

 slack_bot_ws

 v0.1.0-rc.2

 [image: Logo]

 Table of contents

 	SlackBot WS

 	SlackBot WS

 	Changelog

 	LICENSE

 	Guides

 	Getting Started

 	Rate Limiting

 	Slash Command Grammar DSL

 	Diagnostics & Replay Guide

 	Telemetry & LiveDashboard Guide

 	
 Modules

 	SlackBot

 	SlackBot.Blocks

 	SlackBot.Cache

 	SlackBot.Cache.Adapter

 	SlackBot.Command

 	SlackBot.Config

 	SlackBot.Diagnostics

 	SlackBot.EventBuffer.Adapter

 	SlackBot.EventBuffer.Adapters.Redis

 	SlackBot.Middleware.Logger

 	SlackBot.Router.Handler

 	SlackBot.TelemetryStats

 	SlackBot.TestHTTP

 	SlackBot.TestTransport

 	
 Mix Tasks

 	mix slack_bot_ws.install

 SlackBot WS

SlackBot WS (WebSocket) is a production-ready Slack bot framework for Elixir built for Slack's Socket Mode. It gives you a supervised WebSocket connection, Slack's API tier rate limiting, an elegant slash-command parsing DSL, Plug-like middleware, and comprehensive Telemetry coverage. All the typical side-mission complexity that pulls you away from just building features is eliminated.
Slack's Socket Mode shines when you need real-time event delivery without a public HTTP endpoint: laptops, firewalled environments, or stacks where inbound webhooks are undesirable. Persistent connections keep latency low, interactive payloads flowing, and local development simple. Socket Mode is fantastic for internal, private bots within an organization; it's not for Slack's public marketplace, where you'd advertise your application to other Slack organizations.
Highlights
	Resilient Socket Mode connection — supervised transport handles backoff, jittered retries, dedupe, heartbeats, and HTTP-based health checks (auth.test) so your bot stays online.
	Tier-aware rate limiting — per-channel and per-workspace shaping plus Slack's published tier quotas are enforced automatically; override the registry when you need custom allowances.
	Deterministic slash-command grammar — declaratively describe /deploy api canary or more complex syntaxes and get structured maps at compile time—no regex piles.
	Plug-like routing & middleware — handle_event, slash, and middleware macros let you compose pipelines instead of sprawling case statements.
	Task-based fan-out — handlers run in supervised tasks so slow commands never block the socket loop.
	Native interactivity + BlockBox — shortcuts, message actions, block suggestions, modal submissions, and optional BlockBox helpers all flow through the same pipeline.
	Pluggable adapters & cache sync — ETS cache/event buffer by default; swap to Redis for multi-node, configure cache sync, and set assigns such as :bot_user_id for zero-cost membership checks.
	Observability & diagnostics — telemetry spans, optional telemetry stats, diagnostics ring buffer with replay, and LiveDashboard-ready metrics.
	Production defaults out of the box — add tokens, supervise the module, and you have heartbeats, backoff, and rate limiting without touching config.

New to Slack bots? The Getting Started guide walks through creating a Slack App, enabling Socket Mode, obtaining tokens, and running your first handler.

See it in action
Declarative slash commands
defmodule MyApp.SlackBot do
 use SlackBot, otp_app: :my_app

 # /deploy api → %{service: "api"}
 # /deploy api canary → %{service: "api", canary?: true}
 slash "/deploy" do
 value :service
 optional literal("canary", as: :canary?)
 repeat do
 literal "env"
 value :envs
 end

 handle payload, ctx do
 %{service: svc, envs: envs} = payload["parsed"]
 Deployments.kick(svc, envs, ctx)
 end
 end
end
	Input	Parsed
	/deploy api	%{service: "api"}
	/deploy api canary env staging env prod	%{service: "api", canary?: true, envs: ["staging", "prod"]}

See the Slash Grammar Guide for the full macro reference.
Plug-like middleware pipeline
SlackBot routes events through a Plug-like pipeline. Middleware runs before handlers and can short-circuit with {:halt, response}. Multiple handle_event clauses for the same type run in declaration order.
defmodule MyApp.Router do
 use SlackBot

 defmodule LogMiddleware do
 def call("message", payload, ctx) do
 Logger.debug("incoming: #{payload["text"]}")
 {:cont, payload, ctx}
 end

 def call(_type, payload, ctx), do: {:cont, payload, ctx}
 end

 middleware LogMiddleware

 handle_event "message", payload, ctx do
 Cache.record(payload)
 end

 handle_event "message", payload, ctx do
 Replies.respond(payload, ctx)
 end
end
Event handlers + Web API helpers
defmodule MyApp.SlackBot do
 use SlackBot, otp_app: :my_app

 handle_event "app_mention", event, _ctx do
 MyApp.SlackBot.push({"chat.postMessage", %{
 "channel" => event["channel"],
 "text" => "Hi <@#{event["user"]}>!"
 }})
 end
end
	MyApp.SlackBot.push/1 is synchronous and waits for Slack's response via the managed HTTP pool, telemetry pipeline, and rate limiter.
	MyApp.SlackBot.push_async/1 is fire-and-forget under the supervised Task pipeline—perfect for long-running replies or batched API work.

Quick Start
1. Install
Add SlackBot to your mix.exs:
def deps do
 [
 {:slack_bot_ws, "~> 0.1.0"}
]
end
Then fetch dependencies:
mix deps.get

If you have Igniter installed, run mix slack_bot_ws.install to scaffold a bot module, config, and supervision wiring automatically.
2. Define a bot module
defmodule MyApp.SlackBot do
 use SlackBot, otp_app: :my_app

 handle_event "message", event, _ctx do
 MyApp.SlackBot.push({"chat.postMessage", %{
 "channel" => event["channel"],
 "text" => "Hello from MyApp.SlackBot!"
 }})
 end
end
How this works:
	use SlackBot, otp_app: :my_app turns the module into a router that reads configuration from your app's environment and injects the DSL macros (handle_event, slash, middleware).
	handle_event/3 pattern-matches on Slack event types. The first argument ("message") is the event type to match.
	event is the raw payload map from Slack—it contains fields like "channel", "user", "text", and "ts" depending on the event type. You destructure what you need.
	ctx is the per-event context struct carrying the telemetry prefix, assigns (custom data you configure), and HTTP client. We mark it _ctx here because this simple example doesn't use it, but middleware and more complex handlers often pass data through ctx.assigns.
	MyApp.SlackBot.push/1 sends Web API requests through the managed rate limiter, Telemetry pipeline, and HTTP pool. It returns {:ok, response} or {:error, reason}.

