

 SnakeBridge

 v0.15.0

 [image: Logo]

 Table of contents

 	Getting Started

 	Overview

 	Installation

 	Examples

 	Math Demo

 	Proof Pipeline

 	Guides

 	Universal FFI

 	Generated Wrappers

 	Type System

 	References & Sessions

 	Session Affinity

 	Streaming

 	Error Handling

 	Telemetry

 	How-To

 	Configuration

 	Best Practices

 	Coverage Reports

 	About

 	Changelog

 	License

 	
 Modules

 	SnakeBridge.Adapter

 	SnakeBridge.Benchmark

 	SnakeBridge.CallbackRegistry

 	SnakeBridge.Config.Library

 	SnakeBridge.Docs

 	SnakeBridge.Docs.Manifest

 	SnakeBridge.Docs.ManifestBuilder

 	SnakeBridge.Docs.MarkdownConverter

 	SnakeBridge.Docs.MathRenderer

 	SnakeBridge.Docs.RstParser

 	SnakeBridge.Docs.SphinxInventory

 	SnakeBridge.Generator.PathMapper

 	SnakeBridge.Generator.TypeMapper

 	SnakeBridge.HelperGenerator

 	SnakeBridge.Helpers

 	SnakeBridge.Ledger

 	SnakeBridge.Lock.Verifier

 	SnakeBridge.ModuleResolver

 	SnakeBridge.PythonRunner

 	SnakeBridge.Registry

 	SnakeBridge.RuntimeClient

 	SnakeBridge.RuntimeContext

 	SnakeBridge.Telemetry.Handlers.Logger

 	SnakeBridge.Telemetry.Handlers.Metrics

 	SnakeBridge.Telemetry.RuntimeForwarder

 	SnakeBridge.Telemetry.ScriptShutdownForwarder

 	SnakeBridge.TestCase

 	SnakeBridge.WheelConfig

 	SnakeBridge.WheelSelector

 	SnakeBridge.WithContext

 	Snakepit.PyRef

 	Core

 	SnakeBridge

 	SnakeBridge.Dynamic

 	SnakeBridge.Runtime

 	SnakeBridge.Types

 	Sessions

 	SnakeBridge.SessionContext

 	SnakeBridge.SessionManager

 	Configuration

 	SnakeBridge.Config

 	SnakeBridge.ConfigHelper

 	SnakeBridge.Defaults

 	Code Generation

 	SnakeBridge.Generator

 	SnakeBridge.Introspector

 	SnakeBridge.Lock

 	SnakeBridge.Manifest

 	SnakeBridge.Scanner

 	Types & References

 	SnakeBridge.Bytes

 	SnakeBridge.Ref

 	SnakeBridge.StreamRef

 	SnakeBridge.Types.Decoder

 	SnakeBridge.Types.Encoder

 	Errors

 	SnakeBridge.DynamicException

 	SnakeBridge.Error

 	SnakeBridge.ErrorTranslator

 	Telemetry

 	SnakeBridge.Telemetry

 	Environment

 	SnakeBridge.EnvironmentError

 	SnakeBridge.IntrospectionError

 	SnakeBridge.PythonEnv

 	Exceptions

 	SnakeBridge.CompileError

 	SnakeBridge.HelperNotFoundError

 	SnakeBridge.HelperRegistryError

 	SnakeBridge.InvalidRefError

 	SnakeBridge.RefNotFoundError

 	SnakeBridge.ScanError

 	SnakeBridge.SerializationError

 	SnakeBridge.SessionMismatchError

 	SnakeBridge.Error.DtypeMismatchError

 	SnakeBridge.Error.OutOfMemoryError

 	SnakeBridge.Error.ShapeMismatchError

 	
 Mix Tasks

 	mix compile.snakebridge

 	mix snakebridge.docs.manifest

 	mix snakebridge.plan

 	mix snakebridge.python_test

 	mix snakebridge.regen

 	mix snakebridge.setup

 	mix snakebridge.verify

SnakeBridge.Adapter

Provides the use SnakeBridge.Adapter macro for generated Python adapters.
When you use SnakeBridge.Adapter, it imports the __python_call__/2 function
that generated adapters use to call Python functions via Snakepit.
Example
defmodule MyApp.Math do
 use SnakeBridge.Adapter

 @spec sqrt(number()) :: float()
 def sqrt(x) do
 __python_call__("sqrt", [x])
 end
end
The adapter module tracks the Python module name and provides the runtime
bridge to execute Python functions.

 Summary

 Functions

 __python_call__(func_name, args)

 Calls a Python function with the given arguments using SnakeBridge.Runtime.

 Functions

 __python_call__(func_name, args)

 @spec __python_call__(String.t(), list()) ::
 {:ok, term()} | {:error, SnakeBridge.Runtime.error_reason()}

Calls a Python function with the given arguments using SnakeBridge.Runtime.

SnakeBridge.Benchmark

Benchmark utilities for SnakeBridge performance measurement.
Provides functions for measuring execution time, collecting statistics,
and comparing performance across different configurations.
Usage
Single measurement
result = Benchmark.measure("my_operation", fn -> do_work() end)

Multiple iterations with statistics
stats = Benchmark.run_iterations("my_operation", fn -> do_work() end, 10)

Compare two runs
comparison = Benchmark.compare(baseline_stats, current_stats)

 Summary

 Types

 comparison()

 measurement()

 stats()

 Functions

 compare(map1, map2)

 Compares two benchmark results and calculates improvement metrics.

 format_bytes(bytes)

 Formats a byte count to a human-readable string.

 format_time(us)

 Formats a time in microseconds to a human-readable string.

 measure(name, fun)

 Measures the execution time of a single function call.

 print_comparison(comparison)

 Prints a comparison between two benchmark runs.

 print_stats(stats)

 Prints a summary of benchmark statistics.

 run_iterations(name, fun, iterations \\ 10)

 Runs a function multiple times and collects statistics.

 Types

 comparison()

 @type comparison() :: %{
 speedup: float(),
 improvement_percent: float(),
 baseline_mean_us: float(),
 current_mean_us: float()
}

 measurement()

 @type measurement() :: %{
 name: String.t(),
 time_us: non_neg_integer(),
 value: term(),
 error: String.t() | nil
}

 stats()

 @type stats() :: %{
 name: String.t(),
 iterations: non_neg_integer(),
 mean_us: float(),
 median_us: float(),
 min_us: non_neg_integer(),
 max_us: non_neg_integer(),
 std_dev_us: float(),
 times_us: [non_neg_integer()]
}

 Functions

 compare(map1, map2)

 @spec compare(map(), map()) :: comparison()

Compares two benchmark results and calculates improvement metrics.
Returns:
	speedup - Ratio (> 1.0 means faster)
	improvement_percent - Percentage improvement (positive is faster)

 format_bytes(bytes)

 @spec format_bytes(number()) :: String.t()

Formats a byte count to a human-readable string.
Examples
iex> Benchmark.format_bytes(1024)
"1.00 KB"

iex> Benchmark.format_bytes(1_048_576)
"1.00 MB"

 format_time(us)

 @spec format_time(number()) :: String.t()

Formats a time in microseconds to a human-readable string.
Examples
iex> Benchmark.format_time(500)
"500 µs"

iex> Benchmark.format_time(5_000)
"5.00 ms"

iex> Benchmark.format_time(5_000_000)
"5.00 s"

 measure(name, fun)

 @spec measure(String.t(), (-> term())) :: measurement()

Measures the execution time of a single function call.
Returns a map with:
	name - The benchmark name
	time_us - Execution time in microseconds
	value - The function's return value
	error - Error message if the function raised

 print_comparison(comparison)

 @spec print_comparison(comparison()) :: :ok

Prints a comparison between two benchmark runs.

 print_stats(stats)

 @spec print_stats(stats()) :: :ok

Prints a summary of benchmark statistics.

 run_iterations(name, fun, iterations \\ 10)

 @spec run_iterations(String.t(), (-> term()), non_neg_integer()) :: stats()

Runs a function multiple times and collects statistics.
Returns a map with statistical measures:
	mean_us - Average time in microseconds
	median_us - Median time in microseconds
	min_us - Minimum time
	max_us - Maximum time
	std_dev_us - Standard deviation

SnakeBridge.CallbackRegistry

Registry for Elixir callbacks passed to Python.
Manages callback lifecycle and provides invocation support.

 Summary

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 ensure_tool_registered(session_id)

 Ensures the callback tool is registered for the session.

 handle_tool(params)

 Handles callback tool invocations from Python.

 invoke(callback_id, args)

 Invokes a registered callback with arguments.

 register(fun, owner_pid \\ self())

 Registers an Elixir function as a callback.

 start_link(opts \\ [])

 unregister(callback_id)

 Unregisters a callback.

 Functions

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 ensure_tool_registered(session_id)

 @spec ensure_tool_registered(String.t() | nil) :: :ok

Ensures the callback tool is registered for the session.

 handle_tool(params)

 @spec handle_tool(map()) :: map()

Handles callback tool invocations from Python.

 invoke(callback_id, args)

 @spec invoke(String.t(), list()) :: {:ok, term()} | {:error, term()}

Invokes a registered callback with arguments.

 register(fun, owner_pid \\ self())

 @spec register(function(), pid()) :: {:ok, String.t()}

Registers an Elixir function as a callback.

 start_link(opts \\ [])

 unregister(callback_id)

 @spec unregister(String.t()) :: :ok

Unregisters a callback.

SnakeBridge.Config.Library

Configuration struct for a single Python library binding.
Options
	:generate - Controls which symbols are generated:	:used (default) - Only generate wrappers for symbols detected in your code
	:all - Generate wrappers for ALL public symbols in the Python module

	:module_mode - Controls which Python submodules are generated when generate: :all:	:root / :light / :top - Only the root module
	:exports / :api - Only the root module, plus submodules explicitly exported
by the root module via __all__ (avoids walking large internal trees)
	:public / :standard - Discover submodules and keep public API modules
	:explicit - Discover submodules and keep only modules/packages that explicitly
define __all__ (smallest “discover” mode; use module_include for overrides)
	:docs / :manifest - Generate a docs-defined public surface from a manifest file
	:all / :nuclear - Discover all submodules (including private)
	{:only, ["linalg", "fft"]} - Explicit submodule allowlist

	:submodules - When true, introspect all submodules (can generate thousands of files)
	:public_api - When true with submodules: true, only include modules with explicit
public API (__all__ defined or classes defined in the module). This filters out internal
implementation modules, typically reducing generated files by 90%+.
	:module_include - Extra submodules to include (relative to the library root)
	:module_exclude - Submodules to exclude (relative to the library root)
	:module_depth - Limit discovery depth (e.g. 1 = only direct children)
	:docs_url - Explicit documentation URL for third-party libraries
	:docs_manifest - Path to a SnakeBridge docs manifest JSON file (used with module_mode: :docs)
	:docs_profile - Profile key inside docs_manifest (:summary, :full, or custom string)
	:class_method_scope - Controls how class methods are discovered during introspection:	:all (default) - include inherited methods (can be huge for tensor-like bases)
	:defined - only methods defined on the class itself (plus __init__)

	:max_class_methods - Guardrail for class method enumeration. When class_method_scope: :all
would exceed this limit, SnakeBridge falls back to :defined for that class.
	:on_not_found - Behavior when a requested symbol is not present in the current Python env:	:error - fail compilation (recommended for generate: :used)
	:stub - generate deterministic stubs and continue (recommended for docs-derived surfaces)

 Summary

 Types

 class_method_scope()

 generate_mode()

 module_mode()

 on_not_found()

 t()

 Types

 class_method_scope()

 @type class_method_scope() :: :all | :defined

 generate_mode()

 @type generate_mode() :: :all | :used

 module_mode()

 @type module_mode() ::
 :root | :exports | :public | :explicit | :docs | :all | {:only, [String.t()]}

 on_not_found()

 @type on_not_found() :: :error | :stub

 t()

 @type t() :: %SnakeBridge.Config.Library{
 class_method_scope: class_method_scope() | nil,
 docs_manifest: String.t() | nil,
 docs_profile: String.t() | nil,
 docs_url: String.t() | nil,
 exclude: [String.t()],
 extras: [String.t()],
 generate: generate_mode(),
 include: [String.t()],
 max_class_methods: non_neg_integer() | nil,
 min_signature_tier: atom() | String.t() | nil,
 module_depth: pos_integer() | nil,
 module_exclude: [String.t()],
 module_include: [String.t()],
 module_mode: module_mode() | nil,
 module_name: module(),
 name: atom(),
 on_not_found: on_not_found() | nil,
 public_api: boolean(),
 pypi_package: String.t() | nil,
 python_name: String.t(),
 signature_sources: [atom() | String.t()] | nil,
 streaming: [String.t()],
 strict_signatures: boolean() | nil,
 stub_search_paths: [String.t()] | nil,
 stubgen: keyword() | nil,
 submodules: boolean(),
 typeshed_path: String.t() | nil,
 use_typeshed: boolean() | nil,
 version: String.t() | :stdlib | nil
}

SnakeBridge.Docs

On-demand documentation fetching with optional caching.

 Summary

 Functions

 get(module, function)

 groups_for_modules(opts \\ [])

 Builds an ExDoc groups_for_modules keyword list using the SnakeBridge manifest.

 nest_modules_by_prefix(opts \\ [])

 Builds an ExDoc nest_modules_by_prefix list using the SnakeBridge manifest.

 search(module, query)

 Functions

 get(module, function)

 @spec get(module(), atom() | String.t()) :: String.t()

 groups_for_modules(opts \\ [])

 @spec groups_for_modules(keyword()) :: [{String.t(), [module()]}]

Builds an ExDoc groups_for_modules keyword list using the SnakeBridge manifest.
This keeps HexDocs navigation aligned with Python package paths, while
remaining purely an Elixir configuration concern.
Options
	:config - SnakeBridge.Config struct (defaults to SnakeBridge.Config.load/0)
	:manifest - manifest map (defaults to SnakeBridge.Manifest.load/1)
	:depth - group depth beyond the library root (:full or non-negative integer, default: 1)
	:libraries - list of library names to include (atoms or strings)
	:include_functions - include module functions (default: true)
	:include_classes - include class modules (default: true)

 nest_modules_by_prefix(opts \\ [])

 @spec nest_modules_by_prefix(keyword()) :: [module()]

Builds an ExDoc nest_modules_by_prefix list using the SnakeBridge manifest.
This keeps the navigation tree aligned with generated Python packages.
Options
	:config - SnakeBridge.Config struct (defaults to SnakeBridge.Config.load/0)
	:manifest - manifest map (defaults to SnakeBridge.Manifest.load/1)
	:libraries - list of library names to include (atoms or strings)

 search(module, query)

 @spec search(module(), String.t()) :: list()

SnakeBridge.Docs.Manifest

Loads a docs-derived public surface manifest for a SnakeBridge library.
A manifest is a JSON file that encodes which Python modules/objects should be
treated as the "public surface" for wrapper generation. This enables:
	small, stable default bindings (e.g. :summary)
	an opt-in "everything the docs publish" surface (e.g. :full)
	deterministic builds without walking large Python package trees

 Summary

 Types

 object_entry()

 object_kind()

 profile()

 Functions

 load_profile(library)

 Types

 object_entry()

 @type object_entry() :: %{name: String.t(), kind: object_kind()}

 object_kind()

 @type object_kind() :: :class | :function | :data | :unknown

 profile()

 @type profile() :: %{modules: [String.t()], objects: [object_entry()]}

 Functions

 load_profile(library)

 @spec load_profile(SnakeBridge.Config.Library.t()) ::
 {:ok, profile()} | {:error, term()}

SnakeBridge.Docs.ManifestBuilder

Builds docs surface manifests from published documentation artifacts.
Primary input is a Sphinx objects.inv inventory (Intersphinx format).
Optionally, an HTML page can be used to derive a curated "summary" profile
by extracting fully-qualified object references and intersecting them with
the inventory.

 Summary

 Types

 kind()

 manifest()

 object_entry()

 profile()

 profile_name()

 Functions

 extract_modules_from_html_nav(html, library_root)

 Extracts candidate module names from Sphinx/MkDocs-style nav links.

 extract_references_from_html(html, library_root)

 Returns a set of fully-qualified references found in HTML.

 filter_modules_by_depth(modules, library_root, depth)

 Filters a set/list of Python module names to a maximum depth relative to library_root.

 from_inventory(map, library_root, opts \\ [])

 Builds a manifest from a parsed Sphinx inventory.

 merge_profiles(map1, map2)

 Merges two profiles by unioning modules and objects.

 summary_from_html(full_profile, html, library_root)

 Builds a summary profile by extracting object references from HTML and
intersecting with a full profile built from inventory.

 Types

 kind()

 @type kind() :: String.t()

 manifest()

 @type manifest() :: map()

 object_entry()

 @type object_entry() :: map()

 profile()

 @type profile() :: map()

 profile_name()

 @type profile_name() :: String.t()

 Functions

 extract_modules_from_html_nav(html, library_root)

 @spec extract_modules_from_html_nav(String.t(), String.t()) :: MapSet.t(String.t())

Extracts candidate module names from Sphinx/MkDocs-style nav links.
Many documentation sites render module pages as paths like:
	examplelib/beam_search/ → examplelib.beam_search
	examplelib/v1/worker/gpu/ → examplelib.v1.worker.gpu

 extract_references_from_html(html, library_root)

 @spec extract_references_from_html(String.t(), String.t()) :: MapSet.t(String.t())

Returns a set of fully-qualified references found in HTML.

 filter_modules_by_depth(modules, library_root, depth)

 @spec filter_modules_by_depth(Enumerable.t(), String.t(), pos_integer()) ::
 MapSet.t(String.t())

Filters a set/list of Python module names to a maximum depth relative to library_root.
Depth is measured in dot-separated segments after the root:
	examplelib.config → depth 1
	examplelib.multimodal.inputs → depth 2

 from_inventory(map, library_root, opts \\ [])

 @spec from_inventory(SnakeBridge.Docs.SphinxInventory.t(), String.t(), keyword()) ::
 profile()

Builds a manifest from a parsed Sphinx inventory.

 merge_profiles(map1, map2)

 @spec merge_profiles(profile(), profile()) :: profile()

Merges two profiles by unioning modules and objects.
Objects are deduplicated by {name, kind}.

 summary_from_html(full_profile, html, library_root)

 @spec summary_from_html(profile(), String.t(), String.t()) :: profile()

Builds a summary profile by extracting object references from HTML and
intersecting with a full profile built from inventory.

