

 shoehorn

 v0.9.2

 Table of contents

 	Shoehorn

 	Changelog

 	Modules

 	Shoehorn

 	Shoehorn.DefaultHandler

 	Shoehorn.Handler

 	Shoehorn.ReleaseError

Shoehorn

[image: CircleCI]
[image: Hex version]
Shoehorn helps you handle OTP application failures

 Motivation

By default, the Erlang VM exits when OTP applications unexpectedly stop. This
can happen if an application's Application.start/2 callback crashes or if a
GenServer crashes repeatedly and takes down the application's supervision
tree. Either way, recovery needs to happen outside of the Erlang VM.
Shoehorn provides a way of handling this inside the Erlang VM to allow you to
debug, restart an application, switch to a recovery mode, or something else of
your choosing. It does this by creating a custom release start script
(shoehorn.boot) and exposing the Shoehorn.Handler behaviour for your code to
decide what to do. The custom release start script turns off the default OTP
application mode that exits the VM on unexpected errors and orders application
starts to make sure that the handler is available.
Shoehorn has another benefit of letting you influence the OTP application start
order. Dependencies still determine the overall ordering, but it's possible to
sort applications earlier via Shoehorn's :init option. This can let you
improve the apparent release startup time on slow platforms.

 Usage

Run mix release.init on your project and then add shoehorn to your mix releases configuration in the mix.exs (replace :simple_app):
 def project do
 [
 ...
 releases: releases()
]
 end

 def releases do
 [
 simple_app: [
 steps: [&Shoehorn.Release.init/1, :assemble]
]
]
 end

 defp deps do
 [
 {:shoehorn, "~> 0.9.2"}
]
 end
end
Create a release:
mix release

Next, take a look at the start script so that you can see how your application
will now be started and how it compares to the default startup.script. Open
_build/dev/rel/simple_app/releases/0.1.0/shoehorn.script and go to the end.
You should see something like the following:
 {progress,applications_loaded},
 {apply,{application,start_boot,[kernel,permanent]}},
 {apply,{application,start_boot,[stdlib,permanent]}},
 {apply,{application,start_boot,[compiler,permanent]}},
 {apply,{application,start_boot,[elixir,permanent]}},
 {apply,{application,start_boot,[logger,permanent]}},
 {apply,{application,start_boot,[crypto,permanent]}},
 {apply,{application,start_boot,[shoehorn,permanent]}},
 {apply,{application,start_boot,[sasl,permanent]}},
 {apply,{application,start_boot,[simple_app,temporary]}},
 {progress,started}
This shows the order that applications will be started and their mode.
Applications marked permanent will exit the VM if they stop expectantly.
Shoehorn will change as much as it can to temporary so that it (and by
extension, you) can control what happens.
To start your release using the shoehorn boot script, run:
RELEASE_BOOT_SCRIPT=shoehorn _build/dev/rel/simple_app/bin/simple_app start_iex

It should work as expected with the possible exception that the Erlang VM won't
exit for any of the OTP applications marked temporary.
Now let's configure shoehorn to do something more interesting by adding some
minimal configuration. This is hypothetical unless you're using Nerves:
config/config.exs

config :shoehorn,
 init: [:nerves_runtime, :nerves_pack]
Shoehorn will generate a release script that starts :nerves_runtime and its
dependencies as soon as it can. Then it will start :nerves_pack and its
dependencies. Then it will start the remainder of the applications in the
project. Inspect the shoehorn.script file in the release directory to verify
this.
Use the init application list to prioritize OTP applications that are needed
for early on or for error recovery. In the example above, we initialize the
runtime, bring up the network (in :nerves_pack), and ensure that we can
receive new firmware updates. Now, if simple_app fails to start, the device
would still be in a state where it can receive new firmware over the network.

 Handling application failures

The Erlang VM will respond to application failures differently, depending on the
mode specified when the application started. The modes are:
	:permanent - if the application terminates, all other applications and the
entire node are also terminated.
	:transient - if the application terminates with :normal reason, it is
reported but no other applications are terminated. However, if the application
terminates abnormally, all other applications and the entire node are also
terminated.
	:temporary - if the application terminates, it is reported but no other
applications are terminated (the default behaviour).