3. Configure tokens
In config/config.exs:
config :my_app, MyApp.SlackBot,
 app_token: System.fetch_env!("SLACK_APP_TOKEN"),
 bot_token: System.fetch_env!("SLACK_BOT_TOKEN")
4. Supervise
children = [
 MyApp.SlackBot
]

Supervisor.start_link(children, strategy: :one_for_one)
That's it. SlackBot boots a Socket Mode connection with ETS-backed cache and event buffer, per-workspace/per-channel rate limiting, and default backoff/heartbeat settings. When you're ready to tune behavior, read on.
Multiple bots and instances
The ergonomic path is one module per bot using the otp_app pattern. Each module gets its own push/1, push_async/1, emit/1, and config/0 helpers so you always call the right instance:
defmodule MyApp.CustomerSuccessBot do
 use SlackBot, otp_app: :my_app
end

defmodule MyApp.IncidentBot do
 use SlackBot, otp_app: :my_app
end

children = [
 MyApp.CustomerSuccessBot,
 MyApp.IncidentBot
]
Supervisor.start_link(children, strategy: :one_for_one)
Need distinct runtime instances of the same router module (for example, dynamically named bots per workspace)? Start SlackBot directly with an explicit :name and call the explicit APIs:
children = [
 {SlackBot, name: :team_alpha_bot, module: MyApp.DynamicRouter, app_token: ..., bot_token: ...},
 {SlackBot, name: :team_beta_bot, module: MyApp.DynamicRouter, app_token: ..., bot_token: ...}
]

SlackBot.push(:team_alpha_bot, {"chat.postMessage", %{"channel" => "C123", "text" => "hi"}})
Avoid mixing the module helpers in this scenario—the helpers assume the supervised process is registered under the module name. Pick one style per instance so the codebase stays predictable.
Background jobs and tooling can also pass a %SlackBot.Config{} directly when they already have one on
hand:
config = SlackBot.config(MyApp.SlackBot)
SlackBot.emit(config, {"daily_digest", %{"channels" => ["C123"]}})
Use this sparingly (for example telemetry probes or test helpers) and prefer the module helpers inside
your application code.
Advanced Configuration
Every option below is optional—omit them and SlackBot uses production-ready defaults.
Connection & backoff
config :my_app, MyApp.SlackBot,
 backoff: %{min_ms: 1_000, max_ms: 30_000, max_attempts: :infinity, jitter_ratio: 0.2},
 log_level: :info,
 health_check: [enabled: true, interval_ms: 30_000]
Telemetry
config :my_app, MyApp.SlackBot,
 telemetry_prefix: [:slackbot],
 telemetry_stats: [enabled: true, flush_interval_ms: 15_000, ttl_ms: 300_000]
When telemetry_stats is enabled, SlackBot.TelemetryStats.snapshot/1 returns rolled-up counters for API calls, handlers, rate/tier limiters, and connection states.
Cache & event buffer
ETS (default)
cache: {:ets, []}
event_buffer: {:ets, []}

Redis for multi-node
event_buffer:
 {:adapter, SlackBot.EventBuffer.Adapters.Redis,
 redis: [host: "127.0.0.1", port: 6379], namespace: "slackbot"}
Rate limiting
Per-channel and per-workspace shaping is enabled by default. Disable it only if you're shaping traffic elsewhere:
rate_limiter: :none
Slack's per-method tier quotas are also enforced automatically. Override entries via the tier registry:
config :slack_bot_ws, SlackBot.TierRegistry,
 tiers: %{
 "users.list" => %{max_calls: 10, window_ms: 45_000},
 "users.conversations" => %{group: :metadata_catalog}
 }
SlackBot ships with default specs for every Slack Web API method listed in the published tier tables (including special cases like chat.postMessage). Overrides are only necessary when Slack revises quotas or when custom grouping is desired.
See Rate Limiting Guide for a full explanation of how tier-aware limiting works and how to tune it.
Slash-command acknowledgements
ack_mode: :silent # default: no placeholder
ack_mode: :ephemeral # sends "Processing…" via response_url
ack_mode: {:custom, &MyApp.custom_ack/2}
Diagnostics
diagnostics: [enabled: true, buffer_size: 300]
When enabled, SlackBot captures inbound/outbound frames. See Diagnostics Guide for IEx workflows and replay.
Metadata cache & background sync
cache_sync: [
 enabled: true,
 kinds: [:channels], # :users is opt-in
 interval_ms: :timer.hours(1)
]

user_cache: [
 ttl_ms: :timer.hours(1),
 cleanup_interval_ms: :timer.minutes(5)
]
Event Pipeline & Middleware
SlackBot routes events through a Plug-like pipeline. Middleware runs before handlers and can short-circuit with {:halt, response}. Multiple handle_event clauses for the same type run in declaration order.
defmodule MyApp.Router do
 use SlackBot

 defmodule LogMiddleware do
 def call("message", payload, ctx) do
 Logger.debug("incoming: #{payload["text"]}")
 {:cont, payload, ctx}
 end

 def call(_type, payload, ctx), do: {:cont, payload, ctx}
 end

 middleware LogMiddleware

 handle_event "message", payload, ctx do
 Cache.record(payload)
 end

 handle_event "message", payload, ctx do
 Replies.respond(payload, ctx)
 end
end
Slash Command Grammar
The slash/2 DSL compiles grammar declarations into deterministic parsers:
slash "/deploy" do
 value :service
 optional literal("canary", as: :canary?)
 repeat do
 literal "env"
 value :envs
 end

 handle payload, ctx do
 %{service: svc, envs: envs} = payload["parsed"]
 Deployments.kick(svc, envs, ctx)
 end
end
	Input	Parsed
	/deploy api	%{service: "api"}
	/deploy api canary env staging env prod	%{service: "api", canary?: true, envs: ["staging", "prod"]}

See Slash Grammar Guide for the full macro reference.
Web API Helpers
	MyApp.SlackBot.push/1 — synchronous; waits for Slack's response
	MyApp.SlackBot.push_async/1 — fire-and-forget under the managed Task.Supervisor
	SlackBot.push/2 and SlackBot.push_async/2 remain available when you need to target a dynamically named instance.

