errors (#377)
	Update docs to recommend using application environment config for adding Sentry.LoggerBackend (#379)

7.2.0 (2019-10-23)
	Enhancements
	Allow filtering of Events using before_send_event (#364)

	Bug Fixes
	Remove newline from Logger for API error (#351)
	Add docs for Sentry.Context (#352)
	Avoid error duplication for Plug errors (#355)
	Fix issue in Sentry.Sources docs around recompilation (#357)

7.1.0 (2019-06-11)
	Enhancements
	Option to include Logger.metadata in Sentry.LoggerBackend (#338)
	Send maximum length of args in stacktrace (#340)
	Fix dialyzer warning when using Sentry.Phoenix.Endpoint (#344)

	Bug Fixes
	Fix documentation error relating to File.cwd!() (#346)
	Add parens to File.cwd!() in documentation (#347)
	Check that DSN is binary (#348)

7.0.6 (2019-04-17)
	Enhancements	Allow configuring Sentry log level (#334)

7.0.5 (2019-04-05)
	Bug Fixes	Strip leading "Elixir." from module name on error type (#330)

7.0.4 (2019-02-12)
	Bug Fixes	Do not error if you cannot format the remote IP or port (#326)

7.0.3 (2018-11-14)
	Bug Fixes	Fix issue from using spawn_link stacktrace (#315)
	Relax plug_cowboy versions (#314)

7.0.2 (2018-11-01)
	Bug Fixes	Fix sending Phoenix.Router.NoRouteError when using Sentry.Phoenix.Endpoint (#309)

7.0.1 (2018-10-01)
	Enhancements	Remove Poison from applications list (#306)

7.0.0 (2018-09-07)
	Enhancements
	Implement Sentry.LoggerBackend

	Breaking Changes
	Replace Poison with configurable JSON library
	Require Elixir 1.7+
	Remove Sentry.Logger

6.4.2 (2018-09-05)
	Enhancements	Add deps reporting back (#305 / #301)

6.4.1 (2018-07-26)
	Bug Fixes	Remove UUID dependency (#298)
	Fix link in documentation (#300)

6.4.0 (2018-07-02)
	Enhancements
	Add documentation detail around including source code (#287)
	Document fingerprinting (#288)
	Document Sentry.Context (#289)
	Add CONTRIBUTING.md (#290)
	Document cookie scrubber (#291)
	Document testing with Sentry (#292)

	Bug Fixes
	Change report_deps default value to false to avoid compiler bug (#285)
	Limit size of messages (#293)
	Use elixir_uuid instead of uuid (#295)

6.3.0 (2018-06-26)
	Enhancements
	Use the stacktrace passed to Sentry.Event.transform_exception/2 when calling Exception.normalize/3 (#266)
	Reduce Logger noise in HTTP Client (#274)
	Use Plug.Conn.get_peer_data/1 (#273)

	Bug Fixes
	Add documentation for capturing arbitrary events (#272)
	Fix typo in README.md (#277)

6.2.1 (2018-04-24)
	Enhancements	Accept public key DSNs (#263)

6.2.0 (2018-04-04)
	Enhancements	Allow overriding in Sentry.Plug (#261)
	Implement Sentry.Phoenix.Endpoint to capture errors in Phoenix.Endpoint (#259)

	Bug Fixes	Fix sending events from remote_console (#262)
	Add filter option to configuration table in README (#255)
	Default to not sending cookies, but allow configuration to send (#254)
	Do not raise on invalid DSN (#218)

6.1.0 (2017-12-07)
	Enhancements	Elixir 1.6.0 formatted (#246)
	Improve documentation around source code compilation (#242)
	Update typespecs (#249)
	Report errors from :kernel.spawn processes (#251)

	Bug Fixes	Fix doc typos (#245)
	Remove Sentry.Event compile warning (#248)
	Fix enable_source_code_context configuration (#247)

6.0.5 (2017-12-07)
	Enhancements	Improve README documentation (#236)
	Fix GenEvent warning (#237, #239)

	Bug Fixes	Fix error_type reported in Sentry.Plug (#238)

6.0.4 (2017-11-20)
	Enhancements	Allow string for included_environments by splitting on commas (#234)

	Bug Fixes	Handle :error when sending test event (#228)

6.0.3 (2017-11-01)
	Enhancements	Fix tests for differing versions of Erlang/Elixir (#221)

	Bug Fixes	Fix invalid value for stacktrace via Event rendering layer (#224)

6.0.2 (2017-10-03)
	Enhancements	Improve Sentry.Logger documentation (#217)

	Bug Fixes	Handle Plug.Upload during scrubbing (#208)
	Do not check DSN for source_code_path_pattern configuration (#211)
	Fix culprit ambiguity (#214)

6.0.1 (2017-09-06)
	Bug Fixes	Fix filters and test mix task (#206)

	Enhancements	Improve README clarity (#202)

6.0.0 (2017-08-29)
See these 5.0.0 to 6.0.0 upgrade instructions to update your existing app.
	Breaking Changes	Remove use_error_logger configuration (#196)
	enable_source_code_context is no longer required configuration (#201)

	Bug Fixes	Fix README error (#197)
	Prevent overwriting server_name option (#200)

	Enhancements	Scrubbing of nested maps (#192)
	Allow Hackney 1.9 and later (#199)

5.0.1 (2017-07-18)
	Bug Fixes	Fix logger and context usage (#185)

5.0.0 (2017-07-10)
	Backward incompatible changes	Allow specifying sync/async/none when getting result of sending event (#174)

	Enhancements	Modules (#182)
	Config from system and DSN (#180)
	App Frames (#177)
	Sampling (#176)
	Post event hook (#175)
	Improve documentation around recompilation for source code context (#171)
	Use better arity logic in stacktraces (#170)
	Allow custom fingerprinting (#160)

	Bug Fixes	Fix README typo (#159)
	Fix the backoff to really be exponential (#162)

4.0.3 (2017-05-17)
	Enhancements	Update and improve Travis build matrix (#155)
	Specify behaviour for Sentry HTTP clients (#158)

4.0.2 (2017-04-26)
	Enhancements	Relax hackney requirements

4.0.1 (2017-04-25)
	Enhancements	Bump hackney to a version that fixes major bug (#153)

4.0.0 (2017-04-20)
See these 3.0.0 to 4.0.0 upgrade instructions to update your existing app.
	Enhancements	Bump hackney to a version that isn't retired (#135)
	Improve Logger reporting (#136)
	Accept keyword lists in Sentry.Context.add_breadcrumb/1 (#139)
	Add elements to beginning of breadcrumbs list for performance (#141)
	Close unread hackney responses properly (#149)
	Improve Sentry.Client code style (#147)
	Fix invalid specs in Sentry methods (#146)
	Allow setting client at runtime (#150)

	Backward incompatible changes	Return :ignored instead of {:ok, ""} when event is not sent because environment_name is not in included_environments in Sentry.send_event, Sentry.capture_exception, or Sentry.capture_message (#146)
	Return :ignored and log warning instead of returning {:ok, "Sentry: unable to parse exception"} when unable to parse exception in Sentry.send_event, Sentry.capture_exception, or Sentry.capture_message (#146)
	Return {:ok, Task} instead of Task when an event is successfully sent with Sentry.send_event, Sentry.capture_exception, or Sentry.capture_message (#146)
	Ignore non-existent route exceptions (#110)
	Sending source code as context when reporting errors (#138)

3.0.0 (2017-03-02)
	Enhancements	Add dialyzer support (#128)

	Backward incompatible changes	Fix default configuration (#124)
	Start and use separate Sentry hackney pool instead of default (#130)
	Return :error instead of raising when encoding invalid JSON (#131)

2.2.0 (2017-02-15)
	Enhancements	Allow setting hackney_opts
	Add Sentry.capture_message/1
	Allow reading :dsn from System at runtime by configuring as {:system, "ENV_VAR"}

2.1.0 (2016-12-17)
	Enhancements
	Allow filtering which exceptions are sent via Sentry.EventFilter behaviour
	Add Sentry.Context.set_http_context/1

	Bug Fixes
	Fix usage of deprecated modules
	Fix README documentation
	Fix timestamp parameter format

2.0.2 (2016-12-08)
	Bug Fixes	Fix regex checking of non-binary values

2.0.1 (2016-12-05)
	Bug Fixes	Fix compilation error when Plug is not available

2.0.0 (2016-11-28)
	Enhancements
	Return a task when sending a Sentry event
	Provide default scrubber for request body and headers (Sentry.Plug.default_body_scrubber and Sentry.Plug.default_header_scrubber)
	Header scrubbing can now be configured with :header_scrubber

	Bug Fixes
	Ensure mix sentry.send_test_event finishes sending event before ending Mix task

	Backward incompatible changes
	Sentry.capture_exception/1 now returns a Task instead of {:ok, PID}
	Sentry.Plug :scrubber option has been removed in favor of the more descriptive :body_scrubberoption, which defaults to newly added Sentry.Plug.default_scrubber/1
	New option for Sentry.Plug :header_scrubber defaults to newly added Sentry.Plug.default_header_scrubber/1
	Request bodies were not previously sent by default. Because of above change, request bodies are now sent by default after being scrubbed by default scrubber. To prevent sending any data, :body_scrubber should be set to nil

 Setup with Plug and Phoenix - Sentry v10.2.0

Setup with Plug and Phoenix

You can capture errors in Plug (and Phoenix) applications with Sentry.PlugContext and Sentry.PlugCapture. Sentry.PlugContext adds contextual metadata from the current request which is then included in errors that are captured and reported by Sentry.PlugCapture.
For Phoenix Applications
If you are using Phoenix:
	Add Sentry.PlugCapture above the use Phoenix.Endpoint line in your endpoint file
	Add Sentry.PlugContext below Plug.Parsers

 defmodule MyAppWeb.Endpoint
+ use Sentry.PlugCapture
 use Phoenix.Endpoint, otp_app: :my_app

 # ...

 plug Plug.Parsers,
 parsers: [:urlencoded, :multipart, :json],
 pass: ["*/*"],
 json_decoder: Phoenix.json_library()

+ plug Sentry.PlugContext
Capturing User Feedback
If you would like to capture user feedback as described here, the Sentry.get_last_event_id_and_source/0 function can be used to see if Sentry has sent an event within the current Plug process (and get the source of that event). :plug will be the source for events coming from Sentry.PlugCapture. The options described in the Sentry documentation linked above can be encoded into the response as well.
An example Phoenix application setup that displays the user feedback form on 500 responses on requests accepting HTML could look like this:
defmodule MyAppWeb.ErrorView do
 # ...

 def render("500.html", _assigns) do
 case Sentry.get_last_event_id_and_source() do
 {event_id, :plug} when is_binary(event_id) ->
 opts = Jason.encode!(%{eventId: event_id})

 ~E"""
 <script src="https://browser.sentry-cdn.com/5.9.1/bundle.min.js" integrity="sha384-/x1aHz0nKRd6zVUazsV6CbQvjJvr6zQL2CHbQZf3yoLkezyEtZUpqUNnOLW9Nt3v" crossorigin="anonymous"></script>
 <script>
 Sentry.init({ dsn: '<%= Sentry.Config.dsn() %>' });
 Sentry.showReportDialog(<%= raw opts %>)
 </script>
 """

 _ ->
 "Error"
 end
 end
end
For Plug Applications
If you are in a non-Phoenix Plug application:
	Add Sentry.PlugCapture at the top of your Plug application
	Add Sentry.PlugContext below Plug.Parsers (if it is in your stack)

 defmodule MyApp.Router do
 use Plug.Router
+ use Sentry.PlugCapture

 # ...

 plug Plug.Parsers,
 parsers: [:urlencoded, :multipart]

+ plug Sentry.PlugContext

 Oban Integration - Sentry v10.2.0

Oban Integration

The Sentry SDK supports integrating with Oban, one of the most widely-used job-scheduling libraries in the Elixir ecosystem.
The Oban integration is available since v10.2.0 of the Sentry SDK, and it requires:
	Oban to be a dependency of your application.
	Oban version 2.17.6 or greater.
	Elixir 1.13 or later, since that is required by Oban itself.