Unless overridden in the Mix release using the :applications
option, Shoehorn
most applications as :temporary and monitors application events by registering
with the Erlang error_logger.
Application start and exit events will attempt to execute a callback to the
configured Shoehorn.Handler module. By default, the module
Shoehorn.DefaultHandler will be called. This module is configured to continue
the Erlang VM if any OTP application were to exit, for any reason. In
production, you may want to customize the action on failure so you can gather
forensics or perform updates to the node. You can do this by overriding the
handler in the prod env of your application config.
config/prod.exs

config :shoehorn,
 handler: SimpleApp.ShoehornHandler
More advanced failure cases can be handled by providing your own module that
implements the Shoehorn.Handler behaviour. For example, the Erlang :ssh
application used to exit when subjected to a brute force attack (this seems like
it has been fixed). Instead of the default production behaviour of forcing the
node to restart, we can restart the application.
defmodule Example.RestartHandler do
 @behavior Shoehorn.Handler

 def init(_opts) do
 {:ok, :no_state}
 end

 def application_started(_app, state) do
 {:continue, state}
 end

 def application_exited(:ssh, _reason, state) do
 Logger.error("Stop bothering ssh!")
 Process.sleep(1000)
 Application.ensure_all_started(:ssh)
 {:continue, state}
 end

 def application_exited(app, _reason, state) do
 Logger.error("Application stopped! #{inspect(app)} #{inspect(state)}")
 {:halt, state}
 end
end
The application_exited/3 callback is limited in the amount of time is has to
execute by setting a shutdown timer. If the callback does not return within the
defined shutdown time, the node is instructed to halt. The default shutdown time
is 30 seconds but this value can be changed in the application config:
config/config.exs

config :shoehorn,
 shutdown_timer: 50_000 # 50 Seconds
Have a look at the example
application for
more info on implementing custom strategies.

Changelog

 v0.9.2 - 2024-03-04

	Updates	Improve error message when an OTP application isn't found when building the
OTP release script. It's usually due to a dependency typo or wrong targets
spec, so point to that.

 v0.9.1 - 2022-04-04

	Updates	Improve detection of invalid applications being passed in the :init and
:last options.
	Fall back to a reasonable default when trying to get application modes from
the release options. This fixes an exception when building the release.
	Support release configuration via the release options in a project's
mix.exs. Add a :shoehorn key to the release parameters to set :init,
:last or the :exxtra_dependencies options.

 v0.9.0 - 2022-04-03

This is a major update to Shoehorn that includes breaking changes:
	The :init configuration option only supports applications now. MFAs are no
longer supported and moved to runtime.exs or an Application.start
callback.
	References to use Shoehorn.Handler need to be updated to @behaviour Shoehorn.Handler. This may require implementing additional functions.
	Elixir 1.9 is no longer supported. Please update to Elixir 1.10 or later.

The main update to Shoehorn is to move all application startup to the boot
script. This noticeably improves boot time on many Nerves platforms due to boot
scripts being able to load files without traversing the entire Erlang module
path list. These traversals are amazingly slow (sometimes seconds) due to a
combination of SquashFS slowness in this area and slow overall IO.
Using boot scripts to load all applications has some important improvements in
addition to performance:
	Application start order is deterministic and computed at compile-time. If you
want to see the order, take a look at the end of the shoehorn.script in your
release directory.
	Shoehorn alphabetizes the start of applications that could be ordered
arbitrarily. This minimizes changes in start ordering when dependencies are
added or removed.
	It enables experimental features like providing additional dependencies (using
the :extra_dependencies configuration key) or hinting that dependencies get
started as late as possible (the :last configuration key)
	You can remove the :app configuration key from your Shoehorn configuration.
It's no longer needed.

Aside from the change from a macro to a behaviour and possibly needing to
implement callback functions, Shoehorn.Handler implementations work the same
as before.

 v0.8.0 - 2021-10-31

Shoehorn v0.8.0 completely removes support for Distillery.

 v0.7.0

Shoehorn 0.7.0 removes support for creating boot scripts using Distillery and
only supports using Elixir releases. As a result, the minimum supported version
of Elixir is now version 1.9.

 v0.6.0

	Enhancements	Added support for Elixir 1.9+ releases.
	Distillery is now an optional dependency and ~> 2.1.
	Updated supervisor specs and cleaned up warnings.

 v0.5.0

	Enhancements	Exclude distillery, artificery, and mix from the release by default.
	Removed RPC and application overlay modules.
	Updated deps and docs.

 v0.4.0

	Enhancements	Support for distillery ~> 2.0
	Support for Elixir ~> 1.7

 v0.3.1

For Shoehorn, these are our goals:
1: Fix current issue with prod devices turning to zombies
2: Make it really really difficult to enter a brick state ever.
It was becoming apparent that it is difficult to address goal #1 by changing the defaults without impacting goal #2 at all. We believe that its best to solve goal #1 by opting in and not by modifying the defaults.
In this release, existing projects that do not declare a handler in the
config will use Shoehorn.Handler.Ignore.