Both variants route through the rate limiter and Telemetry pipeline automatically. Reach for the explicit
SlackBot.* forms when you start bots under dynamic names (multi-tenant supervisors, {:via, ...} tuples) or
when you're operating on a cached %SlackBot.Config{} outside the router (for example a background job or probe).
The module-scoped helpers stay the recommended default for static otp_app bots.
Diagnostics & Replay
iex> SlackBot.Diagnostics.list(MyApp.SlackBot, limit: 5)
[%{direction: :inbound, type: "slash_commands", ...}, ...]

iex> SlackBot.Diagnostics.replay(MyApp.SlackBot, types: ["slash_commands"])
{:ok, 3}
Replay feeds events back through your handlers—useful for reproducing production issues locally. See Diagnostics Guide.
Telemetry & LiveDashboard
SlackBot emits events for connection state, handler execution, rate limiting, and health checks. Integrate with LiveDashboard or attach plain handlers:
:telemetry.attach(
 :slackbot_logger,
 [:slackbot, :connection, :state],
 fn _event, _measurements, %{state: state}, _ ->
 Logger.info("Slack connection: #{state}")
 end,
 nil
)
See Telemetry Guide for metric definitions and LiveDashboard wiring.
Example Bot
The examples/basic_bot/ directory contains a runnable project demonstrating:
	slash grammar DSL with optional/repeat segments
	middleware logging
	diagnostics capture and replay
	auto-ack strategies
	optional BlockBox helpers

Follow the README inside that folder to run it against a Slack dev workspace.
Guides
	Getting Started — from Slack App creation to first slash command
	Rate Limiting — how tier-aware limiting works
	Slash Grammar — declarative command parsing
	Diagnostics — ring buffer and replay workflows
	Telemetry Dashboard — LiveDashboard integration

Development
mix deps.get
mix test
mix format

Test helpers
SlackBot.TestTransport and SlackBot.TestHTTP in lib/slack_bot/testing/ let you simulate Socket Mode traffic and stub Web API calls without hitting Slack.
Live Redis tests
mix test now exercises the Redis event buffer adapter against a live Redis instance:
	If REDIS_URL is unset, the suite attempts to connect to redis://localhost:6379/0. When Redis is unavailable, it automatically runs docker run -d --name slackbot-ws-test-redis -p 6379:6379 redis:7-alpine and waits for the container to become healthy.
	Provide your own Redis by exporting REDIS_URL=redis://host:port/db. When this variable is present the helper will not touch Docker; tests will fail fast if the URL is unreachable.
	To stop the auto-managed container manually, run docker stop slackbot-ws-test-redis. The helper also removes stale containers before starting new ones and registers an at_exit callback so the container stops when the suite finishes.
	GitHub Actions uses the same REDIS_URL and runs a dedicated Redis service container, so CI mirrors local behavior.

Contributing
	Fork the repository
	Create a feature branch
	Write tests for your changes
	Run mix test and mix format
	Open a pull request

For larger changes, open an issue first to discuss the approach.
License
MIT.

 SlackBot WS

[image: CI]
[image: Hex.pm]
[image: Documentation]
[image: License: MIT]
SlackBot WS (WebSocket) is a production-ready Slack bot framework for Elixir built for Slack's Socket Mode. It gives you a supervised WebSocket connection, Slack's API tier rate limiting, an elegant slash-command parsing DSL, Plug-like middleware, and comprehensive Telemetry coverage. All the typical side-mission complexity that pulls you away from just building features is eliminated.
Slack's Socket Mode shines when you need real-time event delivery without a public HTTP endpoint: laptops, firewalled environments, or stacks where inbound webhooks are undesirable. Persistent connections keep latency low, interactive payloads flowing, and local development simple. Socket Mode is fantastic for internal, private bots within an organization; it's not for Slack's public marketplace, where you'd advertise your application to other Slack organizations.
Highlights
	Resilient Socket Mode connection — supervised transport handles backoff, jittered retries, dedupe, heartbeats, and HTTP-based health checks (auth.test) so your bot stays online.
	Tier-aware rate limiting — per-channel and per-workspace shaping plus Slack's published tier quotas are enforced automatically; override the registry when you need custom allowances.
	Deterministic slash-command grammar — declaratively describe /deploy api canary or more complex syntaxes and get structured maps at compile time—no regex piles.
	Plug-like routing & middleware — handle_event, slash, and middleware macros let you compose pipelines instead of sprawling case statements.
	Task-based fan-out — handlers run in supervised tasks so slow commands never block the socket loop.
	Native interactivity + BlockBox — shortcuts, message actions, block suggestions, modal submissions, and optional BlockBox helpers all flow through the same pipeline.
	Pluggable adapters & cache sync — ETS cache/event buffer by default; swap to Redis for multi-node, configure cache sync, and set assigns such as :bot_user_id for zero-cost membership checks.
	Observability & diagnostics — telemetry spans, optional telemetry stats, diagnostics ring buffer with replay, and LiveDashboard-ready metrics.
	Production defaults out of the box — add tokens, supervise the module, and you have heartbeats, backoff, and rate limiting without touching config.

New to Slack bots? The Getting Started guide walks through creating a Slack App, enabling Socket Mode, obtaining tokens, and running your first handler.

See it in action
Declarative slash commands
defmodule MyApp.SlackBot do
 use SlackBot, otp_app: :my_app

 # /deploy api → %{service: "api"}
 # /deploy api canary → %{service: "api", canary?: true}
 slash "/deploy" do
 value :service
 optional literal("canary", as: :canary?)
 repeat do
 literal "env"
 value :envs
 end

 handle payload, ctx do
 %{service: svc, envs: envs} = payload["parsed"]
 Deployments.kick(svc, envs, ctx)
 end
 end
end
	Input	Parsed
	/deploy api	%{service: "api"}
	/deploy api canary env staging env prod	%{service: "api", canary?: true, envs: ["staging", "prod"]}

See the Slash Grammar Guide for the full macro reference.
Plug-like middleware pipeline
SlackBot routes events through a Plug-like pipeline. Middleware runs before handlers and can short-circuit with {:halt, response}. Multiple handle_event clauses for the same type run in declaration order.
defmodule MyApp.Router do
 use SlackBot

 defmodule LogMiddleware do
 def call("message", payload, ctx) do
 Logger.debug("incoming: #{payload["text"]}")
 {:cont, payload, ctx}
 end

 def call(_type, payload, ctx), do: {:cont, payload, ctx}
 end

 middleware LogMiddleware

 handle_event "message", payload, ctx do
 Cache.record(payload)
 end

 handle_event "message", payload, ctx do
 Replies.respond(payload, ctx)
 end
end
Event handlers + Web API helpers
defmodule MyApp.SlackBot do
 use SlackBot, otp_app: :my_app

 handle_event "app_mention", event, _ctx do
 MyApp.SlackBot.push({"chat.postMessage", %{
 "channel" => event["channel"],
 "text" => "Hi <@#{event["user"]}>!"
 }})
 end
end
	MyApp.SlackBot.push/1 is synchronous and waits for Slack's response via the managed HTTP pool, telemetry pipeline, and rate limiter.
	MyApp.SlackBot.push_async/1 is fire-and-forget under the supervised Task pipeline—perfect for long-running replies or batched API work.