SnakeBridge.Docs.MarkdownConverter

Converts parsed Python docstrings to Elixir ExDoc Markdown format.
This module transforms structured docstring data into Markdown that
is compatible with ExDoc and follows Elixir documentation conventions.

 Summary

 Functions

 convert(parsed)

 Converts a parsed docstring structure to ExDoc Markdown format.

 convert_example(example)

 Converts a Python doctest example to Elixir iex format.

 convert_exception(python_exception)

 Converts a Python exception type to an Elixir exception module.

 convert_type(python_type)

 Converts a Python type annotation to an Elixir typespec format.

 Functions

 convert(parsed)

 @spec convert(map()) :: String.t()

Converts a parsed docstring structure to ExDoc Markdown format.
Parameters
	parsed - A map with keys: :short_description, :long_description,
:params, :returns, :raises, :examples

Returns
A Markdown string suitable for use in @doc or @moduledoc.

 convert_example(example)

 @spec convert_example(String.t()) :: String.t()

Converts a Python doctest example to Elixir iex format.
Examples
iex> MarkdownConverter.convert_example(">>> func(1, 2)\n3")
" iex> func(1, 2)\n 3"

 convert_exception(python_exception)

 @spec convert_exception(String.t() | nil) :: String.t()

Converts a Python exception type to an Elixir exception module.
Examples
iex> MarkdownConverter.convert_exception("ValueError")
"ArgumentError"

 convert_type(python_type)

 @spec convert_type(String.t() | nil) :: String.t()

Converts a Python type annotation to an Elixir typespec format.
Examples
iex> MarkdownConverter.convert_type("int")
"integer()"

iex> MarkdownConverter.convert_type("list[str]")
"list(String.t())"

SnakeBridge.Docs.MathRenderer

Renders LaTeX math expressions for documentation.
Converts reStructuredText math directives to Markdown-compatible
math notation (KaTeX/MathJax style).
Supported Formats
	Inline math: :math:`E = mc^2` → $E = mc^2$
	Display math: .. math:: blocks → $$...$$

 Summary

 Functions

 extract_math(text)

 Extracts all math expressions from text.

 render(text)

 Renders math expressions in a docstring, converting RST math to Markdown.

 to_katex(text)

 Converts math expressions to KaTeX-compatible format.

 Functions

 extract_math(text)

 @spec extract_math(String.t() | nil) :: [String.t()]

Extracts all math expressions from text.
Returns a list of math expression strings (without delimiters).

 render(text)

 @spec render(String.t() | nil) :: String.t() | nil

Renders math expressions in a docstring, converting RST math to Markdown.
Examples
iex> MathRenderer.render("The formula is :math:`E = mc^2`.")
"The formula is $E = mc^2$."

 to_katex(text)

 @spec to_katex(String.t() | nil) :: String.t() | nil

Converts math expressions to KaTeX-compatible format.
KaTeX uses $...$ for inline and $$...$$ for display math.

SnakeBridge.Docs.RstParser

Parses Python docstrings in various formats (Google, NumPy, Sphinx, Epytext).
This module detects the docstring format and extracts structured information
including parameters, return values, exceptions, and examples.
Supported Formats
	Google style: Uses Args:, Returns:, Raises: sections
	NumPy style: Uses underlined section headers (Parameters ----------)
	Sphinx/reST style: Uses :param:, :type:, :returns: directives
	Epytext style: Uses @param, @type, @return tags

 Summary

 Types

 param()

 parsed_doc()

 raises()

 returns()

 Functions

 detect_style(docstring)

 Detects the docstring style based on content patterns.

 parse(docstring)

 Parses a Python docstring and returns structured data.

 Types

 param()

 @type param() :: %{
 name: String.t(),
 type_name: String.t() | nil,
 description: String.t() | nil,
 optional: boolean(),
 default: String.t() | nil
}

 parsed_doc()

 @type parsed_doc() :: %{
 short_description: String.t() | nil,
 long_description: String.t() | nil,
 params: [param()],
 returns: returns() | nil,
 raises: [raises()],
 examples: [String.t()],
 notes: String.t() | nil,
 style: atom()
}

 raises()

 @type raises() :: %{type_name: String.t(), description: String.t() | nil}

 returns()

 @type returns() :: %{type_name: String.t() | nil, description: String.t() | nil}

 Functions

 detect_style(docstring)

 @spec detect_style(String.t() | nil) :: atom()

Detects the docstring style based on content patterns.

 parse(docstring)

 @spec parse(String.t() | nil) :: parsed_doc()

Parses a Python docstring and returns structured data.

SnakeBridge.Docs.SphinxInventory

Parser for Sphinx objects.inv inventories (version 2).
This is used to derive a documented API surface from published docs without
requiring access to the Sphinx source tree.

 Summary

 Types

 entry()

 t()

 Functions

 parse(content)

 Types

 entry()

 @type entry() :: %{
 name: String.t(),
 domain_role: String.t(),
 priority: non_neg_integer(),
 uri: String.t(),
 dispname: String.t()
}

 t()

 @type t() :: %{
 project: String.t() | nil,
 version: String.t() | nil,
 entries: [entry()]
}

 Functions

 parse(content)

 @spec parse(binary()) :: {:ok, t()} | {:error, term()}

SnakeBridge.Generator.PathMapper

Maps Python module paths to Elixir file paths for split layout generation.
This module provides deterministic path mapping from Python module paths
to Elixir source file paths, mirroring Python's package structure.
Convention
	Package/submodule directories use __init__.ex (like Python's __init__.py)
	Class modules use lowercase_name.ex files
	All paths are lowercase with underscores

Examples
iex> PathMapper.module_to_path("examplelib", "lib/gen")
"lib/gen/examplelib/__init__.ex"

iex> PathMapper.module_to_path("examplelib.predict", "lib/gen")
"lib/gen/examplelib/predict/__init__.ex"

iex> PathMapper.class_file_path("examplelib.predict", "Widget", "lib/gen")
"lib/gen/examplelib/predict/widget.ex"

 Summary

 Functions

 all_files_for_library(library_python_name, functions, classes, base_dir)

 Computes all file paths needed for a library's functions and classes.

 ancestor_modules(python_module)

 Returns all ancestor module paths for a given Python module.

 class_file_path(python_module, class_name, base_dir)

 Computes the file path for a class module.

 module_to_dir(python_module, base_dir)

 Returns the directory path for a Python module.

 module_to_path(python_module, base_dir, type \\ :package)

 Computes file path for a Python module's functions.

 python_module_to_elixir_module(python_module, library_module)

 Converts a Python module path to an Elixir module atom.

 Functions

 all_files_for_library(library_python_name, functions, classes, base_dir)

 @spec all_files_for_library(String.t(), [map()], [map()], String.t()) ::
 {[String.t()], [String.t()]}

Computes all file paths needed for a library's functions and classes.
Returns a tuple of {module_files, class_files}. Module files are generated
for the library root and any python modules that have functions or classes.
Parameters
	library_python_name - The library's Python module name
	functions - List of function info maps with "python_module" key
	classes - List of class info maps with "python_module" and "name" keys
	base_dir - Base directory for generated files

 ancestor_modules(python_module)

 @spec ancestor_modules(String.t()) :: [String.t()]

Returns all ancestor module paths for a given Python module.
Examples
iex> ancestor_modules("examplelib")
[]

iex> ancestor_modules("examplelib.predict")
["examplelib"]

iex> ancestor_modules("examplelib.predict.chain.widget")
["examplelib", "examplelib.predict", "examplelib.predict.chain"]

 class_file_path(python_module, class_name, base_dir)

 @spec class_file_path(String.t(), String.t(), String.t()) :: String.t()

Computes the file path for a class module.
Classes are placed as direct .ex files named after the class.
Examples
iex> class_file_path("examplelib.predict", "Widget", "lib/gen")
"lib/gen/examplelib/predict/widget.ex"

 module_to_dir(python_module, base_dir)

 @spec module_to_dir(String.t(), String.t()) :: String.t()

Returns the directory path for a Python module.
Examples
iex> module_to_dir("examplelib", "lib/gen")
"lib/gen/examplelib"

iex> module_to_dir("examplelib.predict", "lib/gen")
"lib/gen/examplelib/predict"

 module_to_path(python_module, base_dir, type \\ :package)

 @spec module_to_path(String.t(), String.t(), :package | :leaf) :: String.t()

Computes file path for a Python module's functions.
By default, modules are treated as packages and get __init__.ex.
Use type: :leaf for leaf modules that should get direct .ex files.
Parameters
	python_module - The Python module path (e.g., "examplelib.predict")
	base_dir - Base directory for generated files
	type - :package (default) or :leaf

Examples
iex> module_to_path("examplelib", "lib/gen")
"lib/gen/examplelib/__init__.ex"

iex> module_to_path("examplelib.predict.widget", "lib/gen", :leaf)
"lib/gen/examplelib/predict/widget.ex"

 python_module_to_elixir_module(python_module, library_module)

 @spec python_module_to_elixir_module(String.t(), module()) :: module()

Converts a Python module path to an Elixir module atom.
Parameters
	python_module - The Python module path
	library_module - The base Elixir module for the library

Examples
iex> python_module_to_elixir_module("examplelib", Examplelib)
Examplelib

iex> python_module_to_elixir_module("examplelib.predict", Examplelib)
Examplelib.Predict

SnakeBridge.Generator.TypeMapper

Maps Python type annotations to Elixir typespec AST.
This module converts Python type dictionaries (as produced by the introspection
script) into Elixir typespec AST using quote. The AST can then be used to
generate @spec declarations in generated modules.
Type Mappings
	Python Type	Elixir Type
	int	integer()
	float	float()
	str	String.t()
	bool	boolean()
	bytes	binary()
	None	nil
	list[T]	list(T)
	dict[K, V]	map(K, V)
	tuple[T1, T2, ...]	{T1, T2, ...}
	set[T]	MapSet.t(T)
	Optional[T]	T | nil
	Union[T1, T2, ...]	T1 | T2 | ...
	ClassName	ClassName.t()
	Any	any()

Examples
iex> TypeMapper.to_spec(%{"type" => "int"})
{:integer, [], []}

iex> TypeMapper.to_spec(%{"type" => "list", "element_type" => %{"type" => "str"}})
{{:., [], [{:__aliases__, [alias: false], [:String]}, :t]}, [], []}
|> Macro.to_string()
"list(String.t())"

 Summary

 Types

 context()

 Functions

 build_context(classes)

 to_spec(python_type)

 Converts a Python type dictionary to an Elixir typespec AST.

 to_spec(python_type, context)

 with_context(context, fun)

 Types

 context()

 @type context() :: %{
 class_map: %{required({String.t(), String.t()}) => String.t()},
 name_index: %{required(String.t()) => MapSet.t(String.t())}
}

 Functions

 build_context(classes)

 @spec build_context([map()]) :: context()

 to_spec(python_type)

 @spec to_spec(map() | nil) :: Macro.t()

Converts a Python type dictionary to an Elixir typespec AST.
Parameters
	python_type - A map representing a Python type annotation

Returns
An AST node (quoted expression) representing the equivalent Elixir typespec.
Class types resolve to generated modules only when a context is provided
(via to_spec/2 or with_context/2), otherwise they default to term().
Examples
iex> python_type = %{"type" => "int"}
iex> ast = SnakeBridge.Generator.TypeMapper.to_spec(python_type)
iex> Macro.to_string(ast)
"integer()"

iex> python_type = %{"type" => "list", "element_type" => %{"type" => "int"}}
iex> ast = SnakeBridge.Generator.TypeMapper.to_spec(python_type)
iex> Macro.to_string(ast)
"list(integer())"

 to_spec(python_type, context)

 @spec to_spec(map() | nil, context()) :: Macro.t()

 with_context(context, fun)

 @spec with_context(context(), (-> result)) :: result when result: var

SnakeBridge.HelperGenerator

Generates Elixir helper wrappers from registry data.

 Summary

 Functions

 generate_helpers(helpers, config)

 render_library(library, helpers, opts \\ [])

 Functions

 generate_helpers(helpers, config)

 @spec generate_helpers(list(), SnakeBridge.Config.t()) :: :ok

 render_library(library, helpers, opts \\ [])

 @spec render_library(String.t(), list(), keyword()) :: String.t()

SnakeBridge.Helpers

Helper registry discovery and configuration for SnakeBridge.

 Summary

 Types

 helper_info()

 Functions

 discover()

 discover(config)

 enabled?(config)

 payload_config(config, opts \\ [])

 runtime_config()

 Types

 helper_info()

 @type helper_info() :: map()

 Functions

 discover()

 @spec discover() :: {:ok, [helper_info()]} | {:error, term()}

 discover(config)

 @spec discover(SnakeBridge.Config.t() | map()) ::
 {:ok, [helper_info()]} | {:error, term()}

 enabled?(config)

 @spec enabled?(map()) :: boolean()

 payload_config(config, opts \\ [])

 @spec payload_config(
 map(),
 keyword()
) :: map()

 runtime_config()

 @spec runtime_config() :: map()

SnakeBridge.Ledger

Wrapper for recording dynamic calls through Snakepit.

 Summary

 Functions

 dynamic_call(library, function, args, opts \\ [])

 Functions

 dynamic_call(library, function, args, opts \\ [])

 @spec dynamic_call(atom() | String.t(), atom() | String.t(), list(), keyword()) ::
 {:ok, term()} | {:error, term()}

SnakeBridge.Lock.Verifier

Verifies hardware and environment compatibility between the lock file and current system.
The verifier compares the hardware identity in the lock file against the current
system's capabilities to detect potential compatibility issues before runtime.
Verification Levels
	:ok - Full compatibility, no issues detected
	{:warning, warnings} - Minor differences that may work but could cause issues
	{:error, errors} - Incompatible environment that will likely fail

Examples
Verify lock file compatibility
lock = SnakeBridge.Lock.load()
case SnakeBridge.Lock.Verifier.verify(lock) do
 :ok ->
 IO.puts("Environment compatible")
 {:warning, warnings} ->
 Enum.each(warnings, &IO.warn/1)
 {:error, errors} ->
 raise SnakeBridge.EnvironmentError, message: Enum.join(errors, "; ")
end

 Summary

 Types

 verification_result()

 Functions

 verify(lock)

 Verifies the lock file against the current hardware environment.

 verify!(lock)

 Verifies the lock file and raises on error.

 Types

 verification_result()

 @type verification_result() :: :ok | {:warning, [String.t()]} | {:error, [String.t()]}

 Functions

 verify(lock)

 @spec verify(map() | nil) :: verification_result()

Verifies the lock file against the current hardware environment.
Returns :ok if compatible, {:warning, warnings} for minor issues,
or {:error, errors} for critical incompatibilities.

 verify!(lock)

 @spec verify!(map() | nil) :: :ok

Verifies the lock file and raises on error.
Returns :ok on success or raises SnakeBridge.EnvironmentError.
Warnings are logged but do not raise.

SnakeBridge.ModuleResolver

Resolves ambiguous module paths to class attributes or submodules.

 Summary

 Types

 resolution()

 Functions

 resolve_class_or_submodule(library, elixir_module)

 Determines if an Elixir module maps to a Python class attribute or submodule.

 Types

 resolution()

 @type resolution() ::
 {:class, String.t(), String.t()} | {:submodule, String.t()} | {:error, term()}

 Functions

 resolve_class_or_submodule(library, elixir_module)

 @spec resolve_class_or_submodule(map(), module()) :: resolution()

Determines if an Elixir module maps to a Python class attribute or submodule.
Returns:
	{:class, class_name, parent_module} when the last path segment is a class.
	{:submodule, module_path} when the path resolves to a submodule.
	{:error, reason} when introspection fails.

SnakeBridge.PythonRunner behaviour

Behaviour for executing Python scripts in the Snakepit-configured runtime.

 Summary

 Types

 args()

 opts()

 script()

 Callbacks

 run(script, args, opts)

 Types

 args()

 @type args() :: [String.t()]

 opts()

 @type opts() :: keyword()

 script()

 @type script() :: String.t()

 Callbacks

 run(script, args, opts)

 @callback run(script(), args(), opts()) :: {:ok, String.t()} | {:error, term()}

SnakeBridge.Registry

Registry system for tracking generated SnakeBridge adapters.
The registry maintains a record of all generated Python library adapters,
allowing agents and tools to introspect what libraries are available without
parsing code.
Registry Format
The registry stores library information including:
	Python module name and version
	Generated Elixir module name
	Generation timestamp
	File locations and structure
	Statistics (function count, class count, etc.)

Usage
Register a new library
SnakeBridge.Registry.register("numpy", %{
 python_module: "numpy",
 python_version: "1.26.0",
 elixir_module: "Numpy",
 generated_at: ~U[2024-12-24 14:00:00Z],
 path: "lib/snakebridge/adapters/numpy/",
 files: ["numpy.ex", "linalg.ex", "_meta.ex"],
 stats: %{functions: 165, classes: 2, submodules: 4}
})

Check if a library is generated
SnakeBridge.Registry.generated?("numpy")
=> true

Get library information
SnakeBridge.Registry.get("numpy")
=> %{python_module: "numpy", ...}

List all generated libraries
SnakeBridge.Registry.list_libraries()
=> ["json", "numpy", "sympy"]
Persistence
The registry is automatically persisted to a JSON file at:
priv/snakebridge/registry.json
Use save/0 to persist changes and load/0 to restore from disk.

