

    

        sentry

        v8.1.0



    



  

    Table of contents

    
      



            	sentry


            	Changelog





  	Modules
    

    	Sentry


    	Sentry.Client


    	Sentry.Config


    	Sentry.Context


    	Sentry.Event


    	Sentry.EventFilter


    	Sentry.HTTPClient


    	Sentry.HackneyClient


    	Sentry.LoggerBackend


    	Sentry.PlugCapture


    	Sentry.PlugContext


    	Sentry.Sources


    	Sentry.Util


    	Sentry.CrashError


    

  



  	Mix Tasks
    

    	mix sentry.send_test_event


    

  


      

    


  

    
sentry
    

[image: Build Status]
[image: Hex Package]
[image: Hex Docs]
The Official Sentry Client for Elixir which provides a simple API to capture exceptions, automatically handle Plug Exceptions and provides a backend for the Elixir Logger. This documentation represents unreleased features, for documentation on the current release, see here.
Note on upgrading from Sentry 7.x to 8.x
Sentry 8.x requires Elixir 1.10 and Sentry 7.x will be maintained for applications running prior versions. Documentation for Sentry 7.x can be found here.
If you would like to upgrade a project to use Sentry 8.x, see here.
Installation
To use Sentry with your projects, edit your mix.exs file and add it as a dependency. Sentry does not install a JSON library nor HTTP client by itself.  Sentry will default to trying to use Jason for JSON operations and Hackney for HTTP requests, but can be configured to use other ones. To use the default ones, do:
defp deps do
  [
    # ...
    {:sentry, "8.0.0"},
    {:jason, "~> 1.1"},
    {:hackney, "~> 1.8"},
    # if you are using plug_cowboy
    {:plug_cowboy, "~> 2.3"},
  ]
end
Setup with Plug and Phoenix
Capturing errors in Plug applications is done with Sentry.PlugContext and Sentry.PlugCapture. Sentry.PlugContext adds contextual metadata from the current request which is then included in errors that are captured and reported by Sentry.PlugCapture.
If you are using Phoenix, first add Sentry.PlugCapture above the use Phoenix.Endpoint line in your endpoint file. Sentry.PlugContext should be added below Plug.Parsers.
 defmodule MyAppWeb.Endpoint
+  use Sentry.PlugCapture
   use Phoenix.Endpoint, otp_app: :my_app
   # ...
   plug Plug.Parsers,
     parsers: [:urlencoded, :multipart, :json],
     pass: ["*/*"],
     json_decoder: Phoenix.json_library()

+  plug Sentry.PlugContext
If you are in a non-Phoenix Plug application, add Sentry.PlugCapture at the top of your Plug application, and add Sentry.PlugContext below Plug.Parsers (if it is in your stack).
 defmodule MyApp.Router do
   use Plug.Router
+  use Sentry.PlugCapture
   # ...
   plug Plug.Parsers,
     parsers: [:urlencoded, :multipart]
+  plug Sentry.PlugContext
Capturing User Feedback
If you would like to capture user feedback as described here, the Sentry.get_last_event_id_and_source() function can be used to see if Sentry has sent an event within the current Plug process, and the source of that event. :plug will be the source for events coming from Sentry.PlugCapture. The options described in the Sentry documentation linked above can be encoded into the response as well.
An example Phoenix application setup that wanted to display the user feedback form on 500 responses on requests accepting HTML could look like:
defmodule MyAppWeb.ErrorView do
  # ...
  def render("500.html", _assigns) do
    case Sentry.get_last_event_id_and_source() do
      {event_id, :plug} when is_binary(event_id) ->
        opts =
          # can do %{eventId: event_id, title: "My custom title"}
          %{eventId: event_id}
          |> Jason.encode!()

        ~E"""
          <script src="https://browser.sentry-cdn.com/5.9.1/bundle.min.js" integrity="sha384-/x1aHz0nKRd6zVUazsV6CbQvjJvr6zQL2CHbQZf3yoLkezyEtZUpqUNnOLW9Nt3v" crossorigin="anonymous"></script>
          <script>
            Sentry.init({ dsn: '<%= Sentry.Config.dsn() %>' });
            Sentry.showReportDialog(<%= raw opts %>)
          </script>
        """

      _ ->
        "Error"
    end
  # ...
  end
Capture Crashed Process Exceptions
This library comes with an extension to capture all error messages that the Plug handler might not.  This is based on Logger.Backend. You can add it as a backend when your application starts:
# lib/my_app/application.ex

+   def start(_type, _args) do
+     Logger.add_backend(Sentry.LoggerBackend)
The backend can also be configured to capture Logger metadata, which is detailed here.
Capture Arbitrary Exceptions
Sometimes you want to capture specific exceptions.  To do so, use Sentry.capture_exception/2.
try do
  ThisWillError.really()
rescue
  my_exception ->
    Sentry.capture_exception(my_exception, [stacktrace: __STACKTRACE__, extra: %{extra: information}])
end
Capture Non-Exception Events
Sometimes you want to capture messages that are not Exceptions.
    Sentry.capture_message("custom_event_name", extra: %{extra: information})
For optional settings check the docs.
Configuration
Sentry has a range of configuration options, but most applications will have a configuration that looks like the following:
# config/config.exs
config :sentry,
  dsn: "https://public_key@app.getsentry.com/1",
  environment_name: Mix.env(),
  included_environments: [:prod],
  enable_source_code_context: true,
  root_source_code_paths: [File.cwd!()]
The environment_name and included_environments work together to determine
if and when Sentry should send events to the server. If the currently configured
:environment_name is in the configured list of :included_environments, the
event will be sent.
The full range of options is the following:
	Key	Required	Default	Notes
	dsn	True	n/a	
	environment_name	False	:prod	
	included_environments	False	[:test, :dev, :prod]	If you need non-standard mix env names you need to include it here
	tags	False	%{}	
	release	False	None	
	server_name	False	None	
	client	False	Sentry.HackneyClient	If you need different functionality for the HTTP client, you can define your own module that implements the Sentry.HTTPClient behaviour and set client to that module
	hackney_opts	False	[pool: :sentry_pool]	
	hackney_pool_max_connections	False	50	
	hackney_pool_timeout	False	5000	
	before_send_event	False		
	after_send_event	False		
	sample_rate	False	1.0	
	send_result	False	:none	You may want to set it to :sync if testing your Sentry integration. See "Testing with Sentry"
	send_max_attempts	False	4	
	in_app_module_allow_list	False	[]	
	report_deps	False	True	Will attempt to load Mix dependencies at compile time to report alongside events
	enable_source_code_context	False	False	
	root_source_code_paths	Required if enable_source_code_context is enabled		Should usually be set to [File.cwd!()]. For umbrella applications you should list all your applications paths in this list (e.g. ["#{File.cwd!()}/apps/app_1", "#{File.cwd!()}/apps/app_2"].
	context_lines	False	3	
	source_code_exclude_patterns	False	[~r"/_build/", ~r"/deps/", ~r"/priv/"]	
	source_code_path_pattern	False	"**/*.ex"	
	filter	False		Module where the filter rules are defined (see Filtering Exceptions)
	json_library	False	Jason	
	log_level	False	:warning	This sets the log level used when Sentry fails to send an event due to an invalid event or API error
	max_breadcrumbs	False	100	This sets the maximum number of breadcrumbs to send to Sentry when creating an event

Sentry uses the hackney HTTP client for HTTP requests.  Sentry starts its own hackney pool named :sentry_pool with a default connection pool of 50, and a connection timeout of 5000 milliseconds.  The pool can be configured with the hackney_pool_max_connections and hackney_pool_timeout configuration keys.  If you need to set other hackney configurations for things like a proxy, using your own pool or response timeouts, the hackney_opts configuration is passed directly to hackney for each request.
Context and Breadcrumbs
Sentry has multiple options for including contextual information. They are organized into "Tags", "User", and "Extra", and Sentry's documentation on them is here.  Breadcrumbs are a similar concept and Sentry's documentation covers them here.
In Elixir this can be complicated due to processes being isolated from one another. Tags context can be set globally through configuration, and all contexts can be set within a process, and on individual events.  If an event is sent within a process that has some context configured it will include that context in the event.  Examples of each are below, and for more information see the documentation of Sentry.Context.
# Global Tags context via configuration:

config :sentry,
  tags: %{my_app_version: "14.30.10"}
  # ...