Quick Start
1. Install
Add SlackBot to your mix.exs:
def deps do
 [
 {:slack_bot_ws, "~> 0.1.0"}
]
end
Then fetch dependencies:
mix deps.get

If you have Igniter installed, run mix slack_bot_ws.install to scaffold a bot module, config, and supervision wiring automatically.
2. Define a bot module
defmodule MyApp.SlackBot do
 use SlackBot, otp_app: :my_app

 handle_event "message", event, _ctx do
 MyApp.SlackBot.push({"chat.postMessage", %{
 "channel" => event["channel"],
 "text" => "Hello from MyApp.SlackBot!"
 }})
 end
end
How this works:
	use SlackBot, otp_app: :my_app turns the module into a router that reads configuration from your app's environment and injects the DSL macros (handle_event, slash, middleware).
	handle_event/3 pattern-matches on Slack event types. The first argument ("message") is the event type to match.
	event is the raw payload map from Slack—it contains fields like "channel", "user", "text", and "ts" depending on the event type. You destructure what you need.
	ctx is the per-event context struct carrying the telemetry prefix, assigns (custom data you configure), and HTTP client. We mark it _ctx here because this simple example doesn't use it, but middleware and more complex handlers often pass data through ctx.assigns.
	MyApp.SlackBot.push/1 sends Web API requests through the managed rate limiter, Telemetry pipeline, and HTTP pool. It returns {:ok, response} or {:error, reason}.

3. Configure tokens
In config/config.exs:
config :my_app, MyApp.SlackBot,
 app_token: System.fetch_env!("SLACK_APP_TOKEN"),
 bot_token: System.fetch_env!("SLACK_BOT_TOKEN")
4. Supervise
children = [
 MyApp.SlackBot
]

Supervisor.start_link(children, strategy: :one_for_one)
That's it. SlackBot boots a Socket Mode connection with ETS-backed cache and event buffer, per-workspace/per-channel rate limiting, and default backoff/heartbeat settings. When you're ready to tune behavior, read on.
Multiple bots and instances
The ergonomic path is one module per bot using the otp_app pattern. Each module gets its own push/1, push_async/1, emit/1, and config/0 helpers so you always call the right instance:
defmodule MyApp.CustomerSuccessBot do
 use SlackBot, otp_app: :my_app
end

defmodule MyApp.IncidentBot do
 use SlackBot, otp_app: :my_app
end

children = [
 MyApp.CustomerSuccessBot,
 MyApp.IncidentBot
]
Supervisor.start_link(children, strategy: :one_for_one)
Need distinct runtime instances of the same router module (for example, dynamically named bots per workspace)? Start SlackBot directly with an explicit :name and call the explicit APIs:
children = [
 {SlackBot, name: :team_alpha_bot, module: MyApp.DynamicRouter, app_token: ..., bot_token: ...},
 {SlackBot, name: :team_beta_bot, module: MyApp.DynamicRouter, app_token: ..., bot_token: ...}
]

SlackBot.push(:team_alpha_bot, {"chat.postMessage", %{"channel" => "C123", "text" => "hi"}})
Avoid mixing the module helpers in this scenario—the helpers assume the supervised process is registered under the module name. Pick one style per instance so the codebase stays predictable.
Background jobs and tooling can also pass a %SlackBot.Config{} directly when they already have one on
hand:
config = SlackBot.config(MyApp.SlackBot)
SlackBot.emit(config, {"daily_digest", %{"channels" => ["C123"]}})
Use this sparingly (for example telemetry probes or test helpers) and prefer the module helpers inside
your application code.
Advanced Configuration
Every option below is optional—omit them and SlackBot uses production-ready defaults.
Connection & backoff
config :my_app, MyApp.SlackBot,
 backoff: %{min_ms: 1_000, max_ms: 30_000, max_attempts: :infinity, jitter_ratio: 0.2},
 log_level: :info,
 health_check: [enabled: true, interval_ms: 30_000]
Telemetry
config :my_app, MyApp.SlackBot,
 telemetry_prefix: [:slackbot],
 telemetry_stats: [enabled: true, flush_interval_ms: 15_000, ttl_ms: 300_000]
When telemetry_stats is enabled, SlackBot.TelemetryStats.snapshot/1 returns rolled-up counters for API calls, handlers, rate/tier limiters, and connection states.
Cache & event buffer
ETS (default)
cache: {:ets, []}
event_buffer: {:ets, []}

Redis for multi-node
event_buffer:
 {:adapter, SlackBot.EventBuffer.Adapters.Redis,
 redis: [host: "127.0.0.1", port: 6379], namespace: "slackbot"}
Rate limiting
Per-channel and per-workspace shaping is enabled by default. Disable it only if you're shaping traffic elsewhere:
rate_limiter: :none
Slack's per-method tier quotas are also enforced automatically. Override entries via the tier registry:
config :slack_bot_ws, SlackBot.TierRegistry,
 tiers: %{
 "users.list" => %{max_calls: 10, window_ms: 45_000},
 "users.conversations" => %{group: :metadata_catalog}
 }
SlackBot ships with default specs for every Slack Web API method listed in the published tier tables (including special cases like chat.postMessage). Overrides are only necessary when Slack revises quotas or when custom grouping is desired.
See Rate Limiting Guide for a full explanation of how tier-aware limiting works and how to tune it.
Slash-command acknowledgements
ack_mode: :silent # default: no placeholder
ack_mode: :ephemeral # sends "Processing…" via response_url
ack_mode: {:custom, &MyApp.custom_ack/2}
Diagnostics
diagnostics: [enabled: true, buffer_size: 300]
When enabled, SlackBot captures inbound/outbound frames. See Diagnostics Guide for IEx workflows and replay.
Metadata cache & background sync
cache_sync: [
 enabled: true,
 kinds: [:channels], # :users is opt-in
 interval_ms: :timer.hours(1)
]

