

 Snakepit

 v0.12.0

 [image: Logo]

 Table of contents

 	Introduction

 	Snakepit

 	Getting Started

 	Configuration

 	Configuration

 	Worker Profiles

 	Timeout Configuration

 	Session Scoping

 	Features

 	Hardware Detection

 	Fault Tolerance

 	Streaming

 	Graceful Serialization

 	Development

 	Python Adapters

 	Observability

 	Python Threading Guide

 	Operations

 	Production

 	Release Notes

 	Changelog

 	License

 	LICENSE

 	
 Modules

 	Snakepit.Application

 	Snakepit.Bootstrap

 	Snakepit.Bootstrap.Runner

 	Snakepit.Bridge.InternalToolSpec

 	Snakepit.Compatibility

 	Snakepit.CrashBarrier

 	Snakepit.Defaults

 	Snakepit.ETSOwner

 	Snakepit.EnvDoctor

 	Snakepit.GRPC.ClientImpl

 	Snakepit.HeartbeatMonitor

 	Snakepit.Logger

 	Snakepit.PythonPackages

 	Snakepit.PythonRuntime

 	Snakepit.PythonThreadLimits

 	Snakepit.PythonVersion

 	Snakepit.RuntimeCleanup

 	Snakepit.Telemetry.OpenTelemetry

 	Snakepit.Worker.LifecycleConfig

 	Snakepit.Worker.LifecycleManager

 	Snakepit.Worker.TaintRegistry

 	Snakepit.WorkerProfile

 	Snakepit.WorkerProfile.Process

 	Snakepit.WorkerProfile.Thread

 	Snakepit.ZeroCopy

 	Snakepit.ZeroCopyRef

 	Core API

 	Snakepit

 	Snakepit.Adapter

 	Pool Management

 	Snakepit.Pool

 	Snakepit.Pool.Worker.Starter

 	Snakepit.Pool.WorkerSupervisor

 	Workers

 	Snakepit.GRPCWorker

 	Session & State

 	Snakepit.Bridge.Session

 	Snakepit.Bridge.SessionStore

 	Adapters

 	Snakepit.Adapters.GRPCPython

 	Process Management

 	Snakepit.Pool.ApplicationCleanup

 	Snakepit.Pool.ProcessRegistry

 	Snakepit.ProcessKiller

 	Registry

 	Snakepit.Pool.Registry

 	Snakepit.Pool.Worker.StarterRegistry

 	gRPC & Bridge

 	Snakepit.Bridge.ToolRegistry

 	Snakepit.GRPC.BridgeServer

 	Snakepit.GRPC.Client

 	Snakepit.GRPC.Endpoint

 	Hardware

 	Snakepit.Hardware

 	Snakepit.Hardware.CPUDetector

 	Snakepit.Hardware.CUDADetector

 	Snakepit.Hardware.Detector

 	Snakepit.Hardware.MPSDetector

 	Snakepit.Hardware.ROCmDetector

 	Snakepit.Hardware.Selector

 	Reliability

 	Snakepit.CircuitBreaker

 	Snakepit.Executor

 	Snakepit.HealthMonitor

 	Snakepit.RetryPolicy

 	ML Errors

 	Snakepit.Error.Device

 	Snakepit.Error.Parser

 	Snakepit.Error.Shape

 	Telemetry

 	Snakepit.Telemetry

 	Snakepit.Telemetry.Control

 	Snakepit.Telemetry.Correlation

 	Snakepit.Telemetry.Events

 	Snakepit.Telemetry.GPUProfiler

 	Snakepit.Telemetry.GrpcStream

 	Snakepit.Telemetry.Handlers.Logger

 	Snakepit.Telemetry.Handlers.Metrics

 	Snakepit.Telemetry.Naming

 	Snakepit.Telemetry.SafeMetadata

 	Snakepit.Telemetry.Span

 	Snakepit.TelemetryMetrics

 	Serialization

 	Snakepit.Serialization

 	Utilities

 	Snakepit.Config

 	Snakepit.Error

 	Snakepit.RunID

 	Exceptions

 	Snakepit.Error.AttributeError

 	Snakepit.Error.DeviceMismatch

 	Snakepit.Error.FileNotFoundError

 	Snakepit.Error.ImportError

 	Snakepit.Error.IndexError

 	Snakepit.Error.KeyError

 	Snakepit.Error.NotImplementedError

 	Snakepit.Error.OutOfMemory

 	Snakepit.Error.PermissionError

 	Snakepit.Error.PythonException

 	Snakepit.Error.RuntimeError

 	Snakepit.Error.ShapeMismatch

 	Snakepit.Error.TypeError

 	Snakepit.Error.ValueError

 	Snakepit.Error.ZeroDivisionError

 	Snakepit.PackageError

 	
 Mix Tasks

 	mix snakepit.doctor

 	mix snakepit.gen.adapter

 	mix snakepit.python_test

 	mix snakepit.setup

 	mix snakepit.status

Snakepit.Application

Application supervisor for Snakepit pooler.
Starts the core infrastructure:
	Registry for worker process registration
	StarterRegistry for worker starter supervisors
	ProcessRegistry for external PID tracking
	SessionStore for session management
	WorkerSupervisor for managing worker processes
	Pool manager for request distribution

Snakepit.Bootstrap

Provisioning workflow for development and CI environments.
It installs Mix dependencies, prepares the default Python virtual
environments, regenerates gRPC stubs, and surfaces the interpreter path the
application will use at runtime.

 Summary

 Functions

 run(opts \\ [])

 Execute the bootstrap workflow.

 Functions

 run(opts \\ [])

 @spec run(Keyword.t()) :: :ok | {:error, term()}

Execute the bootstrap workflow.
Options:
	:project_root - overrides the working directory (defaults to File.cwd!/0)
	:runner - injects a custom runner, useful for tests
	:skip_mix_deps - skips mix deps.get (useful for test bootstrapping)

Snakepit.Bootstrap.Runner behaviour

Behaviour for executing bootstrap steps. Allows tests to inject fakes.

 Summary

 Callbacks

 cmd(command, args, keyword)

 mix(task, args)

 Callbacks

 cmd(command, args, keyword)

 @callback cmd(command :: String.t(), args :: [String.t()], keyword()) ::
 :ok | {:error, term()}

 mix(task, args)

 @callback mix(task :: String.t(), args :: [String.t()]) :: :ok | {:error, term()}

Snakepit.Bridge.InternalToolSpec

Internal specification for a tool in the registry.
Separate from the protobuf ToolSpec to avoid conflicts.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Snakepit.Bridge.InternalToolSpec{
 description: String.t(),
 exposed_to_python: boolean(),
 handler: (any() -> any()) | nil,
 metadata: map(),
 name: String.t(),
 parameters: [map()],
 type: :local | :remote,
 worker_id: String.t() | nil
}

Snakepit.Compatibility

Thread-safety compatibility matrix for common Python libraries.

 Summary

 Types

 library_info()

 thread_safety()

 Functions

 check(library, profile)

 generate_report(libraries, profile)

 get_library_info(library)

 list_all(arg1)

 Types

 library_info()

 @type library_info() :: %{thread_safe: thread_safety(), notes: String.t()}

 thread_safety()

 @type thread_safety() :: true | false | :conditional

 Functions

 check(library, profile)

 @spec check(String.t() | atom(), :thread | :process) ::
 {:ok, String.t()} | {:warning, String.t()} | {:error, String.t()}

 generate_report(libraries, profile)

 @spec generate_report([String.t() | atom()], :thread | :process) ::
 {:ok, map()} | {:error, term()}

 get_library_info(library)

 @spec get_library_info(String.t() | atom()) :: library_info() | nil

 list_all(arg1)

 @spec list_all(:thread_safe | :thread_unsafe | :conditional | :all) :: [String.t()]

Snakepit.CrashBarrier

Crash barrier policy for worker failures.
Classifies worker crashes, taints unstable workers, and determines retry eligibility.

 Summary

 Functions

 config(pool_config \\ %{})

 crash_info(arg1, config)

 enabled?(config)

 idempotent?(args)

 maybe_emit_restart(pool_name, worker_id)

 normalize_crash_error(result, info)

 retry_allowed?(config, idempotent, attempt)

 retry_backoff(config, attempt)

 taint_worker(pool_name, worker_id, info, config)

 worker_tainted?(worker_id)

 Functions

 config(pool_config \\ %{})

 crash_info(arg1, config)

 enabled?(config)

 @spec enabled?(map()) :: boolean()

 idempotent?(args)

 maybe_emit_restart(pool_name, worker_id)

 normalize_crash_error(result, info)

 retry_allowed?(config, idempotent, attempt)

 @spec retry_allowed?(map(), boolean(), non_neg_integer()) :: boolean()

 retry_backoff(config, attempt)

 taint_worker(pool_name, worker_id, info, config)

 worker_tainted?(worker_id)

 @spec worker_tainted?(String.t()) :: boolean()

Snakepit.Defaults

Centralized defaults for all configurable values in Snakepit.
This module provides functions that read from Application.get_env(:snakepit, key, default)
for every configurable value. This allows operators to override defaults via application
configuration while maintaining backward compatibility.
All defaults are the EXACT values that were previously hardcoded throughout the codebase.
Snakepit behaves identically before and after this change unless configuration is explicitly
provided.
Configuration Example
config/runtime.exs
config :snakepit,
 # Timeouts
 default_command_timeout: 30_000,
 pool_request_timeout: 60_000,
 pool_streaming_timeout: 300_000,
 pool_startup_timeout: 10_000,
 pool_queue_timeout: 5_000,
 checkout_timeout: 5_000,
 grpc_worker_execute_timeout: 30_000,
 grpc_worker_stream_timeout: 300_000,
 grpc_command_timeout: 30_000,
 executor_batch_timeout: 30_000,
 health_check_interval: 30_000,
 circuit_breaker_reset_timeout: 30_000,
 graceful_shutdown_timeout_ms: 6_000,

 # Pool settings
 pool_max_queue_size: 1000,
 pool_max_workers: 150,
 pool_max_cancelled_entries: 1024,
 pool_cancelled_retention_multiplier: 4,
 pool_startup_batch_size: 10,
 pool_startup_batch_delay_ms: 500,

 # Retry settings
 retry_max_attempts: 3,
 retry_max_backoff_ms: 30_000,
 retry_jitter_factor: 0.25,
 retry_backoff_sequence: [100, 200, 400, 800, 1600],

 # Circuit breaker settings
 circuit_breaker_failure_threshold: 5,
 circuit_breaker_half_open_max_calls: 1,

 # Crash barrier settings
 crash_barrier_taint_duration_ms: 60_000,
 crash_barrier_max_restarts: 1,
 crash_barrier_backoff_ms: [50, 100, 200],

 # Health monitor settings
 health_monitor_crash_window_ms: 60_000,
 health_monitor_max_crashes: 10,

 # Lifecycle manager settings
 lifecycle_check_interval: 60_000,
 lifecycle_health_check_interval: 300_000,

 # Session store settings
 session_cleanup_interval: 60_000,
 session_default_ttl: 3600,
 session_max_sessions: 10_000,
 session_warning_threshold: 0.8,
 affinity: :hint,

 # Process registry settings
 process_registry_cleanup_interval: 30_000,
 process_registry_unregister_cleanup_delay: 500,
 process_registry_unregister_cleanup_attempts: 10,

 # gRPC settings
 grpc_num_acceptors: 20,
 grpc_max_connections: 1000,
 grpc_socket_backlog: 512,

 # Heartbeat settings
 heartbeat_ping_interval_ms: 2_000,
 heartbeat_timeout_ms: 10_000,
 heartbeat_max_missed: 3,
 heartbeat_initial_delay_ms: 0
Usage
Instead of hardcoding values like 30_000, modules now call:
Snakepit.Defaults.default_command_timeout()
This returns the configured value or the original default if not configured.
Timeout Profiles (v0.8.8+)
Snakepit supports profile-based timeout configuration for different deployment scenarios:
	Profile	default_timeout	stream_timeout	queue_timeout
	:balanced	300_000 (5m)	900_000 (15m)	10_000 (10s)
	:production	300_000 (5m)	900_000 (15m)	10_000 (10s)
	:production_strict	60_000 (60s)	300_000 (5m)	5_000 (5s)
	:development	900_000 (15m)	3_600_000 (60m)	60_000 (60s)
	:ml_inference	900_000 (15m)	3_600_000 (60m)	60_000 (60s)
	:batch	3_600_000 (60m)	:infinity	300_000 (5m)

Configure via:
config :snakepit, timeout_profile: :production
Legacy per-key configuration is still supported and takes precedence when set.

 Summary

 Functions

 affinity_cache_ttl_seconds()

 TTL for session affinity cache entries in seconds.
Used in Snakepit.Pool for ETS affinity caching.

 checkout_timeout()

 Default timeout for checking out a worker for streaming.
Used in Snakepit.Pool for worker checkout during streaming operations.

 circuit_breaker_failure_threshold()

 Default failure threshold before circuit opens.
Used in Snakepit.CircuitBreaker.

 circuit_breaker_half_open_max_calls()

 Default max calls allowed in half-open state.
Used in Snakepit.CircuitBreaker.

 circuit_breaker_reset_timeout_ms()

 Default reset timeout before transitioning to half-open.
Used in Snakepit.CircuitBreaker.

 cleanup_on_stop_timeout_ms()

 Timeout for cleanup on stop.
Used in Snakepit.Application.

 cleanup_poll_interval_ms()

 Poll interval for cleanup operations.
Used in Snakepit.Application.

 config_default_batch_delay()

 Default batch delay for process profile.
Used in Snakepit.Config.

 config_default_batch_size()

 Default batch size for process profile.
Used in Snakepit.Config.

 config_default_threads_per_worker()

 Default threads per worker for thread profile.
Used in Snakepit.Config.

 crash_barrier_backoff_ms()

 Default backoff sequence for crash barrier retries.
Used in Snakepit.CrashBarrier.

 crash_barrier_checkout_timeout()

 Timeout for checking out worker during crash barrier retry.
Used in Snakepit.Pool crash barrier retry logic.

 crash_barrier_max_restarts()

 Default max restarts for crash barrier retry.
Used in Snakepit.CrashBarrier.

 crash_barrier_taint_duration_ms()

 Default taint duration for crashed workers.
Used in Snakepit.CrashBarrier.

 default_affinity_mode()

 Default session affinity mode for pools.

 default_capacity_strategy()

 Default capacity strategy.
Used in Snakepit.Config.

 default_command_timeout()

 Default command timeout for worker execute operations.
Used in Snakepit.Pool for command timeout calculation.

 default_pool_size()

 Default pool size based on system schedulers.
Used when no explicit pool_size is configured.

 default_timeout()

 Returns the default timeout for regular execute operations based on the current profile.

 default_worker_profile()

 Default worker profile.
Used in Snakepit.Config.

 executor_batch_timeout()

 Default timeout for batch operations in Executor.
Used in Snakepit.Executor.execute_batch/2.

 graceful_shutdown_timeout_ms()

 Graceful shutdown timeout for Python process termination.
Must be >= Python's shutdown envelope: server.stop(2s) + wait_for_termination(3s) = 5s.

 grpc_batch_inference_timeout()

 Timeout for batch inference commands.
Used in Snakepit.Adapters.GRPCPython for batch inference operations.

 grpc_client_execute_timeout()

 Default timeout for gRPC client execute calls.
Used in Snakepit.GRPC.Client.

 grpc_command_timeout()

 Default command timeout for gRPC adapter.
Used in Snakepit.Adapters.GRPCPython for default command timeouts.

 grpc_internal_host()

 Default host for internal-only gRPC listeners.
Used when grpc_listener.mode is :internal.

 grpc_large_dataset_timeout()

 Timeout for large dataset processing commands.
Used in Snakepit.Adapters.GRPCPython for large dataset processing operations.

 grpc_listener_port_check_interval_ms()

 Interval (ms) between port readiness checks when reusing an existing gRPC listener.

 grpc_listener_ready_timeout_ms()

 Timeout for waiting on the gRPC listener to publish its assigned port.

 grpc_listener_reuse_attempts()

 Number of attempts to reuse or rebind a gRPC listener before failing.

 grpc_listener_reuse_retry_delay_ms()

 Delay (ms) between gRPC listener reuse retries.

 grpc_listener_reuse_wait_timeout_ms()

 Max wait (ms) for an already-started gRPC listener to publish its port before retrying.

 grpc_max_connections()

 Default maximum connections for gRPC server.
Used in Snakepit.Application.

 grpc_num_acceptors()

 Default number of acceptors for gRPC server.
Used in Snakepit.Application.

 grpc_port()

 Default gRPC port for Elixir server.
Legacy: used when grpc_listener is not configured.

 grpc_port_pool_size()

 Default port pool size for external pooled listeners.
Used when grpc_listener.mode is :external_pool.

 grpc_server_ready_timeout()

 Timeout for waiting for gRPC server to become ready.
Used in Snakepit.GRPCWorker during initialization.

 grpc_socket_backlog()

 Default socket backlog for gRPC server.
Used in Snakepit.Application.

 grpc_worker_execute_timeout()

 Default timeout for GRPCWorker execute calls.
Used in Snakepit.GRPCWorker.execute/4.

 grpc_worker_health_check_interval()

 Interval for health checks in GRPCWorker.
Used in Snakepit.GRPCWorker for periodic health check scheduling.

 grpc_worker_stream_timeout()

 Default timeout for GRPCWorker streaming calls.
Used in Snakepit.GRPCWorker.execute_stream/5.

 health_monitor_check_interval()

 Default interval for health monitor cleanup.
Used in Snakepit.HealthMonitor.

 health_monitor_crash_window_ms()

 Default crash window for health monitor.
Rolling window for crash counting.

 health_monitor_max_crashes()

 Default max crashes before pool is considered unhealthy.
Used in Snakepit.HealthMonitor.

 heartbeat_initial_delay_ms()

 Initial delay before starting heartbeat monitoring.
Used in Snakepit.GRPCWorker heartbeat configuration.

 heartbeat_max_missed()

 Maximum missed heartbeats before worker is considered unhealthy.
Used in Snakepit.GRPCWorker heartbeat configuration.

 heartbeat_ping_interval_ms()

 Default heartbeat ping interval.
Used in Snakepit.GRPCWorker heartbeat configuration.

 heartbeat_timeout_ms()

 Default heartbeat timeout.
Used in Snakepit.GRPCWorker heartbeat configuration.

 instance_token()

 Default instance token for runtime isolation.

 lifecycle_check_interval()

 Default interval for lifecycle checks.
Used in Snakepit.Worker.LifecycleManager.

 lifecycle_health_check_interval()

 Default interval for health checks in lifecycle manager.
Used in Snakepit.Worker.LifecycleManager.

 pool_await_ready_timeout()

 Default timeout for awaiting pool readiness.
Used in Snakepit.Pool.await_ready/2.

 pool_cancelled_retention_multiplier()

 Multiplier for cancelled request retention time.
Retention time = queue_timeout * this multiplier.

 pool_max_cancelled_entries()

 Maximum number of cancelled request entries to track.
Used in Snakepit.Pool for cancelled request management.

 pool_max_queue_size()

 Maximum queue size for pending requests.
Used in Snakepit.Pool for queue management.

 pool_max_workers()

 Maximum number of workers allowed per pool.
Used in Snakepit.Pool for worker limit enforcement.

 pool_queue_timeout()

 Default timeout for queued requests.
Used in Snakepit.Pool for queue management.

 pool_reconcile_batch_size()

 pool_reconcile_interval_ms()

 pool_reply_margin_ms()

 Margin reserved for pool reply overhead.

 pool_request_timeout()

 Default timeout for pool execute calls.
Used in Snakepit.Pool.execute/3.

 pool_startup_batch_delay_ms()

 Delay between worker startup batches in milliseconds.
Used in Snakepit.Pool for batched startup.

 pool_startup_batch_size()

 Number of workers to start per batch during pool initialization.
Used in Snakepit.Pool for batched startup.

 pool_startup_timeout()

 Default timeout for worker startup.
Used in pool initialization.

 pool_streaming_timeout()

 Default timeout for pool streaming calls.
Used in Snakepit.Pool.execute_stream/4.

 process_registry_cleanup_interval()

 Default cleanup interval for process registry.
Used in Snakepit.Pool.ProcessRegistry.

 process_registry_unregister_cleanup_attempts()

 Maximum attempts to retry unregister cleanup.
Used in Snakepit.Pool.ProcessRegistry.

 process_registry_unregister_cleanup_delay()

 Delay before retrying unregister when external process is still alive.
Used in Snakepit.Pool.ProcessRegistry.

 queue_timeout()

 Returns the default queue timeout based on the current profile.

 retry_backoff_multiplier()

 Default backoff multiplier for exponential backoff.
Used in Snakepit.RetryPolicy.

 retry_backoff_sequence()

 Default backoff sequence for retries.
Used in Snakepit.RetryPolicy.

 retry_base_backoff_ms()

 Default base backoff for retry calculations.
Used in Snakepit.RetryPolicy.

 retry_jitter_factor()

 Default jitter factor for retry delays.
Used in Snakepit.RetryPolicy.

 retry_max_attempts()

 Default maximum retry attempts.
Used in Snakepit.RetryPolicy.

 retry_max_backoff_ms()

 Default maximum backoff delay.
Used in Snakepit.RetryPolicy.

 rpc_timeout(total_timeout)

 Derives the RPC (inner) timeout from the total timeout budget.

 session_cleanup_interval()

 Default cleanup interval for expired sessions.
Used in Snakepit.Bridge.SessionStore.

 session_default_ttl()

 Default TTL for sessions in seconds.
Used in Snakepit.Bridge.SessionStore.

 session_max_sessions()

 Default maximum number of sessions.
Used in Snakepit.Bridge.SessionStore.

 session_warning_threshold()

 Session warning threshold as a fraction of max_sessions.
When session count exceeds this percentage, warnings are emitted.

 shutdown_margin_ms()

 Margin added to graceful_shutdown_timeout for supervisor shutdown.
This gives the worker time to complete its terminate/2 callback.

 stream_timeout()

 Returns the default timeout for streaming operations based on the current profile.

 timeout_profile()

 Returns the currently configured timeout profile.

 timeout_profiles()

 Returns all available timeout profiles.