Cron Support
To enable support for monitoring Oban jobs via Sentry Cron, make sure the following :oban configuration is in your Sentry configuration:
config :sentry,
 # ...,
 integrations: [
 oban: [
 cron: [enabled: true]
]
]
This configuration will report started, completed, and failed job, alongside their duration. It will use the worker name as the monitor_slug of the reported cron.

 Upgrade to Sentry 8.x - Sentry v10.2.0

Upgrade to Sentry 8.x

Sentry 8.x requires Elixir 1.10 and Sentry 7.x will be maintained for applications running prior versions. Documentation for Sentry 7.x can be found here.
If you would like to upgrade a project to use Sentry 8.x, see here.

 Upgrade to Sentry 9.x - Sentry v10.2.0

Upgrade to Sentry 9.x

This guide contains information on how to upgrade from Sentry 8.x to Sentry 9.x. If you're on a version lower than 8.x, see the previous upgrade guides to get to 8.x before going through this one.
Check Your Elixir Version
Sentry 9.0.0 requires Elixir 1.11+. If you're still running on Elixir 1.10 or lower, use Sentry 8.x or lower.
Remove DSN Query Params
Before 9.0.0, the Sentry Elixir library supported one way of passing configuration through query parameters in the configured Sentry DSN. This is not supported anymore in 9.0.0.
To upgrade:
	Remove query parameters from your configured Sentry DSN.
	Set the values for those parameters as normal configuration, either via the application environment, or via environment variables.

For example:
In config/config.exs

Replace this:
config :sentry,
 dsn: "https://public:secret@app.getsentry.com/1?server_name=my-server"

with this:
config :sentry,
 dsn: "https://public:secret@app.getsentry.com/1",
 server_name: "my-server"
Make Sure the Environment Name Is Configured
Sentry now requires the :environment_name configuration to be set, since the default was causing potential issues (such as #524). To fix this, configure :environment_name or set the SENTRY_ENVIRONMENT system environment variable.
Fix Your Environment Variables
Sentry 9.0.0 stops using many "magic" system environment variables for configuration. These were environment variables prefixed with SENTRY_.
If you were using these environment variables, you'll either need to configure the corresponding setting through the application environment, or you'll need to read those variables yourself (at runtime).
For example, if you were setting SENTRY_LOG_LEVEL, you'll have to do something like:
In config/runtime.exs
config :sentry,
 log_level: System.fetch_env!("SENTRY_LOG_LEVEL")
We strongly recommend you do this in config/runtime.exs so that you'll read the system environment when starting your application. This is going to work both for local development as well as in Mix releases.
This is the new system environment variables configuration:
	System environment variable	Corresponding configuration setting	Supported in 9.0.0+
	SENTRY_SERVER_NAME	:server_name	❌
	SENTRY_LOG_LEVEL	:log_level	❌
	SENTRY_CONTEXT_LINES	:context_lines	❌
	SENTRY_ENVIRONMENT_NAME	:environment_name	❌ — use SENTRY_ENVIRONMENT
	SENTRY_ENVIRONMENT	:environment_name	✅
	SENTRY_DSN	:dsn	✅
	SENTRY_RELEASE	:release	✅

Stop Using {:system, var}
Sentry used to support setting configuration options to {:system, var} in order to read var from the system environment at runtime. This behavior was there to compensate for releases before Mix releases were introduced.
With Mix releases, you can use config/runtime.exs to have runtime configuration that works both within releases and using Mix (like during local development).
To fix this, remove all the {:system, var} values from the Sentry configuration, move those options to config/runtime.exs, and use normal System functions to read the environment (such as System.fetch_env!/1).
Before, in config/config.exs ❌
config :sentry,
 # ...,
 environment_name: {:system, "SENTRY_ENV"}

Now, in config/runtime.exs ✅
config :sentry,
 # ...,
 environment_name: System.fetch_env!("SENTRY_ENV")
Fix Compile-Time Configuration
Some configuration settings that Sentry supports are needed to compile Sentry itself. Before 9.0.0, you could change the value of these settings (such as :enable_source_code_context) at runtime, but it would have no effect. It would only do something if you were to change the value at compile time, and then you'd recompile Sentry itself.
Elixir v1.10.0 introduced Application.compile_env/2 however. This means that we were able to turn those settings into explicit compile-time settings. If you change the value of any of these settings now and forget to recompile Sentry, Mix will yell at you.
The fix for this is simple: do what Mix says.
The settings that are now compile-time settings are:
	:enable_source_code_context
	:root_source_code_paths
	:report_deps
	:source_code_path_pattern
	:source_code_exclude_patterns

Stop Using Sentry.Sources
Sentry.Sources was meant to be private API and has been removed. Its functionality is very specific to Sentry, and it's not a good general mechanism to retrieve source code. This way, we can also have the freedom to improve this functionality without making potential breaking changes to the API of this library.
Stop Using Sentry.Client
Most of the functionality that you could find in Sentry.Client was also available in the Sentry module. Additionally, most of the functions within Sentry.Client were not really usable in a generic way without deep knowledge of this library and the Sentry ecosystem.
Stop Using result: :async
We removed the :async possible value from the :result option of Sentry.Client.send_event/2. Instead, you can spawn a task yourself.
If you had something like this before:
{:ok, sentry_task} = Sentry.capture_exception(my_exception, result: :async)

Do other stuff...

Task.await(sentry_task)
you can now replace it with something like:
Start a supervisor for this somewhere, maybe in your application's
start/2 callback.
{:ok, _} = Task.Supervisor.start_link(name: SentryAsyncSupervisor)

{:ok, sentry_task} =
 Task.Supervisor.async_nolink(SentryAsyncSupervisor, fn ->
 Sentry.capture_exception(my_exception, result: :async)
 end)

Do other stuff...

Task.await(sentry_task)

 Upgrade to Sentry 10.x - Sentry v10.2.0

Upgrade to Sentry 10.x

This guide contains information on how to upgrade from Sentry 9.x to Sentry 10.x. If you're on a version lower than 9.x, see the previous upgrade guides to get to 9.x before going through this one.
Actively Package Your Source Code
Before Sentry 10.0.0, in order to report source code context around errors you had to configure Sentry through the :enable_source_code_context, :root_source_code_paths, and a few other options. These were compile-time options, meaning that if you changed any of these you had to recompile the Sentry dependency itself, not just your project. This was because Sentry used to store the raw source code of your application in its own compiled bytecode.
In Sentry 10.0.0, we've revised this approach for a couple of reasons:
	To avoid storing the raw source code in the compiled Sentry code, which in turn makes the BEAM bytecode artifact of your release smaller.

	To simplify the compilation/recompilation step mentioned above.

Now, packaging source code is an active step that you have to take. The mix sentry.package_source_code Mix task stores the source code in a compressed file inside the priv directory of the :sentry application. Sentry then loads this file when the :sentry application starts. This approach works well because users of Sentry are not interested in packaging source code within non-production environments, so this new task can be added to release scripts (or Dockerfiles, for example) only in production environments.
All the configuration options related to source code remain the same. See the documentation in the Sentry module.
What Do I Have to Do?
	Add a call to mix sentry.package_source_code in your release script. This can be inside a Dockerfile, for example. Make sure to call this before mix release, so that the built release will include the packaged source code.

	That's all!

Make Sure You're Using the Right Environment
Now, if you're not explicitly setting he :environment_name option in your config or setting the SENTRY_ENVIRONMENT environment variable, the environment will default to production (which is in line with the other Sentry SDKs).
Rename :before_send_event to :before_send
To be in line with all other Sentry SDKs, we renamed the :before_send_event configuration option to :before_send. Just rename :before_send_event to :before_send in your configuration and potentially in any call where you pass it directly.
Stop Using :included_environments
We hard-deprecated :included_environments. It's a bit of a confusing option that essentially no other Sentry SDKs use. To control whether to send events to Sentry, use the :dsn configuration instead (if set then we send events, if not set then we don't send events). :included_environments will be removed in v11.0.0.
For example, if you had something like this in config/config.exs:
In config/config.exs
config :sentry,
 dsn: "...",
 environment_name: config_env(),
 included_environments: [:prod]
Move this block to config/prod.exs, and turn it into:
In config/prod.exs
config :sentry,
 dsn: "...",
 environment_name: :prod
This way, :dsn will only be set in the :prod environment and no events will be sent in the development or testing environments.
Alternatively, if you were setting :dsn in config/runtime.exs (for use with Mix releases), change it to:
In config/runtime.exs
if config_env() == :prod do
 config :sentry,
 dsn: "...",
 environment_name: :prod
end

 Sentry - Sentry v10.2.0

Sentry

Provides the functionality to submit events to Sentry.
This library can be used to submit events to Sentry from any Elixir application.
It supports several ways of reporting events:
	Manually — see capture_exception/2 and capture_message/2.

	Through an Elixir Logger backend — see Sentry.LoggerBackend.

	Automatically for Plug/Phoenix applications — see the
Setup with Plug and Phoenix guide, and the
Sentry.PlugCapture and Sentry.PlugContext modules.

Usage
Add the following to your production configuration:
In config/prod.exs
config :sentry, dsn: "https://public:secret@app.getsentry.com/1",
 environment_name: :prod,
 tags: %{
 env: "production"
 }
Sentry uses the :dsn option to determine whether it should record exceptions. If
:dsn is set, then Sentry records exceptions. If it's not set or set to nil,
then simply no events are sent to Sentry.
Included Environments
Before v10.0.0, the recommended way to control whether to report events to Sentry
was the :included_environments option (a list of environments to report events for).
This was used together with the :environment_name option to determine whether to
send events. :included_environments is deprecated in v10.0.0 in favor of setting
or not setting :dsn. It will be removed in v11.0.0.

You can even rely on more specific logic to determine the environment name. It's
not uncommon for most applications to have a "staging" environment. In order
to handle this without adding an additional Mix environment, you can set an
environment variable that determines the release level. By default, Sentry
picks up the SENTRY_ENVIRONMENT variable (at runtime, when starging).
Otherwise, you can read the variable at runtime. Do this only in
config/runtime.exs so that it will work both for local development as well
as Mix releases.
In config/runtime.exs
if config_env() == :prod do
 config :sentry, dsn: "https://public:secret@app.getsentry.com/1",
 environment_name: System.fetch_env!("RELEASE_LEVEL")
end
In this example, we are getting the environment name from the RELEASE_LEVEL
environment variable. Now, on our servers, we can set the environment variable
appropriately. The config_env() == :prod check ensures that we only set
:dsn in production, effectively only enabling reporting in production-like
environments.
Sentry supports many configuration options. See the Configuration
section for complete documentation.
Configuration
You can configure Sentry through the application environment. Configure
the following keys under the :sentry application. For example, you can
do this in config/config.exs:
config/config.exs
config :sentry,
 # ...
Sentry reads the configuration when the :sentry application starts, and
will not pick up any changes after that. This is in line with how other
Sentry SDKs (and many other Erlang/Elixir libraries) work. The reason
for this choice is performance: the SDK performs validation on application
start and then caches the configuration (in :persistent_term).
Updating Configuration at Runtime
If you must update configuration at runtime, use put_config/2. This
function is not efficient (since it updates terms in :persistent_term),
but it works in a pinch. For example, it's useful if you're verifying
that you send the right events to Sentry in your test suite, so you need to
change the :dsn configuration to point to a local server that you can verify
requests on.

Below you can find all the available configuration options.
Basic Options
	:dsn (String.t/0 or nil) - The DSN for your Sentry project. If this is not set, Sentry will not be enabled.
If the SENTRY_DSN environment variable is set, it will be used as the default value.
If :test_mode is true, the :dsn option is sometimes ignored; see Sentry.Test
for more information. The default value is nil.

	:environment_name (String.t/0 or atom/0) - The current environment name. This is used to specify the environment
that an event happened in. It can be any string shorter than 64 bytes,
except the string "None". When Sentry receives an event with an environment,
it creates that environment if it doesn't exist yet.
If the SENTRY_ENVIRONMENT environment variable is set, it will
be used as the value for this option. The default value is "production".

