

 smart_city

 v6.0.0

 Table of contents

 	README

 	Modules

 	SmartCity.AccessGroup

 	SmartCity.BaseStruct

 	SmartCity.Data

 	SmartCity.Data.Timing

 	SmartCity.DataWriteComplete

 	SmartCity.Dataset

 	SmartCity.Dataset.Business

 	SmartCity.Dataset.Technical

 	SmartCity.DatasetAccessGroupRelation

 	SmartCity.Event

 	SmartCity.Helpers

 	SmartCity.HostedFile

 	SmartCity.Ingestion

 	SmartCity.Ingestion.Transformation

 	SmartCity.Organization

 	SmartCity.SchemaGenerator

 	SmartCity.User

 	SmartCity.UserAccessGroupRelation

 	SmartCity.UserOrganizationAssociate

 	SmartCity.UserOrganizationDisassociate

 	SmartCity.AccessGroup.NotFound

 	SmartCity.Organization.NotFound

README

[image: Master]
[image: Hex.pm Version]
SmartCity
This library defines helper functions that are used across SmartCity modules.
Installation
def deps do
 [
 {:smart_city, "~> 6.0.0"}
]
end
Basic Usage
iex> SmartCity.Helpers.to_atom_keys(%{"a" => 1, "b" => 2, "c" => 3})
%{a: 1, b: 2, c: 3}

iex> SmartCity.Helpers.to_atom_keys(%{"a" => %{"b" => "c"}})
%{a: %{b: "c"}}

iex> SmartCity.Helpers.deep_merge(%{a: 1, b: 2}, %{a: 3, c: 4})
%{a: 3, b: 2, c: 4}
Full documentation can be found at https://hexdocs.pm/smart_city/api-reference.html.
Contributing
The build process runs these commands:
mix local.rebar --force
mix local.hex --force
mix deps.get
mix format --check-formatted
mix credo
mix test

Releases
New versions are published here whenever a Github release is cut.
The version # of smart_city is expected to sync with smart_city_test.
When cutting a release in either package, the other should also receive an update so that it utilizes the new package version.
Ex: After updating the smart_city version by changing the version in mix.exs, merging, and cutting a release, smart_city_test should receive an
update PR as well. That smart_city_test PR should update the version of smart_city in the mix.exs file, and a release of smart_city_test should
be made.
It's expected that the version of smart_city and smart_city_test always match in their mix.exs file and their github releases.
License
SmartCity is released under the Apache 2.0 license - see the license at http://www.apache.org/licenses/LICENSE-2.0

SmartCity.AccessGroup

Struct defining an access group update event.
const AccessGroup = {
 "description": "",
 "name"": "",
 "id": ""
}

 Anchor for this section

 Summary

 Types

 id()

 reason()

 t()

 Functions

 new(msg)

 Returns a new SmartCity.AccessGroup struct.

 Anchor for this section

Types

 Link to this type

 id()

 View Source

 @type id() :: term()

 Link to this type

 reason()

 View Source

 @type reason() :: term()

 Link to this type

 t()

 View Source

 @type t() :: %SmartCity.AccessGroup{description: term(), id: term(), name: term()}

 Anchor for this section

Functions

 Link to this function

 new(msg)

 View Source

 @spec new(String.t() | map()) :: {:ok, map()} | {:error, term()}

Returns a new SmartCity.AccessGroup struct.
Can be created from:
	map with string keys
	map with atom keys
	JSON

SmartCity.BaseStruct

This module provides deserialization and atomization for structs

 Anchor for this section

 Summary

 Functions

 new(msg)

 Anchor for this section

Functions

 Link to this function

 new(msg)

 View Source

 @spec new(String.t() | map()) :: map() | term()

SmartCity.Data

Message struct shared amongst all SmartCity microservices.
const DataMessage = {
 "dataset_ids": "", // list(UUID)
 "ingestion_id":"", // UUID
 "extraction_start_time": "", // iso8601
 "payload": {},
 "_metadata": { // cannot be used safely
 "orgName": "", // ~r/^[a-zA-Z_]+$/
 "dataName": "", // ~r/^[a-zA-Z_]+$/
 "stream": true
 },
 "operational": {
 "timing": [{
 "startTime": "", // iso8601
 "endTime": "", // iso8601
 "app": "", // microservice generating timing data
 "label": "" // label for this particular timing data
 }]
 }
}

 Anchor for this section

 Summary

 Types

 payload()

 t()

 Functions

 add_timing(message, new_timing)

 Adds a SmartCity.Data.Timing to the list of timings in this SmartCity.Data. The timing will be validated to ensure both start and end times have been set.

 encode(message)

 Encodes SmartCity.Data into JSON. Typically used right before sending as a Kafka message.

 encode!(message)

 Encodes SmartCity.Data into JSON. Typically used right before sending as a Kafka message.

 end_of_data()

 Defines the string that will be the payload of the last message in a dataset.

 get_all_timings(data)

 Get all timings on this Data

 new(msg)

 Returns a new SmartCity.Data struct. SmartCity.Data.Timing
 structs will be created along the way.

 timed_new(msg, app)

 Creates a new SmartCity.Data struct using new/1 and adds timing information to the message.

 timed_transform(msg, app, function)

 Transforms the SmartCity.Data payload field with the given unary function and replaces it in the message.