 Summary

 Types

 library_name()

 registry_entry()

 registry_state()

 Functions

 child_spec(arg)

 Returns a specification to start this module under a supervisor.

 clear()

 Clears all entries from the registry.

 generated?(library_name)

 Checks if a library is registered.

 get(library_name)

 Gets information about a registered library.

 list_libraries()

 Returns a list of all registered library names, sorted alphabetically.

 load()

 Loads the registry from the JSON file.

 register(library_name, entry)

 Registers a library in the registry.

 save()

 Saves the registry to the JSON file.

 start_link(opts \\ [])

 Starts the registry agent.

 unregister(library_name)

 Removes a library from the registry.

 Types

 library_name()

 @type library_name() :: String.t()

 registry_entry()

 @type registry_entry() :: %{
 python_module: String.t(),
 python_version: String.t(),
 elixir_module: String.t(),
 generated_at: DateTime.t(),
 path: String.t(),
 files: [String.t()],
 stats: %{
 functions: non_neg_integer(),
 classes: non_neg_integer(),
 submodules: non_neg_integer()
 }
}

 registry_state()

 @type registry_state() :: %{optional(library_name()) => registry_entry()}

 Functions

 child_spec(arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 clear()

 @spec clear() :: :ok

Clears all entries from the registry.
Examples
iex> SnakeBridge.Registry.clear()
:ok

 generated?(library_name)

 @spec generated?(library_name()) :: boolean()

Checks if a library is registered.
Examples
iex> SnakeBridge.Registry.generated?("numpy")
true

iex> SnakeBridge.Registry.generated?("nonexistent")
false

 get(library_name)

 @spec get(library_name()) :: registry_entry() | nil

Gets information about a registered library.
Returns nil if the library is not registered.
Examples
iex> SnakeBridge.Registry.get("numpy")
%{python_module: "numpy", python_version: "1.26.0", ...}

iex> SnakeBridge.Registry.get("nonexistent")
nil

 list_libraries()

 @spec list_libraries() :: [library_name()]

Returns a list of all registered library names, sorted alphabetically.
Examples
iex> SnakeBridge.Registry.register("numpy", entry)
:ok
iex> SnakeBridge.Registry.list_libraries()
["numpy"]

 load()

 @spec load() :: :ok | {:error, term()}

Loads the registry from the JSON file.
If the file doesn't exist, initializes an empty registry.
Returns
	:ok on success
	{:error, reason} if loading fails

Examples
iex> SnakeBridge.Registry.load()
:ok

 register(library_name, entry)

 @spec register(library_name(), map()) :: :ok | {:error, String.t()}

Registers a library in the registry.
Updates the entry if the library is already registered.
Parameters
	library_name - The library identifier (e.g., "numpy")
	entry - A map containing library information (see module documentation)

Returns
	:ok on success
	{:error, reason} if the entry is invalid

Examples
iex> entry = %{
...> python_module: "numpy",
...> python_version: "1.26.0",
...> elixir_module: "Numpy",
...> generated_at: ~U[2024-12-24 14:00:00Z],
...> path: "lib/snakebridge/adapters/numpy/",
...> files: ["numpy.ex"],
...> stats: %{functions: 10, classes: 0, submodules: 1}
...> }
iex> SnakeBridge.Registry.register("numpy", entry)
:ok

 save()

 @spec save() :: :ok | {:error, term()}

Saves the registry to the JSON file.
Creates the parent directory if it doesn't exist.
Returns
	:ok on success
	{:error, reason} if saving fails

Examples
iex> SnakeBridge.Registry.save()
:ok

 start_link(opts \\ [])

 @spec start_link(keyword()) :: Agent.on_start()

Starts the registry agent.
This is typically called by the application supervisor.

 unregister(library_name)

 @spec unregister(library_name()) :: :ok

Removes a library from the registry.
Returns :ok even if the library was not registered.
Examples
iex> SnakeBridge.Registry.unregister("numpy")
:ok

SnakeBridge.RuntimeClient behaviour

Behaviour for runtime clients that execute SnakeBridge payloads.
The default runtime client is Snakepit, but tests can override
this via the :runtime_client config or a per-process override.

 Summary

 Types

 callback()

 opts()

 payload()

 tool()

 Callbacks

 execute(tool, payload, opts)

 execute_stream(tool, payload, callback, opts)

 Types

 callback()

 @type callback() :: (term() -> any())

 opts()

 @type opts() :: keyword()

 payload()

 @type payload() :: map()

 tool()

 @type tool() :: String.t()

 Callbacks

 execute(tool, payload, opts)

 @callback execute(tool(), payload(), opts()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 execute_stream(tool, payload, callback, opts)

 @callback execute_stream(tool(), payload(), callback(), opts()) ::
 :ok | {:error, Snakepit.Error.t()}

SnakeBridge.RuntimeContext

Process-scoped runtime defaults for SnakeBridge calls.
Defaults are merged into __runtime__ options at call time, making it easy to
set pool/timeout settings once per process or scoped block.

 Summary

 Types

 defaults()

 Functions

 clear_defaults()

 Clears runtime defaults for the current process.

 get_defaults()

 Returns runtime defaults for the current process.

 put_defaults(defaults)

 Sets runtime defaults for the current process.

 with_runtime(opts, fun)

 Applies runtime defaults for the duration of the given function.

 Types

 defaults()

 @type defaults() :: keyword()

 Functions

 clear_defaults()

 @spec clear_defaults() :: :ok

Clears runtime defaults for the current process.

 get_defaults()

 @spec get_defaults() :: defaults()

Returns runtime defaults for the current process.

 put_defaults(defaults)

 @spec put_defaults(defaults() | nil) :: :ok

Sets runtime defaults for the current process.

 with_runtime(opts, fun)

 @spec with_runtime(defaults(), (-> result)) :: result when result: term()

Applies runtime defaults for the duration of the given function.

SnakeBridge.Telemetry.Handlers.Logger

Logs SnakeBridge telemetry events.
This handler logs compilation events at appropriate log levels:
	Compile stop: :info
	Compile exception: :error
	Introspect/Generate: :debug

Usage
In your application startup
SnakeBridge.Telemetry.Handlers.Logger.attach()

 Summary

 Functions

 attach()

 Attaches the logger handler to telemetry events.

 detach()

 Detaches the logger handler.

 Functions

 attach()

 @spec attach() :: :ok | {:error, :already_exists}

Attaches the logger handler to telemetry events.
Returns :ok on success or {:error, :already_exists} if already attached.

 detach()

 @spec detach() :: :ok | {:error, :not_found}

Detaches the logger handler.

SnakeBridge.Telemetry.Handlers.Metrics

Metric definitions for SnakeBridge telemetry.
This module provides metric definitions compatible with TelemetryMetrics
and reporters like TelemetryMetricsPrometheus.
Usage
In your application with TelemetryMetricsPrometheus
TelemetryMetricsPrometheus.Core.attach(
 SnakeBridge.Telemetry.Handlers.Metrics.metrics()
)
Metrics
Compilation
	snakebridge.compile.duration - Distribution of compilation times
	snakebridge.compile.symbols_generated - Sum of symbols generated
	snakebridge.compile.total - Counter of compilations

Scanning
	snakebridge.scan.duration - Distribution of scan times
	snakebridge.scan.files_scanned - Sum of files scanned
	snakebridge.scan.symbols_found - Sum of symbols found

Introspection
	snakebridge.introspect.duration - Distribution of introspection times
	snakebridge.introspect.symbols_introspected - Sum of symbols introspected
	snakebridge.introspect.cache_hits - Sum of cache hits

Generation
	snakebridge.generate.duration - Distribution of generation times
	snakebridge.generate.bytes_written - Sum of bytes written

Documentation
	snakebridge.docs.fetch.duration - Distribution of doc fetch times
	snakebridge.docs.fetch.total - Counter of doc fetches

 Summary

 Functions

 metrics()

 Returns a list of Telemetry.Metrics definitions.

 Functions

 metrics()

 @spec metrics() :: [struct()]

Returns a list of Telemetry.Metrics definitions.
These can be used with any TelemetryMetrics-compatible reporter.

SnakeBridge.Telemetry.RuntimeForwarder

Enriches Snakepit runtime telemetry with SnakeBridge context.
This module listens to Snakepit's call events and re-emits them under
the :snakebridge namespace with additional context like the SnakeBridge
version and library information.
Events
Original Snakepit events:
	[:snakepit, :python, :call, :start]
	[:snakepit, :python, :call, :stop]
	[:snakepit, :python, :call, :exception]

Are forwarded as:
	[:snakebridge, :runtime, :call, :start]
	[:snakebridge, :runtime, :call, :stop]
	[:snakebridge, :runtime, :call, :exception]

With added metadata:
	snakebridge_library - The library name from the original event
	snakebridge_version - The current SnakeBridge version

Usage
In your application startup
SnakeBridge.Telemetry.RuntimeForwarder.attach()

 Summary

 Functions

 attach()

 Attaches the runtime forwarder to Snakepit events.

 detach()

 Detaches the runtime forwarder.

 Functions

 attach()

 @spec attach() :: :ok | {:error, :already_exists}

Attaches the runtime forwarder to Snakepit events.
Returns :ok on success or {:error, :already_exists} if already attached.

 detach()

 @spec detach() :: :ok | {:error, :not_found}

Detaches the runtime forwarder.

SnakeBridge.Telemetry.ScriptShutdownForwarder

Forwards Snakepit script shutdown telemetry events under the SnakeBridge namespace.
This module re-emits:
	[:snakepit, :script, :shutdown, :start|:stop|:cleanup|:exit]
as
	[:snakebridge, :script, :shutdown, :start|:stop|:cleanup|:exit]
with snakebridge_version metadata.

 Summary

 Functions

 attach()

 Attaches the shutdown forwarder to Snakepit script shutdown events.

 detach()

 Detaches the shutdown forwarder.

 Functions

 attach()

 @spec attach() :: :ok | {:error, :already_exists}

Attaches the shutdown forwarder to Snakepit script shutdown events.
Returns :ok on success or {:error, :already_exists} if already attached.

 detach()

 @spec detach() :: :ok | {:error, :not_found}

Detaches the shutdown forwarder.

SnakeBridge.TestCase

ExUnit CaseTemplate for SnakeBridge tests with automatic setup/teardown.
Usage
defmodule MyApp.SomeTest do
 use SnakeBridge.TestCase, pool: :example_pool

 test "runs pipeline" do
 {:ok, out} = Examplelib.SomeModule.some_call("x", y: 1)
 assert out != nil
 end
end

SnakeBridge.WheelConfig

Configuration-based wheel variant selection.

 Summary

 Functions

 get_cuda_mapping(version)

 Gets CUDA mapping for a version string.

 get_variants(package)

 Gets available variants for a package.

 load_config()

 Loads wheel configuration from file or uses defaults.

 packages()

 Returns the configured packages that define variants.

 rocm_variant()

 Returns the configured ROCm variant, if any.

 Functions

 get_cuda_mapping(version)

 @spec get_cuda_mapping(String.t() | nil) :: String.t() | nil

Gets CUDA mapping for a version string.

 get_variants(package)

 @spec get_variants(String.t()) :: [String.t()]

Gets available variants for a package.

 load_config()

 @spec load_config() :: map()

Loads wheel configuration from file or uses defaults.

 packages()

 @spec packages() :: [String.t()]

Returns the configured packages that define variants.

 rocm_variant()

 @spec rocm_variant() :: String.t() | nil

Returns the configured ROCm variant, if any.

SnakeBridge.WheelSelector

Selects the appropriate wheel variant for Python packages based on hardware.
PyTorch and related packages (torchvision, torchaudio) have different wheel
variants for different hardware configurations:
	cpu - CPU-only build
	cu118 - CUDA 11.8
	cu121 - CUDA 12.1
	cu124 - CUDA 12.4
	rocm5.7 - AMD ROCm 5.7

This module detects the current hardware and selects the appropriate variant.
Examples
Get the PyTorch variant for current hardware
variant = SnakeBridge.WheelSelector.pytorch_variant()
#=> "cu121" or "cpu"

Get the index URL for pip
url = SnakeBridge.WheelSelector.pytorch_index_url()
#=> "https://download.pytorch.org/whl/cu121"

Generate pip install command
cmd = SnakeBridge.WheelSelector.pip_install_command("torch", "2.1.0")
#=> "pip install torch==2.1.0 --index-url https://download.pytorch.org/whl/cu121"

 Summary

 Types

 wheel_info()

 Functions

 available_variants()

 Returns all available PyTorch variants for the given CUDA versions.

 available_variants(package)

 best_cuda_variant(cuda_version)

 Returns the best matching CUDA variant for a given CUDA version.

 normalize_cuda_version(version)

 Normalizes a CUDA version string for wheel naming.

 pip_install_command(package, version)

 Generates a pip install command for a package.

 pytorch_index_url()

 Returns the PyTorch index URL for pip based on current hardware.

 pytorch_package?(package)

 Checks if a package is a PyTorch package that needs hardware-specific wheels.

 pytorch_variant()

 Returns the PyTorch wheel variant for the current hardware.

 select_wheel(package, version)

 Selects the appropriate wheel for a package based on current hardware.

 Types

 wheel_info()

 @type wheel_info() :: %{
 package: String.t(),
 version: String.t(),
 variant: String.t() | nil,
 index_url: String.t() | nil
}

 Functions

 available_variants()

 @spec available_variants() :: [String.t()]

Returns all available PyTorch variants for the given CUDA versions.
Useful for generating lock files that support multiple hardware configurations.

 available_variants(package)

 @spec available_variants(String.t()) :: [String.t()]

 best_cuda_variant(cuda_version)

 @spec best_cuda_variant(String.t() | nil) :: String.t()

Returns the best matching CUDA variant for a given CUDA version.
Falls back to the closest available version.
Examples
SnakeBridge.WheelSelector.best_cuda_variant("12.3")
#=> "cu124"

SnakeBridge.WheelSelector.best_cuda_variant("12.1")
#=> "cu121"

 normalize_cuda_version(version)

 @spec normalize_cuda_version(String.t() | nil) :: String.t() | nil

Normalizes a CUDA version string for wheel naming.
Examples
SnakeBridge.WheelSelector.normalize_cuda_version("12.1")
#=> "121"

SnakeBridge.WheelSelector.normalize_cuda_version("11.8")
#=> "118"

 pip_install_command(package, version)

 @spec pip_install_command(String.t(), String.t()) :: String.t()

Generates a pip install command for a package.
For PyTorch packages (torch, torchvision, torchaudio), includes the
appropriate --index-url for hardware-specific wheels.
Examples
SnakeBridge.WheelSelector.pip_install_command("torch", "2.1.0")
#=> "pip install torch==2.1.0 --index-url https://download.pytorch.org/whl/cu121"

SnakeBridge.WheelSelector.pip_install_command("numpy", "1.26.4")
#=> "pip install numpy==1.26.4"

 pytorch_index_url()

 @spec pytorch_index_url() :: String.t()

Returns the PyTorch index URL for pip based on current hardware.
Examples
SnakeBridge.WheelSelector.pytorch_index_url()
#=> "https://download.pytorch.org/whl/cu121"

 pytorch_package?(package)

 @spec pytorch_package?(String.t()) :: boolean()

Checks if a package is a PyTorch package that needs hardware-specific wheels.

 pytorch_variant()

 @spec pytorch_variant() :: String.t()

Returns the PyTorch wheel variant for the current hardware.
Examples
SnakeBridge.WheelSelector.pytorch_variant()
#=> "cu121" # On CUDA 12.1 system
#=> "cpu" # On CPU-only system

 select_wheel(package, version)

 @spec select_wheel(String.t(), String.t()) :: wheel_info()

Selects the appropriate wheel for a package based on current hardware.
Returns wheel info including variant and index URL if applicable.
Examples
SnakeBridge.WheelSelector.select_wheel("torch", "2.1.0")
#=> %{package: "torch", version: "2.1.0", variant: "cu121", index_url: "..."}

SnakeBridge.WheelSelector.select_wheel("numpy", "1.26.4")
#=> %{package: "numpy", version: "1.26.4", variant: nil, index_url: nil}

SnakeBridge.WithContext

Provides Python context manager support via with_python/2 macro.
Ensures __exit__ is always called, even on exception.
Example
SnakeBridge.with_python(file_ref) do
 SnakeBridge.Dynamic.call(file_ref, :read, [])
end

 Summary

 Functions

 call_enter(ref, opts \\ [])

 Calls enter on a Python context manager.

 call_exit(ref, exception, opts \\ [])

 Calls exit on a Python context manager.

 with_python(ref, list)

 Executes a block with a Python context manager.

 Functions

 call_enter(ref, opts \\ [])

 @spec call_enter(
 SnakeBridge.Ref.t() | map(),
 keyword()
) :: {:ok, term()} | {:error, term()}

Calls enter on a Python context manager.

 call_exit(ref, exception, opts \\ [])

 @spec call_exit(SnakeBridge.Ref.t() | map(), Exception.t() | nil, keyword()) ::
 {:ok, term()} | {:error, term()}

Calls exit on a Python context manager.

 with_python(ref, list)

 (macro)

Executes a block with a Python context manager.
Calls __enter__ before the block and guarantees __exit__ after,
even if an exception occurs.

Snakepit.PyRef

Reference to a Python object managed by Snakepit.
This is a stub type definition used when the Snakepit library is not loaded.
When Snakepit is available, its actual Snakepit.PyRef module takes precedence.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: SnakeBridge.Ref.t()

SnakeBridge

Universal FFI bridge to Python.
SnakeBridge provides two ways to call Python:
	Generated wrappers (compile-time): Type-safe, documented Elixir modules
generated from Python library introspection.