 v0.3.0

The default strategy for how Shoehorn handles OTP application exits has changed.
Before this release, if an application were to exit the node would remain running
and that applications would remain stopped. This may be desireable for development
and test but is typically undesirable in production. This behaviour can be
customized by configuring the handler in the config. For example, in dev you can
use the module Shoehorn.Handler.Ignore to prevent the node from halting on failure.
 # config/dev.exs

 config :shoehorn,
 handler: Shoehorn.Handler.Ignore
Check out the example application for information on implementing custom strategies.

 v0.2.0

 Renamed project Shoehorn.
 It became hard to discuss this project with the name Bootloader.
	Enhancements	:init list can contain :application, {m, f, a}, or {Module, [args]}.

 v0.1.3

	Bug Fixes	Add explicit functions for each of the Distillery Plugin behaviour callbacks.

 v0.1.2

	Bug Fixes	Only look in :code.lib_dir() for the Application lib dir instead of involving mix

	Enhancements	Warn when an app listed in :init or :app does not exist.
	Output message about booting using shoehorn during mix release

 v0.1.1

	Bug Fixes	Fixed issue with release path being constructed incorrectly.

 v0.1.0

 Initial release to hex.

Shoehorn

Shoehorn helps you handle OTP application failures
Shoehorn needs to be enabled when building your project. See the Shoehorn
README.md for usage.

Shoehorn.DefaultHandler

Default handler that ignores all events

Shoehorn.Handler behaviour

A behaviour module for implementing handling of failing applications
A Shoehorn.Handler is a module that knows how to respond to specific
applications going down. There are two types of failing applications.
The first is an application that fails to initialize and the second
is an application that stops while it is running.

 Example

The Shoehorn.Handler behaviour requires developers to implement two
callbacks.
The init callback sets up any state the handler needs.
The application_started callback is called when an application
starts up.
The application_exited callback processes the incoming failure and replies
with the reaction that Shoehorn should take in case of application failure.
 defmodule Example.ShoehornHandler do
 @behaviour Shoehorn.Handler

 @impl Shoehorn.Handler
 def init(_opts) do
 {:ok, %{restart_counts: 0}}
 end

 @impl Shoehorn.Handler
 def application_started(app, state) do
 {:continue, state}
 end

 @impl Shoehorn.Handler
 def application_exited(:non_essential_app, _reason, state) do
 {:continue, state}
 end

 def application_exited(:essential_app, _reason, %{restart_counts: restart_counts} = state) when restart_counts < 2 do
 # repair actions to make before restarting
 Application.ensure_all_started(:essential_app)
 {:continue, %{state | restart_counts: restart_counts + 1}}
 end

 def application_exited(_, state) do
 {:halt, state}
 end
 end
We initialize our Shoehorn.Handler with a restart count for state
by calling init with the configuration options from our shoehorn
config.
When we have an application startup, we will put a message on the
console to notify the developer.
When we have a non-essential application fail we return :continue to
inform the system to keep going like nothing happened.
We restart the essential application of our system two times, and
then we tell the system to halt if starting over wasn't fixing the
system.

 Summary

 Types

 cause()

 The cause that is firing the handler

 opts()

 reaction()

 The reaction letting Shoehorn know what to do

 t()

 Callbacks

 application_exited(app, cause, state)

 Callback for handling application crashes

 application_started(app, state)

 Callback for handling application starts

 init(opts)

 Callback to initialize the handle

 Functions

 init(opts)

 invoke(event, app, handler)

 invoke(event, app, cause, handler)

 Types

 Link to this type

 cause()

 View Source

 @type cause() :: any()

The cause that is firing the handler

 Link to this type

 opts()

 View Source

 @type opts() :: [{:handler, atom()}]

 Link to this type

 reaction()

 View Source

 @type reaction() :: :continue | :halt

The reaction letting Shoehorn know what to do
	:continue - keep the system going like nothing happened
	:halt - stop the application and bring the system down

 Link to this type

 t()

 View Source

 @type t() :: %Shoehorn.Handler{module: atom(), state: any()}

 Callbacks

 Link to this callback

 application_exited(app, cause, state)

 View Source

 @callback application_exited(app :: atom(), cause(), state :: any()) ::
 {reaction(), state :: any()}

Callback for handling application crashes
Called with the application name, cause, and the handler's
state. It must return a tuple containing the reaction that the
Shoehorn should take, and the new state
of the handler.
The code that you execute here can be used to notify or capture some
information before halting the system. This information can later
be used to recreate the issue or debug the problem causing the
application to exit.
Use application_exited as a place for a last-ditch effort to fix the
issue and restart the application. Ideally, capture
some information on the system state, and solve it upstream. Shoehorn
restarts should be used as a splint to keep a critical system
running.
The default implementation returns the previous state, and a :halt
reaction.