	:included_environments (list of atom/0 or String.t/0, or the atom :all) - Deprecated. The environments in which Sentry can report events. If this is a list,
then :environment_name needs to be in this list for events to be reported.
If this is :all, then Sentry will report events regardless of the value
of :environment_name. This will be removed in v11.0.0.

	:release (String.t/0 or nil) - The release version of your application.
This is used to correlate events with source code. If the SENTRY_RELEASE
environment variable is set, it will be used as the default value. The default value is nil.

	:json_library (module/0) - A module that implements the "standard" Elixir JSON behaviour, that is, exports the
encode/1 and decode/1 functions. If you use the default, make sure to add
:jason as a dependency of your application. The default value is Jason.

	:server_name (String.t/0) - The name of the server running the application. Not used by default.

	:sample_rate (float/0) - The percentage of events to send to Sentry. A value of 0.0 will deny sending any events,
and a value of 1.0 will send 100% of events. Sampling is applied
after the :before_send callback. See where the Sentry
documentation
suggests this. Must be between 0.0 and 1.0 (included). The default value is 1.0.

	:tags (map of term/0 keys and term/0 values) - A map of tags to be sent with every event. The default value is %{}.

	:max_breadcrumbs (non_neg_integer/0) - The maximum number of breadcrumbs to keep. See Sentry.Context.add_breadcrumb/1. The default value is 100.

	:report_deps (boolean/0) - Whether to report application dependencies of your application
alongside events. This list contains applications (alongside their version)
that are loaded when the :sentry application starts. The default value is true.

	:log_level - The level to use when Sentry fails to
send an event due to an API failure or other reasons. The default value is :warning.

	:in_app_module_allow_list (list of module/0) - A list of modules that is used
to distinguish among stacktrace frames that belong to your app and ones that are
part of libraries or core Elixir. This is used to better display the significant part
of stacktraces. The logic is "greedy", so if your app's root module is MyApp and
you configure this option to [MyApp], MyApp as well as any submodules
(like MyApp.Submodule) would be considered part of your app. Defaults to []. The default value is [].

	:filter (module/0) - A module that implements the Sentry.EventFilter
behaviour. Defaults to Sentry.DefaultEventFilter. See the
Filtering Exceptions section below. The default value is Sentry.DefaultEventFilter.

	:dedup_events (boolean/0) - Whether to deduplicate events before reporting them to Sentry. If this option is true,
then the SDK will store reported events for around 30 seconds after they're reported.
Any time the SDK is about to report an event, it will check if it has already reported
within the past 30 seconds. If it has, then it will not report the event again, and will
log a message instead. Events are deduplicated by comparing their message, exception,
stacktrace, and fingerprint. Available since v10.0.0. The default value is true.

	:test_mode (boolean/0) - Whether to enable test mode. When test mode is enabled, the SDK will check whether
there is a process collecting events and avoid sending those events if that's the
case. This is useful for testing—see Sentry.Test. :test_mode works in tandem
with :dsn; this is described in detail in Sentry.Test. The default value is false.

	:integrations (keyword/0) - Configuration for integrations with third-party libraries. Every integration has its own
option and corresponding configuration options. The default value is [].
	:oban (keyword/0) - Configuration for the Oban integration. Available
since v10.2.0.
	:cron (keyword/0) - Configuration options for configuring crons
for Oban.	:enabled (boolean/0) - Whether to enable the Oban integration. When enabled, the Sentry SDK will
capture check-ins for Oban jobs. Available since v10.2.0. The default value is false.

	:quantum (keyword/0) - Configuration for the Quantum integration.
Available since v10.2.0.
	:cron (keyword/0) - Configuration options for configuring crons
for Quantum.	:enabled (boolean/0) - Whether to enable the Quantum integration. When enabled, the Sentry SDK will
capture check-ins for Quantum jobs. Available since v10.2.0. The default value is false.

Hook Options
These options control hooks that this SDK can call before or after sending events.
	:before_send (before_send_event_callback/0) - Allows performing operations on the event before it is sent as
well as filtering out the event altogether.
If the callback returns nil or false, the event is not reported. If it returns an
updated Sentry.Event, then the updated event is used instead. See the Event Callbacks
section below for more information.
:before_send is available since v10.0.0. Before, it was called :before_send_event.

	:before_send_event (before_send_event_callback/0) - Exactly the same as :before_send, but has been deprecated since v10.0.0.

	:after_send_event (after_send_event_callback/0) - Callback that is called after
attempting to send an event. The result of the HTTP call as well as the event will
be passed as arguments. The return value of the callback is not returned. See the
Event Callbacks section below for more information.

Transport Options
These options control how this Sentry SDK sends events to the Sentry server.
	:send_result (send_type/0) - Controls what to return when reporting exceptions to Sentry. The default value is :none.

	:client (module/0) - A module that implements the Sentry.HTTPClient
behaviour. Defaults to Sentry.HackneyClient, which uses
hackney as the HTTP client. The default value is Sentry.HackneyClient.

	:send_max_attempts (pos_integer/0) - The maximum number of attempts to send an event to Sentry. The default value is 4.

	:hackney_opts (keyword/0) - Options to be passed to hackney. Only
applied if :client is set to Sentry.HackneyClient. The default value is [pool: :sentry_pool].

	:hackney_pool_timeout (timeout/0) - The maximum time to wait for a
connection to become available. Only applied if :client is set to
Sentry.HackneyClient. The default value is 5000.

	:hackney_pool_max_connections (pos_integer/0) - The maximum number of
connections to keep in the pool. Only applied if :client is set to
Sentry.HackneyClient. The default value is 50.

Source Code Context Options
These options control how source code context is reported alongside events.
	:enable_source_code_context (boolean/0) - Whether to report source code context alongside events. The default value is false.

	:root_source_code_paths (list of Path.t/0) - Aa list of paths to the root of
your application's source code. This is used to determine the relative
path of files in stack traces. Usually, you'll want to set this to
[File.cwd!()]. For umbrella apps, you should set this to all the application
paths in your umbrella (such as [Path.join(File.cwd!(), "apps/app1"), ...]).
Required if :enabled_source_code_context is true. The default value is [].

	:source_code_path_pattern (String.t/0) - A glob pattern used to
determine which files to report source code context for. The glob "starts"
from :root_source_code_paths. The default value is "**/*.ex".

	:source_code_exclude_patterns (list of Regex.t/0) - A list of regular expressions used to determine which files to
exclude from source code context. The default value is [~r/\/_build\//, ~r/\/deps\//, ~r/\/priv\//, ~r/\/test\//].

	:source_code_map_path (Path.t/0) - The path to the source code map file. See
mix sentry.package_source_code.
Defaults to a private path inside Sentry's priv directory. Available since v10.2.0.

	:context_lines (pos_integer/0) - The number of lines of source code
before and after the line that caused the exception to report. The default value is 3.

Configuration Through System Environment
Sentry supports loading some configuration from the system environment.
The supported environment variables are: SENTRY_RELEASE, SENTRY_ENVIRONMENT,
and SENTRY_DSN. See the :release, :environment_name, and :dsn configuration
options respectively for more information.

Filtering Exceptions
If you would like to prevent Sentry from sending certain exceptions, you can
use the :before_send configuration option. See the Event Callbacks
section below.
Before v9.0.0, the recommended way to filter out exceptions was to use a filter,
that is, a module implementing the Sentry.EventFilter behaviour. This is still supported,
but is not deprecated. See Sentry.EventFilter for more information.
Event Callbacks
You can configure the :before_send and :after_send_event options to
customize what happens before and/or after sending an event. The :before_send
callback must be of type before_send_event_callback/0 and the :after_send_event
callback must be of type after_send_event_callback/0. For example, you
can set:
config :sentry,
 before_send: {MyModule, :before_send},
 after_send_event: {MyModule, :after_send}
MyModule could look like this:
defmodule MyModule do
 def before_send(event) do
 metadata = Map.new(Logger.metadata())
 %Sentry.Event{event | extra: Map.merge(event.extra, metadata)}
 end

 def after_send_event(event, result) do
 case result do
 {:ok, id} ->
 Logger.info("Successfully sent event!")

 {:error, _reason} ->
 Logger.info(fn -> "Did not successfully send event! #{inspect(event)}" end)
 end
 end
end
Reporting Source Code
Sentry supports reporting the source code of (and around) the line that
caused an issue. An example configuration to enable this functionality is:
config :sentry,
 dsn: "https://public:secret@app.getsentry.com/1",
 enable_source_code_context: true,
 root_source_code_paths: [File.cwd!()],
 context_lines: 5
To support this functionality, Sentry needs to package source code
and store it so that it's available in the compiled application. Packaging source
code is an active step you have to take; use the mix sentry.package_source_code Mix task to do that.
Sentry stores the packaged source code in its priv directory. This is included by
default in Mix releases. Once the source code is packaged
and ready to ship with your release, Sentry will load it when the :sentry application
starts. If there are issues with loading the packaged code, Sentry will log some warnings
but will boot up normally and it just won't report source code context.
Prune Large File Trees
Due to Sentry reading the file system and defaulting to a recursive search
of directories, it is important to check your configuration and compilation
environment to avoid a folder recursion issue. You might see problems when
deploying to the root folder, so it is best to follow the practice of
compiling your application in its own folder. Modifying the
:source_code_path_pattern configuration option from its default is also
an avenue to avoid compile problems, as well as pruning unnecessary files
with :source_code_exclude_patterns.

 Anchor for this section

 Summary

 Types

 after_send_event_callback()

 A callback to use with the :after_send_event configuration option.

 before_send_event_callback()

 A callback to use with the :before_send configuration option.
configuration options.k

 send_result()

 send_type()

 The strategy to use when sending an event to Sentry.

 Functions

 capture_check_in(options)

 Captures a check-in built with the given options.

 capture_exception(exception, opts \\ [])

 Parses and submits an exception to Sentry.

 capture_message(message, opts \\ [])

 Reports a message to Sentry.

 get_last_event_id_and_source()

 Gets the last event ID sent to the server from the process dictionary.
Since it uses the process dictionary, it will only return the last event
ID sent within the current process.

 put_config(key, value)

 Updates the value of key in the configuration at runtime.

 put_last_event_id_and_source(event_id, source \\ nil)

 Puts the last event ID sent to the server for the current process in
the process dictionary.

 send_event(event, opts \\ [])

 Sends an event to Sentry.

 Anchor for this section

Types

 Link to this type

 after_send_event_callback()

 View Source

 (since 9.0.0)

 @type after_send_event_callback() ::
 (Sentry.Event.t(), result :: term() -> term())
 | {module(), function_name :: atom()}

A callback to use with the :after_send_event configuration option.
If this is {module, function_name}, then module.function_name(event, result) will
be called, where event is of type Sentry.Event.t/0.

 Link to this type

 before_send_event_callback()

 View Source

 (since 9.0.0)

 @type before_send_event_callback() ::
 (Sentry.Event.t() -> as_boolean(Sentry.Event.t()))
 | {module(), function_name :: atom()}

A callback to use with the :before_send configuration option.
configuration options.k
If this is {module, function_name}, then module.function_name(event) will
be called, where event is of type Sentry.Event.t/0.
See the Configuration section in the module documentation
for more information on configuration.

 Link to this type

 send_result()

 View Source

 @type send_result() ::
 {:ok, event_or_envelope_id :: String.t()}
 | {:error, term()}
 | :ignored
 | :unsampled
 | :excluded

 Link to this type

 send_type()

 View Source

 (since 9.0.0)

 @type send_type() :: :sync | :none

The strategy to use when sending an event to Sentry.