 worker_call_margin_ms()

 Margin reserved for GenServer.call overhead when routing to workers.

 worker_ready_timeout()

 Timeout for worker ready notification to pool.
Used in Snakepit.GRPCWorker when notifying pool of readiness.

 worker_starter_max_restarts()

 worker_starter_max_seconds()

 worker_supervisor_max_restarts()

 worker_supervisor_max_seconds()

 Functions

 affinity_cache_ttl_seconds()

 @spec affinity_cache_ttl_seconds() :: pos_integer()

TTL for session affinity cache entries in seconds.
Used in Snakepit.Pool for ETS affinity caching.
Default: 60 seconds (1 minute)

 checkout_timeout()

 @spec checkout_timeout() :: timeout()

Default timeout for checking out a worker for streaming.
Used in Snakepit.Pool for worker checkout during streaming operations.
When not explicitly configured, derives from queue_timeout/0 based on the
current timeout profile.
Default: derived from profile (10_000 ms for :balanced)

 circuit_breaker_failure_threshold()

 @spec circuit_breaker_failure_threshold() :: pos_integer()

Default failure threshold before circuit opens.
Used in Snakepit.CircuitBreaker.
Default: 5

 circuit_breaker_half_open_max_calls()

 @spec circuit_breaker_half_open_max_calls() :: pos_integer()

Default max calls allowed in half-open state.
Used in Snakepit.CircuitBreaker.
Default: 1

 circuit_breaker_reset_timeout_ms()

 @spec circuit_breaker_reset_timeout_ms() :: pos_integer()

Default reset timeout before transitioning to half-open.
Used in Snakepit.CircuitBreaker.
Default: 30_000 ms (30 seconds)

 cleanup_on_stop_timeout_ms()

 @spec cleanup_on_stop_timeout_ms() :: pos_integer()

Timeout for cleanup on stop.
Used in Snakepit.Application.
Default: 3_000 ms (3 seconds)

 cleanup_poll_interval_ms()

 @spec cleanup_poll_interval_ms() :: pos_integer()

Poll interval for cleanup operations.
Used in Snakepit.Application.
Default: 50 ms

 config_default_batch_delay()

 @spec config_default_batch_delay() :: pos_integer()

Default batch delay for process profile.
Used in Snakepit.Config.
Default: 750 ms

 config_default_batch_size()

 @spec config_default_batch_size() :: pos_integer()

Default batch size for process profile.
Used in Snakepit.Config.
Default: 8

 config_default_threads_per_worker()

 @spec config_default_threads_per_worker() :: pos_integer()

Default threads per worker for thread profile.
Used in Snakepit.Config.
Default: 10

 crash_barrier_backoff_ms()

 @spec crash_barrier_backoff_ms() :: [pos_integer()]

Default backoff sequence for crash barrier retries.
Used in Snakepit.CrashBarrier.
Default: [50, 100, 200]

 crash_barrier_checkout_timeout()

 @spec crash_barrier_checkout_timeout() :: timeout()

Timeout for checking out worker during crash barrier retry.
Used in Snakepit.Pool crash barrier retry logic.
Default: 5_000 ms (5 seconds)

 crash_barrier_max_restarts()

 @spec crash_barrier_max_restarts() :: pos_integer()

Default max restarts for crash barrier retry.
Used in Snakepit.CrashBarrier.
Default: 1

 crash_barrier_taint_duration_ms()

 @spec crash_barrier_taint_duration_ms() :: pos_integer()

Default taint duration for crashed workers.
Used in Snakepit.CrashBarrier.
Default: 60_000 ms (1 minute)

 default_affinity_mode()

 @spec default_affinity_mode() :: :hint | :strict_queue | :strict_fail_fast

Default session affinity mode for pools.
	:hint - Prefer the last worker when available, otherwise fall back
	:strict_queue - Queue when preferred worker is busy
	:strict_fail_fast - Return {:error, :worker_busy} when preferred worker is busy

Default: :hint

 default_capacity_strategy()

 @spec default_capacity_strategy() :: :pool | :profile | :hybrid

Default capacity strategy.
Used in Snakepit.Config.
Default: :pool

 default_command_timeout()

 @spec default_command_timeout() :: timeout()

Default command timeout for worker execute operations.
Used in Snakepit.Pool for command timeout calculation.
When not explicitly configured, derives from rpc_timeout(default_timeout()) based on the
current timeout profile.
Default: derived from profile (rpc_timeout of default_timeout)

 default_pool_size()

 @spec default_pool_size() :: pos_integer()

Default pool size based on system schedulers.
Used when no explicit pool_size is configured.
Default: System.schedulers_online() * 2

 default_timeout()

 @spec default_timeout() :: timeout()

Returns the default timeout for regular execute operations based on the current profile.
This is the primary user-facing timeout API. Legacy getters derive from this value
when not explicitly configured.

 default_worker_profile()

 @spec default_worker_profile() :: :process | :thread

Default worker profile.
Used in Snakepit.Config.
Default: :process

 executor_batch_timeout()

 @spec executor_batch_timeout() :: timeout()

Default timeout for batch operations in Executor.
Used in Snakepit.Executor.execute_batch/2.
Default: 30_000 ms (30 seconds)

 graceful_shutdown_timeout_ms()

 @spec graceful_shutdown_timeout_ms() :: pos_integer()

Graceful shutdown timeout for Python process termination.
Must be >= Python's shutdown envelope: server.stop(2s) + wait_for_termination(3s) = 5s.
Default: 6_000 ms (6 seconds)

 grpc_batch_inference_timeout()

 @spec grpc_batch_inference_timeout() :: timeout()

Timeout for batch inference commands.
Used in Snakepit.Adapters.GRPCPython for batch inference operations.
Default: 300_000 ms (5 minutes)

 grpc_client_execute_timeout()

 @spec grpc_client_execute_timeout() :: timeout()

Default timeout for gRPC client execute calls.
Used in Snakepit.GRPC.Client.
Default: derived from grpc_command_timeout/0

 grpc_command_timeout()

 @spec grpc_command_timeout() :: timeout()

Default command timeout for gRPC adapter.
Used in Snakepit.Adapters.GRPCPython for default command timeouts.
When not explicitly configured, derives from rpc_timeout(default_timeout()) based on the
current timeout profile.
Default: derived from profile (rpc_timeout of default_timeout)

 grpc_internal_host()

 @spec grpc_internal_host() :: String.t()

Default host for internal-only gRPC listeners.
Used when grpc_listener.mode is :internal.
Default: "127.0.0.1"

 grpc_large_dataset_timeout()

 @spec grpc_large_dataset_timeout() :: timeout()

Timeout for large dataset processing commands.
Used in Snakepit.Adapters.GRPCPython for large dataset processing operations.
Default: 600_000 ms (10 minutes)

 grpc_listener_port_check_interval_ms()

 @spec grpc_listener_port_check_interval_ms() :: pos_integer()

Interval (ms) between port readiness checks when reusing an existing gRPC listener.
Default: 25 ms

 grpc_listener_ready_timeout_ms()

 @spec grpc_listener_ready_timeout_ms() :: pos_integer()

Timeout for waiting on the gRPC listener to publish its assigned port.
Default: 5_000 ms

 grpc_listener_reuse_attempts()

 @spec grpc_listener_reuse_attempts() :: pos_integer()

Number of attempts to reuse or rebind a gRPC listener before failing.
Default: 3

 grpc_listener_reuse_retry_delay_ms()

 @spec grpc_listener_reuse_retry_delay_ms() :: pos_integer()

Delay (ms) between gRPC listener reuse retries.
Default: 100 ms

 grpc_listener_reuse_wait_timeout_ms()

 @spec grpc_listener_reuse_wait_timeout_ms() :: pos_integer()

Max wait (ms) for an already-started gRPC listener to publish its port before retrying.
Default: 500 ms

 grpc_max_connections()

 @spec grpc_max_connections() :: pos_integer()

Default maximum connections for gRPC server.
Used in Snakepit.Application.
Default: 1000

 grpc_num_acceptors()

 @spec grpc_num_acceptors() :: pos_integer()

Default number of acceptors for gRPC server.
Used in Snakepit.Application.
Default: 20

 grpc_port()

 @spec grpc_port() :: pos_integer()

Default gRPC port for Elixir server.
Legacy: used when grpc_listener is not configured.
Default: 50_051

 grpc_port_pool_size()

 @spec grpc_port_pool_size() :: pos_integer()

Default port pool size for external pooled listeners.
Used when grpc_listener.mode is :external_pool.
Default: 32

 grpc_server_ready_timeout()

 @spec grpc_server_ready_timeout() :: timeout()

Timeout for waiting for gRPC server to become ready.
Used in Snakepit.GRPCWorker during initialization.
Default: 30_000 ms (30 seconds)

 grpc_socket_backlog()

 @spec grpc_socket_backlog() :: pos_integer()

Default socket backlog for gRPC server.
Used in Snakepit.Application.
Default: 512

 grpc_worker_execute_timeout()

 @spec grpc_worker_execute_timeout() :: timeout()

Default timeout for GRPCWorker execute calls.
Used in Snakepit.GRPCWorker.execute/4.
When not explicitly configured, derives from rpc_timeout(default_timeout()) based on the
current timeout profile.
Default: derived from profile (rpc_timeout of default_timeout)

 grpc_worker_health_check_interval()

 @spec grpc_worker_health_check_interval() :: pos_integer()

Interval for health checks in GRPCWorker.
Used in Snakepit.GRPCWorker for periodic health check scheduling.
Default: 30_000 ms (30 seconds)

 grpc_worker_stream_timeout()

 @spec grpc_worker_stream_timeout() :: timeout()

Default timeout for GRPCWorker streaming calls.
Used in Snakepit.GRPCWorker.execute_stream/5.
Default: derived from stream_timeout/0

 health_monitor_check_interval()

 @spec health_monitor_check_interval() :: pos_integer()

Default interval for health monitor cleanup.
Used in Snakepit.HealthMonitor.
Default: 30_000 ms (30 seconds)

 health_monitor_crash_window_ms()

 @spec health_monitor_crash_window_ms() :: pos_integer()

Default crash window for health monitor.
Rolling window for crash counting.
Default: 60_000 ms (1 minute)

 health_monitor_max_crashes()

 @spec health_monitor_max_crashes() :: pos_integer()

Default max crashes before pool is considered unhealthy.
Used in Snakepit.HealthMonitor.
Default: 10

 heartbeat_initial_delay_ms()

 @spec heartbeat_initial_delay_ms() :: non_neg_integer()

Initial delay before starting heartbeat monitoring.
Used in Snakepit.GRPCWorker heartbeat configuration.
Default: 0 ms

 heartbeat_max_missed()

 @spec heartbeat_max_missed() :: pos_integer()

Maximum missed heartbeats before worker is considered unhealthy.
Used in Snakepit.GRPCWorker heartbeat configuration.
Default: 3

 heartbeat_ping_interval_ms()

 @spec heartbeat_ping_interval_ms() :: pos_integer()

Default heartbeat ping interval.
Used in Snakepit.GRPCWorker heartbeat configuration.
Default: 2_000 ms (2 seconds)

 heartbeat_timeout_ms()

 @spec heartbeat_timeout_ms() :: pos_integer()

Default heartbeat timeout.
Used in Snakepit.GRPCWorker heartbeat configuration.
Default: 10_000 ms (10 seconds)

 instance_token()

 @spec instance_token() :: String.t() | nil

Default instance token for runtime isolation.
Default: nil

 lifecycle_check_interval()

 @spec lifecycle_check_interval() :: pos_integer()

Default interval for lifecycle checks.
Used in Snakepit.Worker.LifecycleManager.
Default: 60_000 ms (1 minute)

 lifecycle_health_check_interval()

 @spec lifecycle_health_check_interval() :: pos_integer()

Default interval for health checks in lifecycle manager.
Used in Snakepit.Worker.LifecycleManager.
Default: 300_000 ms (5 minutes)

 pool_await_ready_timeout()

 @spec pool_await_ready_timeout() :: timeout()

Default timeout for awaiting pool readiness.
Used in Snakepit.Pool.await_ready/2.
Default: 15_000 ms (15 seconds)

 pool_cancelled_retention_multiplier()

 @spec pool_cancelled_retention_multiplier() :: pos_integer()

Multiplier for cancelled request retention time.
Retention time = queue_timeout * this multiplier.
Default: 4

 pool_max_cancelled_entries()

 @spec pool_max_cancelled_entries() :: pos_integer()

Maximum number of cancelled request entries to track.
Used in Snakepit.Pool for cancelled request management.
Default: 1024

 pool_max_queue_size()

 @spec pool_max_queue_size() :: pos_integer()

Maximum queue size for pending requests.
Used in Snakepit.Pool for queue management.
Default: 1000

 pool_max_workers()

 @spec pool_max_workers() :: pos_integer()

Maximum number of workers allowed per pool.
Used in Snakepit.Pool for worker limit enforcement.
Default: 150

 pool_queue_timeout()

 @spec pool_queue_timeout() :: timeout()

Default timeout for queued requests.
Used in Snakepit.Pool for queue management.
When not explicitly configured, derives from queue_timeout/0 based on the
current timeout profile.
Default: derived from profile (10_000 ms for :balanced)

 pool_reconcile_batch_size()

 @spec pool_reconcile_batch_size() :: pos_integer()

 pool_reconcile_interval_ms()

 @spec pool_reconcile_interval_ms() :: non_neg_integer()

 pool_reply_margin_ms()

 @spec pool_reply_margin_ms() :: pos_integer()

Margin reserved for pool reply overhead.
This is subtracted from the total timeout budget to derive the RPC timeout.
Default: 200 ms

 pool_request_timeout()

 @spec pool_request_timeout() :: timeout()

Default timeout for pool execute calls.
Used in Snakepit.Pool.execute/3.
When not explicitly configured, derives from default_timeout/0 based on the
current timeout profile.
Default: derived from profile (300_000 ms for :balanced)

 pool_startup_batch_delay_ms()

 @spec pool_startup_batch_delay_ms() :: non_neg_integer()

Delay between worker startup batches in milliseconds.
Used in Snakepit.Pool for batched startup.
Default: 500 ms

 pool_startup_batch_size()

 @spec pool_startup_batch_size() :: pos_integer()

Number of workers to start per batch during pool initialization.
Used in Snakepit.Pool for batched startup.
Default: 10

 pool_startup_timeout()

 @spec pool_startup_timeout() :: timeout()

Default timeout for worker startup.
Used in pool initialization.
Default: 10_000 ms (10 seconds)

 pool_streaming_timeout()

 @spec pool_streaming_timeout() :: timeout()

Default timeout for pool streaming calls.
Used in Snakepit.Pool.execute_stream/4.
When not explicitly configured, derives from stream_timeout/0 based on the
current timeout profile.
Default: derived from profile (900_000 ms for :balanced)

 process_registry_cleanup_interval()

 @spec process_registry_cleanup_interval() :: pos_integer()

Default cleanup interval for process registry.
Used in Snakepit.Pool.ProcessRegistry.
Default: 30_000 ms (30 seconds)

 process_registry_unregister_cleanup_attempts()

 @spec process_registry_unregister_cleanup_attempts() :: pos_integer()

Maximum attempts to retry unregister cleanup.
Used in Snakepit.Pool.ProcessRegistry.
Default: 10

 process_registry_unregister_cleanup_delay()

 @spec process_registry_unregister_cleanup_delay() :: pos_integer()

Delay before retrying unregister when external process is still alive.
Used in Snakepit.Pool.ProcessRegistry.
Default: 500 ms

 queue_timeout()

 @spec queue_timeout() :: timeout()

Returns the default queue timeout based on the current profile.

 retry_backoff_multiplier()

 @spec retry_backoff_multiplier() :: float()

Default backoff multiplier for exponential backoff.
Used in Snakepit.RetryPolicy.
Default: 2.0

 retry_backoff_sequence()

 @spec retry_backoff_sequence() :: [pos_integer()]

Default backoff sequence for retries.
Used in Snakepit.RetryPolicy.
Default: [100, 200, 400, 800, 1600]

 retry_base_backoff_ms()

 @spec retry_base_backoff_ms() :: pos_integer()

Default base backoff for retry calculations.
Used in Snakepit.RetryPolicy.
Default: 100 ms

 retry_jitter_factor()

 @spec retry_jitter_factor() :: float()

Default jitter factor for retry delays.
Used in Snakepit.RetryPolicy.
Default: 0.25 (25%)

 retry_max_attempts()

 @spec retry_max_attempts() :: pos_integer()

Default maximum retry attempts.
Used in Snakepit.RetryPolicy.
Default: 3

 retry_max_backoff_ms()

 @spec retry_max_backoff_ms() :: pos_integer()

Default maximum backoff delay.
Used in Snakepit.RetryPolicy.
Default: 30_000 ms (30 seconds)

 rpc_timeout(total_timeout)

 @spec rpc_timeout(timeout()) :: timeout()

Derives the RPC (inner) timeout from the total timeout budget.
Formula: rpc_timeout = total_timeout - worker_call_margin_ms - pool_reply_margin_ms
This ensures inner timeouts expire before outer GenServer.call timeouts,
producing structured error returns instead of unhandled exits.
Examples
iex> Snakepit.Defaults.rpc_timeout(60_000)
58_800 # 60_000 - 1000 - 200

iex> Snakepit.Defaults.rpc_timeout(:infinity)
:infinity

 session_cleanup_interval()

 @spec session_cleanup_interval() :: pos_integer()

Default cleanup interval for expired sessions.
Used in Snakepit.Bridge.SessionStore.
Default: 60_000 ms (1 minute)

 session_default_ttl()

 @spec session_default_ttl() :: pos_integer()

Default TTL for sessions in seconds.
Used in Snakepit.Bridge.SessionStore.
Default: 3600 seconds (1 hour)

 session_max_sessions()

 @spec session_max_sessions() :: pos_integer() | :infinity

Default maximum number of sessions.
Used in Snakepit.Bridge.SessionStore.
Default: 10_000

 session_warning_threshold()

 @spec session_warning_threshold() :: float()

Session warning threshold as a fraction of max_sessions.
When session count exceeds this percentage, warnings are emitted.
Default: 0.8 (80%)

 shutdown_margin_ms()

 @spec shutdown_margin_ms() :: pos_integer()

Margin added to graceful_shutdown_timeout for supervisor shutdown.
This gives the worker time to complete its terminate/2 callback.
Default: 2_000 ms (2 seconds)

 stream_timeout()

 @spec stream_timeout() :: timeout()

Returns the default timeout for streaming operations based on the current profile.

 timeout_profile()

 @spec timeout_profile() :: atom()

Returns the currently configured timeout profile.
Defaults to :balanced if not configured.

 timeout_profiles()

 @spec timeout_profiles() :: %{required(atom()) => %{required(atom()) => timeout()}}

Returns all available timeout profiles.
Each profile contains default_timeout, stream_timeout, and queue_timeout values.

 worker_call_margin_ms()

 @spec worker_call_margin_ms() :: pos_integer()

Margin reserved for GenServer.call overhead when routing to workers.
This is subtracted from the total timeout budget to derive the RPC timeout.
Default: 1000 ms

 worker_ready_timeout()

 @spec worker_ready_timeout() :: timeout()

Timeout for worker ready notification to pool.
Used in Snakepit.GRPCWorker when notifying pool of readiness.
Default: 30_000 ms (30 seconds)

 worker_starter_max_restarts()

 @spec worker_starter_max_restarts() :: non_neg_integer()

 worker_starter_max_seconds()

 @spec worker_starter_max_seconds() :: pos_integer()

 worker_supervisor_max_restarts()

 @spec worker_supervisor_max_restarts() :: non_neg_integer()

 worker_supervisor_max_seconds()

 @spec worker_supervisor_max_seconds() :: pos_integer()

Snakepit.ETSOwner

Centralized owner of shared ETS tables used by Snakepit.
Purpose
ETS tables are linked to the process that creates them. If a short-lived
process (like a Task) creates a table, the table is destroyed when that
process exits. This module solves that problem by acting as a long-lived
GenServer that owns all shared ETS tables for the Snakepit application.
Managed Tables
The following tables are managed by this module:
	:snakepit_worker_taints - Tracks tainted workers in the crash barrier system.
Used by Snakepit.Worker.TaintRegistry to prevent routing requests to
workers that have recently crashed.

	:snakepit_zero_copy_handles - Stores handles for zero-copy data transfers
(DLPack, Arrow). Used by Snakepit.ZeroCopy to track active handles and
their metadata.

All tables are created with read_concurrency: true for optimal read
performance in concurrent scenarios.
Lifecycle
This module is started as part of the base supervision tree (always started,
regardless of pooling_enabled setting). Tables are created during init/1
and persist for the lifetime of the application.
Usage
Consumer modules should call ensure_table/1 to guarantee a table exists
before accessing it:
defp ensure_table do
 Snakepit.ETSOwner.ensure_table(:snakepit_worker_taints)
end
The function is idempotent - calling it multiple times is safe and efficient.
Error Handling
	Raises ArgumentError if an unknown table name is passed to ensure_table/1
	Raises RuntimeError if called before the Snakepit application is started

 Summary

 Types

 table_name()

 Known ETS table names managed by this module.

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 ensure_table(table)

 Ensures the specified ETS table exists, creating it if necessary.

 Types

 table_name()

 @type table_name() :: :snakepit_worker_taints | :snakepit_zero_copy_handles

Known ETS table names managed by this module.

 Functions

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 ensure_table(table)

 @spec ensure_table(table_name()) :: table_name()

Ensures the specified ETS table exists, creating it if necessary.
This function is idempotent - if the table already exists, it returns
immediately. If the table doesn't exist, it delegates creation to the
ETSOwner GenServer to ensure proper ownership.
Parameters
	table - Atom name of the table. Must be one of the known tables
registered in this module (:snakepit_worker_taints or
:snakepit_zero_copy_handles).

Returns
The table name atom on success.
Raises
	ArgumentError - If the table name is not in the known registry
	RuntimeError - If ETSOwner is not running (Snakepit not started)

Examples
iex> Snakepit.ETSOwner.ensure_table(:snakepit_worker_taints)
:snakepit_worker_taints

iex> Snakepit.ETSOwner.ensure_table(:unknown_table)
** (ArgumentError) unknown ETS table :unknown_table

Snakepit.EnvDoctor

Environment diagnostics for the Python bridge.
Provides both a Mix task integration (mix snakepit.doctor) and runtime
guardrails via ensure_python!/1.