# Process-based Context
Sentry.Context.set_extra_context(%{day_of_week: "Friday"})
Sentry.Context.set_user_context(%{id: 24, username: "user_username", has_subscription: true})
Sentry.Context.set_tags_context(%{locale: "en-us"})
Sentry.Context.add_breadcrumb(%{category: "web.request"})

# Event-based Context
Sentry.capture_exception(exception, [tags: %{locale: "en-us", }, user: %{id: 34},
  extra: %{day_of_week: "Friday"}, breadcrumbs: [%{timestamp: 1461185753845, category: "web.request"}]]
Fingerprinting
By default, Sentry aggregates reported events according to the attributes of the event, but users may need to override this functionality via fingerprinting.
To achieve that in Sentry Elixir, one can use the before_send_event configuration callback. If there are certain types of errors you would like to have grouped differently, they can be matched on in the callback, and have the fingerprint attribute changed before the event is sent. An example configuration and implementation could look like:
# lib/sentry.ex
defmodule MyApp.Sentry
  def before_send(%{exception: [%{type: DBConnection.ConnectionError}]} = event) do
    %{event | fingerprint: ["ecto", "db_connection", "timeout"]}
  end

  def before_send(event) do
    event
  end
end

# config.exs
config :sentry,
  before_send_event: {MyApp.Sentry, :before_send},
  # ...
Reporting Exceptions with Source Code
Sentry's server supports showing the source code that caused an error, but depending on deployment, the source code for an application is not guaranteed to be available while it is running.  To work around this, the Sentry library reads and stores the source code at compile time.  This has some unfortunate implications.  If a file is changed, and Sentry is not recompiled, it will still report old source code.
The best way to ensure source code is up to date is to recompile Sentry itself via mix deps.compile sentry --force.  It's possible to create a Mix Task alias in mix.exs to do this.  The example below allows one to run mix sentry_recompile && mix compile which will compile any uncompiled or changed parts of the application, and then force recompilation of Sentry so it has the newest source. The second mix compile is required due to Mix only invoking the same task once in an alias.
# mix.exs
defp aliases do
  [sentry_recompile: ["compile", "deps.compile sentry --force"]]
end
For more documentation, see Sentry.Sources.
Testing Your Configuration
To ensure you've set up your configuration correctly we recommend running the
included mix task.  It can be tested on different Mix environments and will tell you if it is not currently configured to send events in that environment:
$ MIX_ENV=dev mix sentry.send_test_event
Client configuration:
server: https://sentry.io/
public_key: public
secret_key: secret
included_environments: [:prod]
current environment_name: :dev

:dev is not in [:prod] so no test event will be sent

$ MIX_ENV=prod mix sentry.send_test_event
Client configuration:
server: https://sentry.io/
public_key: public
secret_key: secret
included_environments: [:prod]
current environment_name: :prod

Sending test event!

Testing with Sentry
In some cases, users may want to test that certain actions in their application cause a report to be sent to Sentry.  Sentry itself does this by using Bypass.  It is important to note that when modifying the environment configuration the test case should not be run asynchronously.  Not returning the environment configuration to its original state could also affect other tests depending on how the Sentry configuration interacts with them.
Example:
test "add/2 does not raise but sends an event to Sentry when given bad input" do
  bypass = Bypass.open()

  Bypass.expect(bypass, fn conn ->
    {:ok, _body, conn} = Plug.Conn.read_body(conn)
    Plug.Conn.resp(conn, 200, ~s<{"id": "340"}>)
  end)

  Application.put_env(:sentry, :dsn, "http://public:secret@localhost:#{bypass.port}/1")
  Application.put_env(:sentry, :send_result, :sync)
  MyModule.add(1, "a")
end
When testing, you will also want to set the send_result type to :sync, so the request is done synchronously.
License
This project is Licensed under the MIT License.



  

    
Changelog
    

8.1.0
Various fixes & improvements
	Bump min craft version to 1.4.2 (795bfd12) by @sl0thentr0py
	Add github target to craft (ef563cc5) by @sl0thentr0py
	Bump min craft version (56516be2) by @sl0thentr0py
	Improve deprecation of Sentry.Config.root_source_code_path/0 (#558) by @whatyouhide
	Wrap HTTP requests in try/catch (#515) by @ruslandoga
	Remove extra config files (#556) by @yordis
	Remove use of deprecated Mix.Config (#555) by @whatyouhide
	Add release/** branches to ci for craft (dfaffb9f) by @sl0thentr0py
	Fix typo in moduledoc (#534) by @louisvisser
	Check :hackney application when starting (#554) by @whatyouhide
	feat(event): filter more exceptions by default (#550) by @gpouilloux
	Fix example configuration for Sentry.Sources (#543) by @scudelletti
	Use module attribute for dictionary key consistently (#537) by @tmecklem
	Fix send_event/2 typespec (#545) by @ruslandoga
	Update badges in the README (#548) by @ruslandoga
	Update ex_docs to 0.29+ (#549) by @ruslandoga
	Fix Elixir 1.15 warnings (#553) by @dustinfarris
	Add :remote_address_reader PlugContext option (#519) by @michallepicki
	Traverse full domain list when checking for excluded domains (#508) by @martosaur
	Add craft with target hex (#532) by @sl0thentr0py
	Add Sentry to LICENSE (#530) by @sl0thentr0py
	Update ci setup-beam action name (#531) by @sl0thentr0py
	allow logging from tasks (#517) by @ruslandoga
	Improve DSN parsing and Endpoint building (#507) by @AtjonTV

Plus 14 more
8.0.6 (2021-09-28)
	Bug Fixes	Remove function that disables non-group leader logging (#467)
	Handle :unsampled events in Sentry.send_test_event (#474)
	Fix dialyzer reporting unmatched_return for Sentry.PlugCapture (#475)
	Use correct Plug.Parsers exception module (#482)



8.0.5 (2021-02-14)
	Enhancements
	Support lists in scrubbing (#442)
	Send Sentry reports on uncaught throws/exits (#447)


	Bug Fixes
	Deprecate Sentry.Config.in_app_module_whitelist in favor of Sentry.Config.in_app_module_allow_list (#450)
	Update outdated Sentry.Plug documentation (#452)
	Update Sentry.HTTPClient documentation (#456)



8.0.4 (2020-11-16)
	Bug Fixes	Do not read DSN config at compile time (#441)



8.0.3 (2020-11-11)
	Enhancements
	Update package & docs configuration (#432)
	Add Plug.Status filter example (#433)
	Support multiple source code root paths in Sentry.Sources (#437)


	Bug Fixes
	Fix dialyzer reporting unmatched_return for Sentry.PlugCapture (#436)
	Align Sentry event levels with Elixir logging levels (#439)



8.0.2 (2020-09-06)
	Enhancements	Log error when JSON is unencodable (#429)
	Set logger event level to logger message level (#430)
	Limit breadcrumbs on add_breadcrumb (#431)



8.0.1 (2020-08-08)
	Enhancements	Add plug parsing errors to list of default excluded params (#414)
	Make Sentry.PlugContext.scrub_map public (#417)
	Allow users to configure maximum number of breadcrumbs (#418)



8.0.0 (2020-07-13)
7.x -> 8.0 Upgrade Guide
	Bug Fixes	Fix documentation for Sentry.PlugContext (#410)



8.0.0-rc.2 (2020-07-01)
	Bug Fixes	Fix trying to transform erlang error coming from PlugCapture (#406)



8.0.0-rc.1 (2020-06-29)
	Bug Fixes	Remove changes that were unintentionally included in build



8.0.0-rc.0 (2020-06-24)
	Enhancements
	Cache environment config in application config (#393)
	Allow configuring LoggerBackend to send all messages, not just exceptions (e.g. Logger.error("I am an error message"))


	Bug Fixes
	fix request url port in payloads for HTTPS requests  (#391)


	Breaking Changes
	Change default included_environments to only include :prod by default (#370)
	Change default event send type to :none instead of :async (#341)
	Make hackney an optional dependency, and simplify Sentry.HTTPClient behaviour (#400)
	Use Logger.metadata for Sentry.Context, no longer return metadata values on set_* functions, and rename set_http_context to set_request_context (#401)
	Move excluded exceptions from Sentry.Plug to Sentry.DefaultEventFilter (#402)
	Remove Sentry.Plug and Sentry.Phoenix.Endpoint in favor of Sentry.PlugContext and Sentry.PlugCapture (#402)
	Remove feedback form rendering and configuration (#402)
	Logger metadata is now specified by key in LoggerBackend instead of enabled/disabled (#403)
	Require Elixir 1.10 and optionally plug_cowboy 2.3 (#403)
	Sentry.capture_exception/1 now only accepts exceptions (#403)



7.2.4 (2020-03-09)
	Enhancements	Allow configuring gather feedback form for Sentry.Plug errors (#387)



7.2.3 (2020-02-27)
	Enhancements	Allow gathering feedback from Sentry.Plug errors (#385)



7.2.2 (2020-02-13)
	Bug Fixes	Ensure stacktrace is list in LoggerBackend (#380)



7.2.1 (2019-12-05)
	Bug Fixes	Improve documentation for Sentry.Client.send_event/2 (#367)
	Fix potential Logger deadlock (#372)
	Pass the same exception for NoRouteError in Sentry.Phoenix.Endpoint (#376)
	Handle new MFA for duplicate Plug errors (#377)
	Update docs to recommend using application environment config for adding Sentry.LoggerBackend (#379)



7.2.0 (2019-10-23)
	Enhancements
	Allow filtering of Events using before_send_event (#364)


	Bug Fixes
	Remove newline from Logger for API error (#351)
	Add docs for Sentry.Context (#352)
	Avoid error duplication for Plug errors (#355)
	Fix issue in Sentry.Sources docs around recompilation (#357)



7.1.0 (2019-06-11)
	Enhancements
	Option to include Logger.metadata in Sentry.LoggerBackend (#338)
	Send maximum length of args in stacktrace (#340)
	Fix dialyzer warning when using Sentry.Phoenix.Endpoint (#344)