 Anchor for this section

Functions

 Link to this function

 capture_check_in(options)

 View Source

 (since 10.2.0)

 @spec capture_check_in(keyword()) ::
 {:ok, check_in_id :: String.t()} | :ignored | {:error, term()}

Captures a check-in built with the given options.
Check-ins are used to report the status of a monitor to Sentry. This is used
to track the health and progress of cron jobs. This function is somewhat
low level, and mostly useful when you want to report the status of a cron
but you are not using any common library to manage your cron jobs.
This function performs a synchronous HTTP request to Sentry. If the request
performs successfully, it returns {:ok, check_in_id} where check_in_id is
the ID of the check-in that was sent to Sentry. You can use this ID to send
updates about the same check-in. If the request fails, it returns
{:error, reason}.
Setting the DSN
If the :dsn configuration is not set, this function won't report the check-in
to Sentry and will instead return :ignored. This behaviour is consistent with
the rest of the SDK (such as capture_exception/2).

 options

 Options

This functions supports all the options mentioned in Sentry.CheckIn.new/1.

 examples

 Examples

Say you have a GenServer which periodically sends a message to itself to execute some
job. You could monitor the health of this GenServer by reporting a check-in to Sentry.
For example:
@impl GenServer
def handle_info(:execute_periodic_job, state) do
 # Report that the job started.
 {:ok, check_in_id} = Sentry.capture_check_in(status: :in_progress, monitor_slug: "genserver-job")

 :ok = do_job(state)

 # Report that the job ended successfully.
 Sentry.capture_check_in(check_in_id: check_in_id, status: :ok, monitor_slug: "genserver-job")

 {:noreply, state}
end

 Link to this function

 capture_exception(exception, opts \\ [])

 View Source

 @spec capture_exception(
 Exception.t(),
 keyword()
) :: send_result()

Parses and submits an exception to Sentry.
This only sends the exception if the :dsn configuration option is set
and is not nil. See the Configuration section
in the module documentation.
The opts argument is passed as the second argument to send_event/2.

 Link to this function

 capture_message(message, opts \\ [])

 View Source

 @spec capture_message(
 String.t(),
 keyword()
) :: send_result()

Reports a message to Sentry.
opts argument is passed as the second argument to send_event/2.

 interpolation-since-v10-1-0

 Interpolation (since v10.1.0)

The message argument supports interpolation. You can pass a string with formatting
markers as %s, ant then pass in the :interpolation_parameters option as a list
of positional parameters to interpolate. For example:
Sentry.capture_message("Error with user %s", interpolation_parameters: ["John"])
This way, Sentry will group the messages based on the non-interpolated string, but it
will show the interpolated string in the UI.
Missing or Extra Parameters
If the message string has more %s markers than parameters, the extra %s markers
are included as is and the SDK doesn't raise any error. If you pass in more interpolation
parameters than %s markers, the extra parameters are ignored as well. This is because
the SDK doesn't want to be the cause of even more errors in your application when what
you're trying to do is report an error in the first place.

 Link to this function

 get_last_event_id_and_source()

 View Source

 @spec get_last_event_id_and_source() :: {String.t(), atom() | nil} | nil

Gets the last event ID sent to the server from the process dictionary.
Since it uses the process dictionary, it will only return the last event
ID sent within the current process.

 Link to this function

 put_config(key, value)

 View Source

 (since 10.0.0)

 @spec put_config(atom(), term()) :: :ok

Updates the value of key in the configuration at runtime.
Once the :sentry application starts, it validates and caches the value of the
configuration options you start it with. Because of this, updating configuration
at runtime requires this function as opposed to just changing the application
environment.
This Function Is Slow
This function updates terms in :persistent_term, which is what
this SDK uses to cache configuration. Updating terms in :persistent_term is slow
and can trigger full GC sweeps. We recommend only using this function in rare cases,
or during tests.

 examples

 Examples

For example, if you're using Bypass to test
that you send the correct events to Sentry:
test "reports the correct event to Sentry" do
 bypass = Bypass.open()

 Bypass.expect(...)

 Sentry.put_config(:dsn, "http://public:secret@localhost:#{bypass.port}/1")
 Sentry.put_config(:send_result, :sync)

 my_function_to_test()
end

 Link to this function

 put_last_event_id_and_source(event_id, source \\ nil)

 View Source

Puts the last event ID sent to the server for the current process in
the process dictionary.

 Link to this function

 send_event(event, opts \\ [])

 View Source

 @spec send_event(
 Sentry.Event.t(),
 keyword()
) :: send_result()

Sends an event to Sentry.
An event is the most generic payload you can send to Sentry. It encapsulates
information about an exception, a message, or any other event that you want to
report. To manually build events, see the functions in Sentry.Event.

 options

 Options

	:result - Allows specifying how the result should be returned. The possible values are:
	:sync - Sentry will make an API call synchronously (including retries) and will
return {:ok, event_id} if successful.

	:none - Sentry will send the event in the background, in a fire-and-forget
fashion. The function will return {:ok, ""} regardless of whether the API
call ends up being successful or not.

	:sample_rate (float/0) - Same as the global :sample_rate configuration, but applied only to
this call. See the module documentation. Available since v10.0.0.

	:before_send (before_send_event_callback/0) - Same as the global :before_send configuration, but
applied only to this call. See the module documentation. Available since v10.0.0.

	:after_send_event (t:after_send_event_callback/1) - Same as the global :after_send_event configuration, but
applied only to this call. See the module documentation. Available since v10.0.0.

	:client (module/0) - Same as the global :client configuration, but
applied only to this call. See the module documentation. Available since v10.0.0.

Async Send
Before v9.0.0 of this library, the :result option also supported the :async value.
This would spawn a Task to make the API call, and would return a {:ok, Task.t()} tuple.
You could use Task operations to wait for the result asynchronously. Since v9.0.0, this
option is not present anymore. Instead, you can spawn a task yourself that then calls this
function with result: :sync. The effect is exactly the same.

Sending Exceptions and Messages
This function is low-level, and mostly intended for library developers,
or folks that want to have full control on what they report to Sentry. For most
use cases, use capture_exception/2 or capture_message/2.

 Sentry.Attachment - Sentry v10.2.0

Sentry.Attachment

A struct to represent an attachment.
You can send attachments over to Sentry alongside an event. See:
https://develop.sentry.dev/sdk/envelopes/#attachment.
To add attachments, use Sentry.Context.add_attachment/1.
Available since v10.1.0.

 Anchor for this section

 Summary

 Types

 t()

 The type for the attachment struct.

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 (since 10.1.0)

 @type t() :: %Sentry.Attachment{
 attachment_type: String.t() | nil,
 content_type: String.t() | nil,
 data: binary(),
 filename: String.t()
}

The type for the attachment struct.

 Sentry.CheckIn - Sentry v10.2.0

Sentry.CheckIn

This module represents the struct for a "check-in".
Check-ins are used to report the status of a monitor to Sentry. This is used
to track the health and progress of cron jobs. This module is somewhat
low level, and mostly useful when you want to report the status of a cron
but you are not using any common library to manage your cron jobs.
Using capture_check_in/1
Instead of using this module directly, you'll probably want to use
Sentry.capture_check_in/1 to manually report the status of your cron jobs.

See https://develop.sentry.dev/sdk/check-ins/. This struct is available
since v10.2.0.

 Anchor for this section

 Summary

 Types

 monitor_config_schedule()

 The possible values for the :schedule option under :monitor_config.

 status()

 The possible status of the check-in.

 t()

 The type for the check-in struct.

 Functions

 new(opts)

 Creates a new check-in struct with the given options.

 Anchor for this section

Types

 Link to this type

 monitor_config_schedule()

 View Source

 (since 10.2.0)

 @type monitor_config_schedule() ::
 %{type: :crontab, value: String.t()}
 | %{
 type: :interval,
 value: number(),
 unit: :year | :month | :week | :day | :hour | :minute
 }

The possible values for the :schedule option under :monitor_config.
If the :type is :crontab, then the :value must be a string representing
a crontab expression. If the :type is :interval, then the :value must be
a number representing the interval and the :unit must be present and be one of :year,
:month, :week, :day, :hour, or :minute.

 Link to this type

 status()

 View Source

 (since 10.2.0)

 @type status() :: :in_progress | :ok | :error

The possible status of the check-in.

 Link to this type

 t()

 View Source

 (since 10.2.0)

 @type t() :: %Sentry.CheckIn{
 check_in_id: String.t(),
 contexts: Sentry.Interfaces.context(),
 duration: float() | nil,
 environment: String.t() | nil,
 monitor_config:
 nil
 | %{
 :schedule => monitor_config_schedule(),
 optional(:checkin_margin) => number(),
 optional(:max_runtime) => number(),
 optional(:failure_issue_threshold) => number(),
 optional(:recovery_threshold) => number(),
 optional(:timezone) => String.t()
 },
 monitor_slug: String.t(),
 release: String.t() | nil,
 status: status()
}

The type for the check-in struct.

 Anchor for this section

Functions

 Link to this function

 new(opts)

 View Source

 (since 10.2.0)

 @spec new(keyword()) :: t()

Creates a new check-in struct with the given options.

 options

 Options

The options you can pass match a subset of the fields of the t/0 struct.
You can pass:
	:check_in_id (String.t/0)

	:status (status/0) - Required.

	:monitor_slug (String.t/0) - Required.

	:duration (number/0)

	:contexts (map/0) - The contexts to attach to the check-in. This is a map of arbitrary data,
but right now Sentry supports the trace_id key under the
trace context
to connect the check-in with related errors. The default value is %{}.

	:monitor_config (keyword/0) - If you pass this optional option, you must pass the nested :schedule option.
	:checkin_margin (number/0)

	:max_runtime (number/0)

	:failure_issue_threshold (number/0)

	:recovery_threshold (number/0)

	:timezone (String.t/0)

	:schedule (monitor_config_schedule/0)

 examples

 Examples

iex> check_in = CheckIn.new(status: :ok, monitor_slug: "my-slug")
iex> check_in.status
:ok
iex> check_in.monitor_slug
"my-slug"

 Sentry.Context - Sentry v10.2.0

Sentry.Context

Provides functionality to store user, tags, extra, and breadcrumbs context when an
event is reported.
The contexts will be fetched and merged into the event when it is sent.
Sentry.Context uses Elixir Logger metadata to store the context itself.
This imposes some limitations. The metadata will only exist within
the current process, and the context will disappear when the process
dies. For example, if you add context inside your controller and an
error happens in a spawned Task, that context will not be included.
A common use case is to set context when handling requests within Plug or Phoenix
applications, as each request is its own process, and so any stored context is included
should an error be reported within that request process. For example:
post_controller.ex
def index(conn, _params) do
 Sentry.Context.set_user_context(%{id: conn.assigns.user_id})
 posts = Blog.list_posts()
 render(conn, "index.html", posts: posts)
end
Merging
The set_*_context/1 functions merge with the
existing context rather than entirely overwriting it.

Sentry Documentation
Sentry itself documents the meaning of the various contexts:
	General context interface
	Breadcrumbs interface
	Request context
	User context

 Anchor for this section

 Summary

 Types

 breadcrumb()

 Breadcrumb info.

 extra()

 A map of extra data.

 request_context()

 Request context.

 tags()

 A map of tags.

 user_context()

 User context.

 Functions

 add_attachment(attachment)

 Adds an attachment to the current context.

 add_breadcrumb(breadcrumb_info)

 Adds a new breadcrumb to the :breadcrumb context, specific to the current
process.

 clear_all()

 Clears all existing context for the current process.

 clear_attachments()

 Clears all attachments from the current context.

 context_keys()

 Returns the keys used to store context in the current process' logger metadata.

 get_all()

 Retrieves all currently-set context on the current process.

 set_extra_context(map)

 Merges new fields into the :extra context, specific to the current process.

 set_request_context(request_context)

 Merges new fields into the :request context, specific to the current
process.

 set_tags_context(map)

 Merges new fields into the :tags context, specific to the current process.

 set_user_context(user_context)

 Merges new fields into the :user context, specific to the current process.