	Dynamic calls (runtime): Direct calls to any Python module without
code generation, using string module paths.

Universal FFI API
The universal FFI requires no code generation:
Call any Python function
{:ok, result} = SnakeBridge.call("math", "sqrt", [16])

Get module attributes
{:ok, pi} = SnakeBridge.get("math", "pi")

Work with Python objects
{:ok, path} = SnakeBridge.call("pathlib", "Path", ["/tmp"])
{:ok, exists?} = SnakeBridge.method(path, "exists", [])
Sessions and Ref Lifecycle
SnakeBridge automatically manages Python object sessions. Each Elixir process
gets an isolated session, and refs are automatically cleaned up when the
process terminates.
Key Rules
	Refs are session-scoped: A ref is only valid within its session. Don't
pass refs between processes without ensuring they share a session.

	Process death triggers cleanup: When an Elixir process dies, its session
is released and all associated Python objects are garbage collected.

	Auto-session per process: By default, each process gets an auto-session
(prefixed with auto_). Refs created in one process cannot be used from
another without explicit session sharing.

	Explicit sessions for sharing: Use SessionContext.with_session/2 with
a shared session_id to allow multiple processes to access the same refs.

	Ref TTL: Python ref TTL is disabled by default. Enable via
SNAKEBRIDGE_REF_TTL_SECONDS environment variable. When enabled, refs
not accessed within the TTL window are cleaned up automatically.

	Max refs limit: Each session can hold up to 10,000 refs by default.
Excess refs are pruned oldest-first. Configure via SNAKEBRIDGE_REF_MAX.

Recommended Patterns
Pattern 1: Single process, automatic cleanup
def process_data do
 {:ok, df} = SnakeBridge.call("pandas", "read_csv", ["data.csv"])
 {:ok, result} = SnakeBridge.method(df, "mean", [])
 result # df is cleaned up when this process exits
end

Pattern 2: Explicit session for long-lived refs
def with_shared_session(session_id) do
 SnakeBridge.SessionContext.with_session([session_id: session_id], fn ->
 {:ok, model} = SnakeBridge.call("sklearn.linear_model", "LinearRegression", [])
 # Model ref can be accessed by other processes using same session_id
 model
 end)
end

Pattern 3: Release refs explicitly when done
{:ok, ref} = SnakeBridge.call("io", "StringIO", ["test"])
... use ref ...
SnakeBridge.release_ref(ref) # Explicit cleanup
For explicit session control, use SnakeBridge.SessionContext.with_session/1.
Type Mapping
	Elixir	Python
	nil	None
	true/false	True/False
	integers	int
	floats	float
	strings	str
	SnakeBridge.bytes(data)	bytes
	lists	list
	maps	dict
	tuples	tuple
	MapSet	set
	atoms	tagged atom (decoded to string by default)
	DateTime	datetime
	SnakeBridge.Ref	Python object reference

Advanced Features (Opt-In)
SnakeBridge includes optional compile-time features that are disabled by default:
Strict Mode
Enables compile-time verification of lock files and binding consistency.
Enable via config :snakebridge, strict: true or SNAKEBRIDGE_STRICT=1.
Lock File Verification
Run mix snakebridge.verify to check that your lock file matches the current
environment. Useful in CI/CD to catch hardware/package drift.
Wheel Selection
SnakeBridge.WheelSelector provides hardware-aware PyTorch wheel selection.
Call WheelSelector.pytorch_variant/0 to get the appropriate CUDA/CPU variant.
Helper Packs
Built-in helpers are enabled by default. Disable with:
config :snakebridge, helper_pack_enabled: false
Environment Variables
	Variable	Default	Description
	SNAKEBRIDGE_STRICT	false	Enable strict mode
	SNAKEBRIDGE_VERBOSE	false	Verbose logging
	SNAKEBRIDGE_REF_TTL_SECONDS	0	Ref TTL in seconds (0 = disabled)
	SNAKEBRIDGE_REF_MAX	10000	Max refs per session
	SNAKEBRIDGE_STRICT_MODE	false	Python strict mode (warns on ref accumulation)
	SNAKEBRIDGE_STRICT_MODE_THRESHOLD	1000	Strict mode warning threshold

 Summary

 Functions

 args(args)

 Convenience helper for passing extra positional args.

 attr(ref, attr, opts \\ [])

 Get an attribute from a Python object reference.

 attr!(ref, attr, opts \\ [])

 Get an attribute from a ref, raising on error.

 bytes(data)

 Create a Bytes wrapper for explicit binary data.

 call(module, function, args \\ [], opts \\ [])

 Call a Python function.

 call!(module, function, args \\ [], opts \\ [])

 Call a Python function, raising on error.

 call_helper(helper, args \\ [], opts \\ [])

 Call a helper function.

 current_session()

 Get the current session ID.

 get(module, attr, opts \\ [])

 Get a module-level attribute from Python.

 get!(module, attr, opts \\ [])

 Get a module-level attribute, raising on error.

 method(ref, method, args \\ [], opts \\ [])

 Call a method on a Python object reference.

 method!(ref, method, args \\ [], opts \\ [])

 Call a method on a ref, raising on error.

 opts(opts)

 Builds SnakeBridge options with explicit sections for kwargs, runtime, args, and idempotency.

 ref?(value)

 Check if a value is a Python object reference.

 release_auto_session()

 Release and clear the auto-session for the current process.

 release_ref(ref, opts \\ [])

 Releases a Python object reference, freeing memory in the Python process.

 release_session(session_id, opts \\ [])

 Releases all Python object references associated with a session.

 rt(runtime_opts)

 Convenience helper for building __runtime__ options.

 run_as_script(fun, opts \\ [])

 Runs a function as a script with Snakepit lifecycle management.

 script(list)

 Runs a script with sensible defaults for exit/stop behavior.

 script(opts, list)

 Runs a script with explicit options.

 set_attr(ref, attr, value, opts \\ [])

 Set an attribute on a Python object reference.

 stream(module, function, args, opts, callback)

 Stream results from a Python generator or iterator.

 unserializable?(value)

 Check if a value is an unserializable marker.

 unserializable_info(value)

 Extract information from an unserializable marker.

 version()

 Returns the SnakeBridge version.

 with_python(ref, list)

 Context manager macro for Python with statements.

 with_runtime(opts, list)

 Executes a block with process-scoped runtime defaults.

 Functions

 args(args)

 @spec args(list()) :: keyword()

Convenience helper for passing extra positional args.

 attr(ref, attr, opts \\ [])

 @spec attr(SnakeBridge.Ref.t(), atom() | String.t(), keyword()) ::
 {:ok, term()} | {:error, term()}

Get an attribute from a Python object reference.
Parameters
	ref - A SnakeBridge.Ref from a previous call
	attr - Attribute name as atom or string
	opts - Runtime options

Examples
{:ok, path} = SnakeBridge.call("pathlib", "Path", ["/tmp/file.txt"])
{:ok, name} = SnakeBridge.attr(path, "name")
=> {:ok, "file.txt"}

{:ok, parent} = SnakeBridge.attr(path, "parent")
=> {:ok, %SnakeBridge.Ref{...}} # parent is also a Path

 attr!(ref, attr, opts \\ [])

 @spec attr!(SnakeBridge.Ref.t(), atom() | String.t(), keyword()) :: term()

Get an attribute from a ref, raising on error.

 bytes(data)

 @spec bytes(binary()) :: SnakeBridge.Bytes.t()

Create a Bytes wrapper for explicit binary data.
By default, SnakeBridge encodes UTF-8 valid strings as Python str.
Use this function to explicitly send data as Python bytes.
Examples
Crypto
{:ok, hash_ref} = SnakeBridge.call("hashlib", "md5", [SnakeBridge.bytes("abc")])
{:ok, hex} = SnakeBridge.method(hash_ref, "hexdigest", [])

Binary protocols
{:ok, packed} = SnakeBridge.call("struct", "pack", [">I", 12345])

Base64
{:ok, encoded} = SnakeBridge.call("base64", "b64encode", [SnakeBridge.bytes("hello")])
When to Use
Python distinguishes str (text) from bytes (binary). Use bytes/1 for:
	Cryptographic operations (hashlib, hmac, cryptography)
	Binary packing (struct)
	Base64 encoding
	Network protocols
	File I/O in binary mode

 call(module, function, args \\ [], opts \\ [])

 @spec call(module() | String.t(), atom() | String.t(), list(), keyword()) ::
 {:ok, term()} | {:error, term()}

Call a Python function.
Accepts either a generated SnakeBridge module or a Python module path string.
Parameters
	module - A generated module atom (e.g., Numpy) or a module path string (e.g., "numpy")
	function - Function name as atom or string
	args - List of positional arguments (default: [])
	opts - Keyword arguments passed to Python, plus:	:idempotent - Mark call as cacheable (default: false)
	:__runtime__ - Pass-through options to Snakepit (e.g., :timeout, :pool_name, :affinity)

Examples
Call stdlib function
{:ok, 4.0} = SnakeBridge.call("math", "sqrt", [16])

With keyword arguments
{:ok, 3.14} = SnakeBridge.call("builtins", "round", [3.14159], ndigits: 2)

Submodule
{:ok, path} = SnakeBridge.call("os.path", "join", ["/tmp", "file.txt"])

Create objects
{:ok, ref} = SnakeBridge.call("pathlib", "Path", ["."])
Return Values
	{:ok, value} - Decoded Elixir value for JSON-serializable results
	{:ok, %SnakeBridge.Ref{}} - Reference for non-serializable Python objects
	{:error, reason} - Error from Python

Notes
	String module paths trigger dynamic dispatch (no codegen required)
	Sessions are automatic; refs are isolated per Elixir process
	Non-JSON-serializable returns are wrapped in refs for safe access

 call!(module, function, args \\ [], opts \\ [])

 @spec call!(module() | String.t(), atom() | String.t(), list(), keyword()) :: term()

Call a Python function, raising on error.
Same as call/4 but raises on error instead of returning {:error, reason}.
Examples
result = SnakeBridge.call!("math", "sqrt", [16])
=> 4.0

Raises on error
SnakeBridge.call!("nonexistent_module", "fn", [])
** (Snakepit.Error) ...

 call_helper(helper, args \\ [], opts \\ [])

Call a helper function.

 current_session()

 @spec current_session() :: String.t()

Get the current session ID.
Returns the session ID for the current Elixir process. Sessions are
automatically created on first Python call.
Examples
session_id = SnakeBridge.current_session()
=> "auto_<0.123.0>_1703944800000"

With explicit session
SnakeBridge.SessionContext.with_session(session_id: "my_session", fn ->
 SnakeBridge.current_session()
end)
=> "my_session"

 get(module, attr, opts \\ [])

 @spec get(module() | String.t(), atom() | String.t(), keyword()) ::
 {:ok, term()} | {:error, term()}

Get a module-level attribute from Python.
Retrieves constants, classes, or any attribute from a Python module.
Parameters
	module - A generated module atom or a module path string
	attr - Attribute name as atom or string
	opts - Runtime options

Examples
Module constant
{:ok, pi} = SnakeBridge.get("math", "pi")
=> {:ok, 3.141592653589793}

Module-level class (returns ref)
{:ok, path_class} = SnakeBridge.get("pathlib", "Path")

Nested attribute
{:ok, sep} = SnakeBridge.get("os", "sep")

 get!(module, attr, opts \\ [])

 @spec get!(module() | String.t(), atom() | String.t(), keyword()) :: term()

Get a module-level attribute, raising on error.

 method(ref, method, args \\ [], opts \\ [])

 @spec method(SnakeBridge.Ref.t(), atom() | String.t(), list(), keyword()) ::
 {:ok, term()} | {:error, term()}

Call a method on a Python object reference.
Parameters
	ref - A SnakeBridge.Ref from a previous call
	method - Method name as atom or string
	args - Positional arguments (default: [])
	opts - Keyword arguments

Examples
{:ok, path} = SnakeBridge.call("pathlib", "Path", ["."])
{:ok, exists?} = SnakeBridge.method(path, "exists", [])
{:ok, resolved} = SnakeBridge.method(path, "resolve", [])

With arguments
{:ok, child} = SnakeBridge.method(path, "joinpath", ["subdir", "file.txt"])
Notes
This is equivalent to SnakeBridge.Dynamic.call/4 but with a clearer name
for the universal FFI context.

 method!(ref, method, args \\ [], opts \\ [])

 @spec method!(SnakeBridge.Ref.t(), atom() | String.t(), list(), keyword()) :: term()

Call a method on a ref, raising on error.

 opts(opts)

 @spec opts(keyword()) :: keyword()

Builds SnakeBridge options with explicit sections for kwargs, runtime, args, and idempotency.

 ref?(value)

 @spec ref?(term()) :: boolean()

Check if a value is a Python object reference.
Examples
{:ok, path} = SnakeBridge.call("pathlib", "Path", ["."])
SnakeBridge.ref?(path)
=> true

SnakeBridge.ref?("string")
=> false

 release_auto_session()

 @spec release_auto_session() :: :ok

Release and clear the auto-session for the current process.
Call this to eagerly release Python object refs when you're done with
Python calls, rather than waiting for process termination.
Examples
{:ok, ref} = SnakeBridge.call("numpy", "array", [[1,2,3]])
... use ref ...
SnakeBridge.release_auto_session() # Clean up now
Notes
	This releases all refs in the current process's auto-session
	A new session is created automatically on the next Python call
	Use SessionContext.with_session/1 for more fine-grained control
	Cleanup logs are opt-in via config :snakebridge, session_cleanup_log_level: :debug

 release_ref(ref, opts \\ [])

 @spec release_ref(
 SnakeBridge.Ref.t(),
 keyword()
) :: :ok | {:error, term()}

Releases a Python object reference, freeing memory in the Python process.
Call this to explicitly release a ref when you're done with it, rather than
waiting for session cleanup or process termination.
Parameters
	ref - A SnakeBridge.Ref to release
	opts - Runtime options (optional)

Examples
{:ok, ref} = SnakeBridge.call("pathlib", "Path", ["/tmp"])
... use ref ...
:ok = SnakeBridge.release_ref(ref)
Notes
	After release, the ref is invalid and should not be used
	Releasing an already-released ref is a no-op
	For bulk cleanup, use release_session/1 instead

 release_session(session_id, opts \\ [])

 @spec release_session(
 String.t(),
 keyword()
) :: :ok | {:error, term()}

Releases all Python object references associated with a session.
Use this for bulk cleanup of all refs in a session, rather than releasing
them individually.
Parameters
	session_id - The session ID to release
	opts - Runtime options (optional)

Examples
session_id = SnakeBridge.current_session()
... create many refs ...
:ok = SnakeBridge.release_session(session_id)
Notes
	After release, all refs from that session are invalid
	The session can still be reused for new calls
	For auto-sessions, prefer release_auto_session/0

 rt(runtime_opts)

 @spec rt(keyword()) :: keyword()

Convenience helper for building __runtime__ options.

 run_as_script(fun, opts \\ [])

 @spec run_as_script(
 (-> any()),
 keyword()
) :: any() | {:error, term()}

Runs a function as a script with Snakepit lifecycle management.
Defaults:
	exit_mode: :auto (only when no exit options/env vars are set)
	stop_mode: :if_started

exit_mode can also be controlled via SNAKEPIT_SCRIPT_EXIT when no
exit options are provided.

 script(list)

 (macro)

Runs a script with sensible defaults for exit/stop behavior.
This is a thin wrapper around run_as_script/2.

 script(opts, list)

 (macro)

Runs a script with explicit options.

 set_attr(ref, attr, value, opts \\ [])

 @spec set_attr(SnakeBridge.Ref.t(), atom() | String.t(), term(), keyword()) ::
 {:ok, term()} | {:error, term()}

Set an attribute on a Python object reference.
Parameters
	ref - A SnakeBridge.Ref from a previous call
	attr - Attribute name as atom or string
	value - New value for the attribute
	opts - Runtime options

Examples
{:ok, obj} = SnakeBridge.call("some_module", "SomeClass", [])
{:ok, _} = SnakeBridge.set_attr(obj, "property", "new_value")

 stream(module, function, args, opts, callback)

 @spec stream(module() | String.t(), atom() | String.t(), list(), keyword(), (term() ->
 term())) ::
 :ok | {:ok, :done} | {:error, term()}

Stream results from a Python generator or iterator.
Calls a Python function that returns an iterable and invokes the callback
for each element.
Parameters
	module - Module atom or path string
	function - Function name
	args - Positional arguments
	opts - Keyword arguments for the Python function
	callback - Function called with each streamed element

Examples
Process file in chunks
SnakeBridge.stream("pandas", "read_csv", ["large.csv"], [chunksize: 1000], fn chunk ->
 IO.puts("Processing chunk")
end)

Iterate range
SnakeBridge.stream("builtins", "range", [10], [], fn i ->
 IO.puts("Got: #{i}")
end)
Return Value
	{:ok, :done} - Iteration completed successfully (for string module paths)
	:ok - Iteration completed successfully (for atom modules)
	{:error, reason} - Error during iteration

 unserializable?(value)

 @spec unserializable?(term()) :: boolean()

Check if a value is an unserializable marker.
When Python returns data containing objects that cannot be serialized to JSON,
Snakepit replaces them with marker maps. This function detects those markers.
Examples
Regular values
SnakeBridge.unserializable?(%{"key" => "value"})
=> false

Marker from unserializable Python object
SnakeBridge.unserializable?(%{
 "__ffi_unserializable__" => true,
 "__type__" => "some.Module.Class",
 "__repr__" => "Class(...)"
})
=> true
Usage Pattern
case SnakeBridge.call("module", "function", []) do
 {:ok, result} ->
 if SnakeBridge.unserializable?(result) do
 {:ok, info} = SnakeBridge.unserializable_info(result)
 Logger.warning("Got unserializable: #{info.type}")
 else
 process(result)
 end
 {:error, _} = err -> err
end
See Snakepit.Serialization for details on the serialization layer.

 unserializable_info(value)

 @spec unserializable_info(term()) ::
 {:ok, %{type: String.t() | nil, repr: String.t() | nil}} | :error

Extract information from an unserializable marker.
Returns {:ok, info} with :type and :repr fields if the value is an
unserializable marker, or :error otherwise.
Examples
marker = %{
 "__ffi_unserializable__" => true,
 "__type__" => "requests.models.Response",
 "__repr__" => "<Response [200]>"
}

{:ok, info} = SnakeBridge.unserializable_info(marker)
info.type
=> "requests.models.Response"
info.repr
=> "<Response [200]>"

SnakeBridge.unserializable_info(%{"normal" => "map"})
=> :error
Security Note
The repr field may contain sensitive information from the Python object's
string representation. Avoid logging or persisting without review.

 version()

 @spec version() :: String.t()

Returns the SnakeBridge version.

 with_python(ref, list)

 (macro)

Context manager macro for Python with statements.

 with_runtime(opts, list)

 (macro)

Executes a block with process-scoped runtime defaults.

