

 sht4x

 v0.3.2

 Table of contents

 	SHT4X

 	Changelog

 	
 Modules

 	SHT4X

 	SHT4X.Measurement

SHT4X

[image: Hex version]
[image: API docs]
[image: CircleCI]
[image: REUSE status]
Read temperature and humidity from Sensirion SHT4x sensors in Elixir.

 Usage

iex> {:ok, sht} = SHT4X.start_link(bus_name: "i2c-1")
{:ok, #PID<0.2190.0>}

iex> SHT4X.get_sample(sht)
%SHT4X.Measurement{
 timestamp_ms: 498436,
 raw_reading_humidity: 28080,
 raw_reading_temperature: 26379,
 temperature_c: 22.38528060913086,
 humidity_rh: 57.131805419921875,
 dew_point_c: 13.492363250293858,
 quality: :fresh
}
For details, see API reference.

Changelog

All notable changes to this project will be documented in this file.
The format is based on Keep a Changelog,
and this project adheres to Semantic Versioning.

 [0.3.2] - 2025-05-01

 Changed

	Add more magic numbers (0x8002/0x8003) that indicate a bad measurement from
the sensor and should be dropped. The magic numbers are theoretically possible
measurements, but in most places on Earth, they should be rare and when
they've popped up, they indicate a broken sensor.

 [0.3.1] - 2025-03-08

 Changed

	Update copyrights and license info for REUSE compliance

 0.3.0 - 2024-02-11

 Changed

	Changed error returns to return {:error, reason} rather than just :error.
This is a backwards incompatible change if your code matches on :error.
	Changed retry semantics to only retry on CRC mismatch errors. Previously, CRC
mismatches were not retried and retries were done at the I2C transaction
level. Retrying on the I2C level wasn't effective and ended up causing long
delays. So far, CRC errors are the ones worth retrying since they happen rare
enough that a retry is pretty much guaranteed to work.

 0.2.3 - 2024-01-16

 Changed

	Updated dependencies.
	circuits_i2c - either version 1.x or 2.x can now be used with this library.

 0.2.2 - 2023-11-28

 Changed

	Flag bad values from the SHT4X so that they aren't used. Bad values include
the 0x8000/0x8000 bad report and values outside of 0-100 RH and -40-125C
	Add SHT4X.soft_reset/1

 0.2.1 - 2023-08-30

 Bug Fixes

	SHT4X.Measurement's types have been updated to ensure :humidity_rh and :temperature_c are float()
	The hard-coded :unusable measurement value has been updated to return floats as expected.

 0.2.0 - 2023-07-14

 Changed

	SHT4X regularly polls temperature and humidity at 5 second intervals
(configurable). Regular polling is required for temperature compensation
algorithms.
	The SHT4X.measure/1 function is now SHT4X.get_sample/1 to reflect that it
returns the latest sample rather than polling the sensor. The SHT4X.Measurement
struct contains a timestamp and quality information to indicate how stale it
is. Staleness could be due to communication issues with the sensor or just
waiting for the next poll time.
	The sensor's serial number is not polled on init. This means that I2C failures
or retry delays won't delay or fail startup. They likely will affect the
regular polling if they don't resolve themselves.

 Added

	SHT4X.serial_number/1 to get the sensor's unique serial number
	The sensor is immediately polled for a temperature. Previously the first
temperature measurement was delayed until the interval timer expired (default 5
seconds).

 0.1.4 - 2023-02-01

 Improvements

	Catch errors from the transport initialization (thanks to @doawoo)

 0.1.3 - 2022-12-10

 Improvements

	Correct typespecs
	Change use Bitwise to import Bitwise per warning
	Improve docs
	Allow users to pass in a :retries option for the I2C transport (thank you @doawoo)
	Update dependencies

 0.1.2 - 2022-02-11

 Improvements

	Simplified the transport-related code
	Refactor the top-level module

 Added

	typed_struct
	circuit_i2c

 Removed

	i2c_server
	mox

 0.1.1 - 2021-08-27

 Added

	Derived dew_point_c value

 0.1.0 - 2021-08-23

 Added

	Initial release

SHT4X

Use Sensirion SHT4X humidity and temperature sensors in Elixir

 Summary

 Types

 compensation_callback()

 Compensation callback function

 option()

 SHT4X GenServer start_link options

 options()

 quality()

 How "fresh" is the sample we fetched from the sensor's GenServer?

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 get_sample(sensor_ref)

 Fetches the latest sample from the sensor's GenServer

 serial_number(sensor_ref)

 Return the sensor's serial number

 soft_reset(sensor_ref)

 Send a soft reset command to the sensor

 start_link(opts \\ [])

 Start a new GenServer for interacting with a SHT4X.