	Bug Fixes
	Fix documentation error relating to File.cwd!() (#346)
	Add parens to File.cwd!() in documentation (#347)
	Check that DSN is binary (#348)



7.0.6 (2019-04-17)
	Enhancements	Allow configuring Sentry log level (#334)



7.0.5 (2019-04-05)
	Bug Fixes	Strip leading "Elixir." from module name on error type (#330)



7.0.4 (2019-02-12)
	Bug Fixes	Do not error if you cannot format the remote IP or port (#326)



7.0.3 (2018-11-14)
	Bug Fixes	Fix issue from using spawn_link stacktrace (#315)
	Relax plug_cowboy versions (#314)



7.0.2 (2018-11-01)
	Bug Fixes	Fix sending Phoenix.Router.NoRouteError when using Sentry.Phoenix.Endpoint (#309)



7.0.1 (2018-10-01)
	Enhancements	Remove Poison from applications list (#306)



7.0.0 (2018-09-07)
	Enhancements
	Implement Sentry.LoggerBackend


	Breaking Changes
	Replace Poison with configurable JSON library
	Require Elixir 1.7+
	Remove Sentry.Logger



6.4.2 (2018-09-05)
	Enhancements	Add deps reporting back (#305 / #301)



6.4.1 (2018-07-26)
	Bug Fixes	Remove UUID dependency (#298)
	Fix link in documentation (#300)



6.4.0 (2018-07-02)
	Enhancements
	Add documentation detail around including source code (#287)
	Document fingerprinting (#288)
	Document Sentry.Context (#289)
	Add CONTRIBUTING.md (#290)
	Document cookie scrubber (#291)
	Document testing with Sentry (#292)


	Bug Fixes
	Change report_deps default value to false to avoid compiler bug (#285)
	Limit size of messages (#293)
	Use elixir_uuid instead of uuid (#295)



6.3.0 (2018-06-26)
	Enhancements
	Use the stacktrace passed to Sentry.Event.transform_exception/2 when calling Exception.normalize/3 (#266)
	Reduce Logger noise in HTTP Client (#274)
	Use Plug.Conn.get_peer_data/1 (#273)


	Bug Fixes
	Add documentation for capturing arbitrary events (#272)
	Fix typo in README.md (#277)



6.2.1 (2018-04-24)
	Enhancements	Accept public key DSNs (#263)



6.2.0 (2018-04-04)
	Enhancements	Allow overriding in Sentry.Plug (#261)
	Implement Sentry.Phoenix.Endpoint to capture errors in Phoenix.Endpoint (#259)


	Bug Fixes	Fix sending events from remote_console (#262)
	Add filter option to configuration table in README (#255)
	Default to not sending cookies, but allow configuration to send (#254)
	Do not raise on invalid DSN (#218)



6.1.0 (2017-12-07)
	Enhancements	Elixir 1.6.0 formatted (#246)
	Improve documentation around source code compilation (#242)
	Update typespecs (#249)
	Report errors from :kernel.spawn processes (#251)


	Bug Fixes	Fix doc typos (#245)
	Remove Sentry.Event compile warning (#248)
	Fix enable_source_code_context configuration (#247)



6.0.5 (2017-12-07)
	Enhancements	Improve README documentation (#236)
	Fix GenEvent warning (#237, #239)


	Bug Fixes	Fix error_type reported in Sentry.Plug (#238)



6.0.4 (2017-11-20)
	Enhancements	Allow string for included_environments by splitting on commas (#234)


	Bug Fixes	Handle :error when sending test event (#228)



6.0.3 (2017-11-01)
	Enhancements	Fix tests for differing versions of Erlang/Elixir (#221)


	Bug Fixes	Fix invalid value for stacktrace via Event rendering layer (#224)



6.0.2 (2017-10-03)
	Enhancements	Improve Sentry.Logger documentation (#217)


	Bug Fixes	Handle Plug.Upload during scrubbing (#208)
	Do not check DSN for source_code_path_pattern configuration (#211)
	Fix culprit ambiguity (#214)



6.0.1 (2017-09-06)
	Bug Fixes	Fix filters and test mix task (#206)


	Enhancements	Improve README clarity (#202)



6.0.0 (2017-08-29)
See these 5.0.0 to 6.0.0 upgrade instructions to update your existing app.
	Breaking Changes	Remove use_error_logger configuration (#196)
	enable_source_code_context is no longer required configuration (#201)


	Bug Fixes	Fix README error (#197)
	Prevent overwriting server_name option (#200)


	Enhancements	Scrubbing of nested maps (#192)
	Allow Hackney 1.9 and later (#199)



5.0.1 (2017-07-18)
	Bug Fixes	Fix logger and context usage (#185)



5.0.0 (2017-07-10)
	Backward incompatible changes	Allow specifying sync/async/none when getting result of sending event (#174)


	Enhancements	Modules (#182)
	Config from system and DSN (#180)
	App Frames (#177)
	Sampling (#176)
	Post event hook (#175)
	Improve documentation around recompilation for source code context (#171)
	Use better arity logic in stacktraces (#170)
	Allow custom fingerprinting (#160)


	Bug Fixes	Fix README typo (#159)
	Fix the backoff to really be exponential (#162)



4.0.3 (2017-05-17)
	Enhancements	Update and improve Travis build matrix (#155)
	Specify behaviour for Sentry HTTP clients (#158)



4.0.2 (2017-04-26)
	Enhancements	Relax hackney requirements



4.0.1 (2017-04-25)
	Enhancements	Bump hackney to a version that fixes major bug (#153)



4.0.0 (2017-04-20)
See these 3.0.0 to 4.0.0 upgrade instructions to update your existing app.
	Enhancements	Bump hackney to a version that isn't retired (#135)
	Improve Logger reporting (#136)
	Accept keyword lists in Sentry.Context.add_breadcrumb/1 (#139)
	Add elements to beginning of breadcrumbs list for performance (#141)
	Close unread hackney responses properly (#149)
	Improve Sentry.Client code style (#147)
	Fix invalid specs in Sentry methods (#146)
	Allow setting client at runtime (#150)


	Backward incompatible changes	Return :ignored instead of {:ok, ""} when event is not sent because environment_name is not in included_environments in Sentry.send_event, Sentry.capture_exception, or Sentry.capture_message (#146)
	Return :ignored and log warning instead of returning {:ok, "Sentry: unable to parse exception"} when unable to parse exception in Sentry.send_event, Sentry.capture_exception, or Sentry.capture_message (#146)
	Return {:ok, Task} instead of Task when an event is successfully sent with Sentry.send_event, Sentry.capture_exception, or Sentry.capture_message (#146)
	Ignore non-existent route exceptions (#110)
	Sending source code as context when reporting errors (#138)



3.0.0 (2017-03-02)
	Enhancements	Add dialyzer support (#128)


	Backward incompatible changes	Fix default configuration (#124)
	Start and use separate Sentry hackney pool instead of default (#130)
	Return :error instead of raising when encoding invalid JSON (#131)



2.2.0 (2017-02-15)
	Enhancements	Allow setting hackney_opts
	Add Sentry.capture_message/1
	Allow reading :dsn from System at runtime by configuring as {:system, "ENV_VAR"}



2.1.0 (2016-12-17)
	Enhancements
	Allow filtering which exceptions are sent via Sentry.EventFilter behaviour
	Add Sentry.Context.set_http_context/1


	Bug Fixes
	Fix usage of deprecated modules
	Fix README documentation
	Fix timestamp parameter format



2.0.2 (2016-12-08)
	Bug Fixes	Fix regex checking of non-binary values



2.0.1 (2016-12-05)
	Bug Fixes	Fix compilation error when Plug is not available



2.0.0 (2016-11-28)
	Enhancements
	Return a task when sending a Sentry event
	Provide default scrubber for request body and headers (Sentry.Plug.default_body_scrubber and Sentry.Plug.default_header_scrubber)
	Header scrubbing can now be configured with :header_scrubber


	Bug Fixes
	Ensure mix sentry.send_test_event finishes sending event before ending Mix task


	Backward incompatible changes
	Sentry.capture_exception/1 now returns a Task instead of {:ok, PID}
	Sentry.Plug :scrubber option has been removed in favor of the more descriptive :body_scrubberoption, which defaults to newly added Sentry.Plug.default_scrubber/1
	New option for Sentry.Plug :header_scrubber defaults to newly added Sentry.Plug.default_header_scrubber/1
	Request bodies were not previously sent by default.  Because of above change, request bodies are now sent by default after being scrubbed by default scrubber.  To prevent sending any data, :body_scrubber should be set to nil






  