 Anchor for this section

Types

 Link to this type

 payload()

 View Source

 @type payload() :: String.t()

 Link to this type

 t()

 View Source

 @type t() :: %SmartCity.Data{
 _metadata: %{org: String.t(), name: String.t(), stream: boolean()},
 dataset_ids: [String.t()],
 extraction_start_time: DateTime.t(),
 ingestion_id: String.t(),
 operational: %{timing: [SmartCity.Data.Timing.t()]},
 payload: String.t(),
 version: String.t()
}

 Anchor for this section

Functions

 Link to this function

 add_timing(message, new_timing)

 View Source

 @spec add_timing(
 t(),
 SmartCity.Data.Timing.t()
) :: t()

Adds a SmartCity.Data.Timing to the list of timings in this SmartCity.Data. The timing will be validated to ensure both start and end times have been set.
Returns a SmartCity.Data struct with new_timing prepended to existing timings list.

 parameters

 Parameters

	message: A SmartCity.Data
	new_timing: A timing you want to add. Must have start_time and end_time set

 Link to this function

 encode(message)

 View Source

 @spec encode(t()) ::
 {:ok, String.t()} | {:error, Jason.EncodeError.t() | Exception.t()}

Encodes SmartCity.Data into JSON. Typically used right before sending as a Kafka message.

 Link to this function

 encode!(message)

 View Source

 @spec encode!(t()) :: String.t()

Encodes SmartCity.Data into JSON. Typically used right before sending as a Kafka message.
Raises an error if it fails to convert to a JSON string.

 Link to this macro

 end_of_data()

 View Source

 (macro)

Defines the string that will be the payload of the last message in a dataset.

 Link to this function

 get_all_timings(data)

 View Source

 @spec get_all_timings(t()) :: [SmartCity.Data.Timing.t()]

Get all timings on this Data
Returns a list of SmartCity.Data.Timing structs or []

 parameters

 Parameters

	data_message: The message to extract timings from

 Link to this function

 new(msg)

 View Source

 @spec new(map() | String.t()) :: {:ok, t()} | {:error, String.t()}

Returns a new SmartCity.Data struct. SmartCity.Data.Timing
 structs will be created along the way.
Can be created from:
	map with string keys
	map with atom keys
	JSON

 examples

 Examples

iex> SmartCity.Data.new(%{dataset_ids: ["a_guid"], ingestion_id: "b_guid", extraction_start_time: "2019-05-06T19:51:41+00:00", payload: "the_data", _metadata: %{org: "scos", name: "example"}, operational: %{timing: [%{app: "app name", label: "function name", start_time: "2019-05-06T19:51:41+00:00", end_time: "2019-05-06T19:51:51+00:00"}]}})
{:ok, %SmartCity.Data{
 dataset_ids: ["a_guid"],
 ingestion_id: "b_guid",
 extraction_start_time: "2019-05-06T19:51:41+00:00",
 payload: "the_data",
 _metadata: %{org: "scos", name: "example"},
 operational: %{
 timing: [%SmartCity.Data.Timing{ app: "app name", end_time: "2019-05-06T19:51:51+00:00", label: "function name", start_time: "2019-05-06T19:51:41+00:00"}]
 }
}}

 Link to this function

 timed_new(msg, app)

 View Source

 @spec timed_new(map(), String.t()) :: {:ok, t()} | {:error, String.t()}

Creates a new SmartCity.Data struct using new/1 and adds timing information to the message.
Returns a SmartCity.Data struct with new_timing prepended to existing timings list.

 parameters

 Parameters

	message: A SmartCity.Data
	app: The application that is asking to create the new SmartCity.Data. Ex. reaper or voltron

 Link to this function

 timed_transform(msg, app, function)

 View Source

 @spec timed_transform(
 t(),
 String.t(),
 (payload() -> {:ok, term()} | {:error, term()})
) :: {:ok, t()} | {:error, String.t()}

Transforms the SmartCity.Data payload field with the given unary function and replaces it in the message.
Additionally, returns a SmartCity.Data struct with new_timing prepended to existing timings list.

 parameters

 Parameters

	message: A SmartCity.Data
	app: The application that is asking to create the new SmartCity.Data. Ex. reaper or voltron
	function: an arity 1 (/1) function that will transform the payload in the provided message

SmartCity.Data.Timing

Timing struct for adding timing metrics to SmartCity.Data messages

 Anchor for this section

 Summary

 Types

 t()

 Functions

 current_time()

 Gets the current time. This function should always be used for generating times to be used in timings to ensure consistency across all services.

 measure(app, label, function)

 Wraps the results of a function call with measured timing information

 new(opts)

 Creates a new SmartCity.Data.Timing from opts.

 new(app, label, start_time, end_time)

 Creates a new SmartCity.Data.Timing struct, passing in all fields.

 validate(timing)

 Validate that all required keys are present and valid (not nil).

 validate!(timing)

 Validate that all required keys are present and valid (not nil).