 Summary

 Types

 check_result()

 Functions

 ensure_python!(opts \\ [])

 Ensure the Python runtime is ready. Raises if any critical check fails.

 run(opts \\ [])

 Run the full doctor suite. Returns {:ok, results} or {:error, results}.

 Types

 check_result()

 @type check_result() :: %{
 name: atom(),
 status: :ok | :warning | :error,
 message: String.t()
}

 Functions

 ensure_python!(opts \\ [])

 @spec ensure_python!(Keyword.t()) :: :ok | no_return()

Ensure the Python runtime is ready. Raises if any critical check fails.

 run(opts \\ [])

 @spec run(Keyword.t()) :: {:ok, [check_result()]} | {:error, [check_result()]}

Run the full doctor suite. Returns {:ok, results} or {:error, results}.

Snakepit.GRPC.ClientImpl

Real gRPC client implementation using generated stubs.

 Summary

 Functions

 cleanup_session(channel, session_id, force \\ false, opts \\ [])

 connect(port)

 execute_streaming_tool(channel, session_id, tool_name, parameters, opts \\ [])

 execute_tool(channel, session_id, tool_name, parameters, opts \\ [])

 get_session(channel, session_id, opts \\ [])

 heartbeat(channel, session_id, opts \\ [])

 initialize_session(channel, session_id, config \\ %{}, opts \\ [])

 ping(channel, message, opts \\ [])

 Functions

 cleanup_session(channel, session_id, force \\ false, opts \\ [])

 connect(port)

 execute_streaming_tool(channel, session_id, tool_name, parameters, opts \\ [])

 execute_tool(channel, session_id, tool_name, parameters, opts \\ [])

 get_session(channel, session_id, opts \\ [])

 heartbeat(channel, session_id, opts \\ [])

 initialize_session(channel, session_id, config \\ %{}, opts \\ [])

 ping(channel, message, opts \\ [])

Snakepit.HeartbeatMonitor

Monitors a worker process using a configurable heartbeat protocol.
The monitor periodically invokes a ping function and expects the worker
to send a pong via notify_pong/2. Missed heartbeats trigger worker
termination, allowing supervisors to restart the worker.

 Summary

 Types

 start_option()

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 notify_pong(monitor_pid, timestamp)

 Notify the monitor that a pong response has been received.

 start_link(opts)

 Types

 start_option()

 @type start_option() ::
 {:worker_pid, pid()}
 | {:worker_id, String.t()}
 | {:ping_interval_ms, non_neg_integer()}
 | {:timeout_ms, non_neg_integer()}
 | {:max_missed_heartbeats, non_neg_integer()}
 | {:ping_fun, (integer() -> :ok | {:ok, term()} | {:error, term()} | term())}
 | {:dependent, boolean()}

 Functions

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 notify_pong(monitor_pid, timestamp)

 @spec notify_pong(pid(), integer()) :: :ok

Notify the monitor that a pong response has been received.

 start_link(opts)

 @spec start_link([start_option()]) :: GenServer.on_start()

Snakepit.Logger

Centralized, silent-by-default logging for Snakepit.
Configuration
Silent (default) - only errors
config :snakepit, log_level: :error

Warnings and errors
config :snakepit, log_level: :warning

Verbose - info, warnings, errors
config :snakepit, log_level: :info

Debug - everything
config :snakepit, log_level: :debug

Completely silent (not even errors)
config :snakepit, log_level: :none
Categories
Enable specific categories for targeted debugging:
config :snakepit, log_categories: [:lifecycle, :grpc]
Process-Level Isolation (for Testing)
Log levels can be set per-process to avoid race conditions in async tests:
Set log level for current process only
Snakepit.Logger.set_process_level(:debug)

Execute with temporary log level
Snakepit.Logger.with_level(:warning, fn ->
 # ... code that should log at warning level
end)

Clear process-level override
Snakepit.Logger.clear_process_level()
The resolution order is:
	Process-level override (via set_process_level/1)
	Elixir Logger process level (via Logger.put_process_level/2)
	Application config (via config :snakepit, log_level: ...)

 Summary

 Types

 category()

 level()

 Functions

 clear_process_level()

 Clear the process-level log level override.

 debug(message)

 debug(category, message)

 debug(category, message, metadata)

 Log at debug level if configured log level allows it.

 error(message)

 error(category, message)

 error(category, message, metadata)

 Log at error level if configured log level allows it.

 get_process_level()

 Get the effective log level for the current process.

 info(message)

 info(category, message)

 info(category, message, metadata)

 Log at info level if configured log level allows it.

 set_process_level(level)

 Set the log level for the current process only.

 should_log?(level)

 Check if logging at the given level is enabled.

 should_log?(level, category)

 Check if logging at the given level/category is enabled.

 warning(message)

 warning(category, message)

 warning(category, message, metadata)

 Log at warning level if configured log level allows it.

 with_level(level, fun)

 Execute a function with a temporary log level for the current process.

 Types

 category()

 @type category() ::
 :lifecycle
 | :pool
 | :grpc
 | :bridge
 | :worker
 | :startup
 | :shutdown
 | :telemetry
 | :general

 level()

 @type level() :: :debug | :info | :warning | :error | :none

 Functions

 clear_process_level()

 @spec clear_process_level() :: :ok

Clear the process-level log level override.
After calling this, the process will use the global Application config.

 debug(message)

 debug(category, message)

 debug(category, message, metadata)

Log at debug level if configured log level allows it.

 error(message)

 error(category, message)

 error(category, message, metadata)

Log at error level if configured log level allows it.

 get_process_level()

 @spec get_process_level() :: level()

Get the effective log level for the current process.
Returns the log level in priority order:
	Process-level override (set via set_process_level/1)
	Elixir Logger process level
	Application config

 info(message)

 info(category, message)

 info(category, message, metadata)

Log at info level if configured log level allows it.

 set_process_level(level)

 @spec set_process_level(level()) :: :ok

Set the log level for the current process only.
This is useful for test isolation - each test process can have its own
log level without affecting other concurrent tests.
Examples
Snakepit.Logger.set_process_level(:debug)
All logging in this process now uses :debug level

Snakepit.Logger.set_process_level(:none)
All logging in this process is now suppressed

 should_log?(level)

Check if logging at the given level is enabled.

 should_log?(level, category)

Check if logging at the given level/category is enabled.

 warning(message)

 warning(category, message)

 warning(category, message, metadata)

Log at warning level if configured log level allows it.

 with_level(level, fun)

 @spec with_level(level(), (-> result)) :: result when result: term()

Execute a function with a temporary log level for the current process.
The previous log level is restored after the function completes,
even if it raises an exception.
Examples
Snakepit.Logger.with_level(:debug, fn ->
 # Debug logs are enabled here
 Snakepit.Logger.debug(:pool, "detailed info")
end)
Previous log level is restored

Snakepit.PythonPackages

Package installation and inspection for Snakepit-managed Python runtimes.
Requires uv for package management. Install with:
curl -LsSf https://astral.sh/uv/install.sh | sh
Examples
Snakepit.PythonPackages.ensure!({:list, ["numpy~=1.26", "scipy~=1.11"]})

{:ok, :all_installed} =
 Snakepit.PythonPackages.check_installed(["numpy~=1.26", "scipy~=1.11"])

{:ok, metadata} = Snakepit.PythonPackages.lock_metadata(["numpy~=1.26"])

Snakepit.PythonPackages.ensure!({:file, "requirements.txt"}, upgrade: true)

 Summary

 Types

 requirement()

 requirements_spec()

 Functions

 check_installed(requirements, opts \\ [])

 Check which packages are installed and satisfy their version constraints.

 ensure!(spec, opts \\ [])

 Ensure all packages in the requirements spec are installed and satisfy version constraints.

 install!(requirements, opts \\ [])

 Install the given package requirements using uv.

 lock_metadata(requirements, opts \\ [])

 Return package metadata for lockfiles.

 Types

 requirement()

 @type requirement() :: String.t()

 requirements_spec()

 @type requirements_spec() :: {:list, [requirement()]} | {:file, Path.t()}

 Functions

 check_installed(requirements, opts \\ [])

 @spec check_installed(
 [requirement()],
 keyword()
) :: {:ok, :all_installed} | {:ok, {:missing, [requirement()]}}

Check which packages are installed and satisfy their version constraints.
Uses uv pip install --dry-run for accurate PEP-440 version checking.
Returns {:ok, :all_installed} when every requirement is satisfied, or
{:ok, {:missing, requirements}} when any are missing or have version mismatches.

 ensure!(spec, opts \\ [])

 @spec ensure!(
 requirements_spec(),
 keyword()
) :: :ok | no_return()

Ensure all packages in the requirements spec are installed and satisfy version constraints.
Uses uv pip install --dry-run to check if packages need to be installed or upgraded,
then installs any missing or outdated packages.
Options:
	:upgrade - upgrade matching packages
	:quiet - suppress installer output
	:timeout - install timeout in ms

 install!(requirements, opts \\ [])

 @spec install!(
 [requirement()],
 keyword()
) :: :ok | no_return()

Install the given package requirements using uv.
Prefer ensure!/2 unless you already know which requirements are missing.

 lock_metadata(requirements, opts \\ [])

 @spec lock_metadata(
 [requirement()],
 keyword()
) :: {:ok, map()} | {:error, term()}

Return package metadata for lockfiles.
The result maps package name to %{version: version, hash: hash} entries.

Snakepit.PythonRuntime

Resolve and manage the Python runtime used by Snakepit.

 Summary

 Functions

 config()

 executable_path()

 install_managed(runner, opts \\ [])

 managed?(config \\ config())

 missing_reason(config \\ config())

 resolve_executable()

 runtime_env()

 runtime_identity()

 runtime_metadata()

 Functions

 config()

 executable_path()

 install_managed(runner, opts \\ [])

 managed?(config \\ config())

 missing_reason(config \\ config())

 resolve_executable()

 runtime_env()

 runtime_identity()

 runtime_metadata()

Snakepit.PythonThreadLimits

Normalizes Python threading configuration with safe defaults.
Resolves partial overrides pulled from application environment and
produces a complete map ready for runtime consumption.

 Summary

 Types

 t()

 Thread limit configuration keyed by known library identifiers.

 Functions

 defaults()

 Default thread limit configuration.

 resolve(config)

 Merge a user-supplied configuration with defaults.

 Types

 t()

 @type t() :: %{
 optional(:openblas) => pos_integer(),
 optional(:omp) => pos_integer(),
 optional(:mkl) => pos_integer(),
 optional(:numexpr) => pos_integer(),
 optional(:grpc_poll_threads) => pos_integer()
}

Thread limit configuration keyed by known library identifiers.

 Functions

 defaults()

 @spec defaults() :: t()

Default thread limit configuration.

 resolve(config)

 @spec resolve(nil | map() | keyword()) :: t()

Merge a user-supplied configuration with defaults.
Accepts nil, maps with atom keys, or keyword lists.
Unknown keys are ignored; non-integer values are coerced with String.to_integer/1
when possible.

Snakepit.PythonVersion

Detects the active Python runtime version and recommends worker profiles.

 Summary

 Types

 version()

 Functions

 detect()

 detect(path)

 recommend_profile()

 recommend_profile(version)

 supports_free_threading?(version)

 validate()

 Types

 version()

 @type version() :: {non_neg_integer(), non_neg_integer(), non_neg_integer()}

 Functions

 detect()

 @spec detect() :: {:ok, version()} | {:error, term()}

 detect(path)

 @spec detect(binary()) :: {:ok, version()} | {:error, term()}

 recommend_profile()

 @spec recommend_profile() :: :process | :thread

 recommend_profile(version)

 @spec recommend_profile(version()) :: :process | :thread

 supports_free_threading?(version)

 @spec supports_free_threading?(version()) :: boolean()

 validate()

 @spec validate() :: :ok | {:error, term()}

Snakepit.RuntimeCleanup

Deterministic shutdown cleanup for external worker processes.
This module performs a bounded cleanup pass:
	SIGTERM all known worker processes
	Wait until they exit or timeout
	Escalate to SIGKILL for survivors

 Summary

 Functions

 cleanup_current_run(opts \\ [])

 run(entries, opts \\ [])

 Functions

 cleanup_current_run(opts \\ [])

 run(entries, opts \\ [])

Snakepit.Telemetry.OpenTelemetry

Bootstraps OpenTelemetry tracing and telemetry bridges for Snakepit.
When enabled via :snakepit, :opentelemetry configuration this module ensures
the OpenTelemetry runtime is started, exporters are configured, and telemetry
events are mapped to spans and span events. Exporters remain opt-in; by default
spans are created but not shipped anywhere.

 Summary

 Functions

 setup()

 Configures OpenTelemetry and attaches telemetry handlers when enabled.

 Functions

 setup()

 @spec setup() :: :ok

Configures OpenTelemetry and attaches telemetry handlers when enabled.

Snakepit.Worker.LifecycleConfig

Canonical configuration for lifecycle-managed workers.
Pools assemble rich worker_config maps that flow through the worker
pipeline. The lifecycle manager only needs a stable subset of those values
to make recycling decisions and to start replacement workers. This module
normalizes that subset into a struct so the contract is explicit and tested.

 Summary

 Types

 t()

 Functions

 ensure(pool_name, config, opts \\ [])

 Ensures lifecycle config is represented as a %LifecycleConfig{} struct.

 to_worker_config(config, worker_id)

 Builds a worker_config map for a replacement worker using the canonical data.

 Types

 t()

 @type t() :: %Snakepit.Worker.LifecycleConfig{
 adapter_args: list(),
 adapter_env: list(),
 adapter_module: module(),
 base_worker_config: map(),
 memory_threshold_mb: nil | pos_integer(),
 pool_identifier: atom() | nil,
 pool_name: term(),
 profile_module: module(),
 raw_worker_ttl: term(),
 worker_max_requests: :infinity | pos_integer(),
 worker_module: module(),
 worker_profile: atom() | module(),
 worker_ttl_seconds: :infinity | non_neg_integer()
}

 Functions

 ensure(pool_name, config, opts \\ [])

 @spec ensure(term(), map() | t(), keyword()) :: t()

Ensures lifecycle config is represented as a %LifecycleConfig{} struct.
Accepts either an existing struct or a worker_config map. The optional
pool_name argument acts as a fallback when the map does not include one.

 to_worker_config(config, worker_id)

 @spec to_worker_config(t(), String.t()) :: map()

Builds a worker_config map for a replacement worker using the canonical data.

Snakepit.Worker.LifecycleManager

Worker lifecycle manager for automatic recycling and health monitoring.
Manages worker lifecycle events:
	TTL-based recycling: Recycle workers after configured time
	Request-count recycling: Recycle after N requests
	Memory monitoring: Recycle when the BEAM worker process exceeds a configurable threshold (optional)
	Health checks: Monitor worker health and restart if needed

Why Worker Recycling?
Long-running Python processes can accumulate memory due to:
	Memory fragmentation
	Cache growth
	Subtle memory leaks in C libraries
	ML model weight accumulation

Automatic recycling prevents these issues from impacting production. The current
implementation samples the BEAM Snakepit.GRPCWorker process memory via
:get_memory_usage; Python child process memory is not yet measured directly.
Configuration
config :snakepit,
 pools: [
 %{
 name: :hpc_pool,
 worker_profile: :thread,
 worker_ttl: {3600, :seconds}, # Recycle hourly
 worker_max_requests: 1000, # Or after 1000 requests
 memory_threshold_mb: 2048 # Or at 2GB (optional)
 }
]
Usage
The LifecycleManager runs automatically when started in the supervision tree.
It monitors all workers across all pools.
Manual worker recycling
Snakepit.Worker.LifecycleManager.recycle_worker(pool_name, worker_id)

Get lifecycle statistics
Snakepit.Worker.LifecycleManager.get_stats()
Implementation
	Runs periodic health checks (every 60 seconds)
	Tracks worker metadata (start time, request count)
	Gracefully replaces workers when recycling
	Emits telemetry events for monitoring

 Summary

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 get_stats()

 Get lifecycle statistics.

 increment_request_count(worker_id)

 Increment request count for a worker.

 memory_recycle_counts()

 Returns a map of pools to the number of memory-threshold-based recycles observed
since the lifecycle manager started.

 recycle_worker(pool_name, worker_id)

 Manually recycle a worker.

 start_link(opts \\ [])

 Start the lifecycle manager.

 track_worker(pool_name, worker_id, worker_pid, config)

 Track a worker for lifecycle management.

 untrack_worker(worker_id)

 Untrack a worker (called when worker stops).

 Functions

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 get_stats()

Get lifecycle statistics.

 increment_request_count(worker_id)

Increment request count for a worker.
Called after each successful request.

 memory_recycle_counts()

Returns a map of pools to the number of memory-threshold-based recycles observed
since the lifecycle manager started.

 recycle_worker(pool_name, worker_id)

Manually recycle a worker.

 start_link(opts \\ [])

Start the lifecycle manager.

 track_worker(pool_name, worker_id, worker_pid, config)

Track a worker for lifecycle management.
Called automatically when workers start.

 untrack_worker(worker_id)

Untrack a worker (called when worker stops).

Snakepit.Worker.TaintRegistry

Tracks tainted workers and devices after crash classification.

 Summary

 Functions

 clear_worker(worker_id)

 consume_restart(worker_id)

 taint_worker(worker_id, opts)

 worker_info(worker_id)

 worker_tainted?(worker_id)

 Functions

 clear_worker(worker_id)

 consume_restart(worker_id)

 taint_worker(worker_id, opts)

 worker_info(worker_id)

 worker_tainted?(worker_id)

Snakepit.WorkerProfile behaviour

Behaviour for worker profiles (process vs thread).
A worker profile defines how workers are created, managed, and utilized.
Snakepit v0.6.0 introduces dual-mode parallelism:
Process Profile (:process)
	Many single-threaded Python processes
	Process isolation and GIL compatibility
	Optimal for: I/O-bound workloads, high concurrency, legacy Python

Thread Profile (:thread)
	Few multi-threaded Python processes
	Shared memory and CPU parallelism
	Optimal for: CPU-bound workloads, Python 3.13+, large data

Implementing a Profile
Profiles control the full worker lifecycle:
defmodule MyProfile do
 @behaviour Snakepit.WorkerProfile

 def start_worker(config) do
 # Start worker according to profile
 {:ok, worker_handle}
 end

 def get_capacity(worker_handle) do
 # Return concurrent request capacity
 1 # or N for multi-threaded
 end
end
See Snakepit.WorkerProfile.Process and Snakepit.WorkerProfile.Thread for reference implementations.

 Summary

 Types

 capacity()

 config()

 worker_handle()

 Callbacks

 execute_request(worker_handle, request, timeout)

 Execute a request on a worker.

 get_capacity(worker_handle)

 Get the maximum capacity of a worker (how many concurrent requests it can handle).

 get_load(worker_handle)

 Get the current load of a worker (how many requests are currently in-flight).

 get_metadata(worker_handle)

 Get profile-specific metadata about a worker.

 health_check(worker_handle)

 Check if a worker is healthy and responsive.

 start_worker(config)

 Start a worker with the given configuration.

 stop_worker(worker_handle)

 Stop a worker gracefully.

 Types

 capacity()

 @type capacity() :: pos_integer()

 config()

 @type config() :: map()

 worker_handle()

 @type worker_handle() :: pid() | reference()

 Callbacks

 execute_request(worker_handle, request, timeout)

 @callback execute_request(worker_handle(), request :: map(), timeout :: timeout()) ::
 {:ok, term()} | {:error, term()}

Execute a request on a worker.
For process-based workers, this typically blocks until the request completes.
For thread-based workers, this may execute concurrently with other requests
on the same worker.
The timeout is in milliseconds.

 get_capacity(worker_handle)

 @callback get_capacity(worker_handle()) :: capacity()

Get the maximum capacity of a worker (how many concurrent requests it can handle).
	Process profile: returns 1 (single-threaded)
	Thread profile: returns N (thread pool size)

This is used by the pool for load balancing decisions.

 get_load(worker_handle)

 @callback get_load(worker_handle()) :: non_neg_integer()

Get the current load of a worker (how many requests are currently in-flight).
Returns 0 if no requests are active, up to the worker's capacity.

 get_metadata(worker_handle)

 (optional)

 @callback get_metadata(worker_handle()) :: {:ok, map()} | {:error, term()}

Get profile-specific metadata about a worker.
Optional callback. Returns a map with profile-specific information.

 health_check(worker_handle)

 @callback health_check(worker_handle()) :: :ok | {:error, term()}

Check if a worker is healthy and responsive.
Returns :ok if healthy, {:error, reason} if unhealthy.

 start_worker(config)

 @callback start_worker(config()) :: {:ok, worker_handle()} | {:error, term()}

Start a worker with the given configuration.
Returns {:ok, worker_handle} where worker_handle is typically a GenServer PID,
or {:error, reason} if startup fails.
The config map contains all pool and adapter configuration for this worker.

 stop_worker(worker_handle)

 @callback stop_worker(worker_handle()) :: :ok

Stop a worker gracefully.
Should perform cleanup and shutdown the worker process.