 Anchor for this section

Types

 Link to this type

 breadcrumb()

 View Source

 (since 9.0.0)

 @type breadcrumb() :: %{
 optional(:type) => :default | :debug | :error | :navigation | String.t(),
 optional(:category) => String.t(),
 optional(:message) => String.t(),
 optional(:data) => map(),
 optional(:level) => :fatal | :error | :warning | :info | :debug,
 optional(:timestamp) => String.t() | integer(),
 optional(atom()) => term()
}

Breadcrumb info.
See add_breadcrumb/1.

 example

 Example

%{
 type: "default",
 category: "ui.click",
 data: nil,
 level: "info",
 message: "User clicked on the main button",
 timestamp: 1596814007.035
}

 Link to this type

 extra()

 View Source

 (since 9.0.0)

 @type extra() :: %{optional(atom()) => term()}

A map of extra data.
See set_extra_context/1.

 Link to this type

 request_context()

 View Source

 (since 9.0.0)

 @type request_context() :: %{
 optional(:method) => String.t() | nil,
 optional(:url) => String.t() | nil,
 optional(:query_string) =>
 String.t() | map() | [{String.t(), String.t()}] | nil,
 optional(:data) => term(),
 optional(:cookies) => String.t() | map() | [{String.t(), String.t()}] | nil,
 optional(:headers) => map() | nil,
 optional(:env) => map() | nil
}

Request context.
See set_request_context/1. This map gets eventually converted
into a Sentry.Interfaces.Request struct.

 Link to this type

 tags()

 View Source

 (since 9.0.0)

 @type tags() :: %{optional(atom()) => String.t() | number() | boolean() | nil}

A map of tags.
See set_tags_context/1.

 Link to this type

 user_context()

 View Source

 (since 9.0.0)

 @type user_context() :: %{
 optional(:id) => term(),
 optional(:username) => String.t(),
 optional(:email) => String.t(),
 optional(:ip_address) => term(),
 optional(:segment) => term(),
 optional(:geo) => %{
 optional(:city) => String.t(),
 optional(:country_code) => String.t(),
 optional(:region) => String.t()
 },
 optional(atom()) => term()
}

User context.
See set_user_context/1.
You can use "{{auto}}" as the value of :ip_address to let Sentry infer the
IP address (see the documentation for automatic IP
addresses).
Other than the keys specified in the typespec below, all other keys are stored
as extra information but not specifically processed by Sentry.

 example

 Example

%{
 user: %{
 id: "unique_id",
 username: "my_user",
 email: "foo@example.com",
 ip_address: "127.0.0.1",

 # Extra key
 subscription: "basic"
 }
}

 Anchor for this section

Functions

 Link to this function

 add_attachment(attachment)

 View Source

 (since 10.1.0)

 @spec add_attachment(Sentry.Attachment.t()) :: :ok

Adds an attachment to the current context.
Attachments stored in the context will be sent alongside each event that is
reported within that context (that is, within the process that the context
was set in).
Currently, there is no limit to how many attachments you can add to the context
through this function, even though there might be limits on the Sentry server side.
To clear attachments, use clear_attachments/0.

 examples

 Examples

iex> Sentry.Context.add_attachment(%Sentry.Attachment{filename: "foo.txt", data: "foo"})
:ok
iex> Sentry.Context.add_attachment(%Sentry.Attachment{filename: "bar.txt", data: "bar"})
:ok
iex> Sentry.Context.get_all()
%{
 attachments: [
 %Sentry.Attachment{filename: "bar.txt", data: "bar"},
 %Sentry.Attachment{filename: "foo.txt", data: "foo"}
],
 breadcrumbs: [],
 extra: %{},
 request: %{},
 tags: %{},
 user: %{}
}

 Link to this function

 add_breadcrumb(breadcrumb_info)

 View Source

 @spec add_breadcrumb(keyword() | breadcrumb()) :: :ok

Adds a new breadcrumb to the :breadcrumb context, specific to the current
process.
Breadcrumbs are used to record a series of events that led to a specific
instance of an error. Breadcrumbs can contain arbitrary key data to assist in
understanding what happened before an error occurred.
See the Sentry documentation
for more information.
If breadcrumb_info is a keyword list, it should be convertible to a map of type
breadcrumb/0.
If not present, the :timestamp key is filled in automatically with the current
Unix timestamp (in seconds).

 example

 Example

iex> Sentry.Context.add_breadcrumb(message: "first_event")
:ok
iex> Sentry.Context.add_breadcrumb(%{message: "second_event", type: "auth"})
%{breadcrumbs: [%{:message => "first_event", "timestamp" => 1562007480}]}
iex> Sentry.Context.add_breadcrumb(%{message: "response"})
%{
 breadcrumbs: [
 %{:message => "second_event", :type => "auth", "timestamp" => 1562007505},
 %{:message => "first_event", "timestamp" => 1562007480}
]
}
iex> Sentry.Context.get_all()
%{
 attachments: [],
 breadcrumbs: [
 %{:message => "first_event", "timestamp" => 1562007480},
 %{:message => "second_event", :type => "auth", "timestamp" => 1562007505},
 %{:message => "response", "timestamp" => 1562007517}
],
 extra: %{},
 request: %{},
 tags: %{},
 user: %{}
}

 Link to this function

 clear_all()

 View Source

 @spec clear_all() :: :ok

Clears all existing context for the current process.

 example

 Example

iex> Sentry.Context.set_tags_context(%{id: 123})
:ok
iex> Sentry.Context.clear_all()
:ok
iex> Sentry.Context.get_all()
%{breadcrumbs: [], extra: %{}, request: %{}, tags: %{}, user: %{}, attachments: []}

 Link to this function

 clear_attachments()

 View Source

 (since 10.1.0)

 @spec clear_attachments() :: :ok

Clears all attachments from the current context.
See add_attachment/1.

 examples

 Examples

iex> Sentry.Context.add_attachment(%Sentry.Attachment{filename: "foo.txt", data: "foo"})
:ok
iex> Sentry.Context.clear_attachments()
:ok
iex> Sentry.Context.get_all().attachments
[]

 Link to this function

 context_keys()

 View Source

 @spec context_keys() :: [atom(), ...]

Returns the keys used to store context in the current process' logger metadata.

 example

 Example

iex> Sentry.Context.context_keys()
[:breadcrumbs, :tags, :user, :extra, :request, :attachments]

 Link to this function

 get_all()

 View Source

 @spec get_all() :: %{
 user: user_context(),
 request: request_context(),
 tags: tags(),
 extra: extra(),
 breadcrumbs: list(),
 attachments: [Sentry.Attachment.t()]
}

Retrieves all currently-set context on the current process.

 example

 Example

iex> Sentry.Context.set_user_context(%{id: 123})
iex> Sentry.Context.set_tags_context(%{message_id: 456})
iex> Sentry.Context.get_all()
%{
 user: %{id: 123},
 tags: %{message_id: 456},
 extra: %{},
 request: %{},
 breadcrumbs: [],
 attachments: []
}

 Link to this function

 set_extra_context(map)

 View Source

 @spec set_extra_context(extra()) :: :ok

Merges new fields into the :extra context, specific to the current process.
This is used to set fields which should display when looking at a specific
instance of an error.

 example

 Example

iex> Sentry.Context.set_extra_context(%{id: 123})
:ok
iex> Sentry.Context.set_extra_context(%{detail: "bad_error"})
:ok
iex> Sentry.Context.set_extra_context(%{message: "Oh no"})
:ok
iex> Sentry.Context.get_all()
%{
 user: %{},
 tags: %{},
 extra: %{detail: "bad_error", id: 123, message: "Oh no"},
 request: %{},
 breadcrumbs: [],
 attachments: []
}

 Link to this function

 set_request_context(request_context)

 View Source

 @spec set_request_context(request_context()) :: :ok

Merges new fields into the :request context, specific to the current
process.
This is used to set metadata that identifies the request associated with a
specific instance of an error.
The request context is documented in the Sentry
documentation.
Invalid Keys
While this function accepts any map with atom keys, the only keys that
are valid are those in request_context/0. We don't validate
keys because of performance concerns, so it's up to you to ensure that
you're passing valid keys.

 example

 Example

iex> Sentry.Context.set_request_context(%{url: "example.com"})
:ok
iex> headers = %{"accept" => "application/json"}
iex> Sentry.Context.set_request_context(%{headers: headers, method: "GET"})
:ok
iex> Sentry.Context.get_all()
%{
 attachments: [],
 breadcrumbs: [],
 extra: %{},
 request: %{method: "GET", headers: %{"accept" => "application/json"}, url: "example.com"},
 tags: %{},
 user: %{}
}

 Link to this function

 set_tags_context(map)

 View Source

 @spec set_tags_context(tags()) :: :ok

Merges new fields into the :tags context, specific to the current process.
This is used to set fields which should display when looking at a specific
instance of an error. These fields can also be used to search and filter on.

 example

 Example

iex> Sentry.Context.set_tags_context(%{id: 123})
:ok
iex> Sentry.Context.set_tags_context(%{other_id: 456})
:ok
iex> Sentry.Context.get_all()
%{
 attachments: [],
 breadcrumbs: [],
 extra: %{},
 request: %{},
 tags: %{id: 123, other_id: 456},
 user: %{}
}

 Link to this function

 set_user_context(user_context)

 View Source

 @spec set_user_context(Sentry.Interfaces.user()) :: :ok

Merges new fields into the :user context, specific to the current process.
This is used to set certain fields which identify the actor who experienced a
specific instance of an error.
The user context is documented in the Sentry
documentation.
Additional Keys
While at least one of the keys described in Sentry.Interfaces.user/0 is
recommended, you can also add any arbitrary key to the user context.

 example

 Example

iex> Sentry.Context.set_user_context(%{id: 123})
:ok
iex> Sentry.Context.set_user_context(%{username: "george"})
:ok
iex> Sentry.Context.get_all()
%{
 user: %{id: 123, username: "george"},
 tags: %{},
 extra: %{},
 request: %{},
 breadcrumbs: [],
 attachments: []
}

 Sentry.DefaultEventFilter - Sentry v10.2.0

Sentry.DefaultEventFilter

The default implementation of the Sentry.EventFilter behaviour.
This filter excludes the following exceptions:
	Phoenix.NotAcceptableError
	Phoenix.Router.NoRouteError
	Plug.Conn.InvalidQueryError
	Plug.Parsers.BadEncodingError
	Plug.Parsers.ParseError
	Plug.Parsers.RequestTooLarge
	Plug.Parsers.UnsupportedMediaTypeError
	Plug.Static.InvalidPathError

In addition, it excludes routes that do not match in plug routers.

 Sentry.Event - Sentry v10.2.0

Sentry.Event

Provides functions to create Sentry events from scratch, from exceptions, and so on.
This module also contains the main event struct. Events are the fundamental data
that clients send to the Sentry server.
See https://develop.sentry.dev/sdk/event-payloads.

 Anchor for this section

 Summary

 Types

 level()

 The level of an event.

 t()

 The type for the event struct.

 Functions

 %Sentry.Event{}

 The struct representing the event.

 create_event(opts)

 Creates an event struct out of collected context and options.

 transform_exception(exception, opts)

 Transforms an exception to a Sentry event.

 Anchor for this section

Types

 Link to this type

 level()

 View Source

 (since 9.0.0)

 @type level() :: :fatal | :error | :warning | :info | :debug

The level of an event.

 Link to this type

 t()

 View Source

 @type t() :: %Sentry.Event{
 attachments: [Sentry.Attachment.t()],
 breadcrumbs: [Sentry.Interfaces.Breadcrumb.t()],
 contexts: Sentry.Interfaces.context(),
 culprit: term(),
 dist: String.t() | nil,
 environment: String.t() | nil,
 event_id: <<_::256>>,
 exception: [Sentry.Interfaces.Exception.t()],
 extra: map(),
 fingerprint: [String.t()],
 level: level() | nil,
 logger: String.t() | nil,
 message: Sentry.Interfaces.Message.t() | nil,
 modules: %{optional(String.t()) => String.t()},
 original_exception: Exception.t() | nil,
 platform: :elixir,
 release: String.t() | nil,
 request: Sentry.Interfaces.Request.t() | nil,
 sdk: Sentry.Interfaces.SDK.t() | nil,
 server_name: String.t() | nil,
 source: atom(),
 tags: %{optional(String.t()) => String.t()},
 threads: [Sentry.Interfaces.Thread.t()] | nil,
 timestamp: String.t() | number(),
 transaction: String.t() | nil,
 user: Sentry.Interfaces.user() | nil
}

The type for the event struct.
All of the fields in this struct map directly to the fields described in the
Sentry documentation. These fields
are the exceptions, and are specific to the Elixir Sentry SDK:
	:source - the source of the event. Sentry.LoggerBackend and Sentry.LoggerHandler
set this to :logger, while Sentry.PlugCapture and Sentry.PlugContext set it to
:plug. You can set it to any atom. See the :event_source option in create_event/1
and transform_exception/2.