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %SmartCity.Data.Timing{
 app: String.t(),
 end_time: DateTime.t(),
 label: String.t(),
 start_time: DateTime.t()
}

 Anchor for this section

Functions

 Link to this function

 current_time()

 View Source

 @spec current_time() :: String.t()

Gets the current time. This function should always be used for generating times to be used in timings to ensure consistency across all services.
Returns current UTC Time in ISO8601 format

 Link to this function

 measure(app, label, function)

 View Source

 @spec measure(String.t(), String.t(), (() -> {:ok, term()} | {:error, term()})) ::
 {:ok, term(), t()} | {:error, String.t()}

Wraps the results of a function call with measured timing information
Returns {:ok, result, timing} on success, or {:error, reason} on failure

 Link to this function

 new(opts)

 View Source

 @spec new(
 %{
 :app => term(),
 :label => term(),
 optional(:start_time) => term(),
 optional(:end_time) => term()
 }
 | list()
) :: t()

Creates a new SmartCity.Data.Timing from opts.
Returns a SmartCity.Data.Timing struct or raises ArgumentError

 parameters

 Parameters

	opts: Keyword list or map containing struct attributesRequired keys: `app`, `label`
See `Kernel.struct!/2`.

 Link to this function

 new(app, label, start_time, end_time)

 View Source

 @spec new(term(), term(), term(), term()) :: t()

Creates a new SmartCity.Data.Timing struct, passing in all fields.
Returns a SmartCity.Data.Timing struct or raises ArgumentError.

 parameters

 Parameters

	app: application for which timing metrics are being measured
	label: description of timing measurement
	start_time: time when measurement has begun
	end_time: time when measurement has finished

 examples

 Examples

iex> SmartCity.Data.Timing.new("foo", "bar", "not_validated", "not_validated")
%SmartCity.Data.Timing{
 app: "foo",
 label: "bar",
 start_time: "not_validated",
 end_time: "not_validated"
}

 Link to this function

 validate(timing)

 View Source

 @spec validate(t()) :: {:ok, t()} | {:error, String.t()}

Validate that all required keys are present and valid (not nil).
Set by @validate_keys module attribute.
Currently checks: app, label
Returns {:ok, timing} on success or {:error, reason} on failure

 parameters

 Parameters

	timing: The SmartCity.Data.Timing struct to validate

 Link to this function

 validate!(timing)

 View Source

 @spec validate!(t()) :: t()

Validate that all required keys are present and valid (not nil).
Returns timing on success, or raises ArgumentError on failure
See validate/1

SmartCity.DataWriteComplete

Defines a data persisted event.

 Anchor for this section

 Summary

 Types

 id()

 t()

 timestamp()

 Functions

 new(msg)

 Instantiates an instance of a data write complete event struct.

 Anchor for this section

Types

 Link to this type

 id()

 View Source

 @type id() :: String.t()

 Link to this type

 t()

 View Source

 @type t() :: %SmartCity.DataWriteComplete{id: id(), timestamp: timestamp()}

 Link to this type

 timestamp()

 View Source

 @type timestamp() :: DateTime.t()

 Anchor for this section

Functions

 Link to this function

 new(msg)

 View Source

 @spec new(String.t() | map()) :: {:ok, map()} | {:error, String.t()}

Instantiates an instance of a data write complete event struct.

SmartCity.Dataset

Struct defining a dataset definition and functions for retrieving key elements
of the dataset for handling.
const Dataset = {
 "id": "", // UUID
 "business": { // Project Open Data Metadata Schema v1.1
 "authorEmail": "",
 "authorName": "",
 "benefitRating": 0, // value between 0.0 and 1.0
 "categories": [""],
 "conformsToUri": "",
 "contactEmail": "",
 "contactName": "",
 "dataTitle": "", // user friendly (dataTitle)
 "describedByMimeType": "",
 "describedByUrl": "",
 "description": "",
 "homepage": "",
 "issuedDate": "",
 "keywords": [""],
 "language": "",
 "license": "",
 "modifiedDate": "",
 "orgTitle": "", // user friendly (orgTitle)
 "parentDataset": "",
 "publishFrequency": "",
 "referenceUrls": [""],
 "rights": "",
 "riskRating": 0, // value between 0.0 and 1.0
 "spatial": "",
 "temporal": ""
 },
 "technical": {
 "allow_duplicates": true
 "authHeaders": {"header1": "", "header2": ""}
 "authBody": {"name": "", "clientID": ""}
 "authBodyEncodeMethod": "",
 "authUrl": "",
 "cadence": "",
 "dataName": "", // ~r/[a-zA-Z_]+$/
 "orgId": "",
 "orgName": "", // ~r/[a-zA-Z_]+$/
 "protocol": "", // List of protocols to use. Defaults to nil. Can be [http1, http2]
 "schema": [{
 "name": "",
 "type": "",
 "description": ""
 }],
 "sourceHeaders": {
 "header1": "",
 "header2": ""
 },
 "sourceQueryParams": {
 "key1": "",
 "key2": ""
 },
 "sourceType": "", // remote|stream|ingest|host
 "sourceUrl": "",
 "systemName": "", // ${orgName}__${dataName}
 "topLevelSelector": ""
 }
}

 Anchor for this section

 Summary

 Types

 id()

 t()

 Functions

 delete(struct, key)

 get(struct, key, default \\ nil)

 is_host?(dataset)

 Returns true if SmartCity.Dataset.Technical sourceType field is host

 is_ingest?(dataset)

 Returns true if SmartCity.Dataset.Technical sourceType field is ingest

 is_remote?(dataset)

 Returns true if SmartCity.Dataset.Technical sourceType field is remote

 is_stream?(dataset)

 Returns true if SmartCity.Dataset.Technical sourceType field is stream

 new(msg)

 Returns a new SmartCity.Dataset struct. SmartCity.Dataset.Business and
SmartCity.Dataset.Technical structs will be created along the way.

 put(struct, key, val)

 Anchor for this section

Types

 Link to this type

 id()