Snakepit.WorkerProfile.Process

Multi-process worker profile (default).
Each worker is a separate OS process, providing:
	Process isolation: Crashes don't affect other workers
	GIL compatibility: Works with all Python versions
	High concurrency: Optimal for 100+ workers with I/O-bound tasks

This is the default profile and maintains 100% backward compatibility
with Snakepit v0.5.x configurations.
Configuration
config :snakepit,
 pools: [
 %{
 name: :default,
 worker_profile: :process, # Explicit (or omit for default)
 pool_size: 100,
 adapter_module: Snakepit.Adapters.GRPCPython,
 adapter_env: [
 {"OPENBLAS_NUM_THREADS", "1"},
 {"OMP_NUM_THREADS", "1"}
]
 }
]
Implementation Details
	Each worker runs a single-threaded Python process
	Workers are single-capacity (one request at a time)
	Environment variables enforce single-threading in scientific libraries
	Startup is batched to prevent resource exhaustion

Snakepit.WorkerProfile.Thread

Multi-threaded worker profile (Python 3.13+ optimized).
Each worker is a Python process with a thread pool, providing:
	Shared memory: Zero-copy data sharing within worker
	CPU parallelism: True multi-threading without GIL (Python 3.13+)
	Lower memory: One interpreter vs many
	High throughput: Optimal for CPU-bound tasks

Configuration
config :snakepit,
 pools: [
 %{
 name: :hpc_pool,
 worker_profile: :thread,
 pool_size: 4, # 4 processes
 threads_per_worker: 16, # 16 threads each = 64 total capacity
 adapter_module: Snakepit.Adapters.GRPCPython,
 adapter_args: ["--mode", "threaded", "--max-workers", "16"],
 adapter_env: [
 # Allow multi-threading in libraries
 {"OPENBLAS_NUM_THREADS", "16"},
 {"OMP_NUM_THREADS", "16"}
],
 worker_ttl: {3600, :seconds}, # Recycle hourly
 worker_max_requests: 1000, # Or after 1000 requests
 thread_safety_checks: true # Enable runtime validation
 }
]
Requirements
	Python 3.13+ for optimal performance (free-threading)
	Thread-safe Python adapters
	Thread-safe ML libraries (NumPy, PyTorch, etc.)

Status
Thread profile is fully supported when paired with Python 3.13+ and thread-safe adapters.
Implementation Notes
The thread profile:
	Starts fewer Python processes (4-16 instead of 100+)
	Runs a ThreadPoolExecutor per worker process
	Tracks per-worker capacity via threads_per_worker for pool scheduling
	Supports optional CapacityStore telemetry with capacity_strategy: :hybrid
	Allows concurrent requests to the same worker via HTTP/2 multiplexing

Snakepit.ZeroCopy

Zero-copy interop helpers for DLPack and Arrow.
Handles create/import lifecycle for zero-copy handles, with copy-based
fallbacks when unavailable.

 Summary

 Types

 export_opts()

 Functions

 close(ref)

 from_arrow(ref, opts \\ [])

 from_dlpack(ref, opts \\ [])

 to_arrow(term, opts \\ [])

 to_dlpack(term, opts \\ [])

 Types

 export_opts()

 @type export_opts() :: [
 device: Snakepit.ZeroCopyRef.device(),
 dtype: atom() | String.t(),
 shape: tuple() | list(),
 owner: :elixir | :python
]

 Functions

 close(ref)

 from_arrow(ref, opts \\ [])

 from_dlpack(ref, opts \\ [])

 to_arrow(term, opts \\ [])

 to_dlpack(term, opts \\ [])

Snakepit.ZeroCopyRef

Opaque handle for zero-copy payloads.
The handle metadata travels through the runtime so adapters can resolve
DLPack or Arrow buffers without copying.

 Summary

 Types

 device()

 kind()

 t()

 Types

 device()

 @type device() :: :cpu | :cuda | :mps

 kind()

 @type kind() :: :dlpack | :arrow

 t()

 @type t() :: %Snakepit.ZeroCopyRef{
 bytes: non_neg_integer() | nil,
 copy: boolean() | nil,
 device: device() | nil,
 dtype: atom() | String.t() | nil,
 kind: kind(),
 metadata: map() | nil,
 owner: :elixir | :python | nil,
 ref: reference(),
 shape: tuple() | list() | nil
}

Snakepit

Snakepit - A generalized high-performance pooler and session manager.
Extracted from DSPex V3 pool implementation, Snakepit provides:
	Concurrent worker initialization and management
	Stateless pool system with session affinity (hint by default, strict modes available)
	Generalized adapter pattern for any external process
	High-performance OTP-based process management

Basic Usage
Configure in config/config.exs
config :snakepit,
 pooling_enabled: true,
 adapter_module: YourAdapter

Execute commands on any available worker
{:ok, result} = Snakepit.execute("ping", %{test: true})

Session-based execution with worker affinity
{:ok, result} = Snakepit.execute_in_session("my_session", "command", %{})

 Summary

 Types

 args()

 callback_fn()

 command()

 pool_name()

 result()

 session_id()

 Functions

 cleanup()

 Manually trigger cleanup of external worker processes for the current run.

 execute(command, args, opts \\ [])

 Convenience function to execute commands on the pool.

 execute_in_session(session_id, command, args, opts \\ [])

 Executes a command in session context with worker affinity.

 execute_in_session_stream(session_id, command, args \\ %{}, callback_fn, opts \\ [])

 Executes a command in a session with a callback function.

 execute_stream(command, args \\ %{}, callback_fn, opts \\ [])

 Executes a streaming command with a callback function.

 get_stats(pool \\ Snakepit.Pool)

 Get pool statistics.

 list_workers(pool \\ Snakepit.Pool)

 List workers from the pool.

 run_as_script(fun, opts \\ [])

 Starts the Snakepit application, executes a given function,
and ensures graceful shutdown.

 Types

 args()

 @type args() :: map()

 callback_fn()

 @type callback_fn() :: (term() -> any())

 command()

 @type command() :: String.t()

 pool_name()

 @type pool_name() :: atom() | pid()

 result()

 @type result() :: term()

 session_id()

 @type session_id() :: String.t()

 Functions

 cleanup()

 @spec cleanup() :: :ok | {:timeout, list()}

Manually trigger cleanup of external worker processes for the current run.
Useful for library embedding or scripts that control the lifecycle directly.

 execute(command, args, opts \\ [])

 @spec execute(command(), args(), keyword()) ::
 {:ok, result()} | {:error, Snakepit.Error.t()}

Convenience function to execute commands on the pool.
Examples
{:ok, result} = Snakepit.execute("ping", %{test: true})
Options
	:pool - The pool to use (default: Snakepit.Pool)
	:timeout - Request timeout in ms (default: 60000)
	:session_id - Execute with session affinity
	:affinity - Override affinity mode (:hint, :strict_queue, :strict_fail_fast)

 execute_in_session(session_id, command, args, opts \\ [])

 @spec execute_in_session(session_id(), command(), args(), keyword()) ::
 {:ok, result()} | {:error, Snakepit.Error.t()}

Executes a command in session context with worker affinity.
This function executes commands with session-based worker affinity,
ensuring that subsequent calls with the same session_id prefer
the same worker when possible for state continuity.
By default, affinity is a hint: if the preferred worker is busy or tainted,
the pool can fall back to another worker. To guarantee pinning for in-memory
refs, configure affinity: :strict_queue or :strict_fail_fast at the pool level.
Args are passed through unchanged - no domain-specific enhancement.

 execute_in_session_stream(session_id, command, args \\ %{}, callback_fn, opts \\ [])

 @spec execute_in_session_stream(
 session_id(),
 command(),
 args(),
 callback_fn(),
 keyword()
) ::
 :ok | {:error, Snakepit.Error.t()}

Executes a command in a session with a callback function.

 execute_stream(command, args \\ %{}, callback_fn, opts \\ [])

 @spec execute_stream(command(), args(), callback_fn(), keyword()) ::
 :ok | {:error, Snakepit.Error.t()}

Executes a streaming command with a callback function.
Examples
Snakepit.execute_stream("batch_inference", %{items: [...]}, fn chunk ->
 handle_chunk(chunk)
end)
Options
	:pool - The pool to use (default: Snakepit.Pool)
	:timeout - Request timeout in ms (default: 300000)
	:session_id - Run in a specific session
	:affinity - Override affinity mode (:hint, :strict_queue, :strict_fail_fast)

Returns
Returns :ok on success or {:error, %Snakepit.Error{}} on failure.
Note: Streaming is only supported with gRPC adapters.

 get_stats(pool \\ Snakepit.Pool)

 @spec get_stats(pool_name()) :: map()

Get pool statistics.
Returns aggregate stats across all pools or stats for a specific pool.

 list_workers(pool \\ Snakepit.Pool)

 @spec list_workers(pool_name()) :: [String.t()]

List workers from the pool.
Returns a list of worker IDs.

 run_as_script(fun, opts \\ [])

 @spec run_as_script(
 (-> any()),
 keyword()
) :: any() | {:error, term()}

Starts the Snakepit application, executes a given function,
and ensures graceful shutdown.
This is the recommended way to use Snakepit for short-lived scripts or
Mix tasks to prevent orphaned processes.
It handles the full OTP application lifecycle (start, run, stop)
automatically.
Examples
In a Mix task
Snakepit.run_as_script(fn ->
 {:ok, result} = Snakepit.execute("my_command", %{data: "value"})
 handle_result(result)
end)

For demos or scripts
Snakepit.run_as_script(fn ->
 MyApp.run_load_test()
end)
Options
	:timeout - Maximum time to wait for pool initialization (default: 15000ms)
	:shutdown_timeout - Time to wait for supervisor shutdown confirmation (default: 15000ms)
	:cleanup_timeout - Time to wait for worker process cleanup before forcing cleanup (default: 5000ms).
When greater than zero, cleanup runs even if Snakepit was already started; set to 0 to skip cleanup.
Cleanup is bounded; if it exceeds cleanup_timeout + 1000 ms the script continues.
	:restart - Restart Snakepit if already started to apply script config (:auto | true | false)

	:await_pool - Wait for pool readiness (default: pooling_enabled setting)
	:exit_mode - Exit behavior (:none | :halt | :stop | :auto, default: :none).
May also be set with SNAKEPIT_SCRIPT_EXIT.

	:stop_mode - Stop behavior (:if_started | :always | :never, default: :if_started).

	:halt - Legacy boolean for System.halt/1 after cleanup (default: false,
or set SNAKEPIT_SCRIPT_HALT=true). Ignored when :exit_mode is set.

Returns
Returns the result of the provided function, or {:error, reason} if
the pool fails to initialize.

Snakepit.Adapter behaviour

Behaviour for implementing adapters in Snakepit.
Adapters define how to communicate with external processes (Python, Node.js, etc.).
This allows Snakepit to be truly generalized and support multiple ML frameworks
or external systems.
Required Callbacks
	executable_path/0 - Returns the path to the runtime executable (python3, node, etc.)
	script_path/0 - Returns the path to the external script to execute
	script_args/0 - Returns additional arguments for the script

Example Implementation
defmodule MyApp.PythonMLAdapter do
 @behaviour Snakepit.Adapter

 def executable_path, do: System.find_executable("python3") || System.find_executable("python")
 def script_path, do: Path.join(:code.priv_dir(:my_app), "python/ml_bridge.py")
 def script_args, do: ["--mode", "pool-worker"]
end

 Summary

 Callbacks

 command_timeout(command, args)

 Optional callback to get a command-specific timeout in milliseconds.

 executable_path()

 Returns the path to the runtime executable.

 script_args()

 Returns additional command-line arguments for the script.

 script_path()

 Returns the path to the external script that will be executed.

 Callbacks

 command_timeout(command, args)

 (optional)

 @callback command_timeout(command :: String.t(), args :: map()) :: pos_integer()

Optional callback to get a command-specific timeout in milliseconds.
This allows adapters to specify appropriate timeouts for different
commands based on their expected execution time.

 executable_path()

 @callback executable_path() :: String.t()

Returns the path to the runtime executable.
This is the interpreter or runtime that will execute the script.
Examples: "python3", "node", "ruby", "R", etc.

 script_args()

 @callback script_args() :: [String.t()]

Returns additional command-line arguments for the script.
These arguments will be passed to the script when it's started.
Common examples: ["--mode", "pool-worker"], ["--config", "prod"]

 script_path()

 @callback script_path() :: String.t()

Returns the path to the external script that will be executed.
This should be an absolute path to a script that implements the
bridge protocol for communication with Snakepit.

Snakepit.Pool

Pool manager for external workers with concurrent initialization.
Features:
	Concurrent worker startup (all workers start in parallel)
	Simple queue-based request distribution
	Non-blocking async execution
	Automatic request queueing when workers are busy
	Adapter-based support for any external process

 Summary

 Functions

 await_init_complete(pool \\ __MODULE__, timeout \\ nil)

 Waits for asynchronous pool initialization to complete.

 await_ready(pool \\ __MODULE__, timeout \\ nil)

 Waits for the pool to be ready for service.

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 derive_rpc_timeout_from_opts(opts, default_timeout)

 Derives the RPC timeout from opts, considering deadline if present.

 effective_queue_timeout_ms(opts, configured_queue_timeout)

 Computes effective queue timeout considering deadline.

 execute(command, args, opts \\ [])

 Executes a command on any available worker.

 execute_stream(command, args, callback_fn, opts \\ [])

 Execute a streaming command with callback.

 get_default_timeout_for_call(call_type, args, opts)

 Returns the default timeout for a given call type.

 get_stats(pool \\ __MODULE__)

 Gets pool statistics.

 get_stats(pool, pool_name)

 Gets statistics for a specific pool name.

 list_workers(pool \\ __MODULE__)

 Lists all worker IDs in the pool.

 list_workers(pool, pool_name)

 start_link(opts \\ [])

 Starts the pool manager.

 Functions

 await_init_complete(pool \\ __MODULE__, timeout \\ nil)

 @spec await_init_complete(atom() | pid(), timeout() | nil) ::
 :ok | {:error, Snakepit.Error.t()}

Waits for asynchronous pool initialization to complete.
Returns :ok when the pool has finished its initialization phase, or
{:error, %Snakepit.Error{}} if any pool fails to start workers or the
timeout is exceeded.

 await_ready(pool \\ __MODULE__, timeout \\ nil)

 @spec await_ready(atom() | pid(), timeout() | nil) ::
 :ok | {:error, Snakepit.Error.t()}

Waits for the pool to be ready for service.
Returns :ok when each pool has at least one ready worker, or
{:error, %Snakepit.Error{}} if any pool fails to start workers or the
timeout is exceeded.

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 derive_rpc_timeout_from_opts(opts, default_timeout)

 @spec derive_rpc_timeout_from_opts(Keyword.t(), timeout()) :: timeout()

Derives the RPC timeout from opts, considering deadline if present.
When a request has been queued, time has already elapsed. This function
calculates the remaining time budget for the actual RPC call.
Examples
Fresh request with 60s budget
iex> Snakepit.Pool.derive_rpc_timeout_from_opts([], 60_000)
58_800 # 60_000 - 1000 - 200 margins

Request that waited 500ms in queue
iex> now = System.monotonic_time(:millisecond)
iex> opts = [deadline_ms: now + 59_500]
iex> Snakepit.Pool.derive_rpc_timeout_from_opts(opts, 60_000)
~= 58_300 (remaining - margins)

 effective_queue_timeout_ms(opts, configured_queue_timeout)

 @spec effective_queue_timeout_ms(Keyword.t(), timeout()) :: non_neg_integer()

Computes effective queue timeout considering deadline.
If a deadline is set and less time remains than the configured queue timeout,
returns the remaining time instead.
Examples
No deadline - use configured queue timeout
iex> Snakepit.Pool.effective_queue_timeout_ms([], 10_000)
10_000

Deadline with 5s remaining - use remaining time
iex> now = System.monotonic_time(:millisecond)
iex> opts = [deadline_ms: now + 5_000]
iex> Snakepit.Pool.effective_queue_timeout_ms(opts, 10_000)
~= 5_000 (remaining time)

 execute(command, args, opts \\ [])

Executes a command on any available worker.

 execute_stream(command, args, callback_fn, opts \\ [])

Execute a streaming command with callback.

 get_default_timeout_for_call(call_type, args, opts)

 @spec get_default_timeout_for_call(atom(), map(), Keyword.t()) :: timeout()

Returns the default timeout for a given call type.
Call types
	:execute - Regular execute operations
	:execute_stream - Streaming operations
	:queue - Queue wait operations

Examples
iex> Snakepit.Pool.get_default_timeout_for_call(:execute, %{}, [])
300_000 # from default_timeout()

iex> Snakepit.Pool.get_default_timeout_for_call(:execute, %{}, [timeout: 45_000])
45_000

 get_stats(pool \\ __MODULE__)

Gets pool statistics.

 get_stats(pool, pool_name)

Gets statistics for a specific pool name.

 list_workers(pool \\ __MODULE__)

Lists all worker IDs in the pool.
Can be called with pool process or pool name:
	list_workers() - all workers from all pools
	list_workers(Snakepit.Pool) - all workers from all pools
	list_workers(Snakepit.Pool, :pool_name) - workers from specific pool

 list_workers(pool, pool_name)

 start_link(opts \\ [])

Starts the pool manager.

Snakepit.Pool.Worker.Starter

Supervisor wrapper for individual workers that provides automatic restart capability.
This module implements the "Permanent Wrapper" pattern for managing workers that
control external OS processes (Python gRPC servers).
Architecture Decision
See: docs/architecture/adr-001-worker-starter-supervision-pattern.md for
detailed rationale, alternatives considered, and trade-offs.
Why This Pattern?
TL;DR: Workers manage external Python processes, not just Elixir state.
This pattern provides:
	Automatic restart without Pool intervention
	Atomic resource cleanup (worker + Python process)
	Future extensibility for per-worker resources

Trade-off: Extra process (~1KB) per worker for better encapsulation.
Architecture
DynamicSupervisor (WorkerSupervisor)
└── Worker.Starter (Supervisor, :permanent)
 └── GRPCWorker (GenServer, :transient)
 └── Port → Python grpc_server.py
Lifecycle
When GRPCWorker crashes:
	Worker.Starter detects crash via :one_for_one strategy
	Worker.Starter automatically restarts GRPCWorker
	Pool notified via :DOWN but doesn't manage restart
	New GRPCWorker spawns new Python process and re-registers

When Worker.Starter terminates:
	GRPCWorker receives shutdown signal
	GRPCWorker.terminate sends SIGTERM to Python
	Python process exits gracefully
	Worker.Starter confirms all children stopped
	Clean atomic shutdown

This decouples Pool (availability management) from Worker lifecycle (crash/restart).
Related
	Issue #2: Community feedback questioning this complexity
	ADR-001: Full architecture decision record with alternatives
	External Process Design: docs/20251007_external_process_supervision_design.md

 Summary

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 start_link(worker_id)

 Starts a worker starter supervisor.

 via_name(worker_id)

 Returns a via tuple for this starter supervisor.

 Functions

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 start_link(worker_id)

Starts a worker starter supervisor.
Parameters
	worker_id - Unique identifier for the worker

 via_name(worker_id)

Returns a via tuple for this starter supervisor.

Snakepit.Pool.WorkerSupervisor

DynamicSupervisor for pool worker processes.
This supervisor manages the lifecycle of workers:
	Starts workers on demand
	Handles crashes with automatic restarts
	Provides clean shutdown of workers

 Summary

 Functions

 child_spec(arg)

 Returns a specification to start this module under a supervisor.

 list_workers()

 Lists all supervised workers.

 restart_worker(worker_id)

 Restarts a worker by ID.

 start_link(init_arg)

 Starts the worker supervisor.

 start_worker(worker_id, worker_module \\ Snakepit.GRPCWorker, adapter_module \\ nil, pool_name \\ nil, worker_config \\ %{})

 Starts a new pool worker with the given ID.

 stop_worker(worker_pid)

 Stops a worker gracefully.

 worker_count()

 Returns the count of active workers.

 Functions

 child_spec(arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 list_workers()

Lists all supervised workers.

 restart_worker(worker_id)

Restarts a worker by ID.

 start_link(init_arg)

Starts the worker supervisor.

 start_worker(worker_id, worker_module \\ Snakepit.GRPCWorker, adapter_module \\ nil, pool_name \\ nil, worker_config \\ %{})

Starts a new pool worker with the given ID.
Examples
iex> Snakepit.Pool.WorkerSupervisor.start_worker("worker_123")
{:ok, #PID<0.123.0>} # GRPCWorker PID

 stop_worker(worker_pid)

Stops a worker gracefully.

 worker_count()

Returns the count of active workers.

Snakepit.GRPCWorker

 A GenServer that manages gRPC connections to external processes.
 This worker can handle both traditional request/response and streaming operations
 via gRPC instead of stdin/stdout communication.
 ## Features
	Automatic gRPC connection management
	Health check monitoring
	Streaming support with callback-based API
	Session affinity for stateful operations
	Graceful fallback to traditional workers if gRPC unavailable

Usage
Start a gRPC worker
{:ok, worker} = Snakepit.GRPCWorker.start_link(adapter: Snakepit.Adapters.GRPCPython)

Simple execution
{:ok, result} = Snakepit.GRPCWorker.execute(worker, "ping", %{})

Streaming execution
Snakepit.GRPCWorker.execute_stream(worker, "batch_inference", %{
 batch_items: ["img1.jpg", "img2.jpg"]
}, fn chunk ->
 handle_chunk(chunk)
end)

 Summary

 Types

 worker_state()

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 execute(worker, command, args, timeout_or_opts \\ nil)

 Execute a command and return the result.

 execute(worker_id, command, args, timeout, opts)

 execute_in_session(worker, session_id, command, args, timeout_or_opts \\ nil)

 Execute a command in a specific session.

 execute_in_session(worker, session_id, command, args, timeout, opts)

 execute_stream(worker, command, args, callback_fn, timeout_or_opts \\ nil)

 Execute a streaming command with callback.

 execute_stream(worker_id, command, args, callback_fn, timeout, opts)

 get_channel(worker)

 Get the gRPC channel for direct client usage.

 get_health(worker)

 Get worker health and statistics.

 get_info(worker)

 Get worker information and capabilities.

 get_session_id(worker)

 Get the session ID for this worker.

 start_link(opts)

 Start a gRPC worker with the given adapter.

 supervisor_shutdown_timeout()

 Returns the recommended supervisor shutdown timeout.