    
Sentry 
    



      
Provides the basic functionality to submit a Sentry.Event to the Sentry Service.
Configuration
Add the following to your production config
config :sentry, dsn: "https://public:secret@app.getsentry.com/1",
  included_environments: [:prod],
  environment_name: :prod,
  tags: %{
    env: "production"
  }
The environment_name and included_environments work together to determine
if and when Sentry should record exceptions. The environment_name is the
name of the current environment. In the example above, we have explicitly set
the environment to :prod which works well if you are inside an environment
specific configuration config/prod.exs.
An alternative is to use Mix.env in your general configuration file:
config :sentry, dsn: "https://public:secret@app.getsentry.com/1",
  included_environments: [:prod],
  environment_name: Mix.env
This will set the environment name to whatever the current Mix environment
atom is, but it will only send events if the current environment is :prod,
since that is the only entry in the included_environments key.
You can even rely on more custom determinations of the environment name. It's
not uncommmon for most applications to have a "staging" environment. In order
to handle this without adding an additional Mix environment, you can set an
environment variable that determines the release level.
config :sentry, dsn: "https://public:secret@app.getsentry.com/1",
  included_environments: ~w(production staging),
  environment_name: System.get_env("RELEASE_LEVEL") || "development"
In this example, we are getting the environment name from the RELEASE_LEVEL
environment variable. If that variable does not exist, we default to "development".
Now, on our servers, we can set the environment variable appropriately. On
our local development machines, exceptions will never be sent, because the
default value is not in the list of included_environments.
Filtering Exceptions
If you would like to prevent certain exceptions, the :filter configuration option
allows you to implement the Sentry.EventFilter behaviour.  The first argument is the
exception to be sent, and the second is the source of the event.  Sentry.Plug
will have a source of :plug, Sentry.LoggerBackend will have a source of :logger, and Sentry.Phoenix.Endpoint will have a source of :endpoint.
If an exception does not come from either of those sources, the source will be nil
unless the :event_source option is passed to Sentry.capture_exception/2
A configuration like below will prevent sending Phoenix.Router.NoRouteError from Sentry.Plug, but
allows other exceptions to be sent.
# sentry_event_filter.ex
defmodule MyApp.SentryEventFilter do
  @behaviour Sentry.EventFilter

  def exclude_exception?(%Elixir.Phoenix.Router.NoRouteError{}, :plug), do: true
  def exclude_exception?(_exception, _source), do: false
end

# config.exs
config :sentry, filter: MyApp.SentryEventFilter,
  included_environments: ~w(production staging),
  environment_name: System.get_env("RELEASE_LEVEL") || "development"
Capturing Exceptions
Simply calling capture_exception/2 will send the event. By default, the event
is sent asynchronously and the result can be awaited upon.  The :result option
can be used to change this behavior.  See Sentry.Client.send_event/2 for more
information.
{:ok, task} = Sentry.capture_exception(my_exception)
{:ok, event_id} = Task.await(task)
{:ok, another_event_id} = Sentry.capture_exception(other_exception, [event_source: :my_source, result: :sync])
Options
	:event_source - The source passed as the first argument to Sentry.EventFilter.exclude_exception?/2

Configuring The Logger Backend
See Sentry.LoggerBackend

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    Types
  


    
      
        send_result()

      


    





  
    Functions
  


    
      
        capture_exception(exception, opts \\ [])

      


        Parses and submits an exception to Sentry if current environment is in included_environments.
opts argument is passed as the second argument to Sentry.send_event/2.



    


    
      
        capture_message(message, opts \\ [])

      


        Reports a message to Sentry.



    


    
      
        get_last_event_id_and_source()

      


        Gets the last event ID sent to the server from the process dictionary.
Since it uses the process dictionary, it will only return the last event
ID sent within the current process.



    


    
      
        put_last_event_id_and_source(event_id, source \\ nil)

      


        Puts the last event ID sent to the server for the current process in
the process dictionary.



    


    
      
        send_event(event, opts \\ [])

      


        Sends a Sentry.Event



    


    
      
        start(type, opts)

      


        Callback implementation for Application.start/2.



    





      


      
        
          
            
            Anchor for this section
          
Types
        

        


  
    
      
      Link to this type
    
    send_result()


      
       
       View Source
     


  


  

      

          @type send_result() :: Sentry.Client.send_event_result() | :excluded | :ignored


      



  


        

      

      
        
          
            
            Anchor for this section
          
Functions
        

        


    

  
    
      
      Link to this function
    
    capture_exception(exception, opts \\ [])


      
       
       View Source
     


  


  

      

          @spec capture_exception(Exception.t(), Keyword.t()) :: send_result()


      


Parses and submits an exception to Sentry if current environment is in included_environments.
opts argument is passed as the second argument to Sentry.send_event/2.

  



    

  
    
      
      Link to this function
    
    capture_message(message, opts \\ [])


      
       
       View Source
     


  


  

      

          @spec capture_message(String.t(), Keyword.t()) :: send_result()


      


Reports a message to Sentry.
opts argument is passed as the second argument to Sentry.send_event/2.

  



  
    
      
      Link to this function
    
    get_last_event_id_and_source()


      
       
       View Source
     


  


  

      

          @spec get_last_event_id_and_source() :: {String.t(), atom() | nil} | nil


      


Gets the last event ID sent to the server from the process dictionary.
Since it uses the process dictionary, it will only return the last event
ID sent within the current process.

  



    

  
    
      
      Link to this function
    
    put_last_event_id_and_source(event_id, source \\ nil)


      
       
       View Source
     


  


  

Puts the last event ID sent to the server for the current process in
the process dictionary.

  



    

  
    
      
      Link to this function
    
    send_event(event, opts \\ [])


      
       
       View Source
     


  


  

      

          @spec send_event(Sentry.Event.t(), Keyword.t()) :: send_result()


      


Sends a Sentry.Event
opts argument is passed as the second argument to send_event/2 of the configured Sentry.HTTPClient.  See Sentry.Client.send_event/2 for more information.

  



  
    
      
      Link to this function
    
    start(type, opts)


      
       
       View Source
     


  


  

Callback implementation for Application.start/2.

  


        

      



  

    
Sentry.Client 
    



      
This module interfaces directly with Sentry via HTTP.
The client itself can be configured via the :client
configuration. It must implement the Sentry.HTTPClient
behaviour and it defaults to Sentry.HackneyClient.
It makes use of Task.Supervisor to allow sending tasks
synchronously or asynchronously, and defaulting to asynchronous.
See send_event/2 for more information.
Configuration
	:before_send_event - allows performing operations on the event before
it is sent. Accepts an anonymous function or a {module, function} tuple,
and the event will be passed as the only argument.

	:after_send_event - callback that is called after attempting to send an event.
Accepts an anonymous function or a {module, function} tuple. The result of the
HTTP call as well as the event will be passed as arguments. The return value of
the callback is not returned.


Example configuration of putting Logger metadata in the extra context:
config :sentry,
  before_send_event: {MyModule, :before_send},
  before_send_event: {MyModule, :after_send}
where:
defmodule MyModule do
  def before_send(event) do
    metadata = Map.new(Logger.metadata)
    %{event | extra: Map.merge(event.extra, metadata)}
  end

  def after_send_event(event, result) do
    case result do
      {:ok, id} ->
        Logger.info("Successfully sent event!")
      _ ->
        Logger.info(fn -> "Did not successfully send event! #{inspect(event)}" end)
    end
  end
end

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    Types
  


    
      
        dsn()

      


    


    
      
        result()

      


    


    
      
        send_event_result()

      


    





  
    Functions
  


    
      
        authorization_header(public_key, secret_key)

      


        Generates a Sentry API authorization header.



    


    
      
        get_dsn()

      


        Get a Sentry DSN which is simply a URI.



    


    
      
        maybe_call_after_send_event(result, event)

      


    


    
      
        maybe_call_before_send_event(event)

      


    


    
      
        maybe_log_result(result, event)

      


    


    
      
        render_event(event)

      


        Transform the Event struct into JSON map.



    


    
      
        request(url, headers, body)

      


        Makes the HTTP request to Sentry using the configured HTTP client.



    


    
      
        send_event(event, opts \\ [])

      


        Attempts to send the event to the Sentry API up to 4 times with exponential backoff.



    





      


      
        
          
            
            Anchor for this section
          
Types
        

        


  
    
      
      Link to this type
    
    dsn()


      
       
       View Source
     


  


  

      

          @type dsn() :: {String.t(), String.t(), String.t()}


      



  



  
    
      
      Link to this type
    
    result()


      
       
       View Source
     


  


  

      

          @type result() :: :sync | :none | :async


      



  



  
    
      
      Link to this type
    
    send_event_result()


      
       
       View Source
     


  


  

      

          @type send_event_result() ::
  {:ok, Task.t() | String.t()} | {:error, any()} | :unsampled | :excluded


      



  


        

      

      
        
          
            
            Anchor for this section
          
Functions
        

        


  
    
      
      Link to this function
    
    authorization_header(public_key, secret_key)


      
       
       View Source
     


  


  

      

          @spec authorization_header(String.t(), String.t()) :: String.t()


      


Generates a Sentry API authorization header.