 View Source

 @type id() :: term()

 Link to this type

 t()

 View Source

 @type t() :: %SmartCity.Dataset{
 business: SmartCity.Dataset.Business.t(),
 id: String.t(),
 technical: SmartCity.Dataset.Technical.t(),
 version: String.t()
}

 Anchor for this section

Functions

 Link to this function

 delete(struct, key)

 View Source

 Link to this function

 get(struct, key, default \\ nil)

 View Source

 Link to this function

 is_host?(dataset)

 View Source

Returns true if SmartCity.Dataset.Technical sourceType field is host

 Link to this function

 is_ingest?(dataset)

 View Source

Returns true if SmartCity.Dataset.Technical sourceType field is ingest

 Link to this function

 is_remote?(dataset)

 View Source

Returns true if SmartCity.Dataset.Technical sourceType field is remote

 Link to this function

 is_stream?(dataset)

 View Source

Returns true if SmartCity.Dataset.Technical sourceType field is stream

 Link to this function

 new(msg)

 View Source

 @spec new(String.t() | map()) :: {:ok, map()} | {:error, term()}

Returns a new SmartCity.Dataset struct. SmartCity.Dataset.Business and
SmartCity.Dataset.Technical structs will be created along the way.

 parameters

 Parameters

	msg : map defining values of the struct to be created.
Can be initialized by	map with string keys
	map with atom keys
	JSON

 Link to this function

 put(struct, key, val)

 View Source

SmartCity.Dataset.Business

A struct representing the business data portion of a dataset struct definition (represented by SmartCity.Dataset)
You probably won't need to access this module directly; SmartCity.Dataset.new/1 will build this for you

 Anchor for this section

 Summary

 Types

 license_or_default()

 not_required()

 t()

 Functions

 delete(struct, key)

 get(struct, key, default \\ nil)

 new(msg)

 Returns a new SmartCity.Dataset.Business struct.
Can be created from Map with string or atom keys.

 put(struct, key, val)

 Anchor for this section

Types

 Link to this type

 license_or_default()

 View Source

 @type license_or_default() :: String.t()

 Link to this type

 not_required()

 View Source

 @type not_required() :: term() | nil

 Link to this type

 t()

 View Source

 @type t() :: %SmartCity.Dataset.Business{
 authorEmail: not_required(),
 authorName: not_required(),
 benefitRating: not_required(),
 categories: not_required(),
 conformsToUri: not_required(),
 contactEmail: String.t(),
 contactName: String.t(),
 dataTitle: String.t(),
 describedByMimeType: not_required(),
 describedByUrl: not_required(),
 description: String.t(),
 homepage: not_required(),
 issuedDate: not_required(),
 keywords: not_required(),
 language: not_required(),
 license: license_or_default(),
 modifiedDate: String.t(),
 orgTitle: String.t(),
 parentDataset: not_required(),
 publishFrequency: not_required(),
 referenceUrls: not_required(),
 rights: not_required(),
 riskRating: not_required(),
 spatial: not_required(),
 temporal: not_required()
}

 Anchor for this section

Functions

 Link to this function

 delete(struct, key)

 View Source

 Link to this function

 get(struct, key, default \\ nil)

 View Source

 Link to this function

 new(msg)

 View Source

Returns a new SmartCity.Dataset.Business struct.
Can be created from Map with string or atom keys.

 parameters

 Parameters

	msg: Map with string or atom keys that defines the dataset's business metadata. See SmartCity.Dataset.Business typespec for available keys.

 Required Keys
- dataTitle
- description
- modifiedDate
- orgTitle
- contactName
- contactEmail
	License will default to http://opendefinition.org/licenses/cc-by/ if not provided

 Link to this function

 put(struct, key, val)

 View Source

SmartCity.Dataset.Technical

A struct defining technical metadata on a dataset.

 Anchor for this section

 Summary

 Types

 not_required(type)

 t()

 Functions

 delete(struct, key)

 get(struct, key, default \\ nil)

 new(msg)

 Returns a new SmartCity.Dataset.Technical.
Can be created from Map with string or atom keys.
Raises an ArgumentError when passed invalid input

 put(struct, key, val)

 Anchor for this section

Types

 Link to this type

 not_required(type)

 View Source

 @type not_required(type) :: type | nil

 Link to this type

 t()

 View Source

 @type t() :: %SmartCity.Dataset.Technical{
 allow_duplicates: not_required(boolean()),
 authBody: not_required(map()),
 authBodyEncodeMethod: not_required(String.t()),
 authHeaders: not_required(map()),
 authUrl: String.t(),
 cadence: not_required(String.t()),
 credentials: boolean(),
 dataName: String.t(),
 orgId: not_required(String.t()),
 orgName: String.t(),
 private: not_required(boolean()),
 protocol: not_required([String.t()]),
 schema: not_required([map()]),
 sourceHeaders: not_required(map()),
 sourceQueryParams: not_required(map()),
 sourceType: not_required(String.t()),
 sourceUrl: String.t(),
 systemName: String.t(),
 topLevelSelector: not_required(String.t())
}

 Anchor for this section

Functions

 Link to this function

 delete(struct, key)

 View Source

 Link to this function

 get(struct, key, default \\ nil)

 View Source

 Link to this function

 new(msg)

 View Source

 @spec new(map()) :: t()

Returns a new SmartCity.Dataset.Technical.
Can be created from Map with string or atom keys.
Raises an ArgumentError when passed invalid input

 parameters

 Parameters

	msg: Map with string or atom keys that defines the dataset's technical metadata

 Required Keys
- dataName
- orgName
- systemName
- sourceUrl
	sourceType will default to "remote"

 Link to this function

 put(struct, key, val)

 View Source

SmartCity.DatasetAccessGroupRelation

Defines a dataset access group association.