user_cache: [
 ttl_ms: :timer.hours(1),
 cleanup_interval_ms: :timer.minutes(5)
]
Event Pipeline & Middleware
SlackBot routes events through a Plug-like pipeline. Middleware runs before handlers and can short-circuit with {:halt, response}. Multiple handle_event clauses for the same type run in declaration order.
defmodule MyApp.Router do
 use SlackBot

 defmodule LogMiddleware do
 def call("message", payload, ctx) do
 Logger.debug("incoming: #{payload["text"]}")
 {:cont, payload, ctx}
 end

 def call(_type, payload, ctx), do: {:cont, payload, ctx}
 end

 middleware LogMiddleware

 handle_event "message", payload, ctx do
 Cache.record(payload)
 end

 handle_event "message", payload, ctx do
 Replies.respond(payload, ctx)
 end
end
Slash Command Grammar
The slash/2 DSL compiles grammar declarations into deterministic parsers:
slash "/deploy" do
 value :service
 optional literal("canary", as: :canary?)
 repeat do
 literal "env"
 value :envs
 end

 handle payload, ctx do
 %{service: svc, envs: envs} = payload["parsed"]
 Deployments.kick(svc, envs, ctx)
 end
end
	Input	Parsed
	/deploy api	%{service: "api"}
	/deploy api canary env staging env prod	%{service: "api", canary?: true, envs: ["staging", "prod"]}

See Slash Grammar Guide for the full macro reference.
Web API Helpers
	MyApp.SlackBot.push/1 — synchronous; waits for Slack's response
	MyApp.SlackBot.push_async/1 — fire-and-forget under the managed Task.Supervisor
	SlackBot.push/2 and SlackBot.push_async/2 remain available when you need to target a dynamically named instance.

Both variants route through the rate limiter and Telemetry pipeline automatically. Reach for the explicit
SlackBot.* forms when you start bots under dynamic names (multi-tenant supervisors, {:via, ...} tuples) or
when you're operating on a cached %SlackBot.Config{} outside the router (for example a background job or probe).
The module-scoped helpers stay the recommended default for static otp_app bots.
Diagnostics & Replay
iex> SlackBot.Diagnostics.list(MyApp.SlackBot, limit: 5)
[%{direction: :inbound, type: "slash_commands", ...}, ...]

iex> SlackBot.Diagnostics.replay(MyApp.SlackBot, types: ["slash_commands"])
{:ok, 3}
Replay feeds events back through your handlers—useful for reproducing production issues locally. See Diagnostics Guide.
Telemetry & LiveDashboard
SlackBot emits events for connection state, handler execution, rate limiting, and health checks. Integrate with LiveDashboard or attach plain handlers:
:telemetry.attach(
 :slackbot_logger,
 [:slackbot, :connection, :state],
 fn _event, _measurements, %{state: state}, _ ->
 Logger.info("Slack connection: #{state}")
 end,
 nil
)
See Telemetry Guide for metric definitions and LiveDashboard wiring.
Example Bot
The examples/basic_bot/ directory contains a runnable project demonstrating:
	slash grammar DSL with optional/repeat segments
	middleware logging
	diagnostics capture and replay
	auto-ack strategies
	optional BlockBox helpers

Follow the README inside that folder to run it against a Slack dev workspace.
Guides
	Getting Started — from Slack App creation to first slash command
	Rate Limiting — how tier-aware limiting works
	Slash Grammar — declarative command parsing
	Diagnostics — ring buffer and replay workflows
	Telemetry Dashboard — LiveDashboard integration

Development
mix deps.get
mix test
mix format

Test helpers
SlackBot.TestTransport and SlackBot.TestHTTP in lib/slack_bot/testing/ let you simulate Socket Mode traffic and stub Web API calls without hitting Slack.
Live Redis tests
mix test now exercises the Redis event buffer adapter against a live Redis instance:
	If REDIS_URL is unset, the suite attempts to connect to redis://localhost:6379/0. When Redis is unavailable, it automatically runs docker run -d --name slackbot-ws-test-redis -p 6379:6379 redis:7-alpine and waits for the container to become healthy.
	Provide your own Redis by exporting REDIS_URL=redis://host:port/db. When this variable is present the helper will not touch Docker; tests will fail fast if the URL is unreachable.
	To stop the auto-managed container manually, run docker stop slackbot-ws-test-redis. The helper also removes stale containers before starting new ones and registers an at_exit callback so the container stops when the suite finishes.
	GitHub Actions uses the same REDIS_URL and runs a dedicated Redis service container, so CI mirrors local behavior.

Contributing
	Fork the repository
	Create a feature branch
	Write tests for your changes
	Run mix test and mix format
	Open a pull request

For larger changes, open an issue first to discuss the approach.
License
MIT.

 Changelog

All notable changes to this project will be documented in this file.
The format is based on Keep a Changelog,
and this project adheres to Semantic Versioning.
[Unreleased]
	Nothing yet

[0.1.0-rc.2] - 2025-12-25
Added
	use SlackBot, otp_app: ... now injects instance helper functions (push/1, push_async/1, emit/1, config/0) so downstream code can call MyApp.SlackBot.push({...}) without repeating the module name at every callsite.
	Expanded the built-in tier registry defaults to cover Slack's published tier list (including special cases like chat.postMessage) along with regression tests.
	Redis-backed event buffer conformance harness that exercises every adapter scenario (ETS + Redis) plus multi-node Redis coverage.
	Live Redis test helper that auto-starts redis:7-alpine for mix test and mirrors the GitHub Actions Redis service setup.

Changed
	README, guides, and the example bot now use the new instance helpers exclusively and document the recommended “one module per bot” pattern (plus guidance for the explicit multi-instance form).
	Refreshed the README landing narrative to more clearly explain SlackBot’s goals and quick-start path.
	Simplified the slash command DSL so grammar definitions live directly before handle/3, removing the grammar do ... end wrapper and updating docs, examples, and tests accordingly.
	Event buffer adapters now share strict semantics (first-write-wins payload, TTL refresh, deterministic pending/1, TTL-correct seen?/2) with normalized telemetry events.
	CI test matrix now provisions a Redis service and exports REDIS_URL so Redis-backed tests run in automation by default.
	README and docs now document live Redis testing expectations, event buffer semantics, and telemetry event shapes.

Breaking
	Removed the implicit SlackBot.*/* arities that defaulted to the SlackBot module. Call MyBot.push/1, MyBot.push_async/1, MyBot.emit/1, or MyBot.config/0 (the injected helpers), or keep using the explicit forms (SlackBot.push(bot, request), etc.) when supervising bots under custom names.