	:original_exception - the original exception that is being reported, if there's one.
The Elixir Sentry SDK manipulates reported exceptions to make them fit the payload
required by the Sentry API, and these end up in the :exception field. The
:original_exception field, instead, contains the original exception as the raw Elixir
term (such as %RuntimeError{...}).

See also %Sentry.Event{}.

 Anchor for this section

Functions

 Link to this function

 %Sentry.Event{}

 View Source

 (struct)

The struct representing the event.
You're not advised to manipulate this struct's fields directly. Instead,
use functions such as create_event/1 or transform_exception/2 for creating
events.
See the t/0 type for information on the fields and their types.

 Link to this function

 create_event(opts)

 View Source

 @spec create_event([option]) :: t()
when option:
 {:exception, term()}
 | {:stacktrace,
 [{atom(), atom(), term(), keyword()} | {term(), term(), keyword()}]}
 | {:message, binary()}
 | {:extra, %{optional(atom() | binary()) => term()}}
 | {:user, map()}
 | {:tags, %{optional(atom() | binary()) => term()}}
 | {:request, map()}
 | {:breadcrumbs, [keyword() | map()]}
 | {:level, term()}
 | {:fingerprint, [binary()]}
 | {:event_source, atom()}
 | {:interpolation_parameters, [term()]}
 | {:handled, boolean()}

Creates an event struct out of collected context and options.
Merging Options with Context and Config
Some of the options documented below are merged with the Sentry context, or
with the Sentry context and the configuration. The option you pass here always
has higher precedence, followed by the context and finally by the configuration.
See also Sentry.Context for information on the Sentry context and Sentry for
information on configuration.

 options

 Options

	:exception (Exception.t/0) - This is the exception that gets reported in the
:exception field of t/0. The term passed here also ends up unchanged in the
:original_exception field of t/0. This option is required unless the
:message option is present. Not present by default.

	:stacktrace (Exception.stacktrace/0) - The exception's stacktrace. This can also be used with messages (:message). Not
present by default.

	:message (String.t/0) - A message to report. The string can contain interpolation markers (%s). In that
case, you can pass the :interpolation_parameters option as well to fill
in those parameters. See Sentry.capture_message/2 for more information on
message interpolation. Not present by default.

	:extra (Sentry.Context.extra/0) - Map of extra context, which gets merged with the current context
(see Sentry.Context.set_extra_context/1). If fields collide, the ones
in the map passed through this option have precedence over the ones in
the context. The default value is %{}.

	:user (Sentry.Context.user_context/0) - Map of user context, which gets merged with the current context
(see Sentry.Context.set_user_context/1). If fields collide, the ones
in the map passed through this option have precedence over the ones in
the context. The default value is %{}.

	:tags (Sentry.Context.tags/0) - Map of tags context, which gets merged with the current context (see
Sentry.Context.set_tags_context/1) and with the :tags option in the global
Sentry configuration. If fields collide, the ones in the map passed through
this option have precedence over the ones in the context, which have precedence
over the ones in the configuration. The default value is %{}.

	:request (Sentry.Context.request_context/0) - Map of request context, which gets merged with the current context
(see Sentry.Context.set_request_context/1). If fields collide, the ones
in the map passed through this option have precedence over the ones in
the context. The default value is %{}.

	:breadcrumbs (list of keyword/0 or Sentry.Context.breadcrumb/0) - List of breadcrumbs. This list gets prepended to the list
in the context (see Sentry.Context.add_breadcrumb/1). The default value is [].

	:level (level/0) - The level of the event. The default value is :error.

	:fingerprint (list of String.t/0) - List of the fingerprint for grouping this event. The default value is ["{{ default }}"].

	:event_source (atom/0) - The source of the event. This fills in the :source field of the
returned struct. This is not present by default.

	:interpolation_parameters (list of term/0) - The parameters to use for message interpolation. This is only used if the
:message option is present. This is not present by default. See
Sentry.capture_message/2. Available since v10.1.0.

 examples

 Examples

iex> event = create_event(exception: %RuntimeError{message: "oops"}, level: :warning)
iex> event.level
:warning
iex> hd(event.exception).type
"RuntimeError"
iex> event.original_exception
%RuntimeError{message: "oops"}

iex> event = create_event(message: "Unknown route", event_source: :plug)
iex> event.source
:plug

 Link to this function

 transform_exception(exception, opts)

 View Source

 @spec transform_exception(
 Exception.t(),
 keyword()
) :: t()

Transforms an exception to a Sentry event.
This essentially defers to create_event/1, inferring some options from
the given exception.

 options

 Options

This function takes the same options as create_event/1.

 Sentry.EventFilter - Sentry v10.2.0

Sentry.EventFilter behaviour

A behaviour for filtering events to send to Sentry.
There's only one callback to implement, exclude_exception?/2.
Soft-deprecated
This behaviour is soft-deprecated in favor of filtering events through the
:before_send callback functionality. :before_send is described in
details in the documentation for the Sentry module. It's a more general
mechanism to filter or modify events before sending them to Sentry. See below for
an example of how to replace an event filter with a :before_send callback.
In future major versions of this library, we might hard-deprecate or remove this
behaviour altogether.

Usage
To use a custom event filter module, configure the :filter option
in the :sentry application. For example:
config :sentry,
 filter: MyApp.SentryEventFilter
The default event filter is Sentry.DefaultEventFilter.
Examples
As an example, if you wanted to exclude all ArithmeticError exceptions
and nothing else:
defmodule MyApp.SentryEventFilter do
 @behaviour Sentry.EventFilter

 @impl true
 def exclude_exception?(%ArithmeticError{}, _source), do: true
 def exclude_exception?(_exception, _source), do: false
end
Alternatively, if you wanted to skip all non-500 exceptions in a Plug app:
defmodule MyApp.SentryEventFilter do
 @behaviour Sentry.EventFilter

 @impl true
 def exclude_exception?(exception, _source) do
 Plug.Exception.status(exception) < 500
 end
end
If you want to exclude some specific exceptions but then fall back to the
default event filter, you can do something like this:
defmodule MyApp.SentryEventFilter do
 @behaviour Sentry.EventFilter

 @impl true
 def exclude_exception?(%ArithmeticError{}, _source) do
 true
 end

 def exclude_exception?(exception, source) do
 Sentry.DefaultEventFilter.exclude_exception?(exception, source)
 end
end
Replacing With :before_send
Let's look at an example of how to filter non-500 exceptions in a Plug app through
the :before_send callback. We can start with a module:
defmodule MyApp.SentryEventFilter do
 def filter_non_500(%Sentry.Event{original_exception: exception} = event) do
 cond do
 if Plug.Exception.status(exception) < 500 ->
 false

 # Fall back to the default event filter.
 Sentry.DefaultEventFilter.exclude_exception?(exception, event.source) ->
 false

 true ->
 event
 end
 end
end
Then, we can configure the :before_send callback.
config :sentry,
 before_send: {MyApp.SentryEventFilter, :filter_non_500}
Multiple Callbacks
You can only have one :before_send callback. If you change the value
of this configuration option, you'll override the previous callback. If you
want to do multiple things in a :before_send callback, create a function
that does all the things you need and register that as the callback.

 Anchor for this section

 Summary

 Callbacks

 exclude_exception?(exception, source)

 Should return whether the given event should be excluded from being
reported to Sentry.

 Anchor for this section

Callbacks

 Link to this callback

 exclude_exception?(exception, source)

 View Source

 @callback exclude_exception?(exception :: Exception.t(), source :: atom()) :: boolean()

Should return whether the given event should be excluded from being
reported to Sentry.
exception is the exception that was raised.
source is the source of the event. Events from Sentry.PlugCapture
will have :plug as a source and events from Sentry.LoggerBackend
will have :logger as the source. A custom source can also be specified
by passing the :event_source option to Sentry.capture_exception/2.

 Sentry.HTTPClient - Sentry v10.2.0

Sentry.HTTPClient behaviour

A behaviour for HTTP clients that Sentry can use.
The default HTTP client is Sentry.HackneyClient.
To configure a different HTTP client, implement the Sentry.HTTPClient behaviour and
change the :client configuration:
config :sentry,
 client: MyHTTPClient
Child Spec
The child_spec/0 callback is a callback that should be used when you want Sentry
to start the HTTP client under its supervision tree. If you want to start your own
HTTP client under your application's supervision tree, just don't implement the callback
and Sentry won't do anything to start the client.
Optional Since v9.0.0
The child_spec/0 callback is optional only since v9.0.0 of Sentry, and was required
before.

Alternative Clients
Let's look at an example of using an alternative HTTP client. In this example, we'll
use Finch, a lightweight HTTP client for Elixir.
First, we need to add Finch to our dependencies:
In mix.exs
defp deps do
 [
 # ...
 {:finch, "~> 0.16"}
]
end
Then, we need to define a module that implements the Sentry.HTTPClient behaviour:
defmodule MyApp.SentryFinchHTTPClient do
 @behaviour Sentry.HTTPClient

 @impl true
 def child_spec do
 Supervisor.child_spec({Finch, name: __MODULE__}, id: __MODULE__)
 end

 @impl true
 def post(url, headers, body) do
 request = Finch.build(:post, url, headers, body)

 case Finch.request(request, __MODULE__) do
 {:ok, %Finch.Response{status: status, headers: headers, body: body}} ->
 {:ok, status, headers, body}

 {:error, error} ->
 {:error, error}
 end
 end
end
Last, we need to configure Sentry to use our new HTTP client:
config :sentry,
 client: MyApp.SentryFinchHTTPClient
Umbrella Apps
The HTTP client for Sentry is configured globally for the :sentry application. In an
umbrella setup, this means that all applications must configure Sentry to use the same
HTTP client.
If you want to use an alternative Sentry HTTP client in your umbrella application, we
recommend to do this:
	Create a new application in the umbrella (we'll call it sentry_http_client).

	Add :sentry as a dependency of the new application.

	Add a new module to the new application (such as SentryHTTPClient) which implements
the desired Sentry.HTTPClient behaviour.

	Configure :sentry to use the "shared" HTTP client. This works because configuration
in umbrella apps is generally shared by all apps within the umbrella (and it's in
config/config.exs at the root of the umbrella).
config :sentry,
 # ...
 client: SentryHTTPClient

 Anchor for this section

 Summary

 Types

 body()

 HTTP request or response body.

 headers()

 HTTP request or response headers.

 status()

 The response status for an HTTP request.

 Callbacks

 child_spec()

 Should return a child specification to start the HTTP client.

 post(url, request_headers, request_body)

 Should make an HTTP POST request to url with the given headers and body.

 Anchor for this section

Types

 Link to this type

 body()

 View Source

 (since 9.0.0)

 @type body() :: binary()

HTTP request or response body.

 Link to this type

 headers()

 View Source

 @type headers() :: [{String.t(), String.t()}]

HTTP request or response headers.

 Link to this type

 status()

 View Source

 (since 9.0.0)

 @type status() :: 100..599

The response status for an HTTP request.

 Anchor for this section

Callbacks

 Link to this callback

 child_spec()

 View Source

 (optional)

 @callback child_spec() :: :supervisor.child_spec()

Should return a child specification to start the HTTP client.
For example, this can start a pool of HTTP connections dedicated to Sentry.
If not provided, Sentry won't do anything to start your HTTP client. See
the module documentation for more info.