 Anchor for this section

 Summary

 Types

 access_group_id()

 dataset_id()

 t()

 Functions

 new(msg)

 Instantiates an instance of a dataset access group relation event struct.

 Anchor for this section

Types

 Link to this type

 access_group_id()

 View Source

 @type access_group_id() :: SmartCity.AccessGroup.id()

 Link to this type

 dataset_id()

 View Source

 @type dataset_id() :: SmartCity.Dataset.id()

 Link to this type

 t()

 View Source

 @type t() :: %SmartCity.DatasetAccessGroupRelation{
 access_group_id: access_group_id(),
 dataset_id: dataset_id()
}

 Anchor for this section

Functions

 Link to this function

 new(msg)

 View Source

 @spec new(String.t() | map()) :: {:ok, map()} | {:error, String.t()}

Instantiates an instance of a dataset access group relation event struct.

SmartCity.Event

Defines macros for encoding event types the Smart City platform
will respond to in any of the various micro service components
in a central location shared by all components.

 Anchor for this section

 Summary

 Functions

 data_extract_end()

 Signals a dataset has completed the extraction process and the final
message has been written to the raw ingestion topic.

 data_extract_start()

 Signals data for a dataset is about to be downloaded into the platform,
parsed, and written to the raw ingestion topic.

 data_ingest_end()

 Signals a dataset has completed an ingestion process through the
pipeline from end to end and been persisted.

 data_ingest_start()

 Signals a dataset is about to be retrieved and begin loading into
the ingestion pipeline.

 data_standardization_end()

 Signals that data standardization is complete

 data_write_complete()

 Signals that writing some data for a dataset has completed

 dataset_access_group_associate()

 Defines a dataset access group relationship.

 dataset_access_group_disassociate()

 Defines a dataset access group relationship.

 dataset_delete()

 Signals that a dataset should be deleted

 dataset_disable()

 Signals that a dataset should be disabled.

 dataset_extract_complete()

 deprecated

 Signals that dataset extraction has completed

 dataset_extract_start()

 deprecated

 Signals that a dataset extraction is starting

 dataset_harvest_end()

 Signals a dataset harvest end

 dataset_harvest_start()

 Signals a dataset harvest start

 dataset_query()

 Signals a dataset query has been run

 dataset_update()

 Defines an update event to a dataset within the system. The
system treats create events as a subset of updates.

 error_data_extract()

 Declares an error occurred during an attempted data extraction.

 error_data_ingest()

 Declares an error occurred during an attempted data ingestion.

 error_dataset_update()

 Declares an error occurred during the attempted upsert of a
dataset.

 error_file_ingest()

 Declares an error occurred during an attempted file ingestion.

 error_ingestion_update()

 Declares an error occurred during the attempted update of an ingestion.

 error_organization_update()

 Declares an error occurred during the attempted upsert of an
organization.

 file_ingest_end()

 Signals a non-ingestable data file has been successfully uploaded
to the object store bucket.

 file_ingest_start()

 Signals a non-ingestable data file is about to be downloaded to the
platform and stored in the object store bucket.

 file_upload()

 deprecated

 Signals that a new file has been uploaded to the object store
and made available for the rest of the system.

 hosted_file_complete()

 deprecated

 Hosted file and been downloaded and stored

 hosted_file_start()

 deprecated

 Signals to file should be downloaded

 ingestion_delete()

 Signals an ingestion should be deleted

 ingestion_update()

 Signals an ingestion update has occurred

 organization_update()

 Defines an update event to an organization within the system.
The system treats create events as a subset of updates.

 user_access_group_associate()

 Defines a user access group relationship.

 user_access_group_disassociate()

 Defines a user access group relationship.

 user_login()

 Signals a user has logged in

 user_organization_associate()

 Defines a user organization relationship.

 user_organization_disassociate()

 Defines a user organization relationship.

 Anchor for this section

Functions

 Link to this macro

 data_extract_end()

 View Source

 (macro)

Signals a dataset has completed the extraction process and the final
message has been written to the raw ingestion topic.

 Link to this macro

 data_extract_start()

 View Source

 (macro)

Signals data for a dataset is about to be downloaded into the platform,
parsed, and written to the raw ingestion topic.

 Link to this macro

 data_ingest_end()

 View Source

 (macro)

Signals a dataset has completed an ingestion process through the
pipeline from end to end and been persisted.

 Link to this macro

 data_ingest_start()

 View Source

 (macro)

Signals a dataset is about to be retrieved and begin loading into
the ingestion pipeline.

 Link to this macro

 data_standardization_end()

 View Source

 (macro)

Signals that data standardization is complete

 Link to this macro

 data_write_complete()

 View Source

 (macro)

Signals that writing some data for a dataset has completed

 Link to this macro

 dataset_access_group_associate()

 View Source

 (macro)

Defines a dataset access group relationship.

 Link to this macro

 dataset_access_group_disassociate()

 View Source

 (macro)

Defines a dataset access group relationship.

 Link to this macro

 dataset_delete()

 View Source

 (macro)

Signals that a dataset should be deleted

 Link to this macro

 dataset_disable()

 View Source

 (macro)

Signals that a dataset should be disabled.