Fixed
	Suppressed optional Igniter and Rewrite module warnings in mix slack_bot_ws.install when those helper dependencies are not present.
	Avoid blocking the users cache sync worker during Slack rate limits by scheduling retries instead of sleeping.
	EventBuffer.delete/2 now routes through a single synchronous code path, preventing stale state when deleting entries across adapters.

[0.1.0-rc.1] - 2025-12-01
Initial Release Candidate
This release candidate represents what I expect will become the 1.0 stable API.
Feedback Welcome! If you encounter issues, have suggestions, or want to share your experience, please open an issue on GitHub.
What's Included
Performance & Scalability
	Supervised WebSockex connection manager with immediate envelope ACKs and Task.Supervisor fan-out so handlers never block the socket loop.
	Event buffer dedupe with ETS-backed default and adapters, plus jittered exponential backoff to stagger reconnect attempts across nodes.
	Fast, deterministic slash command routing for predictable dispatch.
	Dedicated Finch pool for Slack Web API traffic (api_pool_opts) so Req calls reuse warm connections and can be tuned per bot.

Robustness & Resiliency
	Runtime config server that validates config and fans out immutable %SlackBot.Config{} structs to every process.
	Provider/mutation-queue cache pattern for channels/users with automatic updates on join/leave/user-change events.
	Heartbeat monitoring, ping/pong responses, and rate-limit-aware reconnects that respect Slack’s expected disconnect/reconnect lifecycle.

Observability
	Telemetry events for connection lifecycle, rate limiting, handler spans, diagnostics, Slack Web API calls (SlackBot.push/2), and slash ack HTTP posts.
	Diagnostics ring buffer with list/clear/replay APIs plus structured logging helpers for envelope metadata.
	HexDocs-ready references (README, diagnostics, telemetry dashboard guides) describing how to wire LiveDashboard metrics.

Developer Experience
	Declarative handler DSL (handle_event, slash, grammar combinators, middleware) powered by NimbleParsec for deterministic slash command parsing.
	Slash auto-ack strategies (:silent, :ephemeral, {:custom, fun}) with configurable default text and response-url transport.
	Plug-like middleware pipeline for cross-cutting concerns (logging, auth, metrics) across all handlers, with sequential execution of every handle_event/3 defined for an event type and short-circuit control via {:halt, resp}.
	Optional BlockBox integration for building rich Block Kit payloads with ergonomic Elixir DSL.
	SlackBot.emit/2 for injecting synthetic events into the handler pipeline (testing, scheduled tasks, internal events).
	mix slack_bot_ws.install task powered by Igniter for zero-config scaffolding of bot module, config, and supervision wiring.
	Complete runnable example bot in examples/basic_bot/ (included in GitHub repo) demonstrating middleware, diagnostics, slash grammars, Block Kit, cache queries, and telemetry.
	Live diagnostics ring buffer with replay tooling so developers can reproduce issues locally without relying on Slack retries.
	Comprehensive API documentation with real Slack response structures, complete error handling patterns, and common error codes documented.
	Copy-paste ready code examples throughout showing practical usage patterns for Web API calls, cache queries, and event handling.
	"When to use" decision guidance for function variants (push vs push_async, ID vs email matchers, adapter choices).
	Performance tips and caching behavior explanations for every public function.
	Complete test helper documentation (TestHTTP, TestTransport) with full test examples for unit testing handlers.

Extensibility
	Pluggable cache adapters via SlackBot.Cache.Adapter behaviour (ETS default, Redis implementation included).
	Pluggable event buffer adapters via SlackBot.EventBuffer.Adapter behaviour for multi-node dedupe strategies.
	Configurable HTTP client and WebSocket transport for testing and custom integrations.
	Custom slash command acknowledgement callbacks for domain-specific response patterns.

What's Next?
After gathering community feedback and real-world validation, and possible adjustments to documentation:
	0.1.0 - Initial release incorporating any RC feedback. Intention to move to 1.0 as soon as possible.
	1.0.0 - Long-term stable API with full semver guarantees

The path from RC to 1.0 will focus on validating the API in production rather than adding features. Breaking changes between RC and 1.0 will only be introduced if critical issues are discovered.

 LICENSE

Copyright 2025, Douglas Feuerbach

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

 Getting Started

This guide walks you through creating a Slack bot from scratch—configuring a Slack App, obtaining tokens, and running your first handler.
Prerequisites
	Elixir 1.17 or later
	A Slack workspace where you have permission to install apps
	Access to api.slack.com

1. Create a Slack App
	Go to api.slack.com/apps and click Create New App.
	Choose From scratch, give it a name (e.g., "MyBot"), and select your workspace.
	You'll land on the app's Basic Information page.

2. Enable Socket Mode
Socket Mode lets your bot receive events over a WebSocket instead of exposing a public HTTP endpoint.
	In the left sidebar, click Socket Mode.
	Toggle Enable Socket Mode on.
	You'll be prompted to generate an App-Level Token. Give it a name like socket-token and add the connections:write scope.
	Copy the token (it starts with xapp-). This is your SLACK_APP_TOKEN.

3. Add Bot Scopes
	In the sidebar, go to OAuth & Permissions.
	Scroll to Scopes → Bot Token Scopes and add the scopes your bot needs. At minimum:	chat:write — send messages
	commands — receive slash commands (if you plan to use them)
	channels:read — read channel metadata (for the cache sync)

	If you want your bot to respond to messages or mentions, add app_mentions:read and/or channels:history.

4. Install the App
	Still on OAuth & Permissions, scroll up and click Install to Workspace.
	Authorize the app.
	Copy the Bot User OAuth Token (starts with xoxb-). This is your SLACK_BOT_TOKEN.

5. Subscribe to Events
If your bot needs to react to messages, mentions, or other events:
	Go to Event Subscriptions in the sidebar.
	Toggle Enable Events on. (Socket Mode handles delivery, so you won't need a Request URL.)
	Under Subscribe to bot events, add events like:	message.channels — messages in public channels the bot is in
	app_mention — when someone @mentions your bot

	Save changes.

6. Create a Slash Command (optional)
	Go to Slash Commands in the sidebar.
	Click Create New Command.
	Fill in the command (e.g., /demo), a short description, and usage hint.
	Save. Slack will deliver slash-command payloads over the Socket Mode connection.