 Types

 worker_state()

 @type worker_state() :: %{
 adapter: module(),
 connection: map() | nil,
 port: integer(),
 process_pid: integer() | nil,
 pgid: integer() | nil,
 process_group?: boolean(),
 server_port: port() | nil,
 id: String.t(),
 pool_name: atom() | pid(),
 health_check_ref: reference() | nil,
 heartbeat_monitor: pid() | nil,
 heartbeat_config: map(),
 ready_file: String.t(),
 stats: map(),
 session_id: String.t(),
 worker_config: map(),
 shutting_down: boolean()
}

 Functions

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 execute(worker, command, args, timeout_or_opts \\ nil)

Execute a command and return the result.

 execute(worker_id, command, args, timeout, opts)

 execute_in_session(worker, session_id, command, args, timeout_or_opts \\ nil)

Execute a command in a specific session.

 execute_in_session(worker, session_id, command, args, timeout, opts)

 execute_stream(worker, command, args, callback_fn, timeout_or_opts \\ nil)

Execute a streaming command with callback.

 execute_stream(worker_id, command, args, callback_fn, timeout, opts)

 get_channel(worker)

Get the gRPC channel for direct client usage.

 get_health(worker)

Get worker health and statistics.

 get_info(worker)

Get worker information and capabilities.

 get_session_id(worker)

Get the session ID for this worker.

 start_link(opts)

Start a gRPC worker with the given adapter.

 supervisor_shutdown_timeout()

Returns the recommended supervisor shutdown timeout.
This is graceful_shutdown_timeout + margin to ensure supervisors give workers
enough time to complete their terminate/2 callback (which includes graceful
Python process termination).
Use this value for:
	shutdown: in child_spec
	shutdown: in Worker.Starter
	Any other supervisor that manages GRPCWorker processes

Example
children = [
 %{
 id: MyWorker,
 start: {Snakepit.GRPCWorker, :start_link, [opts]},
 shutdown: Snakepit.GRPCWorker.supervisor_shutdown_timeout()
 }
]

Snakepit.Bridge.Session

Session data structure for centralized session management.
Stores program metadata and session state for worker affinity.

 Summary

 Types

 t()

 Functions

 delete_program(session, program_id)

 Removes a program from the session.

 expired?(session, current_time \\ nil)

 Checks if a session has expired based on its TTL.

 get_metadata(session, key, default \\ nil)

 Gets metadata from the session.

 get_program(session, program_id)

 Gets a program from the session.

 get_stats(session)

 Gets session statistics.

 new(id, opts \\ [])

 Creates a new session with the given ID and options.

 put_metadata(session, key, value)

 Updates session metadata.

 put_program(session, program_id, program_data)

 Adds or updates a program in the session.

 touch(session)

 Updates the last_accessed timestamp to the current time.

 validate(session)

 Validates that a session struct has all required fields and valid data.

 Types

 t()

 @type t() :: %Snakepit.Bridge.Session{
 created_at: integer(),
 id: String.t(),
 last_accessed: integer(),
 last_worker_id: String.t() | nil,
 metadata: map(),
 programs: map(),
 stats: map(),
 ttl: integer()
}

 Functions

 delete_program(session, program_id)

 @spec delete_program(t(), String.t()) :: t()

Removes a program from the session.
Parameters
	session - The session to update
	program_id - The program identifier to remove

Returns
Updated session with the program removed.

 expired?(session, current_time \\ nil)

 @spec expired?(t(), integer() | nil) :: boolean()

Checks if a session has expired based on its TTL.
Parameters
	session - The session to check
	current_time - Optional current time (defaults to current monotonic time)

Returns
true if the session has expired, false otherwise.

 get_metadata(session, key, default \\ nil)

 @spec get_metadata(t(), term(), term()) :: term()

Gets metadata from the session.
Parameters
	session - The session to query
	key - The metadata key
	default - Default value if key not found

Returns
The metadata value or the default.

 get_program(session, program_id)

 @spec get_program(t(), String.t()) :: {:ok, term()} | {:error, :not_found}

Gets a program from the session.
Parameters
	session - The session to query
	program_id - The program identifier

Returns
{:ok, program_data} if found, {:error, :not_found} if not found.

 get_stats(session)

 @spec get_stats(t()) :: map()

Gets session statistics.

 new(id, opts \\ [])

 @spec new(
 String.t(),
 keyword()
) :: t()

Creates a new session with the given ID and options.

 put_metadata(session, key, value)

 @spec put_metadata(t(), term(), term()) :: t()

Updates session metadata.
Parameters
	session - The session to update
	key - The metadata key
	value - The metadata value

Returns
Updated session with the metadata updated.

 put_program(session, program_id, program_data)

 @spec put_program(t(), String.t(), term()) :: t()

Adds or updates a program in the session.
Parameters
	session - The session to update
	program_id - The program identifier
	program_data - The program data to store

Returns
Updated session with the program added/updated.

 touch(session)

 @spec touch(t()) :: t()

Updates the last_accessed timestamp to the current time.
Parameters
	session - The session to touch

Returns
Updated session with current last_accessed timestamp.

 validate(session)

 @spec validate(t()) :: :ok | {:error, term()}

Validates that a session struct has all required fields and valid data.
Parameters
	session - The session to validate

Returns
:ok if valid, {:error, reason} if invalid.

Snakepit.Bridge.SessionStore

Centralized session store using ETS for high-performance session management.
This GenServer manages a centralized ETS table for storing session data,
providing CRUD operations, TTL-based expiration, and automatic cleanup.
The store is designed for high concurrency with optimized ETS settings.

 Summary

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 cleanup_expired_sessions()

 Manually triggers cleanup of expired sessions.

 cleanup_expired_sessions(server)

 create_session(session_id, opts \\ [])

 Creates a new session with the given ID and options.

 create_session(server, session_id, opts)

 delete_session(session_id)

 Deletes a session by ID.

 delete_session(server, session_id)

 get_session(session_id)

 Gets a session by ID, automatically updating the last_accessed timestamp.

 get_session(server, session_id)

 get_stats()

 Gets statistics about the session store.

 get_stats(server)

 list_sessions()

 Lists all active session IDs.

 list_sessions(server)

 session_exists?(session_id)

 Checks if a session exists.

 session_exists?(server, session_id)

 start_link(opts \\ [])

 Starts the SessionStore GenServer.

 store_worker_session(session_id, worker_id)

 Stores worker-session affinity mapping.

 update_session(session_id, update_fn)

 Updates a session using the provided update function.

 update_session(server, session_id, update_fn)

 Functions

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 cleanup_expired_sessions()

 @spec cleanup_expired_sessions() :: non_neg_integer()

Manually triggers cleanup of expired sessions.
Returns
The number of sessions that were cleaned up.

 cleanup_expired_sessions(server)

 @spec cleanup_expired_sessions(GenServer.server()) :: non_neg_integer()

 create_session(session_id, opts \\ [])

 @spec create_session(
 String.t(),
 keyword()
) :: {:ok, Snakepit.Bridge.Session.t()} | {:error, term()}

Creates a new session with the given ID and options.
Parameters
	session_id - Unique session identifier
	opts - Keyword list of options passed to Session.new/2

Returns
{:ok, session} if successful, {:error, reason} if failed.
Examples
{:ok, session} = SessionStore.create_session("session_123")
{:ok, session} = SessionStore.create_session("session_456", ttl: 7200)

 create_session(server, session_id, opts)

 @spec create_session(GenServer.server(), String.t(), keyword()) ::
 {:ok, Snakepit.Bridge.Session.t()} | {:error, term()}

 delete_session(session_id)

 @spec delete_session(String.t()) :: :ok

Deletes a session by ID.
Parameters
	session_id - The session identifier

Returns
:ok always (idempotent operation).

 delete_session(server, session_id)

 @spec delete_session(GenServer.server(), String.t()) :: :ok

 get_session(session_id)

 @spec get_session(String.t()) ::
 {:ok, Snakepit.Bridge.Session.t()} | {:error, :not_found}

Gets a session by ID, automatically updating the last_accessed timestamp.
Parameters
	session_id - The session identifier

Returns
{:ok, session} if found, {:error, :not_found} if not found.

 get_session(server, session_id)

 @spec get_session(GenServer.server(), String.t()) ::
 {:ok, Snakepit.Bridge.Session.t()} | {:error, :not_found}

 get_stats()

 @spec get_stats() :: map()

Gets statistics about the session store.
Returns
A map containing various statistics about the session store.

 get_stats(server)

 @spec get_stats(GenServer.server()) :: map()

 list_sessions()

 @spec list_sessions() :: [String.t()]

Lists all active session IDs.
Returns
A list of all active session IDs.

 list_sessions(server)

 @spec list_sessions(GenServer.server()) :: [String.t()]

 session_exists?(session_id)

 @spec session_exists?(String.t()) :: boolean()

Checks if a session exists.
Parameters
	session_id - The session identifier

Returns
true if the session exists, false otherwise.

 session_exists?(server, session_id)

 @spec session_exists?(GenServer.server(), String.t()) :: boolean()

 start_link(opts \\ [])

 @spec start_link(keyword()) :: GenServer.on_start()

Starts the SessionStore GenServer.
Options
	:name - The name to register the GenServer (default: MODULE)
	:table_name - The ETS table name (default: :snakepit_sessions)
	:cleanup_interval - Cleanup interval in milliseconds (default: 60_000)
	:default_ttl - Default TTL for sessions in seconds (default: 3600)

 store_worker_session(session_id, worker_id)

 @spec store_worker_session(String.t(), String.t()) :: :ok

Stores worker-session affinity mapping.

 update_session(session_id, update_fn)

 @spec update_session(String.t(), (Snakepit.Bridge.Session.t() ->
 Snakepit.Bridge.Session.t())) ::
 {:ok, Snakepit.Bridge.Session.t()} | {:error, term()}

Updates a session using the provided update function.
The update function receives the current session and should return
the updated session. The operation is atomic.
Parameters
	session_id - The session identifier
	update_fn - Function that takes a session and returns an updated session

Returns
{:ok, updated_session} if successful, {:error, reason} if failed.
Examples
{:ok, session} = SessionStore.update_session("session_123", fn session ->
 Map.put(session, :data, %{key: "value"})
end)

 update_session(server, session_id, update_fn)

 @spec update_session(GenServer.server(), String.t(), (Snakepit.Bridge.Session.t() ->
 Snakepit.Bridge.Session.t())) ::
 {:ok, Snakepit.Bridge.Session.t()} | {:error, term()}

Snakepit.Adapters.GRPCPython

 gRPC-based Python adapter for Snakepit.
 This adapter replaces the stdin/stdout protocol with gRPC for better performance,
 streaming capabilities, and more robust communication.
 ## Configuration
 Application.put_env(:snakepit, :adapter_module, Snakepit.Adapters.GRPCPython)
 Application.put_env(:snakepit, :grpc_listener, %{mode: :internal})

 # External access (explicit opt-in)
 Application.put_env(:snakepit, :grpc_listener, %{
 mode: :external,
 host: "localhost",
 port: 50051
 })
 Worker ports are OS-assigned (ephemeral) and reported back during startup.
Features
	Native streaming support for progressive results
	HTTP/2 multiplexing for concurrent requests
	Built-in health checks and monitoring
	Better error handling with gRPC status codes
	Binary data support without base64 encoding

Streaming Examples
Stream ML inference results
Snakepit.execute_stream("batch_inference", %{
 batch_items: ["image1.jpg", "image2.jpg", "image3.jpg"]
}, fn chunk ->
 handle_chunk(chunk)
end)

Stream large dataset processing with progress
Snakepit.execute_stream("process_large_dataset", %{
 total_rows: 10000,
 chunk_size: 500
}, fn chunk ->
 handle_progress(chunk)
end)

 Summary

 Functions

 get_port()

 Get the gRPC port for this adapter instance.

 grpc_available?()

 Check if gRPC dependencies are available at runtime.

 grpc_execute(connection, session_id, command, args, timeout \\ nil, opts \\ [])

 Execute a command via gRPC.

 grpc_execute_stream(connection, session_id, command, args, callback_fn, timeout \\ nil, opts \\ [])

 Execute a streaming command via gRPC with callback.

 init_grpc_connection(port)

 Initialize gRPC connection for the worker.
Called by GRPCWorker during initialization.

 uses_grpc?()

 Check if this adapter uses gRPC.
Returns true only if gRPC dependencies are actually available.

 Functions

 get_port()

Get the gRPC port for this adapter instance.
ROBUST FIX: Use port 0 to let the OS dynamically assign an available port.
This completely eliminates:
	Port collision races
	TIME_WAIT conflicts
	Manual port range management
	Port leak tracking

Python will bind to an OS-assigned port and report it back via the readiness file
(SNAKEPIT_READY_FILE).

 grpc_available?()

Check if gRPC dependencies are available at runtime.

 grpc_execute(connection, session_id, command, args, timeout \\ nil, opts \\ [])

Execute a command via gRPC.

 grpc_execute_stream(connection, session_id, command, args, callback_fn, timeout \\ nil, opts \\ [])

Execute a streaming command via gRPC with callback.

 init_grpc_connection(port)

Initialize gRPC connection for the worker.
Called by GRPCWorker during initialization.
CRITICAL FIX: This includes retry logic to handle the race condition where
the Python process signals readiness before the OS socket is fully bound
and accepting connections. This is common in polyglot systems where the
external process startup timing is non-deterministic.

 uses_grpc?()

Check if this adapter uses gRPC.
Returns true only if gRPC dependencies are actually available.

Snakepit.Pool.ApplicationCleanup

Provides hard guarantees for worker process cleanup when the application exits.
This module ensures that NO worker processes survive application shutdown,
preventing orphaned processes while still allowing normal pool operations.

 Summary

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 init(opts)

 Callback implementation for GenServer.init/1.

 start_link(opts \\ [])

 Functions

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 init(opts)

Callback implementation for GenServer.init/1.

 start_link(opts \\ [])

Snakepit.Pool.ProcessRegistry

Registry for tracking external worker processes with OS-level PID management.
This module maintains a mapping between:
	Worker IDs
	Elixir worker PIDs
	External process PIDs
	Process fingerprints

Enables robust orphaned process detection and cleanup.

 Summary

 Functions

 activate_worker(worker_id, elixir_pid, process_pid, fingerprint)

 Activates a reserved worker with its actual process information.

 activate_worker(worker_id, elixir_pid, process_pid, fingerprint, opts)

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 cleanup_dead_workers()

 Cleans up dead worker entries from the registry.

 current_run_entries()

 Gets all registered worker entries for the current BEAM run.

 debug_show_all_entries()

 Debug function to show all DETS entries with their BEAM run IDs.

 dets_table_size()

 Returns the number of entries currently stored in the DETS table.

 get_active_process_pids()

 Gets all active external process PIDs from registered workers.

 get_all_process_pids()

 Gets all registered external process PIDs, regardless of worker status.

 get_beam_run_id()

 Get the current BEAM run ID.

 get_stats()

 Gets registry statistics.

 get_worker_info(worker_id)

 Gets information for a specific worker.

 get_workers_by_fingerprint(fingerprint)

 Gets workers with specific fingerprints.

 list_all_workers()

 Gets all registered worker information.

 manual_orphan_cleanup()

 Manually trigger orphan cleanup. Useful for testing and debugging.

 reserve_worker(worker_id)

 Reserves a worker slot before spawning the process.
This ensures we can track the process even if we crash during spawn.

 start_link(opts \\ [])

 unregister_worker(worker_id)

 Unregisters a worker from tracking.
Returns :ok regardless of whether the worker was registered.

 update_process_group(worker_id, process_pid, pgid)

 Updates process-group metadata for a worker after startup.

 validate_workers()

 Validates that all registered workers are still alive.
Returns a list of dead workers that should be cleaned up.

 worker_registered?(worker_id)

 Checks if a worker is currently registered.

 Functions

 activate_worker(worker_id, elixir_pid, process_pid, fingerprint)

Activates a reserved worker with its actual process information.
This is a synchronous call that blocks until the worker is registered.
This ensures the happens-before relationship: worker registration completes
before the worker is considered ready for work.

 activate_worker(worker_id, elixir_pid, process_pid, fingerprint, opts)

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 cleanup_dead_workers()

Cleans up dead worker entries from the registry.

 current_run_entries()

Gets all registered worker entries for the current BEAM run.

 debug_show_all_entries()

Debug function to show all DETS entries with their BEAM run IDs.

 dets_table_size()

Returns the number of entries currently stored in the DETS table.

 get_active_process_pids()

Gets all active external process PIDs from registered workers.

 get_all_process_pids()

Gets all registered external process PIDs, regardless of worker status.
This is useful during shutdown when workers may have been terminated
but external processes still need cleanup.

 get_beam_run_id()

Get the current BEAM run ID.

 get_stats()

Gets registry statistics.

 get_worker_info(worker_id)

Gets information for a specific worker.

 get_workers_by_fingerprint(fingerprint)

Gets workers with specific fingerprints.

 list_all_workers()

Gets all registered worker information.

 manual_orphan_cleanup()

Manually trigger orphan cleanup. Useful for testing and debugging.

 reserve_worker(worker_id)

Reserves a worker slot before spawning the process.
This ensures we can track the process even if we crash during spawn.

 start_link(opts \\ [])

 unregister_worker(worker_id)

Unregisters a worker from tracking.
Returns :ok regardless of whether the worker was registered.

 update_process_group(worker_id, process_pid, pgid)

Updates process-group metadata for a worker after startup.
This is used to resolve startup races where the external OS process may not
be the process-group leader at the moment it is spawned, but becomes one
shortly thereafter (e.g. via setsid() in Python or delayed OS bookkeeping).
The update is only applied if the currently stored process_pid matches the
provided process_pid, to avoid corrupting a restarted worker entry.

 validate_workers()

Validates that all registered workers are still alive.
Returns a list of dead workers that should be cleaned up.

 worker_registered?(worker_id)

Checks if a worker is currently registered.

Snakepit.ProcessKiller

Robust OS process management using Erlang primitives.
No shell commands, pure Erlang/Elixir.
This module provides POSIX-compliant process management that works
across Linux, macOS, and BSD systems without relying on shell-specific
features like pkill.

 Summary

 Functions

 find_python_processes()

 Finds all Python processes on the system.
Returns a list of OS PIDs.

 get_process_command(os_pid)

 Gets the command line of a process.
POSIX-compliant using /proc on Linux, ps on macOS/BSD.

 get_process_group_id(os_pid)

 Gets the process group ID (PGID) for a process.

 kill_by_run_id(run_id, opts \\ [])

 Kills all processes matching a run ID.
Pure Erlang implementation, no pkill.

 kill_process(os_pid, signal \\ :sigterm)

 Kills a process by PID using proper Erlang signals.

 kill_process_group(pgid, signal \\ :sigterm)

 Kills a process group by PGID using proper Erlang signals.

 kill_process_group_with_escalation(pgid, timeout_ms \\ 2000)

 Kills a process group with escalation: SIGTERM -> wait -> SIGKILL.

 kill_with_escalation(os_pid, timeout_ms \\ 2000)

 Kills a process with escalation: SIGTERM -> wait -> SIGKILL

 process_alive?(os_pid)

 Checks if a process is alive.
Uses kill -0 (signal 0) which doesn't kill but checks existence.

 process_group_supported?()

 Returns true if the platform supports process group kill semantics.

 setsid_executable()

 Returns the path to the setsid executable, or {:error, :not_found}.

 setsid_executable!()

 Returns the setsid executable path or raises if not available.

 Functions

 find_python_processes()

Finds all Python processes on the system.
Returns a list of OS PIDs.

 get_process_command(os_pid)

Gets the command line of a process.
POSIX-compliant using /proc on Linux, ps on macOS/BSD.

 get_process_group_id(os_pid)

Gets the process group ID (PGID) for a process.

 kill_by_run_id(run_id, opts \\ [])

Kills all processes matching a run ID.
Pure Erlang implementation, no pkill.

 kill_process(os_pid, signal \\ :sigterm)

Kills a process by PID using proper Erlang signals.
Parameters
	os_pid: OS process ID (integer)
	signal: :sigterm | :sigkill | :sighup

Returns
	:ok if kill succeeded
	{:error, reason} if kill failed

 kill_process_group(pgid, signal \\ :sigterm)

Kills a process group by PGID using proper Erlang signals.
Parameters
	pgid: Process group ID (integer)
	signal: :sigterm | :sigkill | :sighup

 kill_process_group_with_escalation(pgid, timeout_ms \\ 2000)

Kills a process group with escalation: SIGTERM -> wait -> SIGKILL.

 kill_with_escalation(os_pid, timeout_ms \\ 2000)

Kills a process with escalation: SIGTERM -> wait -> SIGKILL

 process_alive?(os_pid)

Checks if a process is alive.
Uses kill -0 (signal 0) which doesn't kill but checks existence.

 process_group_supported?()

Returns true if the platform supports process group kill semantics.

 setsid_executable()

Returns the path to the setsid executable, or {:error, :not_found}.

 setsid_executable!()

Returns the setsid executable path or raises if not available.

Snakepit.Pool.Registry

Registry for pool worker processes.
This is a thin wrapper around Elixir's Registry that provides:
	Consistent naming for worker processes
	Easy migration path to distributed registry (Horde)
	Helper functions for worker lookup

Canonical Metadata
All workers store a metadata map containing the following canonical keys:
	:worker_module – module that owns the worker implementation (usually Snakepit.GRPCWorker)
	:pool_name – atom name of the logical pool (e.g. :default)
	:pool_identifier – optional human-friendly identifier used in docs/metrics
	:adapter_module – adapter used to launch the Python worker

Higher-level helpers (pool, diagnostics, worker profiles) should prefer
Snakepit.Pool.Registry.fetch_worker/1 so these keys stay authoritative.

 Summary

 Functions

 child_spec(opts)

 Returns the child spec for the registry.

 fetch_worker(worker_id)

 Returns {pid, metadata} for a registered worker.

 get_worker_id_by_pid(pid)

 Get worker_id from PID for O(1) lookups in :DOWN messages.

 get_worker_metadata(worker_id)

 Returns only the metadata for a worker.

 get_worker_pid(worker_id)

 Gets the PID for a worker ID.

 list_workers()

 Lists all registered worker IDs.

 metadata_keys()

 Returns the list of canonical metadata keys maintained for each worker.

 put_metadata(worker_id, metadata)

 Adds or updates metadata for a registered worker.

 register_worker(worker_id, pid)

 Register a worker with metadata for O(1) reverse lookups.
This is only used for manual registration - workers started with via_tuple are already registered.

 via_tuple(worker_id)

 Returns a via tuple for registering/looking up a worker process.

 worker_count()

 Counts the number of registered workers.

 worker_exists?(worker_id)

 Checks if a worker is registered.