 Link to this macro

 dataset_extract_complete()

 View Source

 (macro)

 This macro is deprecated. Use data_extract_end/0.

Signals that dataset extraction has completed

 Link to this macro

 dataset_extract_start()

 View Source

 (macro)

 This macro is deprecated. Use data_extract_start/0.

Signals that a dataset extraction is starting

 Link to this macro

 dataset_harvest_end()

 View Source

 (macro)

Signals a dataset harvest end

 Link to this macro

 dataset_harvest_start()

 View Source

 (macro)

Signals a dataset harvest start

 Link to this macro

 dataset_query()

 View Source

 (macro)

Signals a dataset query has been run

 Link to this macro

 dataset_update()

 View Source

 (macro)

Defines an update event to a dataset within the system. The
system treats create events as a subset of updates.

 Link to this macro

 error_data_extract()

 View Source

 (macro)

Declares an error occurred during an attempted data extraction.

 Link to this macro

 error_data_ingest()

 View Source

 (macro)

Declares an error occurred during an attempted data ingestion.

 Link to this macro

 error_dataset_update()

 View Source

 (macro)

Declares an error occurred during the attempted upsert of a
dataset.

 Link to this macro

 error_file_ingest()

 View Source

 (macro)

Declares an error occurred during an attempted file ingestion.

 Link to this macro

 error_ingestion_update()

 View Source

 (macro)

Declares an error occurred during the attempted update of an ingestion.

 Link to this macro

 error_organization_update()

 View Source

 (macro)

Declares an error occurred during the attempted upsert of an
organization.

 Link to this macro

 file_ingest_end()

 View Source

 (macro)

Signals a non-ingestable data file has been successfully uploaded
to the object store bucket.

 Link to this macro

 file_ingest_start()

 View Source

 (macro)

Signals a non-ingestable data file is about to be downloaded to the
platform and stored in the object store bucket.

 Link to this macro

 file_upload()

 View Source

 (macro)

 This macro is deprecated. Use file_ingest_end/0.

Signals that a new file has been uploaded to the object store
and made available for the rest of the system.

 Link to this macro

 hosted_file_complete()

 View Source

 (macro)

 This macro is deprecated. Use file_ingest_end/0.

Hosted file and been downloaded and stored

 Link to this macro

 hosted_file_start()

 View Source

 (macro)

 This macro is deprecated. Use file_ingest_start/0.

Signals to file should be downloaded

 Link to this macro

 ingestion_delete()

 View Source

 (macro)

Signals an ingestion should be deleted

 Link to this macro

 ingestion_update()

 View Source

 (macro)

Signals an ingestion update has occurred

 Link to this macro

 organization_update()

 View Source

 (macro)

Defines an update event to an organization within the system.
The system treats create events as a subset of updates.

 Link to this macro

 user_access_group_associate()

 View Source

 (macro)

Defines a user access group relationship.

 Link to this macro

 user_access_group_disassociate()

 View Source

 (macro)

Defines a user access group relationship.

 Link to this macro

 user_login()

 View Source

 (macro)

Signals a user has logged in

 Link to this macro

 user_organization_associate()

 View Source

 (macro)

Defines a user organization relationship.

 Link to this macro

 user_organization_disassociate()

 View Source

 (macro)

Defines a user organization relationship.

SmartCity.Helpers

Functions used across SmartCity modules.

 Anchor for this section

 Summary

 Types

 file_type()

 mime_type()

 Functions

 deep_merge(left, right)

 Merges two maps into one, including sub maps. Matching keys from the right map will override their corresponding key in the left map.

 mime_type(file_type)

 Standardize file type definitions by deferring to the
official media type of the file based on a supplied extension.

 safe_atom_to_string(atom)

 safe_string_to_atom(string)

 to_atom_keys(map)

 Convert a map with string keys to one with atom keys. Will convert keys nested in a sub-map or a
map that is part of a list. Ignores existing atom keys.

 to_string_keys(map)

 Convert a map with atom keys to one with string keys. Will convert keys nested in a sub-map or a
map that is part of a list. Ignores existing string keys.

 Anchor for this section

Types

 Link to this type

 file_type()

 View Source

 @type file_type() :: String.t()

 Link to this type

 mime_type()

 View Source

 @type mime_type() :: String.t()

 Anchor for this section

Functions

 Link to this function

 deep_merge(left, right)

 View Source

 @spec deep_merge(map(), map()) :: map()

Merges two maps into one, including sub maps. Matching keys from the right map will override their corresponding key in the left map.

 Link to this function

 mime_type(file_type)

 View Source

 @spec mime_type(file_type()) :: mime_type()

Standardize file type definitions by deferring to the
official media type of the file based on a supplied extension.