  



  
    
      
      Link to this function
    
    get_dsn()


      
       
       View Source
     


  


  

      

          @spec get_dsn() :: dsn() | {:error, :invalid_dsn}


      


Get a Sentry DSN which is simply a URI.
{PROTOCOL}://{PUBLIC_KEY}[:{SECRET_KEY}]@{HOST}/{PATH}{PROJECT_ID}

  



  
    
      
      Link to this function
    
    maybe_call_after_send_event(result, event)


      
       
       View Source
     


  


  

      

          @spec maybe_call_after_send_event(send_event_result(), Sentry.Event.t()) ::
  send_event_result()


      



  



  
    
      
      Link to this function
    
    maybe_call_before_send_event(event)


      
       
       View Source
     


  


  

      

          @spec maybe_call_before_send_event(Sentry.Event.t()) :: Sentry.Event.t() | false


      



  



  
    
      
      Link to this function
    
    maybe_log_result(result, event)


      
       
       View Source
     


  


  

      

          @spec maybe_log_result(send_event_result(), Sentry.Event.t()) :: send_event_result()


      



  



  
    
      
      Link to this function
    
    render_event(event)


      
       
       View Source
     


  


  

      

          @spec render_event(Sentry.Event.t()) :: map()


      


Transform the Event struct into JSON map.
Most Event attributes map directly to JSON map, with stacktrace being the
exception.  If the event does not have stacktrace frames, it should not
be included in the JSON body.

  



  
    
      
      Link to this function
    
    request(url, headers, body)


      
       
       View Source
     


  


  

      

          @spec request(String.t(), [{String.t(), String.t()}], String.t()) ::
  {:ok, String.t()} | {:error, term()}


      


Makes the HTTP request to Sentry using the configured HTTP client.

  



    

  
    
      
      Link to this function
    
    send_event(event, opts \\ [])


      
       
       View Source
     


  


  

Attempts to send the event to the Sentry API up to 4 times with exponential backoff.
The event is dropped if it all retries fail.
Errors will be logged unless the source is the Sentry.LoggerBackend, which can
deadlock by logging within a logger.

  
  options

  
  Options


	:result - Allows specifying how the result should be returned. Options include
:sync, :none, and :async.  :sync will make the API call synchronously, and
return {:ok, event_id} if successful.  :none sends the event from an unlinked
child process under Sentry.TaskSupervisor and will return {:ok, ""} regardless
of the result.  :async will start an unlinked task and return a tuple of {:ok, Task.t}
on success where the Task should be awaited upon to receive the result asynchronously.
If you do not call Task.await/2, messages will be leaked to the inbox of the current
process.  See Task.Supervisor.async_nolink/2 for more information. :none is the default.

	:sample_rate - The sampling factor to apply to events.  A value of 0.0 will deny sending
any events, and a value of 1.0 will send 100% of events.

	Other options, such as :stacktrace or :extra will be passed to Sentry.Event.create_event/1
downstream. See Sentry.Event.create_event/1 for available options.



  


        

      



  

    
Sentry.Config 
    



      
This module provides the functionality for fetching configuration settings and their defaults.
Sentry supports loading config at runtime, via {:system, "SYSTEM_ENV_KEY"} tuples, where Sentry will read SYSTEM_ENV_KEY to get the config value from the system environment at runtime.

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    Functions
  


    
      
        after_send_event()

      


    


    
      
        before_send_event()

      


    


    
      
        client()

      


    


    
      
        context_lines()

      


    


    
      
        dsn()

      


    


    
      
        enable_source_code_context()

      


    


    
      
        environment_name()

      


    


    
      
        filter()

      


    


    
      
        hackney_opts()

      


    


    
      
        hackney_timeout()

      


    


    
      
        in_app_module_allow_list()

      


    


    
      
        in_app_module_whitelist()

          deprecated

      


    


    
      
        included_environments()

      


        The :included_environments config key expects a list, but if given a string, it will split the string on commas to create a list.



    


    
      
        json_library()

      


    


    
      
        log_level()

      


    


    
      
        max_breadcrumbs()

      


    


    
      
        max_hackney_connections()

      


    


    
      
        permitted_log_level_values()

      


    


    
      
        release()

      


    


    
      
        report_deps()

      


    


    
      
        root_source_code_path()

          deprecated

      


    


    
      
        root_source_code_paths()

      


    


    
      
        sample_rate()

      


    


    
      
        send_max_attempts()

      


    


    
      
        send_result()

      


    


    
      
        server_name()

      


    


    
      
        source_code_exclude_patterns()

      


    


    
      
        source_code_path_pattern()

      


    


    
      
        tags()

      


    


    
      
        validate_config!()

      


    





      


      
        
          
            
            Anchor for this section
          
Functions
        

        


  
    
      
      Link to this function
    
    after_send_event()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    before_send_event()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    client()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    context_lines()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    dsn()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    enable_source_code_context()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    environment_name()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    filter()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    hackney_opts()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    hackney_timeout()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    in_app_module_allow_list()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    in_app_module_whitelist()


      
       
       View Source
     


  


    
      This function is deprecated. Use Sentry.Config.in_app_module_allow_list/0 instead..
    


  


  



  
    
      
      Link to this function
    
    included_environments()


      
       
       View Source
     


  


  

The :included_environments config key expects a list, but if given a string, it will split the string on commas to create a list.

  



  
    
      
      Link to this function
    
    json_library()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    log_level()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    max_breadcrumbs()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    max_hackney_connections()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    permitted_log_level_values()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    release()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    report_deps()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    root_source_code_path()


      
       
       View Source
     


  


    
      This function is deprecated. Use root_source_code_paths/0 instead.
    


  


  



  
    
      
      Link to this function
    
    root_source_code_paths()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    sample_rate()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    send_max_attempts()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    send_result()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    server_name()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    source_code_exclude_patterns()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    source_code_path_pattern()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    tags()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    validate_config!()


      
       
       View Source
     


  


  


  


        

      



  

    
Sentry.Context 
    



      
  Provides functionality to store user, tags, extra, and breadcrumbs context when an
  event is reported. The contexts will be fetched and merged into the event when it is sent.
  When calling Sentry.Context, Logger metadata is used to store this state.
  This imposes some limitations. The metadata will only exist within
  the current process, and the context will die with the process.
  For example, if you add context inside your controller and an
  error happens in a Task, that context will not be included.
  A common use-case is to set context within Plug or Phoenix applications, as each
  request is its own process, and so any stored context will be included should an
  error be reported within that request process. Example:
# post_controller.ex
def index(conn, _params) do
  Sentry.Context.set_user_context(%{id: conn.assigns.user_id})
  posts = Blog.list_posts()
  render(conn, "index.html", posts: posts)
end
  It should be noted that the set_*_context/1 functions merge with the
  existing context rather than entirely overwriting it.

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    Functions
  


    
      
        add_breadcrumb(list)

      


        Adds a new breadcrumb to the :breadcrumb context, specific to the current
process.



    


    
      
        clear_all()

      


        Clears all existing context for the current process.



    


    
      
        context_keys()

      


        Returns the keys used to store context in the current Process's process
dictionary.



    


    
      
        get_all()

      


        Retrieves all currently set context on the current process.



    


    
      
        set_extra_context(map)

      


        Merges new fields into the :extra context, specific to the current process.



    


    
      
        set_request_context(map)

      


        Merges new fields into the :request context, specific to the current
process.



    


    
      
        set_tags_context(map)

      


        Merges new fields into the :tags context, specific to the current process.



    


    
      
        set_user_context(map)

      


        Merges new fields into the :user context, specific to the current process.



    





      


      
        
          
            
            Anchor for this section
          
Functions
        

        


  
    
      
      Link to this function
    
    add_breadcrumb(list)


      
       
       View Source
     


  


  

      

          @spec add_breadcrumb(keyword() | map()) :: :ok


      


Adds a new breadcrumb to the :breadcrumb context, specific to the current
process.
Breadcrumbs are used to record a series of events that led to a specific
instance of an error. Breadcrumbs can contain arbitrary key data to assist in
understanding what happened before an error occurred.

  
  example

  
  Example


iex> Sentry.Context.add_breadcrumb(message: "first_event")
:ok
iex> Sentry.Context.add_breadcrumb(%{message: "second_event", type: "auth"})
%{breadcrumbs: [%{:message => "first_event", "timestamp" => 1562007480}]}
iex> Sentry.Context.add_breadcrumb(%{message: "response"})
%{
    breadcrumbs: [
          %{:message => "second_event", :type => "auth", "timestamp" => 1562007505},
          %{:message => "first_event", "timestamp" => 1562007480}
        ]
}
iex> Sentry.Context.get_all()
%{
    breadcrumbs: [
          %{:message => "first_event", "timestamp" => 1562007480},
          %{:message => "second_event", :type => "auth", "timestamp" => 1562007505},
          %{:message => "response", "timestamp" => 1562007517}
        ],
    extra: %{},
    request: %{},
    tags: %{},
    user: %{}
}

  



  
    
      
      Link to this function
    
    clear_all()


      
       
       View Source
     


  


  

Clears all existing context for the current process.

  
  example

  
  Example


iex> Sentry.Context.set_tags_context(%{id: 123})
:ok
iex> Sentry.Context.clear_all()
:ok
iex> Sentry.Context.get_all()
%{breadcrumbs: [], extra: %{}, request: %{}, tags: %{}, user: %{}}

  



  
    
      
      Link to this function
    
    context_keys()


      
       
       View Source
     


  


  

      

          @spec context_keys() :: [atom()]


      


Returns the keys used to store context in the current Process's process
dictionary.