SnakeBridge.Dynamic

Dynamic dispatch for calling methods on Python objects without generated code.
Use this module when:
	Python returns an object of a class you did not generate bindings for
	You need to call methods dynamically at runtime
	You want a no-codegen escape hatch for refs

 Summary

 Types

 opts()

 ref()

 Functions

 call(ref, method, args \\ [], opts \\ [])

 Calls a method on a Python object reference.

 get_attr(ref, attr, opts \\ [])

 Gets an attribute from a Python object reference.

 ref?(value)

 Checks if a value is a valid Python reference.

 set_attr(ref, attr, value, opts \\ [])

 Sets an attribute on a Python object reference.

 Types

 opts()

 @type opts() :: keyword()

 ref()

 @type ref() :: SnakeBridge.Ref.t() | map()

 Functions

 call(ref, method, args \\ [], opts \\ [])

 @spec call(ref(), atom() | String.t(), list(), opts()) ::
 {:ok, term()} | {:error, SnakeBridge.Runtime.error_reason()}

Calls a method on a Python object reference.

 get_attr(ref, attr, opts \\ [])

 @spec get_attr(ref(), atom() | String.t(), opts()) ::
 {:ok, term()} | {:error, SnakeBridge.Runtime.error_reason()}

Gets an attribute from a Python object reference.

 ref?(value)

 @spec ref?(term()) :: boolean()

Checks if a value is a valid Python reference.

 set_attr(ref, attr, value, opts \\ [])

 @spec set_attr(ref(), atom() | String.t(), term(), opts()) ::
 {:ok, term()} | {:error, SnakeBridge.Runtime.error_reason()}

Sets an attribute on a Python object reference.

SnakeBridge.Runtime

Thin payload helper for SnakeBridge that delegates execution to Snakepit.
This module is compile-time agnostic and focuses on building payloads that
match the Snakepit Prime runtime contract.

 Summary

 Types

 args()

 error_reason()

 function_name()

 module_ref()

 opts()

 Functions

 call(module, function, args \\ [], opts \\ [])

 Call a Python function.

 call_class(module, function, args \\ [], opts \\ [])

 call_dynamic(module_path, function, args \\ [], opts \\ [])

 Calls any Python function dynamically without requiring generated bindings.

 call_helper(helper, args \\ [], opts \\ [])

 call_method(ref, function, args \\ [], opts \\ [])

 clear_auto_session()

 Clears the auto-session for the current process.

 current_session()

 Returns the current session ID (explicit or auto-generated).

 get_attr(ref, attr, opts \\ [])

 get_module_attr(module, attr, opts \\ [])

 Retrieves a module-level attribute (constant, class, etc.).

 release_auto_session()

 Releases and clears the auto-session for the current process.

 release_ref(ref, opts \\ [])

 release_session(session_id, opts \\ [])

 set_attr(ref, attr, value, opts \\ [])

 stream(module, function, args \\ [], opts \\ [], callback)

 Stream results from a Python generator/iterator.

 stream_dynamic(module_path, function, args, opts, callback)

 Stream results from a Python generator using dynamic dispatch.

 stream_len(stream_ref, opts \\ [])

 Gets the length of a Python iterable (if supported).

 stream_next(stream_ref, opts \\ [])

 Gets the next item from a Python iterator or generator.

 Types

 args()

 @type args() :: list()

 error_reason()

 @type error_reason() :: Snakepit.Error.t() | Exception.t()

 function_name()

 @type function_name() :: atom() | String.t()

 module_ref()

 @type module_ref() :: module()

 opts()

 @type opts() :: keyword()

 Functions

 call(module, function, args \\ [], opts \\ [])

 @spec call(module_ref() | String.t(), function_name() | String.t(), args(), opts()) ::
 {:ok, term()} | {:error, error_reason()}

Call a Python function.
Parameters
	module - Either a generated SnakeBridge module atom OR a Python module path string
	function - Function name (atom or string)
	args - Positional arguments (list)
	opts - Options including kwargs, :idempotent, :runtime (e.g., :pool_name, :affinity)

Examples
With generated module
{:ok, result} = SnakeBridge.Runtime.call(Numpy, :mean, [[1,2,3]])

With string module path (dynamic)
{:ok, result} = SnakeBridge.Runtime.call("numpy", "mean", [[1,2,3]])
{:ok, result} = SnakeBridge.Runtime.call("math", :sqrt, [16])

 call_class(module, function, args \\ [], opts \\ [])

 @spec call_class(module_ref(), function_name(), args(), opts()) ::
 {:ok, term()} | {:error, error_reason()}

 call_dynamic(module_path, function, args \\ [], opts \\ [])

 @spec call_dynamic(String.t(), function_name(), args(), opts()) ::
 {:ok, term()} | {:error, error_reason()}

Calls any Python function dynamically without requiring generated bindings.
This is the no-codegen escape hatch for calling functions that were not
scanned during compilation.

 call_helper(helper, args \\ [], opts \\ [])

 @spec call_helper(String.t(), args(), opts() | map()) ::
 {:ok, term()} | {:error, term()}

 call_method(ref, function, args \\ [], opts \\ [])

 @spec call_method(SnakeBridge.Ref.t() | map(), function_name(), args(), opts()) ::
 {:ok, term()} | {:error, error_reason()}

 clear_auto_session()

 @spec clear_auto_session() :: :ok

Clears the auto-session for the current process.
Useful for testing or when you want to force a new session.
Does NOT release the session on the Python side - use release_auto_session/0 for that.

 current_session()

 @spec current_session() :: String.t()

Returns the current session ID (explicit or auto-generated).
This is useful for debugging or when you need to know which session is active.

 get_attr(ref, attr, opts \\ [])

 @spec get_attr(SnakeBridge.Ref.t(), atom() | String.t(), opts()) ::
 {:ok, term()} | {:error, error_reason()}

 get_module_attr(module, attr, opts \\ [])

 @spec get_module_attr(module_ref() | String.t(), atom() | String.t(), opts()) ::
 {:ok, term()} | {:error, error_reason()}

Retrieves a module-level attribute (constant, class, etc.).
Parameters
	module - Either a generated SnakeBridge module atom OR a Python module path string
	attr - Attribute name (atom or string)
	opts - Runtime options

Examples
Get math.pi
{:ok, pi} = SnakeBridge.Runtime.get_module_attr("math", "pi")
{:ok, pi} = SnakeBridge.Runtime.get_module_attr("math", :pi)

 release_auto_session()

 @spec release_auto_session() :: :ok

Releases and clears the auto-session for the current process.
This releases all refs associated with the session on both Elixir and Python sides.

 release_ref(ref, opts \\ [])

 @spec release_ref(SnakeBridge.Ref.t(), opts()) :: :ok | {:error, error_reason()}

 release_session(session_id, opts \\ [])

 @spec release_session(String.t(), opts()) :: :ok | {:error, error_reason()}

 set_attr(ref, attr, value, opts \\ [])

 @spec set_attr(SnakeBridge.Ref.t(), atom() | String.t(), term(), opts()) ::
 {:ok, term()} | {:error, error_reason()}

 stream(module, function, args \\ [], opts \\ [], callback)

 @spec stream(
 module_ref() | String.t(),
 function_name() | String.t(),
 args(),
 opts(),
 (term() -> any())
) ::
 :ok | {:ok, :done} | {:error, error_reason()}

Stream results from a Python generator/iterator.
Parameters
	module - Either a generated SnakeBridge module atom OR a Python module path string
	function - Function name (atom or string)
	args - Positional arguments (list)
	opts - Options including kwargs
	callback - Function called for each streamed item

Performance
When called with a generated module atom, this function can use Snakepit's
native gRPC streaming for efficient data transfer.
When called with a string module path, this delegates to stream_dynamic/5
which uses RPC-per-item iteration. See stream_dynamic/5 docs for performance
guidance on large streams.
Examples
With string module path (dynamic, RPC-per-item)
SnakeBridge.Runtime.stream("pandas", "read_csv", ["file.csv"], [chunksize: 100], fn chunk ->
 process(chunk)
end)

With generated module (native streaming when available)
SnakeBridge.Runtime.stream(MyApp.Pandas, :read_csv, ["file.csv"], [chunksize: 100], fn chunk ->
 process(chunk)
end)

 stream_dynamic(module_path, function, args, opts, callback)

 @spec stream_dynamic(String.t(), String.t(), args(), opts(), (term() -> any())) ::
 {:ok, :done} | {:error, term()}

Stream results from a Python generator using dynamic dispatch.
Creates a stream reference and iterates via stream_next until exhausted.
Performance Note
Dynamic streaming uses an RPC-per-item approach: each item from the Python
iterator triggers a separate stream_next gRPC call. This is correct and
safe but may be slow for large streams (thousands of items).
For high-throughput streaming workloads, consider:
	Generated streaming wrappers: Use SnakeBridge.stream/5 with compiled
modules, which can leverage Snakepit's server-side streaming for better
throughput.
	Batched iteration: Have Python yield batches of items rather than
individual items.
	Dedicated data transfer: For very large datasets, consider writing
Python results to files/databases and loading from Elixir.

Dynamic streaming is ideal for convenience and moderate-sized iterables.

 stream_len(stream_ref, opts \\ [])

 @spec stream_len(SnakeBridge.StreamRef.t(), opts()) ::
 {:ok, non_neg_integer()} | {:error, term()}

Gets the length of a Python iterable (if supported).

 stream_next(stream_ref, opts \\ [])

 @spec stream_next(SnakeBridge.StreamRef.t(), opts()) ::
 {:ok, term()} | {:error, :stop_iteration} | {:error, error_reason()}

Gets the next item from a Python iterator or generator.
Each call makes a separate RPC to Python. For high-throughput streaming,
see the performance note on stream_dynamic/5.

SnakeBridge.Types

Public API for encoding and decoding Elixir types for Python interop.
This module provides a unified interface for type conversion between Elixir
and Python. It handles the serialization of Elixir-specific types (tuples,
MapSets, DateTime, etc.) into JSON-compatible formats and vice versa.
Usage
Encoding Elixir to JSON-compatible format
iex> SnakeBridge.Types.encode({:ok, 42})
%{
 "__type__" => "tuple",
 "__schema__" => 1,
 "elements" => [%{"__type__" => "atom", "__schema__" => 1, "value" => "ok"}, 42]
}

Decoding JSON-compatible format back to Elixir
iex> SnakeBridge.Types.decode(%{
...> "__type__" => "tuple",
...> "__schema__" => 1,
...> "elements" => [%{"__type__" => "atom", "__schema__" => 1, "value" => "ok"}, 42]
...> })
{:ok, 42}
Type System
The type system uses tagged JSON representations to preserve type information
across the Elixir-Python boundary. See SnakeBridge.Types.Encoder and
SnakeBridge.Types.Decoder for details on supported types and their
representations.
Round-trip Safety
All encoded values can be round-tripped (atoms depend on the decode allowlist):
iex> data = {:ok, MapSet.new([1, 2, 3])}
iex> data |> SnakeBridge.Types.encode() |> SnakeBridge.Types.decode()
{:ok, MapSet.new([1, 2, 3])}

 Summary

 Functions

 decode(value)

 Decodes a JSON-compatible structure back into Elixir types.

 encode(value)

 Encodes an Elixir value into a JSON-compatible structure.

 schema_version()

 Returns the current SnakeBridge wire schema version for tagged values.

 Functions

 decode(value)

 @spec decode(term()) :: term()

Decodes a JSON-compatible structure back into Elixir types.
Delegates to SnakeBridge.Types.Decoder.decode/1.
Examples
iex> SnakeBridge.Types.decode("ok")
"ok"

iex> SnakeBridge.Types.decode(%{
...> "__type__" => "tuple",
...> "__schema__" => 1,
...> "elements" => [%{"__type__" => "atom", "__schema__" => 1, "value" => "ok"}, 42]
...> })
{:ok, 42}

iex> SnakeBridge.Types.decode(%{"__type__" => "set", "elements" => [1, 2, 3]})
MapSet.new([1, 2, 3])

 encode(value)

 @spec encode(term()) :: term()

Encodes an Elixir value into a JSON-compatible structure.
Delegates to SnakeBridge.Types.Encoder.encode/1.
Examples
iex> SnakeBridge.Types.encode(:ok)
%{"__type__" => "atom", "__schema__" => 1, "value" => "ok"}

iex> SnakeBridge.Types.encode({:ok, 42})
%{
 "__type__" => "tuple",
 "__schema__" => 1,
 "elements" => [%{"__type__" => "atom", "__schema__" => 1, "value" => "ok"}, 42]
}

iex> SnakeBridge.Types.encode(MapSet.new([1, 2, 3]))
%{"__type__" => "set", "__schema__" => 1, "elements" => [1, 2, 3]}

 schema_version()

 @spec schema_version() :: pos_integer()

Returns the current SnakeBridge wire schema version for tagged values.

SnakeBridge.SessionContext

Provides scoped session context for Python calls.
Sessions control the lifecycle of Python object references (refs). Each session
is isolated, meaning refs from one session cannot be used in another.
Automatic vs Explicit Sessions
By default, SnakeBridge creates an auto-session for each Elixir process. This is
convenient for most use cases where Python objects don't need to be shared.
Use explicit sessions when you need:
	Multiple processes to access the same Python objects
	Long-lived refs that outlive a single request/task
	Fine-grained control over cleanup timing

Usage
Explicit session with custom ID
SnakeBridge.SessionContext.with_session([session_id: "my-session"], fn ->
 {:ok, model} = SnakeBridge.call("sklearn.linear_model", "LinearRegression", [])
 # model ref is accessible by other processes using "my-session"
 model
end)

Simple scoped session (auto-generated ID)
SnakeBridge.SessionContext.with_session(fn ->
 # All Python calls here use the same session
 {:ok, df} = SnakeBridge.call("pandas", "DataFrame", [[1, 2, 3]])
 {:ok, mean} = SnakeBridge.method(df, "mean", [])
 mean
end)
Session Cleanup
Sessions are automatically cleaned up when:
	All owning processes die (auto-sessions)
	SnakeBridge.Runtime.release_session/1 is called explicitly
	Refs exceed TTL (SessionContext default: 1 hour) or max count (default 10,000)

Sharing Refs Across Processes
To share Python objects across processes, use the same explicit session_id:
Process A
session_id = "shared--576460752303420525"
SessionContext.with_session([session_id: session_id], fn ->
 {:ok, ref} = SnakeBridge.call("heavy_model", "load", [])
 send(process_b, {:model, session_id, ref})
end)

Process B - can use the ref if it adopts the same session
receive do
 {:model, session_id, ref} ->
 SessionContext.with_session([session_id: session_id], fn ->
 {:ok, result} = SnakeBridge.method(ref, "predict", [data])
 result
 end)
end
Options
	:session_id - Custom session ID (default: auto-generated)
	:max_refs - Maximum refs per session (default: 10,000)
	:ttl_seconds - Session time-to-live in seconds (default: 3600, i.e., 1 hour)
	:tags - Custom metadata for debugging

 Summary

 Types

 t()

 Functions

 clear_current()

 Clears the current session context.

 create(opts \\ [])

 Creates a new session context.

 current()

 Gets the current session context from the process dictionary.

 put_current(context)

 Sets the current session context in the process dictionary.

 with_session(fun)

 Executes a function within a session context.

 with_session(opts, fun)

 Types

 t()

 @type t() :: %SnakeBridge.SessionContext{
 created_at: integer(),
 max_refs: pos_integer(),
 owner_pid: pid(),
 session_id: String.t(),
 tags: map(),
 ttl_seconds: pos_integer()
}

 Functions

 clear_current()

 @spec clear_current() :: t() | nil

Clears the current session context.

 create(opts \\ [])

 @spec create(keyword()) :: t()

Creates a new session context.

 current()

 @spec current() :: t() | nil

Gets the current session context from the process dictionary.

 put_current(context)

 @spec put_current(t()) :: t() | nil

Sets the current session context in the process dictionary.

 with_session(fun)

 @spec with_session((-> result)) :: result when result: term()

Executes a function within a session context.
The session is automatically registered and will be released
when the last owner process dies.

 with_session(opts, fun)

 @spec with_session(
 keyword(),
 (-> result)
) :: result
when result: term()

SnakeBridge.SessionManager

Manages Python session lifecycle with process monitoring.
Sessions are automatically released when all owner processes die,
preventing memory leaks in long-running applications.
Cleanup logs are opt-in via config. Use
config :snakebridge, session_cleanup_log_level: :debug to enable.