7. Add SlackBot to Your Project
In your mix.exs:
def deps do
 [
 {:slack_bot_ws, "~> 0.1.0"}
]
end
Run:
mix deps.get

8. Scaffold with Igniter (optional)
If you have Igniter in your project:
mix slack_bot_ws.install

This creates a bot module, config stub, and supervision wiring. Skip to step 11 if you use this.
9. Define Your Bot Module
Create lib/my_app/slack_bot.ex:
defmodule MyApp.SlackBot do
 use SlackBot, otp_app: :my_app

 # Respond to @mentions
 handle_event "app_mention", event, _ctx do
 MyApp.SlackBot.push({"chat.postMessage", %{
 "channel" => event["channel"],
 "text" => "Hi <@#{event["user"]}>! I heard you."
 }})
 end
end
The use SlackBot, otp_app: :my_app macro:
	Injects the DSL (handle_event, slash, middleware)
	Tells SlackBot to read configuration from :my_app application env

10. Configure Tokens
In config/config.exs:
config :my_app, MyApp.SlackBot,
 app_token: System.fetch_env!("SLACK_APP_TOKEN"),
 bot_token: System.fetch_env!("SLACK_BOT_TOKEN")
Or in config/runtime.exs if you prefer runtime configuration.
11. Supervise the Bot
In your application supervisor (lib/my_app/application.ex):
def start(_type, _args) do
 children = [
 MyApp.SlackBot
]

 Supervisor.start_link(children, strategy: :one_for_one, name: MyApp.Supervisor)
end
12. Run
Set your environment variables and start:
export SLACK_APP_TOKEN="xapp-..."
export SLACK_BOT_TOKEN="xoxb-..."
iex -S mix

Invite your bot to a channel (/invite @MyBot) and mention it. You should see a reply.
Adding a Slash Command Handler
If you created a /demo command in step 6, add a handler:
defmodule MyApp.SlackBot do
 use SlackBot, otp_app: :my_app

 slash "/demo" do
 value :action

 handle payload, _ctx do
 action = payload["parsed"][:action] || "nothing"
 MyApp.SlackBot.push({"chat.postMessage", %{
 "channel" => payload["channel_id"],
 "text" => "You asked me to: #{action}"
 }})
 end
 end

 handle_event "app_mention", event, _ctx do
 MyApp.SlackBot.push({"chat.postMessage", %{
 "channel" => event["channel"],
 "text" => "Hi <@#{event["user"]}>!"
 }})
 end
end
Try /demo deploy in Slack. The handler receives %{action: "deploy"} in payload["parsed"].
What's Running Under the Hood
When your supervisor starts MyApp.SlackBot, SlackBot:
	Reads configuration from :my_app app env and validates tokens
	Starts an HTTP pool for Web API requests
	Starts the ETS-backed cache and event buffer
	Calls apps.connections.open to get a WebSocket URL
	Opens the Socket Mode connection
	Spawns supervised tasks for each incoming event

If the connection drops, SlackBot reconnects with exponential backoff. If Slack returns rate-limit headers, the rate limiter pauses outbound requests until the window passes.
Next Steps
	Slash Grammar Guide — build complex command parsers
	Rate Limiting Guide — understand how tier-aware limiting works
	Diagnostics Guide — capture and replay events
	Telemetry Guide — integrate with LiveDashboard

The examples/basic_bot/ directory contains a full working bot demonstrating middleware, advanced grammars, and diagnostics replay.

 Rate Limiting

Slack imposes rate limits on Web API calls to protect its infrastructure and ensure fair access across all apps. If your bot exceeds these limits, Slack returns 429 Too Many Requests with a Retry-After header indicating how long to wait.
SlackBot handles rate limiting automatically through two complementary layers:
	Rate limiter – Shapes bursts on a per-channel (for the “chat.*” family) or per-workspace basis so you don’t overrun Slack’s immediate-rate guardrails. This is the component invoked before each Web API call via MyBot.push/1 (or SlackBot.push(bot, request)) and MyBot.push_async/1.

	Tier limiter – Tracks Slack’s published per-method quotas (Tier 1–4 + special tiers) and queues requests so you honor the longer-term limits documented in Slack’s API rate guide.

Rate limiter (“burst” protection)
Every outbound Web API call goes through the built-in rate limiter by default. It keeps a queue per “key” (per-channel for chat-style methods, per-workspace for others) and gates entry so you never run more than one request per key when Slack’s rules would reject you anyway (e.g., Slack’s 1 message/second/channel policy). If Slack responds with 429 and a Retry-After, the limiter suspends that key for the specified duration before draining the queue.
You can observe back pressure by subscribing to the built-in telemetry:
	[:slackbot, :rate_limiter, :decision] with decision: :queue and measurement[:queue_length] whenever a request has to wait.
	[:slackbot, :rate_limiter, :blocked] whenever a key is paused due to a Retry-After.

These events can be fed into Telemetry.Metrics (e.g., last_value or distribution) to derive average queue depths or to detect when Slack is throttling a key.
Because the rate limiter is enforcing Slack’s pacing rules, it does not have its own timeout; the GenServer.call/3 inside around_request/4 uses :infinity so requests will sit in the queue until Slack allows them to proceed. If you need a client-side timeout, wrap your MyBot.push/1 call (or the explicit SlackBot.push(bot, ...)) in your own Task.async/await with a timeout and cancel the task if you can’t wait.
The limiter also guarantees that slots are released even if your code raises, throws, or exits. Each request is wrapped in a try/rescue/catch so the {:after_request, ...} bookkeeping message is delivered no matter how the user function finishes.
Tier-based quotas
Slack groups Web API methods into “tiers” (1–4 plus a few special buckets) that define how many calls per minute you can make per workspace. SlackBot ships with a tier registry that encodes those quotas: each method maps to a spec with max_calls, window_ms, scope, optional group sharing, and (for “special” cases like chat.postMessage) a reasonable default based on Slack’s docs. The tier limiter tracks each spec independently and queues requests so you don’t exceed the published budget.
You typically don’t need to configure this at all. If Slack updates their quotas or if you have an alternative agreed-upon allotment, you can override entries via:
config :slack_bot_ws, SlackBot.TierRegistry,
 tiers: %{
 "users.list" => %{max_calls: 10, window_ms: 45_000},
 "users.conversations" => %{group: :my_custom_group}
 }
Note that the tier registry is eager for correctness: it only encodes the methods documented by Slack today, and defaults to :workspace scope unless Slack mandates {:channel, field} or a shared group. Don’t set arbitrary scope/max_calls values unless you’re aligning with Slack’s guidance.
Observability
All limiter activity is surfaced via :telemetry to make it easy to build dashboards and alerts. In addition to the rate limiter events above, the tier limiter emits:
	[:slackbot, :tier_limiter, :decision] with queue_length and remaining tokens whenever a method increments or queues.
	[:slackbot, :tier_limiter, :suspend] and [:slackbot, :tier_limiter, :resume] when a tier budget is paused due to Slack saying “slow down” and when it resumes.