  
  example

  
  Example


iex> Sentry.Context.context_keys()
[:breadcrumbs, :tags, :user, :extra]

  



  
    
      
      Link to this function
    
    get_all()


      
       
       View Source
     


  


  

      

          @spec get_all() :: %{
  user: map(),
  tags: map(),
  extra: map(),
  request: map(),
  breadcrumbs: list()
}


      


Retrieves all currently set context on the current process.

  
  example

  
  Example


iex> Sentry.Context.set_user_context(%{id: 123})
iex> Sentry.Context.set_tags_context(%{message_id: 456})
iex> Sentry.Context.get_all()
%{
  user: %{id: 123},
  tags: %{message_id: 456},
  extra: %{},
  request: %{},
  breadcrumbs: []
}

  



  
    
      
      Link to this function
    
    set_extra_context(map)


      
       
       View Source
     


  


  

      

          @spec set_extra_context(map()) :: :ok


      


Merges new fields into the :extra context, specific to the current process.
This is used to set fields which should display when looking at a specific
instance of an error.

  
  example

  
  Example


iex> Sentry.Context.set_extra_context(%{id: 123})
:ok
iex> Sentry.Context.set_extra_context(%{detail: "bad_error"})
:ok
iex> Sentry.Context.set_extra_context(%{message: "Oh no"})
:ok
iex> Sentry.Context.get_all()
%{
  user: %{},
  tags: %{},
  extra: %{detail: "bad_error", id: 123, message: "Oh no"},
  request: %{},
  breadcrumbs: []
}

  



  
    
      
      Link to this function
    
    set_request_context(map)


      
       
       View Source
     


  


  

      

          @spec set_request_context(map()) :: :ok


      


Merges new fields into the :request context, specific to the current
process.
This is used to set metadata that identifies the request associated with a
specific instance of an error.

  
  example

  
  Example


iex(1)> Sentry.Context.set_request_context(%{id: 123})
:ok
iex(2)> Sentry.Context.set_request_context(%{url: "www.example.com"})
:ok
iex(3)> Sentry.Context.get_all()
%{
    breadcrumbs: [],
    extra: %{},
    request: %{id: 123, url: "www.example.com"},
    tags: %{},
    user: %{}
}

  



  
    
      
      Link to this function
    
    set_tags_context(map)


      
       
       View Source
     


  


  

      

          @spec set_tags_context(map()) :: :ok


      


Merges new fields into the :tags context, specific to the current process.
This is used to set fields which should display when looking at a specific
instance of an error. These fields can also be used to search and filter on.

  
  example

  
  Example


iex> Sentry.Context.set_tags_context(%{id: 123})
:ok
iex> Sentry.Context.set_tags_context(%{other_id: 456})
:ok
iex> Sentry.Context.get_all()
%{
    breadcrumbs: [],
    extra: %{},
    request: %{},
    tags: %{id: 123, other_id: 456},
    user: %{}
}

  



  
    
      
      Link to this function
    
    set_user_context(map)


      
       
       View Source
     


  


  

      

          @spec set_user_context(map()) :: :ok


      


Merges new fields into the :user context, specific to the current process.
This is used to set certain fields which identify the actor who experienced a
specific instance of an error.

  
  example

  
  Example


iex> Sentry.Context.set_user_context(%{id: 123})
:ok
iex> Sentry.Context.set_user_context(%{username: "george"})
:ok
iex> Sentry.Context.get_all()
%{
  user: %{id: 123, username: "george"},
  tags: %{},
  extra: %{},
  request: %{},
  breadcrumbs: []
}

  


        

      



  

    
Sentry.Event 
    



      
  Provides an Event Struct as well as transformation of Logger
  entries into Sentry Events.
Configuration
	:in_app_module_allow_list - Expects a list of modules that is used to distinguish among stacktrace frames that belong to your app and ones that are part of libraries or core Elixir.  This is used to better display the significant part of stacktraces.  The logic is greedy, so if your app's root module is MyApp and your setting is [MyApp], that module as well as any submodules like MyApp.Submodule would be considered part of your app.  Defaults to [].
	:report_deps - Flag for whether to include the loaded dependencies when reporting an error. Defaults to true.


      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    Types
  


    
      
        sentry_exception()

      


    


    
      
        t()

      


    





  
    Functions
  


    
      
        add_metadata(state)

      


    


    
      
        args_from_stacktrace(arg1)

      


        Builds a map from argument value list.  For Sentry, typically the
key in the map would be the name of the variable, but we don't have that
available.



    


    
      
        create_event(opts)

      


        Creates an Event struct out of context collected and options



    


    
      
        culprit_from_stacktrace(list)

      


    


    
      
        do_put_source_context(frame, file, line_number)

      


    


    
      
        stacktrace_to_frames(stacktrace)

      


    


    
      
        transform_exception(exception, opts)

      


        Transforms an Exception to a Sentry event.



    





      


      
        
          
            
            Anchor for this section
          
Types
        

        


  
    
      
      Link to this type
    
    sentry_exception()


      
       
       View Source
     


  


  

      

          @type sentry_exception() :: %{type: String.t(), value: String.t(), module: any()}


      



  



  
    
      
      Link to this type
    
    t()


      
       
       View Source
     


  


  

      

          @type t() :: %Sentry.Event{
  breadcrumbs: list(),
  contexts: map(),
  culprit: String.t() | nil,
  environment: any(),
  event_id: String.t() | nil,
  event_source: any(),
  exception: [sentry_exception()],
  extra: map(),
  fingerprint: list(),
  level: String.t(),
  message: String.t() | nil,
  modules: map(),
  original_exception: Exception.t() | nil,
  platform: String.t(),
  release: any(),
  request: map(),
  server_name: any(),
  stacktrace: %{frames: [map()]},
  tags: map(),
  timestamp: String.t() | nil,
  user: map()
}


      



  


        

      

      
        
          
            
            Anchor for this section
          
Functions
        

        


  
    
      
      Link to this function
    
    add_metadata(state)


      
       
       View Source
     


  


  

      

          @spec add_metadata(t()) :: t()


      



  



  
    
      
      Link to this function
    
    args_from_stacktrace(arg1)


      
       
       View Source
     


  


  

      

          @spec args_from_stacktrace(Exception.stacktrace()) :: map()


      


Builds a map from argument value list.  For Sentry, typically the
key in the map would be the name of the variable, but we don't have that
available.

  



  
    
      
      Link to this function
    
    create_event(opts)


      
       
       View Source
     


  


  

      

          @spec create_event(keyword()) :: t()


      


Creates an Event struct out of context collected and options

  
  options

  
  Options


	:exception - Sentry-structured exception
	:original_exception - Original Elixir exception struct
	:message - message
	:stacktrace - a list of Exception.stacktrace()
	:extra - map of extra context
	:user - map of user context
	:tags - map of tags context
	:request - map of request context
	:breadcrumbs - list of breadcrumbs
	:event_source - the source of the event
	:level - error level
	:fingerprint -  list of the fingerprint for grouping this event


  



  
    
      
      Link to this function
    
    culprit_from_stacktrace(list)


      
       
       View Source
     


  


  

      

          @spec culprit_from_stacktrace(Exception.stacktrace()) :: String.t() | nil


      



  



  
    
      
      Link to this function
    
    do_put_source_context(frame, file, line_number)


      
       
       View Source
     


  


  

      

          @spec do_put_source_context(map(), String.t(), integer()) :: map()


      



  



  
    
      
      Link to this function
    
    stacktrace_to_frames(stacktrace)


      
       
       View Source
     


  


  

      

          @spec stacktrace_to_frames(Exception.stacktrace()) :: [map()]


      



  



  
    
      
      Link to this function
    
    transform_exception(exception, opts)


      
       
       View Source
     


  


  

      

          @spec transform_exception(
  Exception.t(),
  keyword()
) :: t()


      


Transforms an Exception to a Sentry event.

  
  options

  
  Options


	:stacktrace - a list of Exception.stacktrace()
	:extra - map of extra context
	:user - map of user context
	:tags - map of tags context
	:request - map of request context
	:breadcrumbs - list of breadcrumbs
	:level - error level
	:fingerprint -  list of the fingerprint for grouping this event


  


        

      



  

    
Sentry.EventFilter behaviour
    



      
This module defines a Behaviour for filtering Sentry events.
There is one callback to implement. The first argument will be
the exception reported, and the second is the source. Events
from Sentry.PlugCapture will have :plug as a source and events from
Sentry.LoggerBackend will have :logger as the source. A custom
source can also be specified by passing the event_source option
to Sentry.capture_exception/2.
As an example, if you wanted to exclude any ArithmeticError exceptions:
defmodule MyApp.SentryEventFilter do
  @behaviour Sentry.EventFilter

  def exclude_exception?(%ArithmeticError{}, _source), do: true
  def exclude_exception?(_exception, _source), do: false
end
Alternatively, if you want to skip all non-500 exceptions in a Plug app:
defmodule MyApp.SentryEventFilter do
  @behaviour Sentry.EventFilter

  def exclude_exception?(exception, _) do
    Plug.Exception.status(exception) < 500
  end
end
Sentry uses Sentry.DefaultEventFilter by default.