 Callback Timeout

This callback is limited in the amount of time it has to execute by
a shutdown timer. If the callback does not return within the defined
shutdown time, the node is instructed to halt. The default shutdown
time is 30 seconds but this value can be changed in the application
config.

 Link to this callback

 application_started(app, state)

 View Source

 @callback application_started(app :: atom(), state :: any()) ::
 {reaction(), state :: any()}

Callback for handling application starts
Called with the application name, and the handler's state. It must return a
tuple containing the reaction that the Shoehorn should take, and the new
state of the handler.
 def application_exited(:essential_app, _reason, state) do
 # repair actions to make before restarting
 # notify someone of the crash and the details
 # log debug data
 Application.ensure_all_started(:essential_app)
 {:continue, %{state | restart_counts: restart_counts + 1}}
 end
The default implementation returns unchanged state, and a :continue
reaction.

 Link to this callback

 init(opts)

 View Source

 @callback init(opts :: keyword()) :: {:ok, state :: any()}

Callback to initialize the handle
The callback will receive a keyword list of all the configuration
for shoehorn.
The callback must return a tuple of {:ok, state}. Where state is
the initial state of the handler. The system will halt if the
return is anything other than :ok.

 Functions

 Link to this function

 init(opts)

 View Source

 @spec init(opts()) :: t() | no_return()

 Link to this function

 invoke(event, app, handler)

 View Source

 @spec invoke(:application_started, app :: atom(), t()) :: {reaction(), t()}

 Link to this function

 invoke(event, app, cause, handler)

 View Source

 @spec invoke(:application_exited, app :: atom(), cause(), t()) :: {reaction(), t()}

Shoehorn.ReleaseError exception

Error type for release boot script errors

 OEBPS/dist/epub-TCI3LGHF.js
(()=>{var d=document.querySelector.bind(document),i=document.querySelectorAll.bind(document);function r(o){document.readyState!=="loading"?o():document.addEventListener("DOMContentLoaded",o)}var c="ex_doc:settings",h={tooltips:!0,theme:null,livebookUrl:null},s=class{constructor(){this._subscribers=[],this._settings=h,this._loadSettings()}get(){return this._settings}update(t){let e=this._settings;this._settings={...this._settings,...t},this._subscribers.forEach(n=>n(this._settings,e)),this._storeSettings()}getAndSubscribe(t){this._subscribers.push(t),t(this._settings)}_loadSettings(){try{let t=localStorage.getItem(c);if(t){let e=JSON.parse(t);this._settings={...this._settings,...e}}this._loadSettingsLegacy()}catch(t){console.error(`Failed to load settings: ${t}`)}}_storeSettings(){try{this._storeSettingsLegacy(),localStorage.setItem(c,JSON.stringify(this._settings))}catch(t){console.error(`Failed to persist settings: ${t}`)}}_loadSettingsLegacy(){localStorage.getItem("tooltipsDisabled")!==null&&(this._settings={...this._settings,tooltips:!1}),localStorage.getItem("night-mode")==="true"&&(this._settings={...this._settings,nightMode:!0}),this._settings.nightMode===!0&&(this._settings={...this._settings,theme:"dark"})}_storeSettingsLegacy(){this._settings.tooltips?localStorage.removeItem("tooltipsDisabled"):localStorage.setItem("tooltipsDisabled","true"),this._settings.nightMode!==null?localStorage.setItem("night-mode",this._settings.nightMode===!0?"true":"false"):localStorage.removeItem("night-mode"),this._settings.theme!==null?(localStorage.setItem("night-mode",this._settings.theme==="dark"?"true":"false"),this._settings.nightMode=this._settings.theme==="dark"):(delete this._settings.nightMode,localStorage.removeItem("night-mode"))}},f=new s;function l(){["warning","info","error","neutral","tip"].forEach(t=>{i(`blockquote h3.${t}, blockquote h4.${t}`).forEach(e=>{e.closest("blockquote").classList.add(t)})})}document.addEventListener("click",function(o){if(window.innerWidth<=768){let t=o.target.closest('a[href^="#"]');if(t){o.preventDefault();let e=t.getAttribute("href").substring(1),n=document.getElementById(e);if(n){let u=n.getBoundingClientRect().top+window.scrollY-45;window.scrollTo({top:u,behavior:"smooth"})}}}});var m="hll";function g(){p()}function p(){i("[data-group-id]").forEach(t=>{let e=t.getAttribute("data-group-id");t.addEventListener("mouseenter",n=>{a(e,!0)}),t.addEventListener("mouseleave",n=>{a(e,!1)})})}function a(o,t){i(`[data-group-id="${o}"]`).forEach(n=>{n.classList.toggle(m,t)})}r(()=>{g(),l()});})();