 Functions

 child_spec(opts)

Returns the child spec for the registry.

 fetch_worker(worker_id)

Returns {pid, metadata} for a registered worker.

 get_worker_id_by_pid(pid)

Get worker_id from PID for O(1) lookups in :DOWN messages.

 get_worker_metadata(worker_id)

Returns only the metadata for a worker.

 get_worker_pid(worker_id)

Gets the PID for a worker ID.

 list_workers()

Lists all registered worker IDs.

 metadata_keys()

Returns the list of canonical metadata keys maintained for each worker.

 put_metadata(worker_id, metadata)

Adds or updates metadata for a registered worker.
Accepts maps to keep metadata consistent across callers. When Registry
has nil metadata (the default when using :via tuples), this function
replaces it with the provided map. Future updates merge with the existing map.
Returns :ok on success or {:error, :not_registered} if the worker has
not been registered yet (best-effort semantics).

 register_worker(worker_id, pid)

Register a worker with metadata for O(1) reverse lookups.
This is only used for manual registration - workers started with via_tuple are already registered.

 via_tuple(worker_id)

Returns a via tuple for registering/looking up a worker process.
Examples
iex> Snakepit.Pool.Registry.via_tuple("worker_123")
{:via, Registry, {Snakepit.Pool.Registry, "worker_123"}}

 worker_count()

Counts the number of registered workers.

 worker_exists?(worker_id)

Checks if a worker is registered.

Snakepit.Pool.Worker.StarterRegistry

Registry for worker starter supervisors.
This registry provides a clean separation between worker processes and
their starter supervisors, making debugging and process tracking easier.
Worker starters are registered with their worker_id as the key, allowing
for easy lookup and management of individual starter supervisors.

 Summary

 Functions

 child_spec(opts)

 Returns the child spec for the starter registry.

 get_starter_pid(worker_id)

 Gets the PID for a worker starter supervisor.

 list_starters()

 Lists all registered worker starter IDs.

 starter_count()

 Counts the number of registered worker starters.

 starter_exists?(worker_id)

 Checks if a worker starter is registered.

 via_tuple(worker_id)

 Returns a via tuple for registering/looking up a worker starter supervisor.

 Functions

 child_spec(opts)

Returns the child spec for the starter registry.

 get_starter_pid(worker_id)

Gets the PID for a worker starter supervisor.

 list_starters()

Lists all registered worker starter IDs.

 starter_count()

Counts the number of registered worker starters.

 starter_exists?(worker_id)

Checks if a worker starter is registered.

 via_tuple(worker_id)

Returns a via tuple for registering/looking up a worker starter supervisor.
Examples
iex> Snakepit.Pool.Worker.StarterRegistry.via_tuple("worker_123")
{:via, Registry, {Snakepit.Pool.Worker.StarterRegistry, "worker_123"}}

Snakepit.Bridge.ToolRegistry

Registry for managing tool metadata and execution.
Maintains a registry of both local (Elixir) and remote (Python) tools,
handles tool discovery, registration, and provides execution dispatch.

 Summary

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 cleanup_session(session_id)

 Removes all tools for a session (cleanup).

 execute_local_tool(session_id, tool_name, params)

 Executes a local Elixir tool.

 get_tool(session_id, tool_name)

 Gets a specific tool by name.

 list_exposed_elixir_tools(session_id)

 Lists only Elixir tools exposed to Python for a session.

 list_tools(session_id)

 Lists all tools available for a session.

 register_elixir_tool(session_id, tool_name, handler, metadata \\ %{})

 Registers a local Elixir tool.

 register_python_tool(session_id, tool_name, worker_id, metadata \\ %{})

 Registers a remote Python tool.

 register_tools(session_id, tool_specs)

 Registers multiple tools at once (used by Python workers on startup).

 start_link(opts \\ [])

 Starts the ToolRegistry GenServer.

 Functions

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 cleanup_session(session_id)

Removes all tools for a session (cleanup).

 execute_local_tool(session_id, tool_name, params)

Executes a local Elixir tool.

 get_tool(session_id, tool_name)

Gets a specific tool by name.

 list_exposed_elixir_tools(session_id)

Lists only Elixir tools exposed to Python for a session.

 list_tools(session_id)

Lists all tools available for a session.

 register_elixir_tool(session_id, tool_name, handler, metadata \\ %{})

Registers a local Elixir tool.

 register_python_tool(session_id, tool_name, worker_id, metadata \\ %{})

Registers a remote Python tool.

 register_tools(session_id, tool_specs)

Registers multiple tools at once (used by Python workers on startup).

 start_link(opts \\ [])

Starts the ToolRegistry GenServer.

Snakepit.GRPC.BridgeServer

gRPC server implementation for the Snakepit Bridge service.
Handles tool execution and session management through the unified bridge protocol.

 Summary

 Functions

 cleanup_session(cleanup_session_request, stream)

 execute_elixir_tool(request, stream)

 execute_streaming_tool(request, stream)

 execute_tool(request, stream)

 get_exposed_elixir_tools(get_exposed_elixir_tools_request, stream)

 get_session(get_session_request, stream)

 heartbeat(heartbeat_request, stream)

 initialize_session(request, stream)

 ping(ping_request, stream)

 register_tools(request, stream)

 service_name(_)

 Functions

 cleanup_session(cleanup_session_request, stream)

 execute_elixir_tool(request, stream)

 execute_streaming_tool(request, stream)

 execute_tool(request, stream)

 get_exposed_elixir_tools(get_exposed_elixir_tools_request, stream)

 get_session(get_session_request, stream)

 heartbeat(heartbeat_request, stream)

 initialize_session(request, stream)

 ping(ping_request, stream)

 register_tools(request, stream)

 service_name(_)

Snakepit.GRPC.Client

gRPC client for the unified bridge protocol.
Delegates to the real implementation when available.

 Summary

 Functions

 cleanup_session(channel, session_id, force \\ false, opts \\ [])

 connect(port)

 execute(channel, command, args, timeout \\ nil)

 execute_streaming_tool(channel, session_id, tool_name, parameters, opts \\ [])

 execute_tool(channel, session_id, tool_name, parameters, opts \\ [])

 get_info(channel)

 get_session(channel, session_id, opts \\ [])

 health(channel, client_id)

 heartbeat(channel, session_id, opts \\ [])

 initialize_session(channel, session_id, config \\ %{}, opts \\ [])

 ping(channel, message, opts \\ [])

 Functions

 cleanup_session(channel, session_id, force \\ false, opts \\ [])

 connect(port)

 execute(channel, command, args, timeout \\ nil)

 execute_streaming_tool(channel, session_id, tool_name, parameters, opts \\ [])

 execute_tool(channel, session_id, tool_name, parameters, opts \\ [])

 get_info(channel)

 get_session(channel, session_id, opts \\ [])

 health(channel, client_id)

 heartbeat(channel, session_id, opts \\ [])

 initialize_session(channel, session_id, config \\ %{}, opts \\ [])

 ping(channel, message, opts \\ [])

Snakepit.GRPC.Endpoint

gRPC endpoint for the Snakepit bridge server.
This module defines the gRPC endpoint that handles incoming
requests for the unified bridge protocol.

Snakepit.Hardware

Hardware abstraction layer for Snakepit.
Provides unified hardware detection and device selection for ML workloads.
Supports CPU, NVIDIA CUDA, Apple MPS, and AMD ROCm accelerators.
Features
	Automatic Detection: Detects available hardware at startup
	Device Selection: Intelligent device selection with fallback strategies
	Caching: Results are cached for performance
	Lock File Support: Identity map for lock file generation

Usage
Detect all hardware
info = Snakepit.Hardware.detect()
=> %{accelerator: :cuda, cpu: %{...}, cuda: %{...}, ...}

Check capabilities
caps = Snakepit.Hardware.capabilities()
=> %{cuda: true, mps: false, avx2: true, ...}

Select device
{:ok, device} = Snakepit.Hardware.select(:auto)
=> {:ok, {:cuda, 0}}

Select with fallback
{:ok, device} = Snakepit.Hardware.select_with_fallback([:cuda, :mps, :cpu])
=> {:ok, :cpu}
Identity Map
The identity/0 function returns a map suitable for lock file generation:
identity = Snakepit.Hardware.identity()
=> %{"platform" => "linux-x86_64", "accelerator" => "cuda", ...}
This can be serialized to JSON/YAML for lock files that need to track
the hardware environment.

 Summary

 Types

 capabilities()

 device()

 device_preference()

 hardware_info()

 Functions

 capabilities()

 Returns hardware capability flags.

 clear_cache()

 Clears the hardware detection cache.

 detect()

 Detects all hardware information.

 device_info(device)

 Returns device information for a selected device.

 identity()

 Returns a hardware identity map for lock files.

 info()

 Alias for detect/0.

 select(preference)

 Selects a device based on preference.

 select_with_fallback(preferences)

 Selects the first available device from a preference list.

 Types

 capabilities()

 @type capabilities() :: Snakepit.Hardware.Detector.capabilities()

 device()

 @type device() :: Snakepit.Hardware.Selector.device()

 device_preference()

 @type device_preference() :: Snakepit.Hardware.Selector.device_preference()

 hardware_info()

 @type hardware_info() :: Snakepit.Hardware.Detector.hardware_info()

 Functions

 capabilities()

 @spec capabilities() :: capabilities()

Returns hardware capability flags.
Returns a map of boolean flags for quick feature checks:
	:cuda - CUDA available
	:mps - Apple MPS available
	:rocm - AMD ROCm available
	:avx - AVX instruction set available
	:avx2 - AVX2 instruction set available
	:avx512 - AVX-512 instruction set available
	:cuda_version - CUDA version string or nil
	:cudnn_version - cuDNN version string or nil
	:cudnn - cuDNN available

Examples
caps = Snakepit.Hardware.capabilities()
if caps.cuda do
 cuda_version = caps.cuda_version
end

 clear_cache()

 @spec clear_cache() :: :ok

Clears the hardware detection cache.
Forces re-detection on next call. Useful after hardware changes
or for testing.
Examples
Snakepit.Hardware.clear_cache()
:ok

 detect()

 @spec detect() :: hardware_info()

Detects all hardware information.
Returns a map with:
	:accelerator - Primary accelerator type (:cpu, :cuda, :mps, :rocm)
	:cpu - CPU information (cores, threads, model, features, memory)
	:cuda - NVIDIA CUDA info or nil
	:mps - Apple MPS info or nil
	:rocm - AMD ROCm info or nil
	:platform - Platform string (e.g., "linux-x86_64")

Examples
info = Snakepit.Hardware.detect()
info.accelerator
#=> :cuda

info.cpu.cores
#=> 8

 device_info(device)

 @spec device_info(device()) :: map()

Returns device information for a selected device.
Returns a map with device-specific details useful for logging,
telemetry, and diagnostics.
Examples
info = Snakepit.Hardware.device_info({:cuda, 0})
=> %{type: :cuda, device_id: 0, name: "NVIDIA GeForce RTX 3080", ...}

 identity()

 @spec identity() :: map()

Returns a hardware identity map for lock files.
The identity map contains string keys and is suitable for
serialization to JSON/YAML lock files that need to track
the hardware environment.
Keys
	"platform" - Platform string (e.g., "linux-x86_64")
	"accelerator" - Primary accelerator type as string
	"cpu_features" - List of CPU feature strings
	"gpu_count" - Number of GPUs detected

Examples
identity = Snakepit.Hardware.identity()
Jason.encode!(identity)
=> "{\"platform\":\"linux-x86_64\",\"accelerator\":\"cuda\",...}"

 info()

 @spec info() :: hardware_info()

Alias for detect/0.
Returns the same hardware info map as detect/0.

 select(preference)

 @spec select(device_preference()) :: {:ok, device()} | {:error, :device_not_available}

Selects a device based on preference.
Options
	:auto - Automatically select best available accelerator
	:cpu - Select CPU (always available)
	:cuda - Select CUDA (fails if not available)
	:mps - Select MPS (fails if not macOS with Apple Silicon)
	:rocm - Select ROCm (fails if not available)
	{:cuda, device_id} - Select specific CUDA device by ID

Returns
	{:ok, device} on success
	{:error, :device_not_available} if requested device is unavailable

Examples
Auto-select best device
{:ok, device} = Snakepit.Hardware.select(:auto)

Request specific device
case Snakepit.Hardware.select(:cuda) do
 {:ok, {:cuda, 0}} -> :ok
 {:error, :device_not_available} -> :error
end

 select_with_fallback(preferences)

 @spec select_with_fallback([device_preference()]) ::
 {:ok, device()} | {:error, :no_device}

Selects the first available device from a preference list.
Tries each device in order until one is available. This is useful
for graceful degradation strategies.
Examples
Prefer CUDA, fall back to MPS, then CPU
{:ok, device} = Snakepit.Hardware.select_with_fallback([:cuda, :mps, :cpu])

Returns :cpu if CUDA and MPS are unavailable

Snakepit.Hardware.CPUDetector

CPU hardware detection.
Detects CPU model, cores, threads, memory, and CPU features (SSE, AVX, etc.).

 Summary

 Types

 cpu_info()

 Functions

 detect()

 Detects CPU hardware information.

 Types

 cpu_info()

 @type cpu_info() :: %{
 cores: pos_integer(),
 threads: pos_integer(),
 model: String.t(),
 features: [atom()],
 memory_total_mb: non_neg_integer()
}

 Functions

 detect()

 @spec detect() :: cpu_info()

Detects CPU hardware information.
Returns a map with:
	:cores - Number of physical CPU cores
	:threads - Number of logical threads (cores * hyperthreading)
	:model - CPU model name string
	:features - List of detected CPU feature atoms (e.g., :avx, :sse4_2)
	:memory_total_mb - Total system memory in MB

Snakepit.Hardware.CUDADetector

CUDA GPU hardware detection.
Detects NVIDIA CUDA-capable GPUs using nvidia-smi when available.

 Summary

 Types

 cuda_device()

 cuda_info()

 Functions

 detect()

 Detects CUDA GPU information.

 Types

 cuda_device()

 @type cuda_device() :: %{
 id: non_neg_integer(),
 name: String.t(),
 memory_total_mb: non_neg_integer(),
 memory_free_mb: non_neg_integer(),
 compute_capability: String.t() | nil
}

 cuda_info()

 @type cuda_info() :: %{
 version: String.t(),
 driver_version: String.t(),
 devices: [cuda_device()],
 cudnn_version: String.t() | nil
}

 Functions

 detect()

 @spec detect() :: cuda_info() | nil

Detects CUDA GPU information.
Returns nil if CUDA is not available, or a map with:
	:version - CUDA runtime version (e.g., "12.1")
	:driver_version - NVIDIA driver version
	:devices - List of CUDA device maps
	:cudnn_version - cuDNN version if available, nil otherwise

Snakepit.Hardware.Detector

Unified hardware detection module.
Aggregates CPU, CUDA, MPS, and ROCm detection into a single hardware info structure.
Results are cached in ETS for performance.

 Summary

 Types

 accelerator()

 capabilities()

 hardware_info()

 Functions

 capabilities()

 Returns hardware capability flags.

 clear_cache()

 Clears the hardware detection cache.

 detect()

 Detects all hardware information.

 Types

 accelerator()

 @type accelerator() :: :cpu | :cuda | :mps | :rocm

 capabilities()

 @type capabilities() :: %{
 cuda: boolean(),
 mps: boolean(),
 rocm: boolean(),
 avx: boolean(),
 avx2: boolean(),
 avx512: boolean(),
 cuda_version: String.t() | nil,
 cudnn_version: String.t() | nil,
 cudnn: boolean()
}

 hardware_info()

 @type hardware_info() :: %{
 accelerator: accelerator(),
 cpu: Snakepit.Hardware.CPUDetector.cpu_info(),
 cuda: Snakepit.Hardware.CUDADetector.cuda_info() | nil,
 mps: Snakepit.Hardware.MPSDetector.mps_info() | nil,
 rocm: Snakepit.Hardware.ROCmDetector.rocm_info() | nil,
 platform: String.t()
}

 Functions

 capabilities()

 @spec capabilities() :: capabilities()

Returns hardware capability flags.
Returns a map of boolean capability flags for quick feature checks.

 clear_cache()

 @spec clear_cache() :: :ok

Clears the hardware detection cache.
Forces re-detection on next call to detect/0 or capabilities/0.

 detect()

 @spec detect() :: hardware_info()

Detects all hardware information.
Returns a map with aggregated hardware info from all detectors.
Results are cached for performance.

Snakepit.Hardware.MPSDetector

Apple Metal Performance Shaders (MPS) hardware detection.
Detects Apple Silicon GPU availability on macOS.

 Summary

 Types

 mps_info()

 Functions

 detect()

 Detects MPS (Apple Metal) availability.

 Types

 mps_info()

 @type mps_info() :: %{
 available: boolean(),
 device_name: String.t(),
 memory_total_mb: non_neg_integer()
}

 Functions

 detect()

 @spec detect() :: mps_info() | nil

Detects MPS (Apple Metal) availability.
Returns nil on non-macOS platforms, or a map with:
	:available - true if MPS is available
	:device_name - Name of the Metal device
	:memory_total_mb - GPU memory (shared memory on Apple Silicon)

Snakepit.Hardware.ROCmDetector

AMD ROCm GPU hardware detection.
Detects AMD GPUs with ROCm support using rocm-smi when available.

 Summary

 Types

 rocm_device()

 rocm_info()

 Functions

 detect()

 Detects ROCm GPU information.

 Types

 rocm_device()

 @type rocm_device() :: %{
 id: non_neg_integer(),
 name: String.t(),
 memory_total_mb: non_neg_integer(),
 memory_free_mb: non_neg_integer()
}

 rocm_info()

 @type rocm_info() :: %{version: String.t(), devices: [rocm_device()]}

 Functions

 detect()

 @spec detect() :: rocm_info() | nil

Detects ROCm GPU information.
Returns nil if ROCm is not available, or a map with:
	:version - ROCm version
	:devices - List of ROCm device maps

Snakepit.Hardware.Selector

Device selection logic for hardware abstraction.
Provides intelligent device selection based on availability, preferences,
and fallback strategies.

 Summary

 Types

 device()

 device_preference()

 Functions

 device_info(arg1)

 Returns information about a selected device.

 select(arg1)

 Selects a device based on preference.

 select_with_fallback(list)

 Selects the first available device from a preference list.

 Types

 device()

 @type device() ::
 :cpu
 | :cuda
 | :mps
 | :rocm
 | {:cuda, non_neg_integer()}
 | {:rocm, non_neg_integer()}

 device_preference()

 @type device_preference() ::
 :auto | :cpu | :cuda | :mps | :rocm | {:cuda, non_neg_integer()}

 Functions

 device_info(arg1)

 @spec device_info(device()) :: map()

Returns information about a selected device.
Returns a map with device details useful for logging and telemetry.

 select(arg1)

 @spec select(device_preference()) :: {:ok, device()} | {:error, :device_not_available}

Selects a device based on preference.
Options
	:auto - Automatically select the best available accelerator
	:cpu - Select CPU (always available)
	:cuda - Select CUDA (fails if not available)
	:mps - Select MPS (fails if not available or not on macOS)
	:rocm - Select ROCm (fails if not available)
	{:cuda, device_id} - Select specific CUDA device

Returns
	{:ok, device} on success
	{:error, :device_not_available} if requested device is unavailable

 select_with_fallback(list)

 @spec select_with_fallback([device_preference()]) ::
 {:ok, device()} | {:error, :no_device}

Selects the first available device from a preference list.
Tries each device in order until one is available, returning that device.
If no devices are available, returns {:error, :no_device}.
Examples
iex> Hardware.Selector.select_with_fallback([:cuda, :mps, :cpu])
{:ok, :cpu} # if CUDA and MPS unavailable

Snakepit.CircuitBreaker

Circuit breaker for Python worker fault tolerance.
Implements the circuit breaker pattern to prevent cascading failures
when workers are experiencing issues.
States
	:closed - Normal operation, all calls allowed
	:open - Failure threshold exceeded, calls rejected
	:half_open - Testing if service recovered, limited calls allowed

Usage
{:ok, cb} = CircuitBreaker.start_link(name: :my_cb, failure_threshold: 5)

case CircuitBreaker.call(cb, fn -> risky_operation() end) do
 {:ok, result} -> handle_success(result)
 {:error, :circuit_open} -> handle_circuit_open()
 {:error, reason} -> handle_error(reason)
end

 Summary

 Types

 state()

 t()

 Functions

 allow_call?(server)

 Checks if a call is allowed through the circuit.

 call(server, fun)

 Executes a function through the circuit breaker.

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 record_failure(server)

 Records a failed call.

 record_success(server)

 Records a successful call.

 reset(server)

 Resets the circuit breaker to closed state.

 start_link(opts \\ [])

 Starts a circuit breaker.

 state(server)

 Returns the current circuit state.

 stats(server)

 Returns circuit breaker statistics.

 Types

 state()

 @type state() :: :closed | :open | :half_open

 t()

 @type t() :: %{
 state: state(),
 failure_count: non_neg_integer(),
 success_count: non_neg_integer(),
 failure_threshold: pos_integer(),
 reset_timeout_ms: pos_integer(),
 half_open_max_calls: pos_integer(),
 half_open_calls: non_neg_integer(),
 last_failure_time: integer() | nil,
 name: atom() | nil
}

 Functions

 allow_call?(server)

 @spec allow_call?(GenServer.server()) :: boolean()

Checks if a call is allowed through the circuit.

 call(server, fun)

 @spec call(GenServer.server(), (-> any())) :: any()

Executes a function through the circuit breaker.
Returns {:error, :circuit_open} if the circuit is open.

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 record_failure(server)

 @spec record_failure(GenServer.server()) :: :ok

Records a failed call.

 record_success(server)

 @spec record_success(GenServer.server()) :: :ok

Records a successful call.

 reset(server)

 @spec reset(GenServer.server()) :: :ok

Resets the circuit breaker to closed state.

 start_link(opts \\ [])

 @spec start_link(keyword()) :: GenServer.on_start()

Starts a circuit breaker.
Options
	:name - GenServer name (optional)
	:failure_threshold - Number of failures before opening (default: 5)
	:reset_timeout_ms - Time before transitioning to half-open (default: 30000)
	:half_open_max_calls - Max calls allowed in half-open state (default: 1)

 state(server)

 @spec state(GenServer.server()) :: state()

Returns the current circuit state.

 stats(server)

 @spec stats(GenServer.server()) :: map()

Returns circuit breaker statistics.