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    Callbacks
  


    
      
        exclude_exception?(t, atom)

      


        Callback that returns whether an exception should be excluded from
being reported



    





      


      
        
          
            
            Anchor for this section
          
Callbacks
        

        


  
    
      
      Link to this callback
    
    exclude_exception?(t, atom)


      
       
       View Source
     


  


  

      

          @callback exclude_exception?(Exception.t(), atom()) :: boolean()


      


Callback that returns whether an exception should be excluded from
being reported

  


        

      



  

    
Sentry.HTTPClient behaviour
    



      
Specifies the API for using a custom HTTP Client.
The default HTTP client is Sentry.HackneyClient
To configure a different HTTP client, implement the Sentry.HTTPClient behaviour and
change the :client configuration:
config :sentry,
  client: MyHTTPClient

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    Types
  


    
      
        headers()

      


    





  
    Callbacks
  


    
      
        child_spec()

      


    


    
      
        post(url, headers, body)

      


    





      


      
        
          
            
            Anchor for this section
          
Types
        

        


  
    
      
      Link to this type
    
    headers()


      
       
       View Source
     


  


  

      

          @type headers() :: [{String.t(), String.t()}]


      



  


        

      

      
        
          
            
            Anchor for this section
          
Callbacks
        

        


  
    
      
      Link to this callback
    
    child_spec()


      
       
       View Source
     


  


  

      

          @callback child_spec() :: :supervisor.child_spec()


      



  



  
    
      
      Link to this callback
    
    post(url, headers, body)


      
       
       View Source
     


  


  

      

          @callback post(url :: String.t(), headers(), body :: String.t()) ::
  {:ok, status :: pos_integer(), headers(), body :: String.t()}
  | {:error, term()}


      



  


        

      



  

    
Sentry.HackneyClient 
    



      
The built-in HTTP client.

      





  

    
Sentry.LoggerBackend 
    



      
Report Logger events like crashed processes to Sentry. To include in your
application, start this backend in your application start/2 callback:
# lib/my_app/application.ex
def start(_type, _args) do
  Logger.add_backend(Sentry.LoggerBackend)
Sentry context will be included in metadata in reported events. Example:
Sentry.Context.set_user_context(%{
  user_id: current_user.id
})
Configuration
	:excluded_domains - Any messages with a domain in the configured
list will not be sent. Defaults to [:cowboy] to avoid double reporting
events from Sentry.PlugCapture.

	:metadata - To include non-Sentry Logger metadata in reports, the
:metadata key can be set to a list of keys. Metadata under those keys will
be added in the :extra context under the :logger_metadata key. Defaults
to [].

	:level - The minimum Logger level to send events for.
Defaults to :error.

	:capture_log_messages - When true, this module will send all Logger
messages. Defaults to false, which will only send messages with metadata
that has the shape of an exception and stacktrace.


Example:
config :logger, Sentry.LoggerBackend,
  # Also send warning messages
  level: :warning,
  # Send messages from Plug/Cowboy
  excluded_domains: [],
  # Include metadata added with `Logger.metadata([foo_bar: "value"])`
  metadata: [:foo_bar],
  # Send messages like `Logger.error("error")` to Sentry
  capture_log_messages: true

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    Functions
  


    
      
        code_change(old_vsn, state, extra)

      


        Callback implementation for :gen_event.code_change/3.



    


    
      
        handle_call(arg, state)

      


        Callback implementation for :gen_event.handle_call/2.



    


    
      
        handle_event(arg1, state)

      


        Callback implementation for :gen_event.handle_event/2.



    


    
      
        handle_info(_, state)

      


        Callback implementation for :gen_event.handle_info/2.



    


    
      
        init(arg1)

      


        Callback implementation for :gen_event.init/1.



    


    
      
        terminate(reason, state)

      


        Callback implementation for :gen_event.terminate/2.



    





      


      
        
          
            
            Anchor for this section
          
Functions
        

        


  
    
      
      Link to this function
    
    code_change(old_vsn, state, extra)


      
       
       View Source
     


  


  

Callback implementation for :gen_event.code_change/3.

  



  
    
      
      Link to this function
    
    handle_call(arg, state)


      
       
       View Source
     


  


  

Callback implementation for :gen_event.handle_call/2.

  



  
    
      
      Link to this function
    
    handle_event(arg1, state)


      
       
       View Source
     


  


  

Callback implementation for :gen_event.handle_event/2.

  



  
    
      
      Link to this function
    
    handle_info(_, state)


      
       
       View Source
     


  


  

Callback implementation for :gen_event.handle_info/2.

  



  
    
      
      Link to this function
    
    init(arg1)


      
       
       View Source
     


  


  

Callback implementation for :gen_event.init/1.

  



  
    
      
      Link to this function
    
    terminate(reason, state)


      
       
       View Source
     


  


  

Callback implementation for :gen_event.terminate/2.

  


        

      



  

    
Sentry.PlugCapture 
    



      
Provides basic functionality to handle and send errors occurring within
Plug applications, including Phoenix.
It is intended for usage with Sentry.PlugContext.
Usage
In a Phoenix application, it is important to use this module before
the Phoenix endpoint itself. It should be added to your endpoint.ex:
defmodule MyApp.Endpoint
  use Sentry.PlugCapture
  use Phoenix.Endpoint, otp_app: :my_app
  # ...
end
In a Plug application, it can be added below your router:
defmodule MyApp.PlugRouter do
  use Plug.Router
  use Sentry.PlugCapture
  # ...
end

      





  

    
Sentry.PlugContext 
    



      
This module adds Sentry context metadata during the request in a Plug
application. It includes defaults for scrubbing sensitive data, and
options for customizing it by default.
It is intended for usage with Sentry.PlugCapture as metadata added here
will appear in events captured.
Sending Post Body Params
In order to send post body parameters you should first scrub them of sensitive
information. By default, they will be scrubbed with
Sentry.Plug.default_body_scrubber/1. It can be overridden by passing
the body_scrubber option, which accepts a Plug.Conn and returns a map
to send.  Setting :body_scrubber to nil will not send any data back.
If you would like to make use of Sentry's default scrubber behavior in a custom
scrubber, it can be called directly.  An example configuration may look like
the following:
def scrub_params(conn) do
  # Makes use of the default body_scrubber to avoid sending password
  # and credit card information in plain text.  To also prevent sending
  # our sensitive "my_secret_field" and "other_sensitive_data" fields,
  # we simply drop those keys.
  Sentry.PlugContext.default_body_scrubber(conn)
  |> Map.drop(["my_secret_field", "other_sensitive_data"])
end
Then pass it into Sentry.Plug:
plug Sentry.PlugContext, body_scrubber: &MyModule.scrub_params/1
You can also pass it in as a {module, fun} like so:
plug Sentry.PlugContext, body_scrubber: {MyModule, :scrub_params}
Please Note: If you are sending large files you will want to scrub them out.
Headers Scrubber
By default Sentry will scrub Authorization and Authentication headers from all
requests before sending them. It can be configured similarly to the body params
scrubber, but is configured with the :header_scrubber key.
def scrub_headers(conn) do
  # default is: Sentry.Plug.default_header_scrubber(conn)
  #
  # We do not want to include Content-Type or User-Agent in reported
  # headers, so we drop them.
  Enum.into(conn.req_headers, %{})
  |> Map.drop(["content-type", "user-agent"])
end
Then pass it into Sentry.Plug:
plug Sentry.PlugContext, header_scrubber: &MyModule.scrub_headers/1
It can also be passed in as a {module, fun} like so:
plug Sentry.PlugContext, header_scrubber: {MyModule, :scrub_headers}
Cookie Scrubber
By default Sentry will scrub all cookies before sending events.
It can be configured similarly to the headers scrubber, but is configured with the :cookie_scrubber key.
To configure scrubbing, we can set all configuration keys:
plug Sentry.PlugContext, header_scrubber: &MyModule.scrub_headers/1,
  body_scrubber: &MyModule.scrub_params/1, cookie_scrubber: &MyModule.scrub_cookies/1
Including Request Identifiers
If you're using Phoenix, Plug.RequestId, or another method to set a request ID
response header, and would like to include that information with errors
reported by Sentry.PlugContext, the :request_id_header option allows you to set
which header key Sentry should check.  It will default to "x-request-id",
which Plug.RequestId (and therefore Phoenix) also default to.
plug Sentry.PlugContext, request_id_header: "application-request-id"
Remote Address Reader
Sentry.PlugContext includes a request's originating IP address under the REMOTE_ADDR
Environment key in Sentry. By default it is read from the x-forwarded-for HTTP header,
and if this header is not present, it is read from conn.remote_ip.
If you wish to read this value differently (e.g. from a different HTTP header),
or modify it in some other way (e.g. by masking it), you can configure this behavior
by passing the :remote_address_reader option:
plug Sentry.PlugContext, remote_address_reader: &MyModule.read_ip/1

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    Functions
  


    
      
        build_request_interface_data(conn, opts)

      


    


    
      
        call(conn, opts)

      


        Callback implementation for Plug.call/2.