 Link to this function

 safe_atom_to_string(atom)

 View Source

 Link to this function

 safe_string_to_atom(string)

 View Source

 Link to this function

 to_atom_keys(map)

 View Source

 @spec to_atom_keys(map()) :: map()

Convert a map with string keys to one with atom keys. Will convert keys nested in a sub-map or a
map that is part of a list. Ignores existing atom keys.

 examples

 Examples

iex> SmartCity.Helpers.to_atom_keys(%{"abc" => 123})
%{abc: 123}

iex> SmartCity.Helpers.to_atom_keys(%{"a" => %{"b" => "c"}})
%{a: %{b: "c"}}

iex> SmartCity.Helpers.to_atom_keys(%{"a" => [%{"b" => "c"}]})
%{a: [%{b: "c"}]}

 Link to this function

 to_string_keys(map)

 View Source

 @spec to_string_keys(map()) :: map()

Convert a map with atom keys to one with string keys. Will convert keys nested in a sub-map or a
map that is part of a list. Ignores existing string keys.

 examples

 Examples

iex> SmartCity.Helpers.to_string_keys(%{abc: 123})
%{"abc" => 123}

iex> SmartCity.Helpers.to_string_keys(%{a: %{b: "c"}})
%{"a" => %{"b" => "c"}}

iex> SmartCity.Helpers.to_string_keys(%{a: [%{b: "c"}]})
%{"a" => [%{"b" => "c"}]}

SmartCity.HostedFile

Defines the information needed to process uploaded
files by components of the system including the files'
type, parent identifier, and location info.

 Anchor for this section

 Summary

 Types

 bucket()

 id()

 key()

 t()

 Functions

 new(msg)

 Instantiates an instance of a file upload event struct.

 Anchor for this section

Types

 Link to this type

 bucket()

 View Source

 @type bucket() :: String.t()

 Link to this type

 id()

 View Source

 @type id() :: String.t()

 Link to this type

 key()

 View Source

 @type key() :: String.t()

 Link to this type

 t()

 View Source

 @type t() :: %SmartCity.HostedFile{
 bucket: bucket(),
 dataset_id: id(),
 key: key(),
 mime_type: SmartCity.Helpers.mime_type(),
 version: term()
}

 Anchor for this section

Functions

 Link to this function

 new(msg)

 View Source

 @spec new(String.t() | map()) :: {:ok, map()} | {:error, term()}

Instantiates an instance of a file upload event struct.

SmartCity.Ingestion

Struct defining an ingestion update event.
const Ingestion = {
 "id": "",
 "name", "",
 "allow_duplicates": boolean,
 "cadence": "",
 "extractSteps": [],
 "schema": [],
 "targetDatasets": ["", ""],
 "sourceFormat": "",
 "topLevelSelector": "",
 "transformations": [],
}

 Anchor for this section

 Summary

 Types

 not_required(type)

 t()

 Functions

 delete(struct, key)

 get(struct, key, default \\ nil)

 new(msg)

 Returns a new SmartCity.Ingestion.
Can be created from Map with string or atom keys.
Raises an ArgumentError when passed invalid input

 put(struct, key, val)

 Anchor for this section

Types

 Link to this type

 not_required(type)

 View Source

 @type not_required(type) :: type | nil

 Link to this type

 t()

 View Source

 @type t() :: %SmartCity.Ingestion{
 allow_duplicates: not_required(boolean()),
 cadence: not_required(String.t()),
 extractSteps: [map()],
 id: String.t(),
 name: String.t(),
 schema: [map()],
 sourceFormat: String.t(),
 targetDatasets: [String.t()],
 topLevelSelector: not_required(String.t()),
 transformations: [SmartCity.Ingestion.Transformation.t()]
}

 Anchor for this section

Functions

 Link to this function

 delete(struct, key)

 View Source

 Link to this function

 get(struct, key, default \\ nil)

 View Source

 Link to this function

 new(msg)

 View Source

 @spec new(map()) :: t()

Returns a new SmartCity.Ingestion.
Can be created from Map with string or atom keys.
Raises an ArgumentError when passed invalid input

 parameters

 Parameters

	msg: Map with string or atom keys that defines the ingestion metadata

Required Keys:
- targetDatasets
- sourceFormat
- name
	cadence will default to "never"
	allow_duplicates will default to true

 Link to this function

 put(struct, key, val)

 View Source

SmartCity.Ingestion.Transformation

A struct representing the transformations portion of an ingestion struct definition (represented by SmartCity.Ingestion)
You probably won't need to access this module directly; SmartCity.Ingestion.new/1 will build this for you

 Anchor for this section

 Summary

 Types

 license_or_default()

 not_required()

 t()

 Functions

 delete(struct, key)

 get(struct, key, default \\ nil)

 new(msg)

 Returns a new SmartCity.Ingestion.Transformation struct.
Can be created from Map with string or atom keys.

 put(struct, key, val)

 Anchor for this section

Types

 Link to this type

 license_or_default()

 View Source

 @type license_or_default() :: String.t()

 Link to this type

 not_required()

 View Source

 @type not_required() :: term() | nil

 Link to this type

 t()

 View Source

 @type t() :: %SmartCity.Ingestion.Transformation{
 id: String.t(),
 name: String.t(),
 parameters: map(),
 sequence: Integer.t(),
 type: String.t()
}

 Anchor for this section

Functions

 Link to this function

 delete(struct, key)

 View Source

 Link to this function

 get(struct, key, default \\ nil)

 View Source

 Link to this function

 new(msg)

 View Source

Returns a new SmartCity.Ingestion.Transformation struct.
Can be created from Map with string or atom keys.

 parameters

 Parameters

	type:
	parameters:
	name:
	id:
	sequence:

	License will default to http://opendefinition.org/licenses/cc-by/ if not provided

 Link to this function

 put(struct, key, val)

 View Source

SmartCity.Organization

Struct defining an organization update event.
const Organization = {
 "description": "",
 "dn": "", // LDAP distinguished name
 "homepage": "",
 "id": "", // uuid
 "logoUrl": "",
 "orgName": "", // system friendly
 "orgTitle": "" // user friendly
}

 Anchor for this section

 Summary

 Types

 id()

 reason()

 t()

 Functions

 new(msg)

 Returns a new SmartCity.Organization struct.