 Link to this callback

 post(url, request_headers, request_body)

 View Source

 @callback post(url :: String.t(), request_headers :: headers(), request_body :: body()) ::
 {:ok, status(), response_headers :: headers(), response_body :: body()}
 | {:error, term()}

Should make an HTTP POST request to url with the given headers and body.

 Sentry.HackneyClient - Sentry v10.2.0

Sentry.HackneyClient

The built-in HTTP client.
This client implements the Sentry.HTTPClient behaviour.
It's based on the hackney Erlang HTTP client,
which is an optional dependency of this library. If you wish to use another
HTTP client, you'll have to implement your own Sentry.HTTPClient. See the
documentation for Sentry.HTTPClient for more information.
Sentry starts its own hackney pool called :sentry_pool. If you need to set other
hackney configuration options
for things such as proxies, using your own pool, or response timeouts, the :hackney_opts
configuration is passed directly to hackney for each request. See the configuration
documentation in the Sentry module.

 Sentry.PlugCapture - Sentry v10.2.0

Sentry.PlugCapture

Provides basic functionality to capture and send errors occurring within
Plug applications, including Phoenix.
It is intended for usage with Sentry.PlugContext, which adds relevant request
metadata to the Sentry context before errors are captured.
Usage
With Phoenix
In a Phoenix application, it is important to use this module before
the Phoenix endpoint itself. It should be added to your endpoint.ex file:
defmodule MyApp.Endpoint
 use Sentry.PlugCapture
 use Phoenix.Endpoint, otp_app: :my_app

 # ...
end
With Plug
In a Plug application, you can add this module below your router:
defmodule MyApp.PlugRouter do
 use Plug.Router
 use Sentry.PlugCapture

 # ...
end
use Sentry.PlugCapture
When you use Sentry.PlugCapture, Sentry overrides your Plug.call/2 callback
and adds capturing errors and reporting to Sentry. You can still re-override
that callback after use Sentry.PlugCapture if you need to.

Scrubbing Sensitive Data
Since v9.1.0
Scrubbing sensitive data in Sentry.PlugCapture is available since v9.1.0
of this library.

Like Sentry.PlugContext, this module also supports scrubbing sensitive data
out of errors. However, this module has to do some guessing to figure
out if there are Plug.Conn structs to scrub. Right now, the strategy we
use follows these steps:
	if the error is Phoenix.ActionClauseError, we scrub the Plug.Conn structs
from the args field of that exception

Otherwise, we don't perform any scrubbing. To configure scrubbing, you can use the
:scrubbing option (see below).
Options
	:scrubber (since v9.1.0) - a term of type {module, function, args} that
will be invoked to scrub sensitive data from Plug.Conn structs. The
Plug.Conn struct is prepended to args before invoking the function,
so that the final function will be called as apply(module, function, [conn | args]).
The function must return a Plug.Conn struct. By default, the built-in
scrubber does this:
	scrubs all cookies
	scrubs sensitive headers just like Sentry.PlugContext.default_header_scrubber/1
	scrubs sensitive body params just like Sentry.PlugContext.default_body_scrubber/1

 Sentry.PlugContext - Sentry v10.2.0

Sentry.PlugContext

A Plug for adding request context to Sentry events.
This module adds Sentry context metadata during the request in a Plug
application. It includes defaults for scrubbing sensitive data, and options for
customizing such behavior.
Usage
You can use this module in a Plug pipeline to add Sentry metadata:
plug Sentry.PlugContext
However, this module is generally intended to be used with Sentry.PlugCapture:
this plug will add context metadata to the request, while Sentry.PlugCapture will
capture raised exceptions and errors and report them to Sentry with the added metadata.
Scrubbing POST Body Params
In order to send POST body parameters you should first scrub them of sensitive
information. By default, they will be scrubbed with default_body_scrubber/1. This
can be overridden by passing the :body_scrubber option, which accepts a Plug.Conn
and returns a map to send. Setting :body_scrubber to nil will not send any data
back. If you would like to make use of Sentry's default scrubber behavior in a custom
scrubber, it can be called directly. An example configuration may look like
the following:
defmodule MySentryScrubber do
 def scrub_params(conn) do
 # Makes use of the default body_scrubber to avoid sending password
 # and credit card information in plain text. To also prevent sending
 # our sensitive "my_secret_field" and "other_sensitive_data" fields,
 # we simply drop those keys.
 conn
 |> Sentry.PlugContext.default_body_scrubber()
 |> Map.drop(["my_secret_field", "other_sensitive_data"])
 end
end
Then pass it into Sentry.PlugContext:
plug Sentry.PlugContext, body_scrubber: &MySentryScrubber.scrub_params/1
You can also pass it in as a {module, fun}, like so:
plug Sentry.PlugContext, body_scrubber: {MySentryScrubber, :scrub_params}
Large Files
If you are sending large files in POST requests, we recommend you
scrub them out through the :body_scrubber mechanism.

Scrubbing Headers
By default, Sentry uses default_header_scrubber/1 to scrub headers. This can be
configured similarly to body params, through the :header_scrubber configuration
option:
defmodule MySentryScrubber do
 def scrub_headers(conn) do
 # In this example, we do not want to include Content-Type or User-Agent
 # in reported headers, so we drop them.
 conn.req_headers
 |> Map.new()
 |> Sentry.PlugContext.default_header_scrubber()
 |> Map.drop(["content-type", "user-agent"])
 end
end
Then, pass it into Sentry.PlugContext:
plug Sentry.PlugContext, header_scrubber: &MySentryScrubber.scrub_headers/1
It can also be passed in as a {module, fun} like so:
plug Sentry.PlugContext, header_scrubber: {MySentryScrubber, :scrub_headers}
Scrubbing Cookies
By default Sentry will scrub all cookies before sending events
(see scrub_cookies/1). It can be configured similarly to the headers
and body scrubbers, but is configured via the :cookie_scrubber key.
For example:
plug Sentry.PlugContext, cookie_scrubber: &MySentryScrubber.scrub_cookies/1
Scrubbing URLs
Available since v10.2.0.
If any of your URLs contain sensitive tokens or other data, you should scrub them
to remove the sensitive data. This can be configured similarly to body params,
through the :url_scrubber configuration option. It should return a string:
defmodule MySentryScrubber do
 def scrub_url(conn) do
 conn
 |> Plug.Conn.request_url()
 |> String.replace(~r/secret-token/w+/, "secret-token/****")
 end
end
Then pass it into Sentry.PlugContext:
plug Sentry.PlugContext, url_scrubber: &MySentryScrubber.scrub_url/1
You can also pass it in as a {module, fun}, like so:
plug Sentry.PlugContext, url_scrubber: {MySentryScrubber, :scrub_url}
Including Request Identifiers
If you're using Phoenix, Plug.RequestId, or any other method to set a request ID
response header, and would like to include that information with errors
reported by Sentry.PlugContext, use the :request_id_header option. It allows you to set
which header key Sentry should check. It defaults to x-request-id,
which Plug.RequestId (and therefore Phoenix) also default to.
plug Sentry.PlugContext, request_id_header: "application-request-id"
Remote Address Reader
Sentry.PlugContext includes a request's originating IP address under the REMOTE_ADDR
environment key in Sentry. By default, we read it from the x-forwarded-for HTTP header,
and if this header is not present, from conn.remote_ip.
If you wish to read this value differently (for example, from a different HTTP header),
or modify it in some other way (such as by masking it), you can configure this behavior
by passing the :remote_address_reader option:
plug Sentry.PlugContext, remote_address_reader: &MyModule.read_ip/1
The :remote_address_reader option must be a function that accepts a Plug.Conn
returns a String.t/0 IP, or a {module, function} tuple, where module.function/1
takes a Plug.Conn and returns a String.t/0 IP.

 Anchor for this section

 Summary

 Functions

 default_body_scrubber(conn)

 Scrubs the body of a request.

 default_cookie_scrubber(conn)

 Scrubs all cookies off of the request.

 default_header_scrubber(conn)

 Scrubs the headers of a request.

 default_url_scrubber(conn)

 Returns the request URL without modifying it.

 Anchor for this section

Functions

 Link to this function

 default_body_scrubber(conn)

 View Source

 @spec default_body_scrubber(Plug.Conn.t()) :: map()

Scrubs the body of a request.
The default scrubbed keys are:
	 password
	 passwd
	 secret

 Link to this function

 default_cookie_scrubber(conn)

 View Source

 @spec default_cookie_scrubber(Plug.Conn.t()) :: map()

Scrubs all cookies off of the request.

 Link to this function

 default_header_scrubber(conn)

 View Source

 @spec default_header_scrubber(Plug.Conn.t()) :: map()

Scrubs the headers of a request.
The default scrubbed headers are:
	 authorization
	 authentication
	 cookie

 Link to this function

 default_url_scrubber(conn)

 View Source

 @spec default_url_scrubber(Plug.Conn.t()) :: String.t()

Returns the request URL without modifying it.

 Sentry.LoggerBackend - Sentry v10.2.0

Sentry.LoggerBackend

Report Logger events like crashed processes to Sentry. To include in your
application, start this backend in your application start/2 callback:
lib/my_app/application.ex
def start(_type, _args) do
 Logger.add_backend(Sentry.LoggerBackend)
Sentry context will be included in metadata in reported events. Example:
Sentry.Context.set_user_context(%{
 user_id: current_user.id
})
:logger handler
In new projects, try to use Sentry.LoggerHandler rather than this Logger
backend. Elixir will likely deprecate Logger backends in the future in
favor of :logger handlers, which would lead to us eventually removing this
backend.

Configuration
	:excluded_domains - Any messages with a domain in the configured
list will not be sent. Defaults to [:cowboy] to avoid double reporting
events from Sentry.PlugCapture.

	:metadata - To include non-Sentry Logger metadata in reports, the
:metadata key can be set to a list of keys. Metadata under those keys will
be added in the :extra context under the :logger_metadata key. Defaults
to []. If set to :all, all metadata will be included. :all is available
since v9.0.0 of this library.

	:level - The minimum [Logger level](https://hexdocs.pm/logger/Logger.html#module-levels
to send events for. Defaults to :error.

	:capture_log_messages - When true, this module will send all Logger
messages. Defaults to false, which will only send messages with metadata
that has the shape of an exception and stacktrace.

Example:
config :logger, Sentry.LoggerBackend,
 # Also send warning messages
 level: :warning,
 # Send messages from Plug/Cowboy
 excluded_domains: [],
 # Include metadata added with `Logger.metadata([foo_bar: "value"])`
 metadata: [:foo_bar],
 # Send messages like `Logger.error("error")` to Sentry
 capture_log_messages: true

 Sentry.LoggerHandler - Sentry v10.2.0

Sentry.LoggerHandler

:logger handler to report logged events to Sentry.
This module is similar to Sentry.LoggerBackend, but it implements a
:logger handler rather
than an Elixir's Logger backend.
This module is available since v9.0.0 of this library.
When to Use the Handler vs the Backend?
There is no functional difference in behavior between Sentry.LoggerHandler and
Sentry.LoggerBackend when it comes to reporting to Sentry. The main functional
difference is that Sentry.LoggerBackend runs in its own process, while
Sentry.LoggerHandler runs in the process that logs. The latter is generally
preferable.
The reason both exist is that :logger handlers are a relatively-new
feature in Erlang/OTP, and Sentry.LoggerBackend was created before :logger
handlers were introduced.
In general, try to use Sentry.LoggerHandler if possible. In future Elixir releases,
Logger backends may become deprecated and hence Sentry.LoggerBackend may be
eventually removed.

