

 skipper

 v0.3.0

 Table of contents

 	Modules

 	Skipper

 	Skipper.LiveViewTest

Skipper

Documentation for Skipper.

 Anchor for this section

 Summary

 Functions

 hello()

 Hello world.

 Anchor for this section

Functions

 Link to this function

 hello()

Hello world.

 examples

 Examples

iex> Skipper.hello()
:world

Skipper.LiveViewTest

A set of helper functions that make LiveView tests easier to read and write
as a pipeline without leaking details of the conn, view, rendering, patching,
etc.
To use in your tests, you may replace:
import Phoneix.LiveViewTest
with (using the helpers takes care of the import for you):
use Skipper.LiveViewTest
And then write tests like:
test "a view", %{conn: conn} do
 start(conn, "/")
 |> assert_visible("Something")
 |> click("Edit")
 |> assert_visible("Editing Something")
end

 Anchor for this section

 Summary

 Functions

 assert_element(arg, selector, text \\ nil)

 Assert that some selector with the (optional) content exists in the view. You
may notice the similarity of this function to assert_visible/3. The downside
of this function is that assertion failures to not provide as specific
feedback (due to the difference in implementation). The advantage is that it
may be used to assert in elements that appear repeatedly by their selector.

 assert_html(session, expected)

 assert_path(arg, path)

 assert_visible(arg, expected_html)

 Assert that some content exists in the view.

 assert_visible(arg, selector, expected_html)

 Assert that some selector exists in the view whose (optional) content
matches. You may notice the similarity of this function to assert_element/3.
The advantage of assert_visible/3 becomes apparent when the assertion fails.
This function provides and more specific failure message, i.e. "here's the
element that was found" vs. "the expected element simply doesn't exist on the
page".

 change_form(arg, selector, attributes)

 Change a form and render the change so that assertions may be made about the
result.

 click(session, selector, text \\ nil)

 Locate an element on page an issue a phx-click event. If the system
redirects, automatically follow the redirects (recursively) until a view is
rendered.. If it simply renders, the new rendered view is returned.

 escape(html)

 A small utility function that makes it easy to assert HTML as a string.

 refute_element(arg, selector, text \\ nil)

 The opposite of assert_element/3.

 refute_html(session, expected)

 refute_visible(arg, unexpected_html)

 The opposite of assert_visible/2.

 refute_visible(arg, selector, unexpected_html)

 The opposite of assert_visible/3.

 rerender(arg)

 Simply rerender the LiveView. In some test, there are background events that
trigger changes to the view, this functions provides a mechanism to render
the view again after such an event in your test.

 start(conn, path)

 This function is the "helpers" analog of LiveView's live/2 function.

 submit_form(session, selector, attributes)

 Submit a form and follow its redirect.

 view_in_browser(session)

 A utility function that makes it easy to open the current view up in a
browser for visual debugging as you write your test. No more than a small
wrapper over the open_browser/1 function you may already be familiar with.

 Anchor for this section

Functions

 Link to this function

 assert_element(arg, selector, text \\ nil)

Assert that some selector with the (optional) content exists in the view. You
may notice the similarity of this function to assert_visible/3. The downside
of this function is that assertion failures to not provide as specific
feedback (due to the difference in implementation). The advantage is that it
may be used to assert in elements that appear repeatedly by their selector.

 example

 Example

Given some multi-select
|> assert_element("option[selected]", "Picked")
Would pass if there is any selected "option" that matches the text
"Picked". While assert_visible/3 in this case would fail when there are
multiple selected options on the page at all.

 Link to this function

 assert_html(session, expected)

 Link to this function

 assert_path(arg, path)

 Link to this function

 assert_visible(arg, expected_html)

Assert that some content exists in the view.
Note: At this time, the assertion will match any part of the entire page
document as a string which does not precisely align with the "visible" part
of the function name. This is a known issue and is on the slate for
discussion.

 Link to this function

 assert_visible(arg, selector, expected_html)

Assert that some selector exists in the view whose (optional) content
matches. You may notice the similarity of this function to assert_element/3.
The advantage of assert_visible/3 becomes apparent when the assertion fails.
This function provides and more specific failure message, i.e. "here's the
element that was found" vs. "the expected element simply doesn't exist on the
page".
Note: At this time, the assertion will match any part of the entire page
document as a string which does not precisely align with the "visible" part
of the function name. This is a known issue and is on the slate for
discussion.

 Link to this function

 change_form(arg, selector, attributes)

Change a form and render the change so that assertions may be made about the
result.

 Link to this macro

 click(session, selector, text \\ nil)

 (macro)

Locate an element on page an issue a phx-click event. If the system
redirects, automatically follow the redirects (recursively) until a view is
rendered.. If it simply renders, the new rendered view is returned.

 Link to this function

 escape(html)

A small utility function that makes it easy to assert HTML as a string.
Note: I am considering a sigil for this case. It requires more research.

 example

 Example

|> assert_visible("can't be blank")
|> assert_visible(escape(can't be blank"))

 Link to this function

 refute_element(arg, selector, text \\ nil)

The opposite of assert_element/3.

 Link to this function

 refute_html(session, expected)

 Link to this function

 refute_visible(arg, unexpected_html)

The opposite of assert_visible/2.
Note: At this time, the assertion will match any part of the entire page
document as a string which does not precisely align with the "visible" part
of the function name. This is a known issue and is on the slate for
discussion.

 Link to this function

 refute_visible(arg, selector, unexpected_html)

The opposite of assert_visible/3.
Note: At this time, the assertion will match any part of the entire page
document as a string which does not precisely align with the "visible" part
of the function name. This is a known issue and is on the slate for
discussion.

 Link to this function

 rerender(arg)

Simply rerender the LiveView. In some test, there are background events that
trigger changes to the view, this functions provides a mechanism to render
the view again after such an event in your test.

 Link to this macro

 start(conn, path)

 (macro)

This function is the "helpers" analog of LiveView's live/2 function.

 Link to this macro

 submit_form(session, selector, attributes)

 (macro)

Submit a form and follow its redirect.

 Link to this function

 view_in_browser(session)

A utility function that makes it easy to open the current view up in a
browser for visual debugging as you write your test. No more than a small
wrapper over the open_browser/1 function you may already be familiar with.

 OEBPS/dist/epub-75RCTLK3.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);var a="hll";function c(){u()}function u(){o("[data-group-id]").forEach(e=>{let t=e.getAttribute("data-group-id");e.addEventListener("mouseenter",n=>{i(t,!0)}),e.addEventListener("mouseleave",n=>{i(t,!1)})})}function i(r,e){o(`[data-group-id="${r}"]`).forEach(n=>{n.classList.toggle(a,e)})}c();})();