You can register metrics on these events (e.g., average queue length, number of suspensions per key, token utilization) to understand how close you are to Slack’s limits.
Configuration cheatsheet
	rate_limiter: :none – disables the per-key burst limiter if you absolutely must bypass client-side shaping (not recommended unless your infrastructure enforces Slack’s per-channel/per-workspace rates).
	config :slack_bot_ws, SlackBot.TierRegistry, tiers: %{...} – override or add per-method specs if you’ve negotiated bespoke quotas with Slack.
	api_pool_opts – still controls the HTTP client’s timeout/connection pool, independently of the limiter’s logic.

By default, leaving the limiters enabled is the safest way to stay on Slack’s good side: your bot will queue and pace its calls locally, honor Slack’s published quotas, and surface telemetry so you can react before hitting hard API caps.

 Slash Command Grammar DSL

The slash/2 DSL is built to make slash commands deterministic, easy to maintain, and fast. Instead of manually splitting strings or juggling regexes, you describe the format you expect and SlackBot generates a parser at compile time. Write your grammar by chaining primitives (literal/2, value/2, optional/1, etc.) and always finish with a single handle/3 clause—nothing may appear after handle/3, and the compiler raises if you try. This guide teaches the DSL in layers so you can follow along as the commands grow in complexity.

Why use the DSL?
	Deterministic parsing – handlers receive structured maps, not ad-hoc token lists.
	Readable expectations – the command format lives next to the handler, making code
reviews and maintenance straightforward.
	Compile-time validation – malformed definitions fail fast, before your bot ships.
	Battle-tested parsing – handles quoting, whitespace, and tricky edge cases without
extra work on your part.

1. Literal-only commands
Great for “one-shot” commands that trigger behavior without arguments.
slash "/cmd" do
 literal "project"
 literal "report"

 handle payload, ctx do
 # payload["parsed"] => %{command: "cmd"}
 Reports.generate(ctx)
 end
end
Slack input: /cmd project report

2. Capturing values
Use value/1 to bind user-provided tokens to names that show up in the parsed payload.
slash "/cmd" do
 literal "team", as: :mode, value: :team_show
 value :team_name
 literal "show"

 handle payload, ctx do
 %{team_name: name} = payload["parsed"]
 Teams.show(name, ctx)
 end
end
Slack input: /cmd team marketing show
Parsed payload: %{command: "cmd", mode: :team_show, team_name: "marketing"}

3. Optional segments
Wrap anything that isn’t required in optional. Omitted segments simply don’t appear in
the parsed map.
slash "/cmd" do
 literal "list", as: :mode, value: :list
 optional literal("short", as: :short?)
 value :app

 handle payload, _ctx do
 payload["parsed"]
 end
end
Slack input: /cmd list short foo
Parsed payload: %{command: "cmd", mode: :list, short?: true, app: "foo"}

4. Repeating segments
repeat lets you express “zero or more” patterns. Each value inside becomes a list.
slash "/cmd" do
 literal "report", as: :mode, value: :report_teams

 repeat do
 literal "team"
 value :teams
 end

 handle payload, _ctx do
 payload["parsed"]
 end
end
Slack input: /cmd report team alpha team beta team gamma
Parsed payload: %{teams: ["alpha", "beta", "gamma"], mode: :report_teams}

5. Branching with choice
Many commands act like subcommands. choice lets you express each branch declaratively.
slash "/cmd" do
 choice do
 sequence do
 literal "list", as: :mode, value: :list
 optional literal("short", as: :short?)
 value :app
 end

 sequence do
 literal "project", as: :mode, value: :project_report
 literal "report"
 end
 end

 handle payload, ctx do
 parsed = payload["parsed"]
 handle_mode(parsed.mode, parsed, ctx)
 end
end
Slack inputs covered: /cmd list app, /cmd list short app, /cmd project report

6. End-to-end example
The tests (test/slack_bot/router_test.exs) contain a full “GrammarRouter” that combines
all the primitives. Here’s how a few Slack inputs map to payloads:
	Slack input	Parsed payload
	/cmd list short app param one param two	%{mode: :list, short?: true, app: "app", params: ["one","two"]}
	/cmd project report	%{mode: :project_report}
	/cmd team marketing show	%{mode: :team_show, team_name: "marketing"}
	/cmd report team one team two team three	%{mode: :report_teams, teams: ["one","two","three"]}

Each branch is explicit, and the handler simply reacts to structured data.

Handler payload structure
Every DSL handler receives an enriched payload under payload["parsed"]:
%{
 command: "cmd",
 mode: :list,
 short?: true,
 app: "foo",
 params: ["one", "two"],
 teams: ["alpha", "beta"],
 extra_args: ["leftover"] # present only if tokens remain unmatched
}
	Repeated values become lists.
	Optional literals store the value: option (default true) when matched.
	Any leftover tokens land in :extra_args, allowing custom fallbacks.

Quick reference
	Macro	Purpose	Example
	literal value, opts \\ []	Match a literal token, optionally tagging metadata	literal "list", as: :mode, value: :list
	value name, opts \\ []	Capture a token and assign it to name	value :service
	optional do ... end	Optional group; skipped segments leave previous values untouched	optional literal("short", as: :short?)
	repeat do ... end	Repeat group until it no longer matches	repeat do literal "team"; value :teams end
	choice do ... end	First matching branch wins	choice do sequence ... end
	sequence do ... end	Explicit grouping (helpful inside choice)	sequence do literal "project"; literal "report" end
	handle payload, ctx do ... end	Handler that receives the enriched payload	handle payload, ctx do ... end

Tips
	Use SlackBot.Diagnostics.list/2 + replay/2 to capture real commands and verify they parse as expected.
	Prefer small, focused choice branches over one giant handler with nested case.
	Need raw tokens? Call SlackBot.Command.lex/1 yourself.
	See test/slack_bot/router_test.exs for more real-world examples.

Next Steps
	Getting Started — set up a Slack App and run your first handler
	Rate Limiting — understand how SlackBot paces Web API calls
	Diagnostics — capture and replay commands for debugging
	Telemetry Dashboard — monitor handler execution and timing

 OEBPS/dist/epub-4WIP524F.js