 Summary

 Types

 ref()

 session_id()

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 list_refs(session_id)

 Lists all refs in a session.

 register_ref(session_id, ref)

 Registers a ref with its session for tracking.

 register_session(session_id, owner_pid)

 Registers a session owner process.
The session will be released when the last owner dies.

 release_session(session_id)

 Explicitly releases a session and all its refs.

 session_exists?(session_id)

 Checks if a session exists.

 start_link(opts \\ [])

 unregister_session(session_id)

 Unregisters a session without releasing refs on the Python side.

 Types

 ref()

 @type ref() :: map()

 session_id()

 @type session_id() :: String.t()

 Functions

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 list_refs(session_id)

 @spec list_refs(session_id()) :: [ref()]

Lists all refs in a session.

 register_ref(session_id, ref)

 @spec register_ref(session_id(), ref()) :: :ok | {:error, :session_not_found}

Registers a ref with its session for tracking.

 register_session(session_id, owner_pid)

 @spec register_session(session_id(), pid()) :: :ok

Registers a session owner process.
The session will be released when the last owner dies.

 release_session(session_id)

 @spec release_session(session_id()) :: :ok

Explicitly releases a session and all its refs.

 session_exists?(session_id)

 @spec session_exists?(session_id()) :: boolean()

Checks if a session exists.

 start_link(opts \\ [])

 unregister_session(session_id)

 @spec unregister_session(session_id()) :: :ok

Unregisters a session without releasing refs on the Python side.
Typically called when manually cleaning up before process death,
or when the caller has already released the session.

SnakeBridge.Config

Compile-time configuration for SnakeBridge.

 Summary

 Types

 t()

 Functions

 load()

 Load config from mix.exs project config and Application env.

 Types

 t()

 @type t() :: %SnakeBridge.Config{
 auto_install: :never | :dev | :dev_test | :always | nil,
 coverage_report: keyword(),
 docs: keyword(),
 generated_dir: String.t(),
 generated_layout: :single | :split,
 helper_allowlist: :all | [String.t()],
 helper_pack_enabled: boolean(),
 helper_paths: [String.t()],
 inline_enabled: boolean(),
 introspector: keyword(),
 ledger: keyword(),
 libraries: [SnakeBridge.Config.Library.t()],
 metadata_dir: String.t(),
 min_signature_tier: atom() | String.t(),
 runtime_client: module(),
 scan_exclude: [String.t()],
 scan_extensions: [String.t()],
 scan_paths: [String.t()],
 signature_sources: [atom() | String.t()],
 strict: boolean(),
 strict_signatures: boolean(),
 stub_search_paths: [String.t()],
 stubgen: keyword(),
 typeshed_path: String.t() | nil,
 use_typeshed: boolean(),
 verbose: boolean()
}

 Functions

 load()

 @spec load() :: t()

Load config from mix.exs project config and Application env.
Python dependencies are specified via the python_deps key in your mix.exs project:
def project do
 [
 app: :my_app,
 version: "1.0.0",
 deps: deps(),
 python_deps: python_deps()
]
end

defp python_deps do
 [
 {:numpy, "1.26.0"},
 {:pandas, "2.0.0", include: ["DataFrame", "read_csv"]}
]
end
This approach mirrors how deps/0 works and is compatible with all installation
methods (Hex, path, git).

SnakeBridge.ConfigHelper

Configuration helper for auto-configuring Snakepit to work with SnakeBridge.
Usage
In your config/config.exs, replace manual snakepit configuration with:
import Config

Auto-configure snakepit for snakebridge
for {key, value} <- SnakeBridge.ConfigHelper.snakepit_config() do
 config :snakepit, [{key, value}]
end
Or for a cleaner look, use the convenience macro in config/runtime.exs:
import Config
SnakeBridge.ConfigHelper.configure_snakepit!()
Multi-pool configuration (with per-pool affinity):
import Config
SnakeBridge.ConfigHelper.configure_snakepit!(
 pools: [
 %{name: :hint_pool, pool_size: 2, affinity: :hint},
 %{name: :strict_pool, pool_size: 2, affinity: :strict_queue}
]
)
How It Works
The helper looks for a Python venv in these locations (in order):
	$SNAKEBRIDGE_VENV environment variable
	:snakebridge, :venv_path config
	Snakepit-managed venv (default: priv/snakepit/python/venv)
	.venv in the current project root
	.venv in SnakeBridge's installation directory (for path deps or hex deps)

For PYTHONPATH, it includes:
	Snakepit's priv/python directory
	SnakeBridge's priv/python directory

 Summary

 Functions

 configure_snakepit!(opts \\ [])

 Auto-configures Snakepit for use with SnakeBridge at runtime.

 debug_config()

 Returns configuration values for debugging.

 snakepit_config(opts \\ [])

 Returns snakepit configuration for use with SnakeBridge.

 Functions

 configure_snakepit!(opts \\ [])

Auto-configures Snakepit for use with SnakeBridge at runtime.
Best used in config/runtime.exs:
import Config
SnakeBridge.ConfigHelper.configure_snakepit!()
This applies configuration via Application.put_env, which works in runtime.exs.

 debug_config()

Returns configuration values for debugging.

 snakepit_config(opts \\ [])

 @spec snakepit_config(keyword()) :: keyword()

Returns snakepit configuration for use with SnakeBridge.
Use this in config/config.exs:
for {key, value} <- SnakeBridge.ConfigHelper.snakepit_config() do
 config :snakepit, [{key, value}]
end
Options:
	:pool_size - Number of Python workers (default: 2)
	:venv_path - Explicit path to venv directory
	:affinity - Snakepit session affinity mode (:hint, :strict_queue, :strict_fail_fast)
	:adapter_env - Extra environment variables for the Python adapter (merged into each pool)
	:pools - Multi-pool config list (maps or keyword lists); defaults apply per pool

SnakeBridge.Defaults

Centralized defaults for all configurable values in SnakeBridge.
All values can be overridden via Application.get_env(:snakebridge, key).
Configuration Options
Introspection
	:introspector_timeout - Timeout in ms for introspecting Python modules (default: 30_000)
	:introspector_max_concurrency - Max concurrent introspection tasks (default: System.schedulers_online())

Wheel Selector (PyTorch/CUDA)
	:pytorch_index_base_url - Base URL for PyTorch wheel index (default: "https://download.pytorch.org/whl/")
	:cuda_thresholds - CUDA version to variant mapping (default: [{"cu124", 124}, {"cu121", 120}, {"cu118", 117}])

Session Lifecycle
	:session_max_refs - Maximum refs per session (default: 10_000)
	:session_ttl_seconds - Session time-to-live in seconds (default: 3600)

Code Generation
	:variadic_max_arity - Max arity for variadic wrappers (default: 8)
	:generated_dir - Directory for generated code (default: "lib/snakebridge_generated")
	:metadata_dir - Directory for metadata files (default: ".snakebridge")

Protocol
	:protocol_version - Wire protocol version (default: 1)
	:min_supported_version - Minimum supported protocol version (default: 1)

Runtime Timeouts
Runtime timeout configuration is nested under the :runtime key:
	:timeout_profile - Default profile for calls (default: :default for calls, :streaming for streams)
	:default_timeout - Default unary call timeout in ms (default: 120_000)
	:default_stream_timeout - Default stream timeout in ms (default: 1_800_000)
	:library_profiles - Map of library names to profiles (default: %{})
	:profiles - Map of profile names to timeout settings

Built-in profiles:
	:default - 120s timeout for regular calls
	:streaming - 120s timeout, 30min stream_timeout
	:ml_inference - 10min timeout for ML/LLM workloads
	:batch_job - infinity timeout for long-running jobs

Example Configuration
config :snakebridge,
 introspector_timeout: 60_000,
 pytorch_index_base_url: "https://my-mirror.example.com/pytorch/",
 cuda_thresholds: [
 {"cu126", 126},
 {"cu124", 124},
 {"cu121", 120},
 {"cu118", 117}
],
 session_max_refs: 50_000,
 session_ttl_seconds: 7200,
 runtime: [
 timeout_profile: :default,
 library_profiles: %{
 "transformers" => :ml_inference,
 "torch" => :batch_job
 },
 profiles: %{
 default: [timeout: 120_000],
 ml_inference: [timeout: 600_000, stream_timeout: 1_800_000],
 batch_job: [timeout: :infinity, stream_timeout: :infinity]
 }
]

 Summary

 Functions

 all()

 Returns all current configuration values as a map.

 cuda_thresholds()

 generated_dir()

 generated_layout()

 introspector_max_concurrency()

 introspector_timeout()

 metadata_dir()

 min_supported_version()

 protocol_version()

 pytorch_index_base_url()

 runtime_config()

 Returns the runtime configuration keyword list.

 runtime_default_stream_timeout()

 Returns the default stream timeout in milliseconds.

 runtime_default_timeout()

 Returns the default unary call timeout in milliseconds.

 runtime_library_profiles()

 Returns configured library-to-profile mappings.

 runtime_profiles()

 Returns all timeout profiles.

 runtime_timeout_profile(call_kind \\ :call)

 Returns the timeout profile for a given call kind.

 session_max_refs()

 session_ttl_seconds()

 variadic_max_arity()

 Functions

 all()

 @spec all() :: map()

Returns all current configuration values as a map.

 cuda_thresholds()

 generated_dir()

 generated_layout()

 introspector_max_concurrency()

 introspector_timeout()

 metadata_dir()

 min_supported_version()

 protocol_version()

 pytorch_index_base_url()

 runtime_config()

 @spec runtime_config() :: keyword()

Returns the runtime configuration keyword list.

 runtime_default_stream_timeout()

 @spec runtime_default_stream_timeout() :: timeout()

Returns the default stream timeout in milliseconds.

 runtime_default_timeout()

 @spec runtime_default_timeout() :: timeout()

Returns the default unary call timeout in milliseconds.

 runtime_library_profiles()

 @spec runtime_library_profiles() :: map()

Returns configured library-to-profile mappings.
Example:
config :snakebridge, runtime: [
 library_profiles: %{
 "transformers" => :ml_inference,
 "torch" => :batch_job
 }
]

 runtime_profiles()

 @spec runtime_profiles() :: map()

Returns all timeout profiles.
Default profiles:
	:default - 120s timeout for regular calls
	:streaming - 120s timeout, 30min stream_timeout
	:ml_inference - 10min timeout for ML/LLM workloads
	:batch_job - infinity timeout for long-running jobs

 runtime_timeout_profile(call_kind \\ :call)

 @spec runtime_timeout_profile(atom()) :: atom()

Returns the timeout profile for a given call kind.
Call kinds:
	:call - Regular function calls (default: :default)
	:stream - Streaming calls (default: :streaming)

 session_max_refs()

 session_ttl_seconds()

 variadic_max_arity()

SnakeBridge.Generator

Generates Elixir source files from introspection data.

 Summary

 Functions

 build_params(params, info \\ %{})

 format_docstring(raw_doc, params \\ [], return_type \\ nil)

 generate_library(library, functions, classes, config, module_docs \\ %{}, lock_data \\ nil)

 normalize_docstring(doc)

 Normalize a docstring to a string, handling both raw strings and parsed docstring maps.

 render_library(library, functions, classes, opts \\ [])

 write_if_changed(path, new_content)

 Functions

 build_params(params, info \\ %{})

 @spec build_params(list(), map()) :: %{
 required: [map()],
 optional_positional: [map()],
 has_args: boolean(),
 has_varargs: boolean(),
 has_opts: boolean(),
 is_variadic: boolean(),
 required_keyword_only: [map()],
 optional_keyword_only: [map()],
 has_var_keyword: boolean()
}

 format_docstring(raw_doc, params \\ [], return_type \\ nil)

 @spec format_docstring(String.t() | map() | nil, list(), map() | nil) :: String.t()

 generate_library(library, functions, classes, config, module_docs \\ %{}, lock_data \\ nil)

 @spec generate_library(
 SnakeBridge.Config.Library.t(),
 list(),
 list(),
 SnakeBridge.Config.t(),
 map(),
 map() | nil
) :: :ok

 normalize_docstring(doc)

 @spec normalize_docstring(String.t() | map() | nil) :: String.t()

Normalize a docstring to a string, handling both raw strings and parsed docstring maps.

 render_library(library, functions, classes, opts \\ [])

 @spec render_library(SnakeBridge.Config.Library.t(), list(), list(), keyword()) ::
 String.t()

 write_if_changed(path, new_content)

 @spec write_if_changed(String.t(), String.t()) :: :written | :unchanged

SnakeBridge.Introspector

Introspects Python functions using the standalone introspection script.

 Summary

 Types

 function_name()

 Functions

 introspect(library, functions)

 introspect(library, functions, python_module)

 introspect_attribute(module_path, attr_name, opts \\ [])

 Introspects a single attribute on a module to determine its type.

 introspect_batch(libs_and_functions)

 introspect_module(library, opts \\ [])

 Introspect an entire Python module to discover all public symbols.

 introspect_module_docs(library, modules)

 Fetch module docstrings without introspecting symbols.

 Types

 function_name()

 @type function_name() :: atom() | String.t()

 Functions

 introspect(library, functions)

 @spec introspect(SnakeBridge.Config.Library.t() | map(), [function_name()]) ::
 {:ok, map()} | {:error, term()}

 introspect(library, functions, python_module)

 @spec introspect(
 SnakeBridge.Config.Library.t() | map(),
 [function_name()],
 String.t() | nil
) ::
 {:ok, map()} | {:error, term()}

 introspect_attribute(module_path, attr_name, opts \\ [])

 @spec introspect_attribute(String.t() | atom(), String.t() | atom(), keyword()) ::
 {:ok, map()} | {:error, term()}

Introspects a single attribute on a module to determine its type.

 introspect_batch(libs_and_functions)

 @spec introspect_batch([{SnakeBridge.Config.Library.t() | map(), String.t(), list()}]) ::
 [
 {SnakeBridge.Config.Library.t() | map(), {:ok, list()} | {:error, term()},
 String.t()}
]

 introspect_module(library, opts \\ [])

 @spec introspect_module(
 SnakeBridge.Config.Library.t() | map(),
 keyword()
) :: {:ok, map()} | {:error, term()}

Introspect an entire Python module to discover all public symbols.
This is used when generate: :all is specified for a library.
Unlike introspect/2 which only inspects specific symbols, this
function discovers all public functions, classes, and attributes.
Options
	:submodules - List of submodule names to also introspect (e.g., ["linalg", "fft"])
	:flat - If true, use flat format (v2.0); otherwise use namespaced format (v2.1)

Examples
{:ok, result} = Introspector.introspect_module(library)
{:ok, result} = Introspector.introspect_module(library, submodules: ["linalg"])

 introspect_module_docs(library, modules)

 @spec introspect_module_docs(SnakeBridge.Config.Library.t() | map(), [String.t()]) ::
 {:ok, list()} | {:error, term()}

Fetch module docstrings without introspecting symbols.

SnakeBridge.Lock

Manages snakebridge.lock with runtime identity, hardware info, and library versions.
The lock file captures:
	Hardware identity (accelerator, CUDA version, CPU features)
	Platform information (OS, architecture)
	Python environment (version, packages)
	Library configurations

Hardware-Aware Lock Files
The lock file includes hardware information to detect compatibility issues:
%{
 "environment" => %{
 "hardware" => %{
 "accelerator" => "cuda",
 "cuda_version" => "12.1",
 "gpu_count" => 2,
 "cpu_features" => ["avx", "avx2"]
 },
 "platform" => %{
 "os" => "linux",
 "arch" => "x86_64"
 }
 }
}
Use SnakeBridge.Lock.Verifier to verify compatibility.

 Summary

 Functions

 build(config)

 build_compatibility_section(hardware)

 Builds the compatibility section with minimum requirements.

 build_hardware_section()

 Builds the hardware section for the lock file.

 build_platform_section()

 Builds the platform section for the lock file.

 compute_packages_hash(packages)

 Deterministic hash from sorted package versions.

 generator_hash()

 Computes the generator hash from generator and adapter source contents.

 get_package_metadata(config)

 Gets package metadata for the lockfile.

 load()

 update(config)

 verify_generator_unchanged?(lock)

 Checks if the lock was generated with the current generator version.

 write(lock)

 Functions

 build(config)

 @spec build(SnakeBridge.Config.t()) :: map()

 build_compatibility_section(hardware)

 @spec build_compatibility_section(map()) :: map()

Builds the compatibility section with minimum requirements.

 build_hardware_section()

 @spec build_hardware_section() :: map()

Builds the hardware section for the lock file.
Returns a map with hardware identity including accelerator type,
CUDA version if available, GPU count, and CPU features.

 build_platform_section()

 @spec build_platform_section() :: map()

Builds the platform section for the lock file.

 compute_packages_hash(packages)

 @spec compute_packages_hash(map()) :: String.t()

Deterministic hash from sorted package versions.

 generator_hash()

 @spec generator_hash() :: String.t()

Computes the generator hash from generator and adapter source contents.

 get_package_metadata(config)

 @spec get_package_metadata(SnakeBridge.Config.t()) :: map()

Gets package metadata for the lockfile.

 load()

 @spec load() :: map() | nil

 update(config)

 @spec update(SnakeBridge.Config.t()) :: :ok

 verify_generator_unchanged?(lock)

 @spec verify_generator_unchanged?(map()) :: boolean()

Checks if the lock was generated with the current generator version.

 write(lock)

 @spec write(map()) :: :ok

SnakeBridge.Manifest

Manifest storage for generated symbols.