 Anchor for this section

Types

 Link to this type

 id()

 View Source

 @type id() :: term()

 Link to this type

 reason()

 View Source

 @type reason() :: term()

 Link to this type

 t()

 View Source

 @type t() :: %SmartCity.Organization{
 dataJsonUrl: term(),
 description: term(),
 dn: term(),
 homepage: term(),
 id: term(),
 logoUrl: term(),
 orgName: term(),
 orgTitle: term(),
 version: term()
}

 Anchor for this section

Functions

 Link to this function

 new(msg)

 View Source

 @spec new(String.t() | map()) :: {:ok, map()} | {:error, term()}

Returns a new SmartCity.Organization struct.
Can be created from:
	map with string keys
	map with atom keys
	JSON

SmartCity.SchemaGenerator

Take the first row of data from a datasample and generates an implied schema from that with all field types being strings. Lists and nested maps are generated with their subschemas where applicable.

 Anchor for this section

 Summary

 Functions

 extract_field(list)

 generate_schema(data)

 Anchor for this section

Functions

 Link to this function

 extract_field(list)

 View Source

 Link to this function

 generate_schema(data)

 View Source

SmartCity.User

Defines a user organization association.

 Anchor for this section

 Summary

 Types

 email()

 subject_id()

 t()

 Functions

 new(msg)

 Instantiates an instance of a user organization associate event struct.

 Anchor for this section

Types

 Link to this type

 email()

 View Source

 @type email() :: String.t()

 Link to this type

 subject_id()

 View Source

 @type subject_id() :: String.t()

 Link to this type

 t()

 View Source

 @type t() :: %SmartCity.User{
 email: String.t(),
 name: String.t(),
 subject_id: String.t()
}

 Anchor for this section

Functions

 Link to this function

 new(msg)

 View Source

 @spec new(String.t() | map()) :: {:ok, map()} | {:error, String.t()}

Instantiates an instance of a user organization associate event struct.

SmartCity.UserAccessGroupRelation

Defines a user access group relation.

 Anchor for this section

 Summary

 Types

 access_group_id()

 subject_id()

 t()

 Functions

 new(msg)

 Instantiates an instance of a user access group relation event struct.

 Anchor for this section

Types

 Link to this type

 access_group_id()

 View Source

 @type access_group_id() :: SmartCity.AccessGroup.id()

 Link to this type

 subject_id()

 View Source

 @type subject_id() :: String.t()

 Link to this type

 t()

 View Source

 @type t() :: %SmartCity.UserAccessGroupRelation{
 access_group_id: access_group_id(),
 subject_id: subject_id()
}

 Anchor for this section

Functions

 Link to this function

 new(msg)

 View Source

 @spec new(String.t() | map()) :: {:ok, map()} | {:error, String.t()}

Instantiates an instance of a user access group relation event struct.

SmartCity.UserOrganizationAssociate

Defines a user organization association.

 Anchor for this section

 Summary

 Types

 email()

 org_id()

 subject_id()

 t()

 Functions

 new(msg)

 Instantiates an instance of a user organization associate event struct.

 Anchor for this section

Types

 Link to this type

 email()

 View Source

 @type email() :: String.t()

 Link to this type

 org_id()

 View Source

 @type org_id() :: SmartCity.Organization.id()

 Link to this type

 subject_id()

 View Source

 @type subject_id() :: String.t()

 Link to this type

 t()

 View Source

 @type t() :: %SmartCity.UserOrganizationAssociate{
 email: String.t(),
 org_id: org_id(),
 subject_id: subject_id()
}

 Anchor for this section

Functions

 Link to this function

 new(msg)

 View Source

 @spec new(String.t() | map()) :: {:ok, map()} | {:error, String.t()}

Instantiates an instance of a user organization associate event struct.

SmartCity.UserOrganizationDisassociate

Defines a user organization association.

 Anchor for this section

 Summary

 Types

 org_id()

 subject_id()

 t()

 Functions

 new(msg)

 Instantiates an instance of a user organization disassociate event struct.

 Anchor for this section

Types

 Link to this type

 org_id()

 View Source

 @type org_id() :: SmartCity.Organization.id()

 Link to this type

 subject_id()

 View Source

 @type subject_id() :: String.t()

 Link to this type

 t()

 View Source

 @type t() :: %SmartCity.UserOrganizationDisassociate{
 org_id: org_id(),
 subject_id: subject_id()
}

 Anchor for this section

Functions

 Link to this function

 new(msg)

 View Source

 @spec new(String.t() | map()) :: {:ok, map()} | {:error, String.t()}

Instantiates an instance of a user organization disassociate event struct.

SmartCity.AccessGroup.NotFound exception

SmartCity.Organization.NotFound exception

 OEBPS/dist/epub-75RCTLK3.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);var a="hll";function c(){u()}function u(){o("[data-group-id]").forEach(e=>{let t=e.getAttribute("data-group-id");e.addEventListener("mouseenter",n=>{i(t,!0)}),e.addEventListener("mouseleave",n=>{i(t,!1)})})}function i(r,e){o(`[data-group-id="${r}"]`).forEach(n=>{n.classList.toggle(a,e)})}c();})();