Snakepit.Executor

Execution helpers with retry, circuit breaker, and timeout support.
Provides various execution strategies for running operations
with fault tolerance.
Usage
Simple execution with retry
result = Executor.execute_with_retry(
 fn -> risky_operation() end,
 max_attempts: 3,
 backoff_ms: [100, 200, 400]
)

With circuit breaker
result = Executor.execute_with_circuit_breaker(cb, fn ->
 external_call()
end)

With timeout
result = Executor.execute_with_timeout(
 fn -> slow_operation() end,
 timeout_ms: 5000
)

 Summary

 Functions

 execute(fun, opts \\ [])

 Executes a function directly.

 execute_async(fun, opts \\ [])

 Executes a function asynchronously.

 execute_batch(functions, opts \\ [])

 Executes multiple functions in parallel.

 execute_with_circuit_breaker(circuit_breaker, fun, opts \\ [])

 Executes a function through a circuit breaker.

 execute_with_protection(circuit_breaker, fun, opts \\ [])

 Executes with retry and circuit breaker.

 execute_with_retry(fun, opts \\ [])

 Executes a function with retry on transient failures.

 execute_with_timeout(fun, opts)

 Executes a function with a timeout.

 Functions

 execute(fun, opts \\ [])

 @spec execute(
 (-> any()),
 keyword()
) :: any()

Executes a function directly.

 execute_async(fun, opts \\ [])

 @spec execute_async(
 (-> any()),
 keyword()
) :: Task.t()

Executes a function asynchronously.
Returns a Task that can be awaited.

 execute_batch(functions, opts \\ [])

 @spec execute_batch(
 [(-> any())],
 keyword()
) :: [any()]

Executes multiple functions in parallel.
Returns results in the same order as the input functions.
Options
	:timeout_ms - Timeout for all operations (default: 30000)
	:max_concurrency - Maximum concurrent operations (default: unlimited)

 execute_with_circuit_breaker(circuit_breaker, fun, opts \\ [])

 @spec execute_with_circuit_breaker(GenServer.server(), (-> any()), keyword()) :: any()

Executes a function through a circuit breaker.

 execute_with_protection(circuit_breaker, fun, opts \\ [])

 @spec execute_with_protection(GenServer.server(), (-> any()), keyword()) :: any()

Executes with retry and circuit breaker.
Combines retry logic with circuit breaker protection.

 execute_with_retry(fun, opts \\ [])

 @spec execute_with_retry(
 (-> any()),
 keyword()
) :: any()

Executes a function with retry on transient failures.
Options
	:max_attempts - Maximum attempts (default: 3)
	:backoff_ms - List of backoff delays (default: [100, 200, 400])
	:retriable_errors - Errors to retry (default: [:timeout, :unavailable])
	:jitter - Add random jitter (default: false)

 execute_with_timeout(fun, opts)

 @spec execute_with_timeout(
 (-> any()),
 keyword()
) :: any()

Executes a function with a timeout.
Returns {:error, :timeout} if the function doesn't complete in time.
Options
	:timeout_ms - Timeout in milliseconds (required)

Snakepit.HealthMonitor

Monitors worker health and crash patterns.
Tracks crashes within a rolling window and determines overall pool health.
Can be used to trigger circuit breaker actions or alerting.
Usage
{:ok, hm} = HealthMonitor.start_link(
 name: :my_pool_health,
 pool: :default,
 max_crashes: 10,
 crash_window_ms: 60_000
)

HealthMonitor.record_crash(hm, "worker_1", %{reason: :segfault})

if HealthMonitor.healthy?(hm) do
 # Pool is healthy
else
 # Too many crashes, consider action
end

 Summary

 Types

 t()

 worker_stats()

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 healthy?(server)

 Returns whether the pool is considered healthy.

 record_crash(server, worker_id, info \\ %{})

 Records a worker crash.

 start_link(opts)

 Starts a health monitor.

 stats(server)

 Returns comprehensive health statistics.

 worker_health(server, worker_id)

 Returns health status for a specific worker.

 Types

 t()

 @type t() :: %{
 pool: atom(),
 workers: %{required(String.t()) => worker_stats()},
 crash_window_ms: pos_integer(),
 max_crashes: pos_integer(),
 total_crashes: non_neg_integer(),
 check_interval_ms: pos_integer(),
 check_timer: reference() | nil
}

 worker_stats()

 @type worker_stats() :: %{
 crash_count: non_neg_integer(),
 last_crash_time: integer() | nil,
 crash_reasons: [term()]
}

 Functions

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 healthy?(server)

 @spec healthy?(GenServer.server()) :: boolean()

Returns whether the pool is considered healthy.

 record_crash(server, worker_id, info \\ %{})

 @spec record_crash(GenServer.server(), String.t(), map()) :: :ok

Records a worker crash.

 start_link(opts)

 @spec start_link(keyword()) :: GenServer.on_start()

Starts a health monitor.
Options
	:name - GenServer name (required)
	:pool - Pool name to monitor (required)
	:check_interval_ms - Health check interval (default: 30000)
	:crash_window_ms - Rolling window for crash counting (default: 60000)
	:max_crashes - Max crashes in window before unhealthy (default: 10)

 stats(server)

 @spec stats(GenServer.server()) :: map()

Returns comprehensive health statistics.

 worker_health(server, worker_id)

 @spec worker_health(GenServer.server(), String.t()) :: map()

Returns health status for a specific worker.

Snakepit.RetryPolicy

Retry policy with exponential backoff.
Configures retry behavior including max attempts, backoff timing,
and which errors are retriable.
Usage
policy = RetryPolicy.new(
 max_attempts: 3,
 backoff_ms: [100, 200, 400],
 jitter: true
)

if RetryPolicy.should_retry?(policy, attempt) do
 delay = RetryPolicy.backoff_for_attempt(policy, attempt)
 Process.sleep(delay)
 # retry...
end

 Summary

 Types

 t()

 Functions

 backoff_for_attempt(policy, attempt)

 Returns the backoff delay for a given attempt.

 new(opts)

 Creates a new retry policy.

 retry_for_error?(arg1, arg2)

 Checks if an error is retriable according to the policy.

 should_retry?(retry_policy, attempt)

 Checks if another retry attempt should be made.

 Types

 t()

 @type t() :: %Snakepit.RetryPolicy{
 backoff_ms: [non_neg_integer()],
 backoff_multiplier: float(),
 base_backoff_ms: non_neg_integer(),
 jitter: boolean(),
 jitter_factor: float(),
 max_attempts: pos_integer(),
 max_backoff_ms: non_neg_integer(),
 retriable_errors: [atom()] | :all
}

 Functions

 backoff_for_attempt(policy, attempt)

 @spec backoff_for_attempt(t(), pos_integer()) :: non_neg_integer()

Returns the backoff delay for a given attempt.

 new(opts)

 @spec new(keyword()) :: t()

Creates a new retry policy.
Options
	:max_attempts - Maximum retry attempts (default: 3)
	:backoff_ms - List of backoff delays in ms (default: [100, 200, 400, 800, 1600])
	:base_backoff_ms - Base for exponential backoff (default: 100)
	:backoff_multiplier - Multiplier for exponential backoff (default: 2.0)
	:max_backoff_ms - Maximum backoff delay (default: 30000)
	:jitter - Add random jitter to delays (default: false)
	:jitter_factor - Jitter range as fraction of delay (default: 0.25)
	:retriable_errors - List of error atoms to retry, or :all (default: common errors)

 retry_for_error?(arg1, arg2)

 @spec retry_for_error?(t(), {:error, atom()} | term()) :: boolean()

Checks if an error is retriable according to the policy.

 should_retry?(retry_policy, attempt)

 @spec should_retry?(t(), non_neg_integer()) :: boolean()

Checks if another retry attempt should be made.

Snakepit.Error.Device

Device error creation helpers.
Provides functions for creating device-related errors with
telemetry emission and helpful suggestions.

 Summary

 Functions

 device_mismatch(expected, got, operation)

 Creates a device mismatch error.

 device_unavailable(device, operation)

 Creates a device unavailable error.

 out_of_memory(device, requested_bytes, available_bytes, operation \\ nil)

 Creates an out of memory error with recovery suggestions.

 Functions

 device_mismatch(expected, got, operation)

 @spec device_mismatch(term(), term(), String.t()) :: Snakepit.Error.DeviceMismatch.t()

Creates a device mismatch error.
Examples
error = Device.device_mismatch(:cpu, {:cuda, 0}, "matmul")

 device_unavailable(device, operation)

 @spec device_unavailable(term(), String.t()) :: Snakepit.Error.DeviceMismatch.t()

Creates a device unavailable error.
Examples
error = Device.device_unavailable({:cuda, 2}, "matrix_multiply")

 out_of_memory(device, requested_bytes, available_bytes, operation \\ nil)

 @spec out_of_memory(term(), non_neg_integer(), non_neg_integer(), String.t() | nil) ::
 Snakepit.Error.OutOfMemory.t()

Creates an out of memory error with recovery suggestions.
Examples
error = Device.out_of_memory({:cuda, 0}, 1024 * 1024 * 1024, 512 * 1024 * 1024)

Snakepit.Error.Parser

Parses Python exception data into structured Elixir errors.
Automatically detects error patterns (OOM, shape mismatch, device errors)
and creates appropriate structured exceptions.

 Summary

 Functions

 extract_shape(str)

 Extracts a shape from a string representation.

 from_grpc_error(arg1)

 Parses a gRPC error response into a structured error.

 parse(data)

 Parses error data into a structured error.

 Functions

 extract_shape(str)

 @spec extract_shape(String.t()) :: [integer()] | nil

Extracts a shape from a string representation.
Examples
iex> Parser.extract_shape("[3, 224, 224]")
[3, 224, 224]

iex> Parser.extract_shape("(10, 20)")
[10, 20]

 from_grpc_error(arg1)

 @spec from_grpc_error(map()) :: {:ok, Exception.t()} | {:error, :invalid_input}

Parses a gRPC error response into a structured error.

 parse(data)

 @spec parse(map() | term()) :: {:ok, Exception.t()} | {:error, :invalid_input}

Parses error data into a structured error.
Accepts a map with "type", "message", and optionally "traceback".
Examples
{:ok, error} = Parser.parse(%{
 "type" => "ValueError",
 "message" => "Invalid input"
})

Snakepit.Error.Shape

Shape error creation helpers.
Provides functions for creating detailed shape mismatch errors
with automatic dimension detection and telemetry emission.

 Summary

 Functions

 broadcast_error(shape1, shape2, operation)

 Creates a broadcast error.

 dimension_mismatch(dimension, expected_dim, got_dim, operation)

 Creates a dimension-specific mismatch error.

 shape_mismatch(expected, got, operation)

 Creates a shape mismatch error.

 Functions

 broadcast_error(shape1, shape2, operation)

 @spec broadcast_error([integer()], [integer()], String.t()) ::
 Snakepit.Error.ShapeMismatch.t()

Creates a broadcast error.
Use when shapes cannot be broadcast together.

 dimension_mismatch(dimension, expected_dim, got_dim, operation)

 @spec dimension_mismatch(non_neg_integer(), integer(), integer(), String.t()) ::
 Snakepit.Error.ShapeMismatch.t()

Creates a dimension-specific mismatch error.
Use when you know exactly which dimension has the mismatch.

 shape_mismatch(expected, got, operation)

 @spec shape_mismatch([integer()], [integer()], String.t()) ::
 Snakepit.Error.ShapeMismatch.t()

Creates a shape mismatch error.
Automatically detects which dimension differs and emits telemetry.
Examples
error = Shape.shape_mismatch([3, 224, 224], [3, 256, 256], "conv2d")

Snakepit.Telemetry

Telemetry event definitions for Snakepit.
This module provides:
	Complete event catalog (Layer 1: Infrastructure, Layer 2: Python, Layer 3: gRPC)
	Event handler management
	Integration with the distributed telemetry system

See Snakepit.Telemetry.Naming for event name validation and atom safety.
See Snakepit.Telemetry.GrpcStream for Python telemetry folding.
Usage
Attach handlers to specific events
:telemetry.attach(
 "my-handler",
 [:snakepit, :python, :call, :stop],
 &MyApp.Telemetry.handle_python_call/4,
 nil
)

Emit a pool event
:telemetry.execute(
 [:snakepit, :pool, :worker, :spawned],
 %{duration: 1000, system_time: System.system_time()},
 %{node: node(), worker_id: "worker_1", pool_name: :default}
)

 Summary

 Functions

 attach_handlers()

 Attaches default handlers for all events.

 attach_heartbeat_handlers()

 Attaches default handlers for heartbeat events.

 attach_program_handlers()

 Attaches default handlers for program events.

 attach_session_handlers()

 Attaches default handlers for session events.

 events()

 Lists all telemetry events used by Snakepit.

 grpc_events()

 gRPC communication events.

 heartbeat_events()

 Heartbeat and monitor telemetry events.

 pool_events()

 Pool and worker lifecycle events.

 program_events()

 Program-related telemetry events (session store).

 python_events()

 Python worker telemetry events (folded back from Python workers).

 runtime_events()

 Runtime enhancement events (zero-copy, crash barrier, exception translation).

 script_events()

 Script shutdown lifecycle telemetry events.

 session_events()

 Session-related telemetry events (session store).

 Functions

 attach_handlers()

Attaches default handlers for all events.

 attach_heartbeat_handlers()

Attaches default handlers for heartbeat events.

 attach_program_handlers()

Attaches default handlers for program events.

 attach_session_handlers()

Attaches default handlers for session events.

 events()

Lists all telemetry events used by Snakepit.

 grpc_events()

gRPC communication events.

 heartbeat_events()

Heartbeat and monitor telemetry events.

 pool_events()

Pool and worker lifecycle events.

 program_events()

Program-related telemetry events (session store).

 python_events()

Python worker telemetry events (folded back from Python workers).

 runtime_events()

Runtime enhancement events (zero-copy, crash barrier, exception translation).

 script_events()

Script shutdown lifecycle telemetry events.

 session_events()

Session-related telemetry events (session store).

Snakepit.Telemetry.Control

Helper functions for creating telemetry control messages.
Control messages flow from Elixir to Python workers over the gRPC
telemetry stream to adjust telemetry behavior at runtime.

 Summary

 Functions

 filter(opts \\ [])

 Creates a control message to filter events.

 sampling(rate, patterns \\ [])

 Creates a control message to adjust sampling rate.

 toggle(enabled)

 Creates a control message to enable or disable telemetry.

 Functions

 filter(opts \\ [])

Creates a control message to filter events.
Allows explicit whitelisting or blacklisting of events.
Examples
iex> Snakepit.Telemetry.Control.filter(allow: ["python.call.start"])
%Snakepit.Bridge.TelemetryControl{
 control: {:filter, %Snakepit.Bridge.TelemetryEventFilter{
 allow: ["python.call.start"],
 deny: []
 }}
}

iex> Snakepit.Telemetry.Control.filter(deny: ["python.memory.sampled"])
%Snakepit.Bridge.TelemetryControl{
 control: {:filter, %Snakepit.Bridge.TelemetryEventFilter{
 allow: [],
 deny: ["python.memory.sampled"]
 }}
}

 sampling(rate, patterns \\ [])

Creates a control message to adjust sampling rate.
The sampling rate must be between 0.0 and 1.0, where:
	0.0 = no events emitted
	1.0 = all events emitted
	0.1 = 10% of events emitted

Event patterns use glob-style matching (e.g., "python.*").
Examples
iex> Snakepit.Telemetry.Control.sampling(0.5)
%Snakepit.Bridge.TelemetryControl{
 control: {:sampling, %Snakepit.Bridge.TelemetrySamplingUpdate{
 sampling_rate: 0.5,
 event_patterns: []
 }}
}

iex> Snakepit.Telemetry.Control.sampling(0.1, ["python.call.*"])
%Snakepit.Bridge.TelemetryControl{
 control: {:sampling, %Snakepit.Bridge.TelemetrySamplingUpdate{
 sampling_rate: 0.1,
 event_patterns: ["python.call.*"]
 }}
}

 toggle(enabled)

Creates a control message to enable or disable telemetry.
Examples
iex> Snakepit.Telemetry.Control.toggle(true)
%Snakepit.Bridge.TelemetryControl{
 control: {:toggle, %Snakepit.Bridge.TelemetryToggle{enabled: true}}
}

Snakepit.Telemetry.Correlation

Utilities for generating and propagating correlation identifiers.

 Summary

 Functions

 ensure(id)

 Ensures a non-empty correlation identifier is present.

 new_id()

 Generates a new correlation identifier.

 Functions

 ensure(id)

 @spec ensure(String.t() | nil) :: String.t()

Ensures a non-empty correlation identifier is present.

 new_id()

 @spec new_id() :: String.t()

Generates a new correlation identifier.

Snakepit.Telemetry.Events

ML-specific telemetry event definitions.
Defines telemetry events for hardware detection, GPU profiling,
circuit breaker operations, and structured exceptions.

 Summary

 Types

 event()

 measurement_type()

 metadata_type()

 schema()

 Functions

 all_ml_events()

 Returns all ML-related telemetry events.

 circuit_breaker_events()

 Returns all circuit breaker telemetry events.

 event_schema(event)

 Returns the schema for a given event.

 exception_events()

 Returns all exception/error telemetry events.

 gpu_profiler_events()

 Returns all GPU profiler telemetry events.

 hardware_events()

 Returns all hardware-related telemetry events.

 retry_events()

 Returns all retry/backoff telemetry events.

 Types

 event()

 @type event() :: [atom()]

 measurement_type()

 @type measurement_type() :: :integer | :float | :monotonic_time | :system_time

 metadata_type()

 @type metadata_type() :: :string | :atom | :integer | :map | :list | :any

 schema()

 @type schema() :: %{
 measurements: %{required(atom()) => measurement_type()},
 metadata: %{required(atom()) => metadata_type()}
}

 Functions

 all_ml_events()

 @spec all_ml_events() :: [event()]

Returns all ML-related telemetry events.
This combines hardware, circuit breaker, exception, GPU profiler,
and retry events.

 circuit_breaker_events()

 @spec circuit_breaker_events() :: [event()]

Returns all circuit breaker telemetry events.

 event_schema(event)

 @spec event_schema(event()) :: schema() | nil

Returns the schema for a given event.
Returns nil for unknown events.

 exception_events()

 @spec exception_events() :: [event()]

Returns all exception/error telemetry events.

 gpu_profiler_events()

 @spec gpu_profiler_events() :: [event()]

Returns all GPU profiler telemetry events.

 hardware_events()

 @spec hardware_events() :: [event()]

Returns all hardware-related telemetry events.

 retry_events()

 @spec retry_events() :: [event()]

Returns all retry/backoff telemetry events.

Snakepit.Telemetry.GPUProfiler

GPU memory and utilization profiler.
Periodically samples GPU metrics and emits telemetry events.
Supports NVIDIA CUDA GPUs via nvidia-smi.

 Summary

 Types

 state()

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 disable(server \\ __MODULE__)

 Disables GPU sampling.

 enable(server \\ __MODULE__)

 Enables GPU sampling.

 get_stats(server \\ __MODULE__)

 Returns profiler statistics.

 sample_now(server \\ __MODULE__)

 Triggers an immediate GPU sample.

 set_interval(server \\ __MODULE__, interval_ms)

 Updates the sampling interval.

 start_link(opts \\ [])

 Starts the GPU profiler.

 Types

 state()

 @type state() :: %{
 interval_ms: pos_integer(),
 enabled: boolean(),
 sample_count: non_neg_integer(),
 last_sample_time: integer() | nil,
 timer_ref: reference() | nil,
 devices: [Snakepit.Hardware.Selector.device()]
}

 Functions

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 disable(server \\ __MODULE__)

 @spec disable(GenServer.server()) :: :ok

Disables GPU sampling.

 enable(server \\ __MODULE__)

 @spec enable(GenServer.server()) :: :ok

Enables GPU sampling.

 get_stats(server \\ __MODULE__)

 @spec get_stats(GenServer.server()) :: map()

Returns profiler statistics.

 sample_now(server \\ __MODULE__)

 @spec sample_now(GenServer.server()) :: :ok | {:error, :no_gpu}

Triggers an immediate GPU sample.

 set_interval(server \\ __MODULE__, interval_ms)

 @spec set_interval(GenServer.server(), pos_integer()) ::
 :ok | {:error, :invalid_interval}

Updates the sampling interval.

 start_link(opts \\ [])

 @spec start_link(keyword()) :: GenServer.on_start()

Starts the GPU profiler.
Options
	:interval_ms - Sampling interval in milliseconds (default: 5000)
	:enabled - Whether to start sampling immediately (default: true)
	:name - GenServer name (default: MODULE)

Snakepit.Telemetry.GrpcStream

Manages gRPC telemetry streams from Python workers.
This GenServer maintains bidirectional telemetry streams with Python workers,
translating Python telemetry events into Elixir :telemetry events.
Features:
	Automatic stream registration when workers connect
	Dynamic sampling rate adjustments
	Event filtering
	Graceful handling of worker disconnections

 Summary

 Types

 worker_ctx()

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 list_streams()

 Gets the current state of all registered streams.

 register_worker(channel, worker_ctx)

 Registers a worker for telemetry streaming.

 start_link(opts)

 Starts the telemetry stream manager.

 toggle(worker_id, enabled)

 Enables or disables telemetry for a specific worker.

 unregister_worker(worker_id)

 Removes a worker from telemetry streaming.

 update_filter(worker_id, opts)

 Updates event filters for a specific worker.

 update_sampling(worker_id, rate, patterns \\ [])

 Updates the sampling rate for a specific worker.