Crash Reports
The reason you'll want to add this handler to your application is so that you can
report crashes in your system to Sentry. Sometimes, you're able to catch exceptions
and handle them (such as reporting them to Sentry), which is what you can do with
Sentry.PlugCapture for example.
However, Erlang/OTP systems are made of processes running concurrently, and
sometimes those processes crash and exit. If you're not explicitly catching
exceptions in those processes to report them to Sentry, then you won't see those
crash reports in Sentry. That's where this handler comes in. This handler hooks
into :logger and reports nicely-formatted crash reports to Sentry.
Usage
To add this handler to your system, see the documentation for handlers in
Elixir.
You can configure this handler in the :logger key under your application's configuration,
potentially alongside other :logger handlers:
config :my_app, :logger, [
 {:handler, :my_sentry_handler, Sentry.LoggerHandler, %{
 config: %{metadata: [:file, :line]}
 }}
]
If you do this, then you'll want to add this to your application's Application.start/2
callback, similarly to what you would do with Sentry.LoggerBackend and the
call to Logger.add_backend/1:
def start(_type, _args) do
 Logger.add_handlers(:my_app)

 # ...
end
Alternatively, you can skip the :logger configuration and add the handler directly
to your application's Application.start/2 callback:
def start(_type, _args) do
 :logger.add_handler(:my_sentry_handler, Sentry.LoggerHandler, %{
 config: %{metadata: [:file, :line]}
 })

 # ...
end
Configuration
This handler supports the following configuration options:
	:excluded_domains (list of atom/0) - any messages with a domain in
the configured list will not be sent. Defaults to [:cowboy] to avoid
double-reporting events from Sentry.PlugCapture.

	:metadata (list of atom/0, or :all) - use this to include
non-Sentry logger metadata in reports. If it's a list of keys, metadata in
those keys will be added in the :extra context (see
Sentry.Context.set_extra_context/1) under the :logger_metadata key.
If set to :all, all metadata will be included. Defaults to [].

	:level (Logger.level/0) - the minimum Logger
level to send events for.
Defaults to :error.

	:capture_log_messages (boolean/0) - when true, this module will
report all logged messages to Sentry (provided they're not filtered by
:excluded_domains and :level). Defaults to false, which will only
send crash reports, which are messages with metadata that has the
shape of an exit reason and a stacktrace.

 Sentry.Interfaces - Sentry v10.2.0

Sentry.Interfaces

Top-level module for Sentry interfaces.
Interfaces are pieces of the event payload that include various kinds of information.
See the event payloads documentation
and its subsections.
The types in this module and the nested structs are taken from Sentry's
JSONSchema definitions.

 Anchor for this section

 Summary

 Types

 context()

 The generic context interface.

 user()

 The user interface.

 Anchor for this section

Types

 Link to this type

 context()

 View Source

 (since 9.0.0)

 @type context() :: map()

The generic context interface.
See https://develop.sentry.dev/sdk/event-payloads/contexts.

 Link to this type

 user()

 View Source

 (since 9.0.0)

 @type user() :: %{
 optional(:id) => term(),
 optional(:username) => term(),
 optional(:email) => String.t() | nil,
 optional(:ip_address) => String.t() | nil,
 optional(:segment) => term(),
 optional(:geo) => %{
 optional(:city) => String.t() | nil,
 optional(:country_code) => String.t() | nil,
 optional(:region) => String.t() | nil
 },
 optional(atom()) => term()
}

The user interface.
This interface is not a struct since it allows any additional arbitrary key
other than the ones defined in the schema.
See https://develop.sentry.dev/sdk/event-payloads/user.

 Sentry.Interfaces.Breadcrumb - Sentry v10.2.0

Sentry.Interfaces.Breadcrumb

The struct for a single breadcrumb interface.
See https://develop.sentry.dev/sdk/event-payloads/breadcrumbs.

 Anchor for this section

 Summary

 Types

 t()

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 (since 9.0.0)

 @type t() :: %Sentry.Interfaces.Breadcrumb{
 category: String.t(),
 data: term(),
 level: String.t() | nil,
 message: String.t(),
 timestamp: String.t() | number(),
 type: String.t()
}

 Sentry.Interfaces.Exception - Sentry v10.2.0

Sentry.Interfaces.Exception

The struct for the exception interface.
See https://develop.sentry.dev/sdk/event-payloads/exception.

 Anchor for this section

 Summary

 Types

 t()

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 (since 9.0.0)

 @type t() :: %Sentry.Interfaces.Exception{
 mechanism: Sentry.Interfaces.Exception.Mechanism.t() | nil,
 module: String.t() | nil,
 stacktrace: Sentry.Interfaces.Stacktrace.t() | nil,
 type: String.t(),
 value: String.t()
}

 Sentry.Interfaces.Exception.Mechanism - Sentry v10.2.0

Sentry.Interfaces.Exception.Mechanism

The struct for the exception mechanism to be used within exceptions.
See Sentry.Interfaces.Exception.

 Anchor for this section

 Summary

 Types

 t()

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 (since 10.2.0)

 @type t() :: %Sentry.Interfaces.Exception.Mechanism{
 data: map() | nil,
 handled: boolean() | nil,
 help_link: String.t() | nil,
 meta: map() | nil,
 synthetic: boolean() | nil,
 type: String.t()
}

 Sentry.Interfaces.Message - Sentry v10.2.0

Sentry.Interfaces.Message

The struct for the message interface.
See https://develop.sentry.dev/sdk/event-payloads/message.

 Anchor for this section

 Summary

 Types

 t()

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 (since 10.1.0)

 @type t() :: %Sentry.Interfaces.Message{
 formatted: String.t(),
 message: String.t(),
 params: [term()]
}

 Sentry.Interfaces.Request - Sentry v10.2.0

Sentry.Interfaces.Request

The struct for the request interface.
See https://develop.sentry.dev/sdk/event-payloads/request.

 Anchor for this section

 Summary

 Types

 t()

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 (since 9.0.0)

 @type t() :: %Sentry.Interfaces.Request{
 cookies: String.t() | map() | [{String.t(), String.t()}] | nil,
 data: term(),
 env: map() | nil,
 headers: map() | nil,
 method: String.t() | nil,
 query_string: String.t() | map() | [{String.t(), String.t()}] | nil,
 url: String.t() | nil
}

 Sentry.Interfaces.SDK - Sentry v10.2.0

Sentry.Interfaces.SDK

The struct for the SDK interface.
This is usually filled in by the SDK itself.
See https://develop.sentry.dev/sdk/event-payloads/sdk.

 Anchor for this section

 Summary

 Types

 t()

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 (since 9.0.0)

 @type t() :: %Sentry.Interfaces.SDK{name: String.t(), version: String.t()}

 Sentry.Interfaces.Stacktrace - Sentry v10.2.0

Sentry.Interfaces.Stacktrace

The struct for the stacktrace interface.
See https://develop.sentry.dev/sdk/event-payloads/stacktrace.

 Anchor for this section

 Summary

 Types

 t()

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 (since 9.0.0)

 @type t() :: %Sentry.Interfaces.Stacktrace{
 frames: [Sentry.Interfaces.Stacktrace.Frame.t()]
}

 Sentry.Interfaces.Stacktrace.Frame - Sentry v10.2.0

Sentry.Interfaces.Stacktrace.Frame

The struct for the stacktrace frame to be used within exceptions.
See Sentry.Interfaces.Stacktrace.

 Anchor for this section

 Summary

 Types

 t()

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 (since 9.0.0)

 @type t() :: %Sentry.Interfaces.Stacktrace.Frame{
 colno: pos_integer() | nil,
 context_line: String.t() | nil,
 filename: Path.t() | nil,
 function: String.t(),
 in_app: boolean(),
 lineno: pos_integer() | nil,
 module: module() | nil,
 post_context: [String.t()],
 pre_context: [String.t()],
 vars: map() | nil
}

 Sentry.Interfaces.Thread - Sentry v10.2.0

Sentry.Interfaces.Thread

The struct for the thread interface.
See https://develop.sentry.dev/sdk/event-payloads/threads.

 Anchor for this section

 Summary

 Types

 t()

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 (since 10.1.0)

 @type t() :: %Sentry.Interfaces.Thread{
 crashed: boolean() | nil,
 current: boolean() | nil,
 held_locks: [term()],
 id: term(),
 main: boolean() | nil,
 name: String.t() | nil,
 stacktrace: Sentry.Interfaces.Stacktrace.t() | nil,
 state: term()
}

 Sentry.Test - Sentry v10.2.0

Sentry.Test

Utilities for testing Sentry reports.
Usage
This module is based on collecting reported events and then retrieving
them to perform assertions. The functionality here is only available if the
:test_mode configuration option is set to true—see
Sentry's configuration section.
You can start collecting events from a process
by calling start_collecting_sentry_reports/0. Then, you can use Sentry
as normal and report events (through functions such as Sentry.capture_message/1
or Sentry.capture_exception/1). Finally, you can retrieve the collected events
by calling pop_sentry_reports/0.
Test Mode and DSN
If :test_mode is true, the :dsn option behaves differently. When :dsn is
not set or nil and you're collecting events, you'll still be able to collect
events—even if under normal circumstances a missing :dsn means events don't get
reported. If :dsn is nil and you're not collecting events, the event is simply
ignored. See the table below for a summary for this behavior.

	:test_mode	:dsn	Collecting events?	Behavior
	true	nil	yes	Event is collected
	true	nil	no	Event is ignored (silently)
	true	set	yes	Event is collected
	true	set	no	Makes HTTP request to configured DSN (could be Bypass)
	false	nil	irrelevant	Ignores event
	false	set	irrelevant	Makes HTTP request to configured DSN (could be Bypass)

Examples
Let's imagine writing a test using the functions in this module. First, we need to
start collecting events:
test "reporting from child processes" do
 parent_pid = self()

 # Collect reports from self().
 assert :ok = Test.start_collecting_sentry_reports()

 # <we'll fill this in below...>
end
Now, we can report events as normal. For example, we can report an event from the
parent process:
assert {:ok, ""} = Sentry.capture_message("Oops from parent process")
We can also report events from "child" processes.
Spawn a child that waits for the :go message and then reports an event.
{:ok, child_pid} =
 Task.start_link(fn ->
 receive do
 :go ->
 assert {:ok, ""} = Sentry.capture_message("Oops from child process")
 send(parent_pid, :done)
 end
 end)

Start the child and wait for it to finish.
send(child_pid, :go)
assert_receive :done
Now, we can retrieve the collected events and perform assertions on them:
assert [%Event{} = event1, %Event{} = event2] = Test.pop_sentry_reports()
assert event1.message.formatted == "Oops from parent process"
assert event2.message.formatted == "Oops from child process"

 Anchor for this section

 Summary

 Functions

 allow_sentry_reports(owner_pid, pid_to_allow)

 Allows pid_to_allow to collect events back to the root process via owner_pid.

 cleanup(owner_pid)

 Cleans up test resources associated with owner_pid.

 pop_sentry_reports(owner_pid \\ self())

 Pops all the collected events from the current process.

 start_collecting(options \\ [])

 Starts collecting events.

 start_collecting_sentry_reports(context \\ %{})

 Starts collecting events from the current process.

 Anchor for this section

Functions

 Link to this function

 allow_sentry_reports(owner_pid, pid_to_allow)

 View Source

 (since 10.2.0)

 @spec allow_sentry_reports(pid(), pid() | (() -> pid())) :: :ok

Allows pid_to_allow to collect events back to the root process via owner_pid.
owner_pid must be a PID that is currently collecting events or has been allowed
to collect events. If that's not the case, this function raises an error.
pid_to_allow can also be a function that returns a PID. This is useful when
you want to allow a registered process that is not yet started to collect events. For example:
Sentry.Test.allow_sentry_reports(self(), fn -> Process.whereis(:my_process) end)

 Link to this function

 cleanup(owner_pid)

 View Source

 (since 10.2.0)

 @spec cleanup(pid()) :: :ok

Cleans up test resources associated with owner_pid.
See the :cleanup option in start_collecting/1 and the corresponding
example for more information.

 Link to this function

 pop_sentry_reports(owner_pid \\ self())

 View Source

 (since 10.2.0)

 @spec pop_sentry_reports(pid()) :: [Sentry.Event.t()]

Pops all the collected events from the current process.
This function returns a list of all the events that have been collected from the current
process and all the processes that were allowed through it. If the current process
is not collecting events, this function raises an error.
After this function returns, the current process will still be collecting events, but
the collected events will be reset to [].

 examples

 Examples

iex> Sentry.Test.start_collecting_sentry_reports()
:ok
iex> Sentry.capture_message("Oops")
{:ok, ""}
iex> [%Se