 Summary

 Functions

 call_supported?(manifest, module, function, call_site_arity)

 class_key(module)

 load(config)

 missing(manifest, detected)

 put_classes(manifest, entries)

 put_modules(manifest, entries)

 put_symbols(manifest, entries)

 save(config, manifest)

 symbol_key(arg)

 Functions

 call_supported?(manifest, module, function, call_site_arity)

 @spec call_supported?(map(), module(), atom(), non_neg_integer()) :: boolean()

 class_key(module)

 @spec class_key(module()) :: String.t()

 load(config)

 @spec load(SnakeBridge.Config.t()) :: map()

 missing(manifest, detected)

 @spec missing(map(), [{module(), atom(), non_neg_integer()}]) :: [
 {module(), atom(), non_neg_integer()}
]

 put_classes(manifest, entries)

 @spec put_classes(map(), [{String.t(), map()}]) :: map()

 put_modules(manifest, entries)

 @spec put_modules(map(), [{String.t(), map()}]) :: map()

 put_symbols(manifest, entries)

 @spec put_symbols(map(), [{String.t(), map()}]) :: map()

 save(config, manifest)

 @spec save(SnakeBridge.Config.t(), map()) :: :ok

 symbol_key(arg)

 @spec symbol_key({module(), atom(), non_neg_integer()}) :: String.t()

SnakeBridge.Scanner

Scans project source files for Python library calls.

 Summary

 Types

 call_ref()

 Functions

 scan_project(config)

 Types

 call_ref()

 @type call_ref() :: {module(), atom(), non_neg_integer()}

 Functions

 scan_project(config)

 @spec scan_project(SnakeBridge.Config.t()) :: [call_ref()]

SnakeBridge.Bytes

Wrapper struct for binary data that should be sent to Python as bytes, not str.
By default, SnakeBridge encodes UTF-8 valid Elixir binaries as Python strings.
Use this wrapper when you need to explicitly send data as Python bytes.
Examples
Hash a string as bytes
{:ok, hash} = SnakeBridge.call("hashlib", "md5", [SnakeBridge.bytes("abc")])

Base64 encode
{:ok, encoded} = SnakeBridge.call("base64", "b64encode", [SnakeBridge.bytes("hello")])

Binary protocol data
{:ok, _} = SnakeBridge.call("struct", "pack", [">I", 42])
When to Use
Use SnakeBridge.bytes/1 when calling Python functions that:
	Require bytes input (hashlib, cryptography, struct, etc.)
	Work with binary protocols
	Process raw byte data

Wire Format
Encoded as:
{"__type__": "bytes", "__schema__": 1, "data": "<base64-encoded>"}

 Summary

 Types

 t()

 Functions

 data(bytes)

 Returns the raw binary data from a Bytes wrapper.

 new(data)

 Creates a Bytes wrapper from binary data.

 Types

 t()

 @type t() :: %SnakeBridge.Bytes{data: binary()}

 Functions

 data(bytes)

 @spec data(t()) :: binary()

Returns the raw binary data from a Bytes wrapper.
Examples
iex> bytes = SnakeBridge.Bytes.new("hello")
iex> SnakeBridge.Bytes.data(bytes)
"hello"

 new(data)

 @spec new(binary()) :: t()

Creates a Bytes wrapper from binary data.
Examples
iex> SnakeBridge.Bytes.new("hello")
%SnakeBridge.Bytes{data: "hello"}

iex> SnakeBridge.Bytes.new(<<0, 1, 2, 255>>)
%SnakeBridge.Bytes{data: <<0, 1, 2, 255>>}

SnakeBridge.Ref

Structured reference to a Python object managed by SnakeBridge.
This struct defines the cross-language wire shape for Python object references.

 Summary

 Types

 t()

 Structured reference to a Python object.

 Functions

 from_wire_format(ref)

 Creates a Ref from a wire format map.

 ref?(ref)

 Checks if a value is a valid ref.

 schema_version()

 to_wire_format(ref)

 Converts a Ref to wire format for Python calls.

 Types

 t()

 @type t() :: %SnakeBridge.Ref{
 id: String.t(),
 library: String.t() | nil,
 pool_name: String.t() | atom() | nil,
 python_module: String.t() | nil,
 schema: pos_integer(),
 session_id: String.t(),
 type_name: String.t() | nil
}

Structured reference to a Python object.

 Functions

 from_wire_format(ref)

 @spec from_wire_format(map() | t()) :: t()

Creates a Ref from a wire format map.

 ref?(ref)

 @spec ref?(term()) :: boolean()

Checks if a value is a valid ref.

 schema_version()

 @spec schema_version() :: pos_integer()

 to_wire_format(ref)

 @spec to_wire_format(t() | map()) :: map()

Converts a Ref to wire format for Python calls.

SnakeBridge.StreamRef

Represents a Python iterator or generator as an Elixir stream.
Implements the Enumerable protocol for lazy iteration.

 Summary

 Types

 t()

 Functions

 from_wire_format(map)

 Creates a StreamRef from a decoded wire format.

 to_wire_format(ref)

 Converts back to wire format for Python calls.

 Types

 t()

 @type t() :: %SnakeBridge.StreamRef{
 exhausted: boolean(),
 library: String.t(),
 pool_name: String.t() | atom() | nil,
 python_module: String.t(),
 ref_id: String.t(),
 session_id: String.t(),
 stream_type: String.t()
}

 Functions

 from_wire_format(map)

 @spec from_wire_format(map()) :: t()

Creates a StreamRef from a decoded wire format.

 to_wire_format(ref)

 @spec to_wire_format(t()) :: map()

Converts back to wire format for Python calls.

SnakeBridge.Types.Decoder

Decodes JSON-compatible data from Python into Elixir data structures.
Handles lossless decoding of tagged representations produced by the Python
side or by SnakeBridge.Types.Encoder. Recognizes special __type__ markers
to reconstruct Elixir-specific types. Atom decoding is allowlist-based
(configure via :snakebridge, :atom_allowlist).
Supported Tagged Types
	{"__type__": "atom", "value": "ok"} → :ok (allowlisted only)
	{"__type__": "tuple", "elements": [...]} → Elixir tuple
	{"__type__": "set", "elements": [...]} → MapSet
	{"__type__": "frozenset", "elements": [...]} → MapSet
	{"__type__": "bytes", "data": "<base64>"} → binary
	{"__type__": "datetime", "value": "<iso8601>"} → DateTime
	{"__type__": "date", "value": "<iso8601>"} → Date
	{"__type__": "time", "value": "<iso8601>"} → Time
	{"__type__": "special_float", "value": "infinity"} → :infinity
	{"__type__": "special_float", "value": "neg_infinity"} → :neg_infinity
	{"__type__": "special_float", "value": "nan"} → :nan
	{"__type__": "ref", ...} → SnakeBridge.Ref
	{"__type__": "stream_ref", ...} → SnakeBridge.StreamRef

Direct JSON Types
	null → nil
	Booleans → true/false
	Numbers → integers or floats
	Strings → strings
	Arrays → lists (recursively decoded)
	Objects → maps with string keys (recursively decoded)

Examples
iex> SnakeBridge.Types.Decoder.decode(%{"__type__" => "tuple", "elements" => [1, 2, 3]})
{1, 2, 3}

iex> SnakeBridge.Types.Decoder.decode(%{"__type__" => "set", "elements" => [1, 2, 3]})
#MapSet<[1, 2, 3]>

iex> SnakeBridge.Types.Decoder.decode(%{"a" => 1, "b" => 2})
%{"a" => 1, "b" => 2}

 Summary

 Functions

 decode(num)

 Decodes a JSON-compatible value into an Elixir data structure.

 Functions

 decode(num)

 @spec decode(term()) :: term()

Decodes a JSON-compatible value into an Elixir data structure.
Recognizes and handles tagged types from the Python encoder.
Examples
iex> decode(42)
42

iex> decode([1, 2, 3])
[1, 2, 3]

iex> decode(%{
...> "__type__" => "tuple",
...> "elements" => [%{"__type__" => "atom", "value" => "ok"}, "result"]
...> })
{:ok, "result"}

SnakeBridge.Types.Encoder

Encodes Elixir data structures into JSON-compatible formats for Python interop.
Handles lossless encoding of Elixir types that don't have direct JSON equivalents
using tagged representations. Tagged values include a __schema__ marker for
the current wire schema version. Atom round-trips depend on the decoder
allowlist.
Supported Types
Direct JSON Types
	nil → null
	Booleans → true/false
	Integers → numbers
	Floats → numbers
	Strings (UTF-8) → strings
	Lists → arrays
	Maps with string keys → objects

Tagged Types
	Atoms → {"__type__": "atom", "value": "ok"}
	Tuples → {"__type__": "tuple", "elements": [...]}
	MapSets → {"__type__": "set", "elements": [...]}
	Binaries (non-UTF-8) → {"__type__": "bytes", "data": "<base64>"}
	SnakeBridge.Bytes → {"__type__": "bytes", "data": "<base64>"} (always bytes)
	DateTime → {"__type__": "datetime", "value": "<iso8601>"}
	Date → {"__type__": "date", "value": "<iso8601>"}
	Time → {"__type__": "time", "value": "<iso8601>"}
	Special floats → {"__type__": "special_float", "value": "infinity"|"neg_infinity"|"nan"}
	Maps with string/atom keys → plain objects (keys converted to strings)
	Maps with non-string keys → {"__type__": "dict", "pairs": [[key, val], ...]}

Unsupported Types
The following types cannot be serialized and will raise SnakeBridge.SerializationError:
	PIDs, ports, references
	Custom structs without explicit encoder support

Examples
iex> SnakeBridge.Types.Encoder.encode(%{a: 1, b: 2})
%{"a" => 1, "b" => 2}

iex> SnakeBridge.Types.Encoder.encode({:ok, "result"})
%{
 "__type__" => "tuple",
 "__schema__" => 1,
 "elements" => [%{"__type__" => "atom", "__schema__" => 1, "value" => "ok"}, "result"]
}

iex> SnakeBridge.Types.Encoder.encode(MapSet.new([1, 2, 3]))
%{"__type__" => "set", "__schema__" => 1, "elements" => [1, 2, 3]}

iex> SnakeBridge.Types.Encoder.encode(%{1 => "one", 2 => "two"})
%{"__type__" => "dict", "__schema__" => 1, "pairs" => [[1, "one"], [2, "two"]]}

 Summary

 Functions

 encode(atom)

 Encodes an Elixir value into a JSON-compatible structure.

 Functions

 encode(atom)

 @spec encode(term()) :: term()

Encodes an Elixir value into a JSON-compatible structure.
Examples
iex> encode(42)
42

iex> encode(:ok)
%{"__type__" => "atom", "__schema__" => 1, "value" => "ok"}

iex> encode({1, 2, 3})
%{"__type__" => "tuple", "__schema__" => 1, "elements" => [1, 2, 3]}
Raises
	SnakeBridge.SerializationError for unsupported types (PIDs, ports, refs, unknown structs)

SnakeBridge.DynamicException

Dynamically creates Elixir exception modules from Python exception class names.
This enables pattern matching on Python exceptions:
rescue
 e in SnakeBridge.DynamicException.ValueError ->
 handle_value_error(e)

 Summary

 Functions

 create(python_class_name, message, opts \\ [])

 Creates an exception struct from a Python class name and message.

 get_or_create_module(python_class_name)

 Gets or creates an exception module for a Python class name.

 Functions

 create(python_class_name, message, opts \\ [])

 @spec create(String.t(), String.t() | nil, keyword()) :: Exception.t()

Creates an exception struct from a Python class name and message.

 get_or_create_module(python_class_name)

 @spec get_or_create_module(String.t()) :: module()

Gets or creates an exception module for a Python class name.

SnakeBridge.Error

ML-specific error types for SnakeBridge.
This module provides structured error types that translate Python/ML
errors into Elixir exceptions with actionable suggestions.
Available Error Types
	SnakeBridge.Error.ShapeMismatchError - Tensor shape incompatibilities
	SnakeBridge.Error.OutOfMemoryError - GPU/CPU memory exhaustion
	SnakeBridge.Error.DtypeMismatchError - Tensor dtype incompatibilities

Translation
Use SnakeBridge.ErrorTranslator to automatically translate Python
exceptions into these structured error types.
Examples
Creating errors directly
error = SnakeBridge.Error.ShapeMismatchError.new(:matmul,
 shape_a: [3, 4],
 shape_b: [5, 6]
)

Raising errors
raise SnakeBridge.Error.OutOfMemoryError, device: {:cuda, 0}

Translating Python errors
translated = SnakeBridge.ErrorTranslator.translate(python_error)

 Summary

 Functions

 dtype_mismatch(expected, got, opts \\ [])

 See SnakeBridge.Error.DtypeMismatchError.new/3.

 out_of_memory(device, opts \\ [])

 See SnakeBridge.Error.OutOfMemoryError.new/2.

 shape_mismatch(operation, opts \\ [])

 See SnakeBridge.Error.ShapeMismatchError.new/2.

 Functions

 dtype_mismatch(expected, got, opts \\ [])

See SnakeBridge.Error.DtypeMismatchError.new/3.

 out_of_memory(device, opts \\ [])

See SnakeBridge.Error.OutOfMemoryError.new/2.

 shape_mismatch(operation, opts \\ [])

See SnakeBridge.Error.ShapeMismatchError.new/2.

SnakeBridge.ErrorTranslator

Translates Python/ML errors into structured SnakeBridge errors.
This module recognizes common ML error patterns from PyTorch, NumPy,
and other ML libraries, and translates them into structured error
types with actionable suggestions.
Supported Error Types
	SnakeBridge.Error.ShapeMismatchError - Tensor shape incompatibilities
	SnakeBridge.Error.OutOfMemoryError - GPU/CPU memory exhaustion
	SnakeBridge.Error.DtypeMismatchError - Tensor dtype incompatibilities

Examples
iex> error = %RuntimeError{message: "CUDA out of memory"}
iex> SnakeBridge.ErrorTranslator.translate(error)
%SnakeBridge.Error.OutOfMemoryError{device: {:cuda, 0}, ...}

 Summary

 Functions

 dtype_from_string(dtype_str)

 Converts a Python/PyTorch dtype string to an Elixir atom.

 translate(error, traceback \\ nil)

 Translates a Python/ML error to a structured SnakeBridge error.

 translate_message(message)

 Translates an error message string to a structured error.

 Functions

 dtype_from_string(dtype_str)

 @spec dtype_from_string(String.t()) :: atom()

Converts a Python/PyTorch dtype string to an Elixir atom.
Examples
iex> SnakeBridge.ErrorTranslator.dtype_from_string("Float")
:float32

iex> SnakeBridge.ErrorTranslator.dtype_from_string("torch.float64")
:float64

 translate(error, traceback \\ nil)

 @spec translate(Exception.t() | map() | nil, String.t() | nil) :: Exception.t() | nil

Translates a Python/ML error to a structured SnakeBridge error.
Returns the original error if it cannot be translated.

 translate_message(message)

 @spec translate_message(String.t()) :: Exception.t() | nil

Translates an error message string to a structured error.
Returns nil if the message cannot be translated.

SnakeBridge.Telemetry

Telemetry event definitions for SnakeBridge.
This module provides instrumentation for compile-time operations including:
	Source scanning
	Python introspection
	Code generation
	Lock file verification

Event List
	Event	Measurements	Metadata
	[:snakebridge, :compile, :start]	system_time	libraries, strict
	[:snakebridge, :compile, :stop]	duration, symbols_generated, files_written	libraries, mode
	[:snakebridge, :compile, :exception]	duration	reason, stacktrace
	[:snakebridge, :compile, :scan, :stop]	duration, files_scanned, symbols_found	library, phase, details
	[:snakebridge, :compile, :introspect, :start]	system_time	library, phase, details
	[:snakebridge, :compile, :introspect, :stop]	duration, symbols_introspected, cache_hits	library, phase, details
	[:snakebridge, :compile, :generate, :stop]	duration, bytes_written, functions_generated, classes_generated	library, phase, details
	[:snakebridge, :docs, :fetch]	duration	module, function, source
	[:snakebridge, :lock, :verify]	duration	result, warnings
	[:snakebridge, :session, :cleanup]	system_time	session_id, source, reason

Usage
Attach handlers in your application
SnakeBridge.Telemetry.Handlers.Logger.attach()

Compile-time events are automatically emitted during mix compile

 Summary

 Functions

 compile_exception(start_time, reason, stacktrace)

 Emits compile exception event.

 compile_start(libraries, strict)

 Emits compile start event.

 compile_stop(start_time, symbols, files, libraries, mode)

 Emits compile stop event.

 docs_fetch(start_time, module, function, source)

 Emits docs fetch event.

 event_metadata_schema(arg1)

 Returns the expected metadata fields for an event.

 generate_stop(start_time, library, file, bytes, functions, classes)

 Emits generate stop event.

 introspect_start(library, batch_size)

 Emits introspect start event.

 introspect_stop(start_time, library, symbols, cache_hits, python_time)

 Emits introspect stop event.

 lock_verify(start_time, result, warnings \\ [])

 Emits lock verify event.

 scan_stop(start_time, files, symbols, paths)

 Emits scan stop event.

 session_cleanup(session_id, source, reason)

 Emits session cleanup event.

 session_cleanup_error(session_id, source, reason)

 Emits session cleanup error event.