 Types

 compensation_callback()

 @type compensation_callback() :: (SHT4X.Measurement.t() -> SHT4X.Measurement.t())

Compensation callback function

 option()

 @type option() ::
 {:debug, GenServer.debug()}
 | {:name, GenServer.name()}
 | {:timeout, timeout()}
 | {:spawn_opt, [Process.spawn_opt()]}
 | {:hibernate_after, timeout()}
 | {:bus_name, binary()}
 | {:retries, pos_integer()}
 | {:compensation_callback, compensation_callback()}
 | {:measurement_interval, pos_integer()}
 | {:repeatability, :low | :medium | :high}
 | {:stale_threshold, pos_integer()}

SHT4X GenServer start_link options
	:name - a name for the GenServer
	:bus_name - which I2C bus to use (e.g., "i2c-1")
	:retries - the number of retries before failing (defaults to 2 retries)
	:compensation_callback - a function that takes in a SHT4X.Measurement.t() and returns a potentially modified SHT4X.Measurement.t()
	:measurement_interval - how often data will be read from the sensor (defaults to 5_000 ms)
	:repeatability - accuracy of the requested sensor read (:low, :medium, or :high)
	:stale_threshold - number of milliseconds a sample can remain the current sample before it is marked stale
	Also accepts all other standard GenServer start_link options

 options()

 @type options() :: [option()]

 quality()

 @type quality() :: :fresh | :stale | :unusable | :converging

How "fresh" is the sample we fetched from the sensor's GenServer?
In the event that the sensor fails to report back a measurement during a polling interval, we re-use the last sample.
If this continues to happen over a time period that exceeds the :stale_threshold, we mark the re-used "current" sample as stale.
The possible values can be:
	:fresh - This is a recent sample. See the :stale_threshold.
	:stale - This is an old sample that should be used with caution.
	:unusable - This is a default sample when no measurements are available, or, the sensor is giving know bad values (see: https://github.com/elixir-sensors/sht4x/issues/29)
	:converging - This is optionally set by the temperature compensation algorithm to indicate that it was recently restarted without historic state information and needs more time to give accurate values

 Functions

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 get_sample(sensor_ref)

 @spec get_sample(GenServer.server()) :: SHT4X.Measurement.t()

Fetches the latest sample from the sensor's GenServer
This does not cause an on-demand read from the sensor. Check the :quality
field for a quick assessment of how much to trust the measurement.

 serial_number(sensor_ref)

 @spec serial_number(GenServer.server()) :: {:ok, 0..4_294_967_295} | {:error, any()}

Return the sensor's serial number

 soft_reset(sensor_ref)

 @spec soft_reset(GenServer.server()) :: :ok | {:error, any()}

Send a soft reset command to the sensor

 start_link(opts \\ [])

 @spec start_link(options()) :: GenServer.on_start()

Start a new GenServer for interacting with a SHT4X.

SHT4X.Measurement

One sensor measurement

 Summary

 Types

 t()

 Functions

 from_raw(arg)

 Interprets one raw temperature/humidity message

 humidity_rh_to_raw(rh)

 raw_to_humidity_rh(raw_rh)

 raw_to_temperature_c(raw_t)

 temperature_c_to_raw(t)

 Types

 t()

 @type t() :: %SHT4X.Measurement{
 dew_point_c: float() | nil,
 humidity_rh: float(),
 quality: SHT4X.quality(),
 raw_reading_humidity: integer(),
 raw_reading_temperature: integer(),
 temperature_c: float(),
 timestamp_ms: integer()
}

 Functions

 from_raw(arg)

Interprets one raw temperature/humidity message
This returns a Measurement struct with the raw register values and their
interpreted temperature and humidity. It does not apply any compensation so
this is real temperature and humidity detected.

 humidity_rh_to_raw(rh)

 @spec humidity_rh_to_raw(float()) :: integer()

 raw_to_humidity_rh(raw_rh)

 @spec raw_to_humidity_rh(0..65535) :: float()

 raw_to_temperature_c(raw_t)

 @spec raw_to_temperature_c(0..65535) :: float()

 temperature_c_to_raw(t)

 @spec temperature_c_to_raw(float()) :: integer()

 OEBPS/dist/epub-4WIP524F.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);function r(e){document.readyState!=="loading"?e():document.addEventListener("DOMContentLoaded",e)}var l="hll";window.addEventListener("exdoc:loaded",t);function t(){o("[data-group-id]").forEach(e=>{e.addEventListener("mouseenter",i),e.addEventListener("mouseleave",i)})}function i(e){let n=e.currentTarget,a=e.type==="mouseenter",c=n.getAttribute("data-group-id");n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach(u=>{u.classList.toggle(l,a)})}r(()=>{t()});})();