    


    
      
        default_body_scrubber(conn)

      


    


    
      
        default_cookie_scrubber(conn)

      


    


    
      
        default_header_scrubber(conn)

      


    


    
      
        default_remote_address_reader(conn)

      


    


    
      
        get_header(conn, header)

      


    


    
      
        init(opts)

      


        Callback implementation for Plug.init/1.



    


    
      
        scrub_map(map, scrubbed_keys, opts \\ [])

      


        Recursively scrubs a map that may have nested maps or lists



    





      


      
        
          
            
            Anchor for this section
          
Functions
        

        


  
    
      
      Link to this function
    
    build_request_interface_data(conn, opts)


      
       
       View Source
     


  


  

      

          @spec build_request_interface_data(
  Plug.Conn.t(),
  keyword()
) :: map()


      



  



  
    
      
      Link to this function
    
    call(conn, opts)


      
       
       View Source
     


  


  

Callback implementation for Plug.call/2.

  



  
    
      
      Link to this function
    
    default_body_scrubber(conn)


      
       
       View Source
     


  


  

      

          @spec default_body_scrubber(Plug.Conn.t()) :: map()


      



  



  
    
      
      Link to this function
    
    default_cookie_scrubber(conn)


      
       
       View Source
     


  


  

      

          @spec default_cookie_scrubber(Plug.Conn.t()) :: map()


      



  



  
    
      
      Link to this function
    
    default_header_scrubber(conn)


      
       
       View Source
     


  


  

      

          @spec default_header_scrubber(Plug.Conn.t()) :: map()


      



  



  
    
      
      Link to this function
    
    default_remote_address_reader(conn)


      
       
       View Source
     


  


  

      

          @spec default_remote_address_reader(Plug.Conn.t()) :: String.t()


      



  



  
    
      
      Link to this function
    
    get_header(conn, header)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    init(opts)


      
       
       View Source
     


  


  

Callback implementation for Plug.init/1.

  



    

  
    
      
      Link to this function
    
    scrub_map(map, scrubbed_keys, opts \\ [])


      
       
       View Source
     


  


  

      

          @spec scrub_map(
  map(),
  [String.t()],
  keyword()
) :: map()


      


Recursively scrubs a map that may have nested maps or lists
Accepts a list of keys to scrub, and a list of options to configure

  
  options

  
  Options


	:scrubbed_values_regular_expressions - A list of regular expressions.
Any binary values within the map that match any of the regular expressions
will be scrubbed. Defaults to [~r/^(?:�[ -]*?){13,16}$/].
	:scrubbed_value - The value to replace scrubbed values with.
Defaults to "*********".


  


        

      



  

    
Sentry.Sources 
    



      
This module is responsible for providing functionality that stores
the text of source files during compilation for displaying the
source code that caused an exception.
Configuration
There is configuration required to set up this functionality.  The options
include :enable_source_code_context, :root_source_code_paths, :context_lines,
:source_code_exclude_patterns, and :source_code_path_pattern. The options must
be set at compile-time.
	:enable_source_code_context - when true, enables reporting source code
alongside exceptions.
	:root_source_code_paths - List of paths from which to start recursively reading files from.
Should usually be set to [File.cwd!()]. For umbrella applications you should list all your
applications paths in this list (e.g. ["/tmp/craft-hex-3BIUoh/apps/app_1", "/tmp/craft-hex-3BIUoh/apps/app_2"].
	:context_lines - The number of lines of source code before and after the line that
caused the exception to be included.  Defaults to 3.
	:source_code_exclude_patterns - a list of Regex expressions used to exclude file paths that
should not be stored or referenced when reporting exceptions.  Defaults to
[~r"/_build/", ~r"/deps/", ~r"/priv/"].
	:source_code_path_pattern - a glob that is expanded to select files from the
:root_source_code_paths.  Defaults to "**/*.ex".

An example configuration:
config :sentry,
  dsn: "https://public:secret@app.getsentry.com/1",
  enable_source_code_context: true,
  root_source_code_paths: [File.cwd!()],
  context_lines: 5
Source code storage
The file contents are saved when Sentry is compiled, which can cause some
complications. If a file is changed, and Sentry is not recompiled,
it will still report old source code.
The best way to ensure source code is up to date is to recompile Sentry
itself via mix deps.compile sentry --force.  It's possible to create a Mix
Task alias in mix.exs to do this.  The example below would allow one to
run mix sentry_recompile && mix compile which will force recompilation of Sentry so
it has the newest source and then compile the project. The second mix compile
is required due to Mix only invoking the same task once in an alias.
defp aliases do
  [sentry_recompile: ["compile", "deps.compile sentry --force"]]
end
This is an important to note especially when building for production. If your
build or deployment system caches prior builds, it may not recompile Sentry
and could cause issues with reported source code being out of date.
Due to Sentry reading the file system and defaulting to a recursive search
of directories, it is important to check your configuration and compilation
environment to avoid a folder recursion issue. Problems may be seen when
deploying to the root folder, so it is best to follow the practice of
compiling your application in its own folder. Modifying the
source_code_path_pattern configuration option from its default is also
an avenue to avoid compile problems.

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    Types
  


    
      
        file_map()

      


    


    
      
        source_map()

      


    





  
    Functions
  


    
      
        get_source_context(files, file_name, line_number)

      


        Given the source code map, a filename and a line number, this method retrieves the source code context.



    


    
      
        load_files()

      


    





      


      
        
          
            
            Anchor for this section
          
Types
        

        


  
    
      
      Link to this type
    
    file_map()


      
       
       View Source
     


  


  

      

          @type file_map() :: %{required(pos_integer()) => String.t()}


      



  



  
    
      
      Link to this type
    
    source_map()


      
       
       View Source
     


  


  

      

          @type source_map() :: %{required(String.t()) => file_map()}


      



  


        

      

      
        
          
            
            Anchor for this section
          
Functions
        

        


  
    
      
      Link to this function
    
    get_source_context(files, file_name, line_number)


      
       
       View Source
     


  


  

      

          @spec get_source_context(source_map(), String.t(), pos_integer()) ::
  {[String.t()], String.t() | nil, [String.t()]}


      


Given the source code map, a filename and a line number, this method retrieves the source code context.
When reporting source code context to the Sentry API, it expects three separate values.  They are the source code
for the specific line the error occurred on, the list of the source code for the lines preceding, and the
list of the source code for the lines following.  The number of lines in the lists depends on what is
configured in :context_lines.  The number configured is how many lines to get on each side of the line that
caused the error.  If it is configured to be 3, the method will attempt to get the 3 lines preceding, the
3 lines following, and the line that the error occurred on, for a possible maximum of 7 lines.
The three values are returned in a three element tuple as {preceding_source_code_list, source_code_from_error_line, following_source_code_list}.

  



  
    
      
      Link to this function
    
    load_files()


      
       
       View Source
     


  


  


  


        

      



  

    
Sentry.Util 
    



      
  Provides basic utility functions.

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    Functions
  


    
      
        iso8601_timestamp()

      


          Generates a iso8601_timestamp without microseconds and timezone



    


    
      
        mix_deps()

      


    


    
      
        mix_deps_versions(deps)

      


    


    
      
        unix_timestamp()

      


          Generates a unix timestamp



    


    
      
        uuid4_hex()

      


        Per http://www.ietf.org/rfc/rfc4122.txt



    





      


      
        
          
            
            Anchor for this section
          
Functions
        

        


  
    
      
      Link to this function
    
    iso8601_timestamp()


      
       
       View Source
     


  


  

      

          @spec iso8601_timestamp() :: String.t()


      


  Generates a iso8601_timestamp without microseconds and timezone

  



  
    
      
      Link to this function
    
    mix_deps()


      
       
       View Source
     


  


  

      

          @spec mix_deps() :: [atom()]


      



  



  
    
      
      Link to this function
    
    mix_deps_versions(deps)


      
       
       View Source
     


  


  

      

          @spec mix_deps_versions([atom()]) :: map()


      



  



  
    
      
      Link to this function
    
    unix_timestamp()


      
       
       View Source
     


  


  

      

          @spec unix_timestamp() :: pos_integer()


      


  Generates a unix timestamp

  



  
    
      
      Link to this function
    
    uuid4_hex()


      
       
       View Source
     


  


  

      

          @spec uuid4_hex() :: String.t()


      


Per http://www.ietf.org/rfc/rfc4122.txt

  


        

      



  

    
Sentry.CrashError exception
    







  

    
mix sentry.send_test_event 
    



      
Send test even to check if Sentry configuration is correct.

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    Functions
  


    
      
        run(args)

      


        Callback implementation for Mix.Task.run/1.



    





      


      
        
          
            
            Anchor for this section
          
Functions
        

        


  
    
      
      Link to this function
    
    run(args)


      
       
       View Source
     


  


  

Callback implementation for Mix.Task.run/1.

  


        

      



  OEBPS/dist/epub-75RCTLK3.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);var a="hll";function c(){u()}function u(){o("[data-group-id]").forEach(e=>{let t=e.getAttribute("data-group-id");e.addEventListener("mouseenter",n=>{i(t,!0)}),e.addEventListener("mouseleave",n=>{i(t,!1)})})}function i(r,e){o(`[data-group-id="${r}"]`).forEach(n=>{n.classList.toggle(a,e)})}c();})();