 Functions

 compile_exception(start_time, reason, stacktrace)

 @spec compile_exception(integer(), term(), list()) :: :ok

Emits compile exception event.
Measurements
	duration - Time in native units

Metadata
	library - :all
	phase - :compile
	details - %{reason: term(), stacktrace: list()}

 compile_start(libraries, strict)

 @spec compile_start([atom()], boolean()) :: :ok

Emits compile start event.
Measurements
	system_time - System time when compilation started

Metadata
	library - :all
	phase - :compile
	details - %{libraries: [...], strict: boolean()}

 compile_stop(start_time, symbols, files, libraries, mode)

 @spec compile_stop(
 integer(),
 non_neg_integer(),
 non_neg_integer(),
 [atom()],
 :normal | :strict
) :: :ok

Emits compile stop event.
Measurements
	duration - Time in native units
	symbols_generated - Number of symbols generated
	files_written - Number of files written

Metadata
	library - :all
	phase - :compile
	details - %{libraries: [...], mode: :normal | :strict}

 docs_fetch(start_time, module, function, source)

 @spec docs_fetch(integer(), module(), atom(), :cache | :python | :metadata) :: :ok

Emits docs fetch event.
Measurements
	duration - Time in native units

Metadata
	module - Module fetched
	function - Function name
	source - :cache, :python, or :metadata

 event_metadata_schema(arg1)

 @spec event_metadata_schema([atom()]) :: [atom()]

Returns the expected metadata fields for an event.

 generate_stop(start_time, library, file, bytes, functions, classes)

 @spec generate_stop(
 integer(),
 atom(),
 String.t(),
 non_neg_integer(),
 non_neg_integer(),
 non_neg_integer()
) :: :ok

Emits generate stop event.
Measurements
	duration - Time in native units
	bytes_written - Number of bytes written
	functions_generated - Number of functions generated
	classes_generated - Number of classes generated

Metadata
	library - Library atom generated
	phase - :generate
	details - %{file: String.t()}

 introspect_start(library, batch_size)

 @spec introspect_start(atom(), non_neg_integer()) :: :ok

Emits introspect start event.
Measurements
	system_time - System time when introspection started

Metadata
	library - Library atom being introspected
	phase - :introspect
	details - %{batch_size: non_neg_integer()}

 introspect_stop(start_time, library, symbols, cache_hits, python_time)

 @spec introspect_stop(
 integer(),
 atom(),
 non_neg_integer(),
 non_neg_integer(),
 integer()
) :: :ok

Emits introspect stop event.
Measurements
	duration - Time in native units
	symbols_introspected - Number of symbols introspected
	cache_hits - Number of cache hits

Metadata
	library - Library atom introspected
	phase - :introspect
	details - %{python_time: integer()}

 lock_verify(start_time, result, warnings \\ [])

 @spec lock_verify(integer(), :ok | :warning | :error, [String.t()]) :: :ok

Emits lock verify event.
Measurements
	duration - Time in native units

Metadata
	result - :ok, :warning, or :error
	warnings - List of warning strings

 scan_stop(start_time, files, symbols, paths)

 @spec scan_stop(integer(), non_neg_integer(), non_neg_integer(), [String.t()]) :: :ok

Emits scan stop event.
Measurements
	duration - Time in native units
	files_scanned - Number of files scanned
	symbols_found - Number of symbols found

Metadata
	library - :all
	phase - :scan
	details - %{paths: [String.t()]}

 session_cleanup(session_id, source, reason)

 @spec session_cleanup(String.t(), :manual | :owner_down, term()) :: :ok

Emits session cleanup event.
Measurements
	system_time - System time when cleanup was triggered

Metadata
	session_id - Session identifier
	source - :manual or :owner_down
	reason - Exit reason or :manual

 session_cleanup_error(session_id, source, reason)

 @spec session_cleanup_error(String.t(), :manual | :owner_down, term()) :: :ok

Emits session cleanup error event.
Measurements
	system_time - System time when cleanup failure was observed

Metadata
	session_id - Session identifier
	source - :manual or :owner_down
	reason - Error or exit reason

SnakeBridge.EnvironmentError exception

Error raised when required Python packages are missing.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %SnakeBridge.EnvironmentError{
 __exception__: true,
 message: String.t(),
 missing_packages: [String.t()],
 suggestion: String.t()
}

SnakeBridge.IntrospectionError exception

Structured error for Python introspection failures.

 Summary

 Types

 t()

 Functions

 from_python_output(output, package)

 Parses Python stderr to classify the error.

 Types

 t()

 @type t() :: %SnakeBridge.IntrospectionError{
 __exception__: true,
 message: String.t(),
 package: String.t() | nil,
 python_error: String.t() | nil,
 suggestion: String.t() | nil,
 type: :package_not_found | :import_error | :timeout | :introspection_bug
}

 Functions

 from_python_output(output, package)

 @spec from_python_output(String.t(), String.t()) :: t()

Parses Python stderr to classify the error.

SnakeBridge.PythonEnv

Compile-time orchestrator for Python environment provisioning.

 Summary

 Types

 requirement()

 Functions

 derive_requirements(libraries)

 Converts library config to PEP-440 requirement strings.

 ensure!(config)

 Ensures the Python environment is ready for introspection.

 verify_environment!(config)

 Checks packages are installed without installing.

 Types

 requirement()

 @type requirement() :: String.t()

 Functions

 derive_requirements(libraries)

 @spec derive_requirements([SnakeBridge.Config.Library.t()]) :: [requirement()]

Converts library config to PEP-440 requirement strings.
Skips stdlib libraries and applies pypi_package and extras overrides.

 ensure!(config)

 @spec ensure!(SnakeBridge.Config.t()) :: :ok | no_return()

Ensures the Python environment is ready for introspection.
In dev with auto_install enabled, installs missing packages.
In strict mode, verifies the environment without installing.

 verify_environment!(config)

 @spec verify_environment!(SnakeBridge.Config.t()) :: :ok | no_return()

Checks packages are installed without installing.

SnakeBridge.CompileError exception

Error raised when strict mode detects missing bindings.

SnakeBridge.HelperNotFoundError exception

Error raised when a helper name is not registered.

 Summary

 Types

 t()

 Functions

 new(helper)

 Types

 t()

 @type t() :: %SnakeBridge.HelperNotFoundError{
 __exception__: true,
 helper: String.t() | nil,
 message: String.t(),
 suggestion: String.t() | nil
}

 Functions

 new(helper)

 @spec new(String.t()) :: t()

SnakeBridge.HelperRegistryError exception

Error raised when helper registry discovery fails.

 Summary

 Types

 t()

 Functions

 from_python_output(output)

 Build an error from Python stderr output.

 Types

 t()

 @type t() :: %SnakeBridge.HelperRegistryError{
 __exception__: true,
 message: String.t(),
 python_error: String.t() | nil,
 suggestion: String.t() | nil,
 type: :load_failed
}

 Functions

 from_python_output(output)

 @spec from_python_output(String.t()) :: t()

Build an error from Python stderr output.

SnakeBridge.InvalidRefError exception

Raised when a ref payload is malformed or invalid.
This occurs when the ref structure is missing required fields or has
an unrecognized format.
Fields
	:reason - Why the ref is invalid (atom or string)
	:message - Human-readable error message

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %SnakeBridge.InvalidRefError{
 __exception__: true,
 message: String.t(),
 reason: atom() | String.t() | nil
}

SnakeBridge.RefNotFoundError exception

Raised when a Python object reference cannot be found in the registry.
This typically occurs when:
	The ref was already released via release_ref/1
	The session was released via release_session/1
	The ref expired due to TTL
	The ref was evicted due to registry size limits

Fields
	:ref_id - The ref ID that was not found
	:session_id - The session ID the ref was looked up in
	:message - Human-readable error message

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %SnakeBridge.RefNotFoundError{
 __exception__: true,
 message: String.t(),
 ref_id: String.t() | nil,
 session_id: String.t() | nil
}

SnakeBridge.ScanError exception

Structured error for scan failures.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %SnakeBridge.ScanError{__exception__: true, failures: [map()]}

SnakeBridge.SerializationError exception

Raised when attempting to encode a value that cannot be serialized for Python.
SnakeBridge supports encoding:
	Primitives: nil, booleans, integers, floats, strings
	Collections: lists, maps, tuples, MapSets
	Special types: atoms, DateTime, Date, Time, SnakeBridge.Bytes
	References: SnakeBridge.Ref, SnakeBridge.StreamRef
	Functions: anonymous functions (as callbacks)
	Special floats: :infinity, :neg_infinity, :nan

Types that cannot be serialized:
	PIDs, ports, references
	Custom structs without serialization support
	File handles, sockets, other system resources

Resolution
For unsupported types, you have several options:
	Create a Python object and pass the ref:
{:ok, ref} = SnakeBridge.call("module", "create_object", [...])
SnakeBridge.call("module", "use_object", [ref])

	Convert to a supported type:
Instead of passing a PID
SnakeBridge.call("module", "fn", [inspect(pid)])
Or extract relevant data
SnakeBridge.call("module", "fn", [pid_to_list(pid)])

	Use explicit bytes for binary data:
SnakeBridge.call("module", "fn", [SnakeBridge.bytes(binary)])

 Summary

 Types

 t()

 Functions

 new(message \\ nil)

 Creates a SerializationError from a message string.

 Types

 t()

 @type t() :: %SnakeBridge.SerializationError{
 __exception__: true,
 message: String.t(),
 type: atom() | module(),
 value: term()
}

 Functions

 new(message \\ nil)

 @spec new(String.t() | nil) :: t()

Creates a SerializationError from a message string.
This is used for error messages from the Python side.

SnakeBridge.SessionMismatchError exception

Raised when a ref is used with a different session than it was created in.
SnakeBridge refs are session-scoped: a ref created in session A cannot be
used in session B. This error indicates a ref is being used across session
boundaries.
Fields
	:ref_id - The ref ID that caused the mismatch
	:expected_session - The session ID the ref belongs to
	:actual_session - The session ID the ref was used in
	:message - Human-readable error message

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %SnakeBridge.SessionMismatchError{
 __exception__: true,
 actual_session: String.t() | nil,
 expected_session: String.t() | nil,
 message: String.t(),
 ref_id: String.t() | nil
}

SnakeBridge.Error.DtypeMismatchError exception

Error for tensor dtype incompatibilities.
Provides information about expected vs actual dtypes and
suggestions for converting between types.
Examples
iex> error = %SnakeBridge.Error.DtypeMismatchError{
...> expected: :float32,
...> got: :float64,
...> operation: :matmul,
...> message: "Expected float32 but got float64"
...> }
iex> Exception.message(error)
"Dtype mismatch in matmul..."

 Summary

 Types

 dtype()

 t()

 Functions

 generate_suggestion(expected, got)

 Generates a suggestion for converting between dtypes.

 new(expected, got, opts \\ [])

 Creates a DtypeMismatchError error with conversion suggestion.

 Types

 dtype()

 @type dtype() :: :float16 | :float32 | :float64 | :int32 | :int64 | :bool | atom()

 t()

 @type t() :: %SnakeBridge.Error.DtypeMismatchError{
 __exception__: true,
 expected: dtype(),
 got: dtype(),
 message: String.t(),
 operation: atom() | nil,
 python_traceback: String.t() | nil,
 suggestion: String.t()
}

 Functions

 generate_suggestion(expected, got)

 @spec generate_suggestion(dtype(), dtype()) :: String.t()

Generates a suggestion for converting between dtypes.

 new(expected, got, opts \\ [])

 @spec new(dtype(), dtype(), keyword()) :: t()

Creates a DtypeMismatchError error with conversion suggestion.

SnakeBridge.Error.OutOfMemoryError exception

GPU out-of-memory error with recovery suggestions.
Provides detailed information about memory failures including
device info, memory stats, and actionable suggestions.
Examples
iex> error = %SnakeBridge.Error.OutOfMemoryError{
...> device: {:cuda, 0},
...> requested_mb: 8192,
...> available_mb: 2048,
...> message: "CUDA out of memory"
...> }
iex> Exception.message(error)
"GPU Out of Memory on CUDA:0..."

 Summary

 Types

 device()

 t()

 Functions

 new(device, opts \\ [])

 Creates an OutOfMemoryError error with default suggestions.

 Types

 device()

 @type device() :: :cpu | {:cuda, non_neg_integer()} | :mps | atom()

 t()

 @type t() :: %SnakeBridge.Error.OutOfMemoryError{
 __exception__: true,
 available_mb: non_neg_integer() | nil,
 device: device(),
 message: String.t(),
 python_traceback: String.t() | nil,
 requested_mb: non_neg_integer() | nil,
 suggestions: [String.t()],
 total_mb: non_neg_integer() | nil
}

 Functions

 new(device, opts \\ [])

 @spec new(
 device(),
 keyword()
) :: t()

Creates an OutOfMemoryError error with default suggestions.

SnakeBridge.Error.ShapeMismatchError exception

Error for tensor shape incompatibilities.
This error provides detailed information about shape mismatches including
the operation that failed, the shapes involved, and actionable suggestions.
Examples
iex> error = %SnakeBridge.Error.ShapeMismatchError{
...> operation: :matmul,
...> shape_a: [3, 4],
...> shape_b: [2, 5],
...> message: "Cannot multiply matrices with incompatible shapes",
...> suggestion: "A has 4 columns but B has 2 rows. Transpose B."
...> }
iex> Exception.message(error)
"Shape mismatch in matmul..."

 Summary

 Types

 t()

 Functions

 generate_suggestion(arg1, shape_a, shape_b)

 Generates a suggestion based on the operation and shapes.

 new(operation, opts \\ [])

 Creates a ShapeMismatchError error from context.

 Types

 t()

 @type t() :: %SnakeBridge.Error.ShapeMismatchError{
 __exception__: true,
 expected: String.t() | nil,
 got: String.t() | nil,
 message: String.t(),
 operation: atom(),
 python_traceback: String.t() | nil,
 shape_a: [non_neg_integer()] | nil,
 shape_b: [non_neg_integer()] | nil,
 suggestion: String.t()
}

 Functions

 generate_suggestion(arg1, shape_a, shape_b)

 @spec generate_suggestion(
 atom(),
 [non_neg_integer()] | nil,
 [non_neg_integer()] | nil
) :: String.t()

Generates a suggestion based on the operation and shapes.

 new(operation, opts \\ [])

 @spec new(
 atom(),
 keyword()
) :: t()

Creates a ShapeMismatchError error from context.

mix compile.snakebridge

Mix compiler that runs the SnakeBridge pre-pass (scan → introspect → generate).

mix snakebridge.docs.manifest

Generates a SnakeBridge docs manifest JSON file from Sphinx documentation artifacts.
Supports:
	objects.inv (Intersphinx inventory) for an inventory of documented objects
	optional HTML page extraction for:	a docs-nav filtered full profile (what the docs navigation links to)
	a curated summary profile (fully-qualified object references in page text)

Usage
mix snakebridge.docs.manifest --library <pkg> --inventory <objects.inv> --out priv/snakebridge/<pkg>.docs.json

mix snakebridge.docs.manifest --library <pkg> \
 --inventory <objects.inv> \
 --nav <api index url or path> \
 --nav-depth 1 \
 --summary <api index url or path> \
 --out priv/snakebridge/<pkg>.docs.json
You can also pass local paths instead of URLs.
The output JSON is intended to be committed so builds stay deterministic and
do not depend on network availability.

mix snakebridge.plan

Prints a compile-time plan for SnakeBridge code generation without running Python.
This is most useful for generate: :all libraries configured with module_mode: :docs,
where the docs manifest provides an accurate object/module allowlist.

mix snakebridge.python_test

Bootstraps the SnakeBridge Python environment and runs the Python test suite.
Usage:
mix snakebridge.python_test
mix snakebridge.python_test -- --maxfail=1
Options:
	--no-setup - Skip mix snakebridge.setup
	--no-pytest-install - Skip ensuring pytest is installed

mix snakebridge.regen

Forces SnakeBridge regeneration without relying on compile-time cache checks.
Usage
mix snakebridge.regen
Options
--clean Remove generated files and metadata before regeneration
--verbose Print cleaned paths

mix snakebridge.setup

Provisions the Python environment for SnakeBridge introspection.
Usage
mix snakebridge.setup
Options
--upgrade Upgrade packages to latest matching versions
--verbose Show detailed output
--check Only check, don't install (exit 1 if missing)

 Summary

 Functions

 run(args)

 Callback implementation for Mix.Task.run/1.

 Functions

 run(args)

Callback implementation for Mix.Task.run/1.

mix snakebridge.verify

Verifies the lock file against the current hardware environment.
This task checks that the hardware environment where the lock file was created
is compatible with the current system. It detects:
	Platform mismatches (OS, architecture)
	CUDA version differences
	Missing GPU capabilities
	CPU feature mismatches

Usage
mix snakebridge.verify # Verify with warnings
mix snakebridge.verify --strict # Fail on any mismatch
mix snakebridge.verify --verbose # Show detailed info
Options
	--strict - Treat warnings as errors and fail
	--verbose - Print detailed hardware information
	--file PATH - Use a specific lock file (default: snakebridge.lock)

Exit Codes
	0 - Compatible environment
	1 - Incompatible environment (or warnings in strict mode)

Examples
Standard verification
$ mix snakebridge.verify
✓ Lock file compatible with current environment

Strict mode (CI)
$ mix snakebridge.verify --strict
✗ CUDA version mismatch: lock has 12.1, current has 11.8

Verbose output
$ mix snakebridge.verify --verbose
Current hardware:
 Platform: linux-x86_64
 Accelerator: cuda
 CUDA version: 12.1
 GPU count: 2

Lock file:
 Platform: linux-x86_64
 Accelerator: cuda
 CUDA version: 12.1
 GPU count: 2

✓ Lock file compatible

 OEBPS/dist/epub-7LKEGYS5.js
(() => {
 // js/helpers.js
 var s = document.querySelector.bind(document), o = document.querySelectorAll.bind(document);
 function r(e) {
 document.readyState !== "loading" ? e() : document.addEventListener("DOMContentLoaded", e);
 }

 // js/makeup.js
 var l = "hll";
 window.addEventListener("exdoc:loaded", t);
 function t() {
 o("[data-group-id]").forEach((e) => {
 e.addEventListener("mouseenter", i), e.addEventListener("mouseleave", i);
 });
 }
 function i(e) {
 let n = e.currentTarget, a = e.type === "mouseenter", c = n.getAttribute("data-group-id");
 n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach((u) => {
 u.classList.toggle(l, a);
 });
 }

 // js/entry/epub.js
 r(() => {
 t();
 });
})();