 Types

 worker_ctx()

 @type worker_ctx() :: %{
 worker_id: String.t(),
 pool_name: atom(),
 python_pid: integer() | nil
}

 Functions

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 list_streams()

Gets the current state of all registered streams.

 register_worker(channel, worker_ctx)

Registers a worker for telemetry streaming.
Automatically initiates a telemetry stream with the worker and starts
consuming events.
Examples
iex> channel = connect_to_worker()
iex> Snakepit.Telemetry.GrpcStream.register_worker(channel, %{
...> worker_id: "worker_1",
...> pool_name: :default,
...> python_pid: 12345
...> })
:ok

 start_link(opts)

Starts the telemetry stream manager.

 toggle(worker_id, enabled)

Enables or disables telemetry for a specific worker.

 unregister_worker(worker_id)

Removes a worker from telemetry streaming.
Called when a worker disconnects or terminates.

 update_filter(worker_id, opts)

Updates event filters for a specific worker.

 update_sampling(worker_id, rate, patterns \\ [])

Updates the sampling rate for a specific worker.
Examples
iex> Snakepit.Telemetry.GrpcStream.update_sampling("worker_1", 0.1)
:ok

iex> Snakepit.Telemetry.GrpcStream.update_sampling("worker_1", 0.5, ["python.call.*"])
:ok

Snakepit.Telemetry.Handlers.Logger

Telemetry handler that logs ML-related events.
Provides structured logging for hardware detection, circuit breaker
state changes, GPU profiling, and error events.

 Summary

 Functions

 attach()

 Attaches the logger handler to all ML events.

 detach()

 Detaches the logger handler.

 Functions

 attach()

 @spec attach() :: :ok

Attaches the logger handler to all ML events.

 detach()

 @spec detach() :: :ok

Detaches the logger handler.

Snakepit.Telemetry.Handlers.Metrics

Telemetry metrics definitions for ML-related events.
Provides telemetry_metrics compatible metric definitions for
hardware detection, circuit breaker, GPU profiling, and error events.

 Summary

 Functions

 definitions()

 Returns all ML-related telemetry metrics definitions.

 prometheus_definitions()

 Returns Prometheus-compatible metric definitions.

 Functions

 definitions()

 @spec definitions() :: [Telemetry.Metrics.t()]

Returns all ML-related telemetry metrics definitions.
These can be used with TelemetryMetricsPrometheus or other
telemetry metrics reporters.

 prometheus_definitions()

 @spec prometheus_definitions() :: [Telemetry.Metrics.t()]

Returns Prometheus-compatible metric definitions.
Same as definitions/0 but ensures all metrics have names
compatible with Prometheus naming conventions.

Snakepit.Telemetry.Naming

Event catalog and naming validation for Snakepit telemetry.
This module ensures atom safety by maintaining a curated catalog of all
valid telemetry events and measurement keys. Python-originated events
must pass through this module to prevent arbitrary atom creation.
Python Event Catalog
python_event_catalog/0 lists the event strings emitted by snakepit_bridge
and the measurement keys they are expected to use. When adding a new Python
telemetry event, update that catalog and the allowlist in
snakepit_bridge.telemetry.stream together so both languages agree on the
schema.

 Summary

 Functions

 event(component, resource, action)

 Build an event name from components.

 from_parts(parts)

 Convert Python event parts to a valid Elixir telemetry event name.

 grpc_event(resource, action)

 Build a gRPC event name.

 grpc_events()

 Get all valid gRPC events.

 measurement_key(key)

 Validate a measurement key and convert to atom if it's in the allowlist.

 measurement_keys()

 Get all valid measurement keys.

 pool_event(atom)

 Build a pool event name.

 pool_events()

 Get all valid pool events.

 python_event(action)

 Build a Python event name.

 python_event_catalog()

 Return the catalog describing Python event names, their telemetry atoms, and expected measurements.

 python_events()

 Get all valid Python events.

 session_event(action)

 Build a session event name.

 session_events()

 Get all valid session events.

 Functions

 event(component, resource, action)

Build an event name from components.
Examples
iex> Snakepit.Telemetry.Naming.event(:pool, :worker, :spawned)
[:snakepit, :pool, :worker, :spawned]

 from_parts(parts)

Convert Python event parts to a valid Elixir telemetry event name.
Returns {:ok, event_name} if the parts map to a known event,
{:error, reason} otherwise.
Examples
iex> Snakepit.Telemetry.Naming.from_parts(["python", "call", "start"])
{:ok, [:snakepit, :python, :call, :start]}

iex> Snakepit.Telemetry.Naming.from_parts(["unknown", "event"])
{:error, :unknown_event}

 grpc_event(resource, action)

Build a gRPC event name.

 grpc_events()

Get all valid gRPC events.

 measurement_key(key)

Validate a measurement key and convert to atom if it's in the allowlist.
Examples
iex> Snakepit.Telemetry.Naming.measurement_key("duration")
{:ok, :duration}

iex> Snakepit.Telemetry.Naming.measurement_key("unknown_key")
{:error, :unknown_measurement_key}

 measurement_keys()

Get all valid measurement keys.

 pool_event(atom)

Build a pool event name.

 pool_events()

Get all valid pool events.

 python_event(action)

Build a Python event name.

 python_event_catalog()

Return the catalog describing Python event names, their telemetry atoms, and expected measurements.

 python_events()

Get all valid Python events.

 session_event(action)

Build a session event name.

 session_events()

Get all valid session events.

Snakepit.Telemetry.SafeMetadata

Safe metadata handling for telemetry events.
This module ensures that metadata from Python workers doesn't create
new atoms at runtime, which could exhaust the BEAM atom table.
Only keys from the allowlist are converted to atoms; everything else
remains as strings.

 Summary

 Functions

 allowed_atom_keys()

 Returns the list of allowed atom keys.

 enrich(python_metadata, elixir_context)

 Enriches metadata from Python with Elixir context.

 measurements(measurements)

 Validates and converts measurements map.

 merge(metadata1, metadata2)

 Merges two metadata maps safely.

 sanitize(metadata)

 Sanitizes a metadata map, converting only allowed keys to atoms.

 Functions

 allowed_atom_keys()

Returns the list of allowed atom keys.

 enrich(python_metadata, elixir_context)

Enriches metadata from Python with Elixir context.
Only allowed keys are converted to atoms; unknown keys remain as strings.
Examples
iex> Snakepit.Telemetry.SafeMetadata.enrich(
...> %{"tool" => "predict"},
...> [node: :nonode@nohost, worker_id: "worker_1"]
...>)
{:ok, %{tool: "predict", node: :nonode@nohost, worker_id: "worker_1"}}

 measurements(measurements)

Validates and converts measurements map.
All measurement keys must be from the allowlist (enforced by Naming module).
Examples
iex> Snakepit.Telemetry.SafeMetadata.measurements(%{"duration" => 1000})
{:ok, %{duration: 1000}}

 merge(metadata1, metadata2)

Merges two metadata maps safely.
Examples
iex> Snakepit.Telemetry.SafeMetadata.merge(%{"tool" => "predict"}, %{node: :nonode@nohost})
{:ok, %{"tool" => "predict", node: :nonode@nohost}}

 sanitize(metadata)

Sanitizes a metadata map, converting only allowed keys to atoms.
Examples
iex> Snakepit.Telemetry.SafeMetadata.sanitize(%{"node" => "test@host", "unknown" => "value"})
{:ok, %{node: "test@host", "unknown" => "value"}}

Snakepit.Telemetry.Span

Telemetry span helpers for wrapping operations.
Provides convenient helpers for emitting start/stop/exception
telemetry events around function calls.
Usage
Automatic span with function
result = Snakepit.Telemetry.Span.span(
 [:snakepit, :my_operation],
 %{pool: :default},
 fn -> do_operation() end
)

Manual span management
span_ref = Snakepit.Telemetry.Span.start_span([:snakepit, :operation], %{})
... do work ...
Snakepit.Telemetry.Span.end_span(span_ref)

 Summary

 Types

 event()

 metadata()

 span_ref()

 Functions

 end_span(span_ref)

 Ends a telemetry span.

 end_span(span_ref, additional_metadata)

 Ends a telemetry span with additional metadata.

 end_span_exception(span_ref, kind, reason, stacktrace)

 Ends a span with an exception.

 span(event, metadata, fun)

 Executes a function wrapped in telemetry span events.

 start_span(event, metadata \\ %{})

 Starts a telemetry span.

 Types

 event()

 @type event() :: [atom()]

 metadata()

 @type metadata() :: map()

 span_ref()

 @type span_ref() :: %{event: event(), start_time: integer(), metadata: metadata()}

 Functions

 end_span(span_ref)

 @spec end_span(span_ref()) :: :ok

Ends a telemetry span.
Emits event ++ [:stop] with the duration measurement.
Examples
span_ref = Span.start_span([:myapp, :operation], %{})
... do work ...
Span.end_span(span_ref)

 end_span(span_ref, additional_metadata)

 @spec end_span(span_ref(), metadata()) :: :ok

Ends a telemetry span with additional metadata.
Merges the additional metadata with the original span metadata
before emitting the stop event.
Examples
span_ref = Span.start_span([:myapp, :operation], %{})
result = do_work()
Span.end_span(span_ref, %{result: result, items_processed: 100})

 end_span_exception(span_ref, kind, reason, stacktrace)

 @spec end_span_exception(
 span_ref(),
 :error | :exit | :throw,
 term(),
 Exception.stacktrace()
) :: :ok

Ends a span with an exception.
Use this when you catch an exception but want to emit the
exception telemetry event before re-raising or handling it.
Examples
span_ref = Span.start_span([:myapp, :operation], %{})
try do
 do_risky_work()
rescue
 e ->
 Span.end_span_exception(span_ref, :error, e, __STACKTRACE__)
 handle_error(e)
end

 span(event, metadata, fun)

 @spec span(event(), metadata(), (-> result)) :: result when result: any()

Executes a function wrapped in telemetry span events.
Emits event ++ [:start] before the function runs,
and event ++ [:stop] after it completes successfully.
If the function raises, throws, or exits, emits event ++ [:exception].
Examples
Span.span([:myapp, :operation], %{user_id: 123}, fn ->
 perform_operation()
end)

 start_span(event, metadata \\ %{})

 @spec start_span(event(), metadata()) :: span_ref()

Starts a telemetry span.
Returns a span reference that should be passed to end_span/1 or end_span/2.
Emits event ++ [:start] immediately.
Examples
span_ref = Span.start_span([:myapp, :operation], %{user_id: 123})
... do work ...
Span.end_span(span_ref)

Snakepit.TelemetryMetrics

Telemetry metric definitions and reporters for Snakepit.
Metrics focus on heartbeat and worker lifecycle events. Reporters are opt-in
via configuration under :snakepit, :telemetry_metrics.

 Summary

 Types

 reporter_child_spec()

 Functions

 metrics()

 Returns the metric definitions for Snakepit telemetry.

 reporter_children()

 Returns reporter child specs enabled via configuration.

 Types

 reporter_child_spec()

 @type reporter_child_spec() :: Supervisor.child_spec()

 Functions

 metrics()

 @spec metrics() :: [Telemetry.Metrics.t()]

Returns the metric definitions for Snakepit telemetry.

 reporter_children()

 @spec reporter_children() :: [reporter_child_spec()]

Returns reporter child specs enabled via configuration.

Snakepit.Serialization

Utilities for working with Snakepit's serialization layer.
When Python returns data to Elixir, non-JSON-serializable objects (like
datetime.datetime, custom classes, or library-specific objects) are
handled gracefully by Snakepit's serialization layer:
	Objects with conversion methods (model_dump, to_dict, _asdict,
tolist, isoformat) are automatically converted.

	Objects that cannot be converted are replaced with an "unserializable marker"
containing type information.

This module provides utilities for detecting and inspecting these markers.
Marker Format
Unserializable markers are maps with the following structure:
%{
 "__ffi_unserializable__" => true,
 "__type__" => "module.ClassName" # Full Python type path
}
By default, the marker only contains type information (safe for production).
The __repr__ field is only included when explicitly enabled via environment
variables.
Environment Variables
The following environment variables control marker detail level. These are
set on the Python worker processes:
	SNAKEPIT_UNSERIALIZABLE_DETAIL - Controls what information is included:
	none (default) - Only type, no repr (safe for production)
	type - Placeholder string with type name
	repr_truncated - Include truncated repr (may leak secrets)
	repr_redacted_truncated - Truncated repr with common secrets redacted

	SNAKEPIT_UNSERIALIZABLE_REPR_MAXLEN - Maximum repr length (default: 500, max: 2000)

Configuring Worker Environment
Python workers inherit environment from the BEAM VM. Set these before
starting Snakepit:
In your application startup or config/runtime.exs
System.put_env("SNAKEPIT_UNSERIALIZABLE_DETAIL", "repr_redacted_truncated")
System.put_env("SNAKEPIT_UNSERIALIZABLE_REPR_MAXLEN", "200")
Or via shell before starting the application:
SNAKEPIT_UNSERIALIZABLE_DETAIL=repr_redacted_truncated mix run ...
For per-pool configuration, use the :env option in pool config (if supported
by your adapter).
Operational Guidance
	Production: Use default (none) or omit the env vars entirely
	Development/Debugging: Use repr_redacted_truncated with small maxlen
	Never in production: repr_truncated without redaction

Example Usage
Check if a value is an unserializable marker
if Snakepit.Serialization.unserializable?(value) do
 {:ok, info} = Snakepit.Serialization.unserializable_info(value)
 IO.puts("Cannot serialize: #{info.type}")
end
Security Note
When repr is enabled, the __repr__ field may contain sensitive information
(API keys, auth tokens, etc.) that was present in the Python object's string
representation. The repr_redacted_truncated mode applies best-effort
redaction of common secret patterns but is NOT a security boundary.

 Summary

 Functions

 unserializable?(arg1)

 Checks if a value is an unserializable marker.

 unserializable_info(marker)

 Extracts information from an unserializable marker.

 Functions

 unserializable?(arg1)

 @spec unserializable?(term()) :: boolean()

Checks if a value is an unserializable marker.
Returns true if the value is a map with "__ffi_unserializable__" => true,
indicating it represents a Python object that could not be serialized to JSON.
Examples
iex> Snakepit.Serialization.unserializable?(%{"__ffi_unserializable__" => true})
true

iex> Snakepit.Serialization.unserializable?(%{"key" => "value"})
false

iex> Snakepit.Serialization.unserializable?(nil)
false

 unserializable_info(marker)

 @spec unserializable_info(term()) ::
 {:ok, %{type: String.t() | nil, repr: String.t() | nil}} | :error

Extracts information from an unserializable marker.
Returns {:ok, info} if the value is a valid unserializable marker,
where info is a map with :type and :repr keys. Returns :error
for non-marker values.
Examples
iex> marker = %{
...> "__ffi_unserializable__" => true,
...> "__type__" => "datetime.datetime",
...> "__repr__" => "datetime.datetime(2024, 1, 11, 10, 30)"
...> }
iex> {:ok, info} = Snakepit.Serialization.unserializable_info(marker)
iex> info.type
"datetime.datetime"

iex> Snakepit.Serialization.unserializable_info(%{"key" => "value"})
:error
Return Value
On success, returns {:ok, %{type: String.t() | nil, repr: String.t() | nil}}.
The :type and :repr fields may be nil if not present in the marker.

Snakepit.Config

Configuration management for Snakepit pools.
Handles validation and normalization of pool configurations,
supporting both legacy single-pool and new multi-pool configurations.
Backward Compatibility
Existing v0.5.x configurations continue to work:
Legacy config (v0.5.x) - still works!
config :snakepit,
 pooling_enabled: true,
 adapter_module: Snakepit.Adapters.GRPCPython,
 pool_size: 100
New Multi-Pool Configuration (v0.6.0+)
config :snakepit,
 pools: [
 %{
 name: :default,
 worker_profile: :process,
 pool_size: 100,
 adapter_module: Snakepit.Adapters.GRPCPython
 },
 %{
 name: :hpc,
 worker_profile: :thread,
 pool_size: 4,
 threads_per_worker: 16
 }
]
gRPC Listener Configuration
Snakepit exposes a gRPC server for Python workers. Configure it with
:grpc_listener (preferred) or legacy :grpc_port / :grpc_host.
config :snakepit,
 grpc_listener: [mode: :internal]

config :snakepit,
 grpc_listener: [mode: :external, host: "localhost", port: 50_051]

config :snakepit,
 grpc_listener: [mode: :external_pool, host: "localhost", base_port: 50_051, pool_size: 8]
Listener tuning knobs (all optional):
	:grpc_listener_ready_timeout_ms
	:grpc_listener_port_check_interval_ms
	:grpc_listener_reuse_attempts
	:grpc_listener_reuse_wait_timeout_ms
	:grpc_listener_reuse_retry_delay_ms

Instance Isolation
Snakepit can scope runtime resources to avoid cross-instance collisions.
Use :instance_name (or SNAKEPIT_INSTANCE_NAME) for a human-readable name,
and :instance_token (or SNAKEPIT_INSTANCE_TOKEN) for strong isolation
across concurrent runs. Runtime state is persisted under :data_dir.
config :snakepit,
 instance_name: "my_app",
 instance_token: "run_a",
 data_dir: "/var/lib/snakepit"
Configuration Schema
Per-pool configuration options:
Required
	name - Pool identifier (atom)
	adapter_module - Adapter module

Profile Selection
	worker_profile - :process or :thread (default: :process)

Common Options
	pool_size - Number of workers
	adapter_args - CLI arguments for adapter
	adapter_env - Environment variables
	capacity_strategy - :pool, :profile, or :hybrid (default: :pool)
	affinity - :hint, :strict_queue, or :strict_fail_fast (default: :hint)

Process Profile Specific
	startup_batch_size - Workers per batch (default: 8)
	startup_batch_delay_ms - Delay between batches (default: 750)

Thread Profile Specific
	threads_per_worker - Thread pool size per worker
	thread_safety_checks - Enable runtime checks

Lifecycle Management
	worker_ttl - Time-to-live (:infinity or {value, :seconds/:minutes/:hours})
	worker_max_requests - Max requests before recycling (:infinity or integer)

Heartbeat options are mirrored in snakepit_bridge.heartbeat.HeartbeatConfig,
so any new keys added here must be added to the Python struct and documented
in the heartbeat guides to keep both sides in sync.
Normalized Shape
Snakepit.Config.normalize_pool_config/1 converts user input into a canonical
map that downstream components rely on. The resulting structure (documented
under normalized_pool_config/0) always includes heartbeat defaults,
adapter metadata, and profile-specific knobs so pool, worker supervisor, and
diagnostics modules never have to pattern-match on partial user input.

 Summary

 Types

 grpc_listener_config()

 grpc_listener_mode()

 normalized_pool_config()

 pool_config()

 Normalized pool configuration returned by normalize_pool_config/1.

 validation_result()

 Functions

 data_dir()

 Resolve the data directory used for runtime persistence.

 get_pool_config(pool_name)

 Get configuration for a specific named pool.

 get_pool_configs()

 Get and validate pool configurations from application environment.

 get_profile_module(config)

 Get the profile module for a pool configuration.

 grpc_listener_config()

 Load and validate the gRPC listener configuration.

 grpc_listener_config!()

 Load the gRPC listener configuration or raise on error.

 grpc_listener_port_check_interval_ms()

 Interval (ms) between port readiness checks when reusing an existing gRPC listener.

 grpc_listener_ready_timeout_ms()

 Timeout for waiting on the gRPC listener to publish its assigned port.

 grpc_listener_reuse_attempts()

 Number of attempts to reuse or rebind a gRPC listener before failing.

 grpc_listener_reuse_retry_delay_ms()

 Delay (ms) between gRPC listener reuse retries.

 grpc_listener_reuse_wait_timeout_ms()

 Max wait (ms) for an already-started gRPC listener to publish its port before retrying.

 heartbeat_defaults()

 Returns the normalized default heartbeat configuration, merged with application env overrides.

 instance_name()

 Resolve the instance name used for runtime isolation.

 instance_name_identifier()

 Resolve a CLI-safe instance name identifier for process scoping.

 instance_token()

 Resolve the instance token used for runtime isolation.

 instance_token_identifier()

 Resolve a CLI-safe instance token identifier for process scoping.

 normalize_pool_config(config)

 Normalize a pool configuration by filling in defaults.

 thread_profile?(config)

 Check if a pool configuration is using the thread profile.

 validate_pool_config(config)

 Validate a single pool configuration.

 Types

 grpc_listener_config()

 @type grpc_listener_config() :: %{
 mode: grpc_listener_mode(),
 host: String.t(),
 bind_host: String.t(),
 port: non_neg_integer() | nil,
 base_port: pos_integer() | nil,
 pool_size: pos_integer() | nil
}

 grpc_listener_mode()

 @type grpc_listener_mode() :: :internal | :external | :external_pool

 normalized_pool_config()

 @type normalized_pool_config() :: map()

 pool_config()

 @type pool_config() :: map()

Normalized pool configuration returned by normalize_pool_config/1.
%{
 name: atom(),
 worker_profile: :process | :thread,
 pool_size: pos_integer(),
 adapter_module: module(),
 adapter_args: list(),
 adapter_env: list(),
 capacity_strategy: :pool | :profile | :hybrid,
 affinity: :hint | :strict_queue | :strict_fail_fast,
 pool_identifier: atom() | nil,
 worker_ttl: :infinity | {integer(), :seconds | :minutes | :hours},
 worker_max_requests: :infinity | pos_integer(),
 heartbeat: map(),
 # Profile-specific fields:
 startup_batch_size: pos_integer(),
 startup_batch_delay_ms: non_neg_integer(),
 threads_per_worker: pos_integer(),
 thread_safety_checks: boolean()
}

 validation_result()

 @type validation_result() :: {:ok, [pool_config()]} | {:error, term()}

 Functions

 data_dir()

 @spec data_dir() :: String.t()

Resolve the data directory used for runtime persistence.

 get_pool_config(pool_name)

 @spec get_pool_config(atom()) :: {:ok, pool_config()} | {:error, term()}

Get configuration for a specific named pool.
Returns {:ok, config} or {:error, reason}.
The error can be :pool_not_found if the pool doesn't exist, or any error
from get_pool_configs/0 if there's a configuration issue.
Examples
iex> Snakepit.Config.get_pool_config(:default)
{:ok, %{name: :default, worker_profile: :process, ...}}

 get_pool_configs()

 @spec get_pool_configs() :: validation_result()

Get and validate pool configurations from application environment.
Supports both legacy single-pool and new multi-pool configurations.
Returns {:ok, [pool_configs]} or {:error, reason}.
Examples
With legacy config
{:ok, [%{name: :default, worker_profile: :process, ...}]}

With multi-pool config
{:ok, [%{name: :default, ...}, %{name: :hpc, ...}]}

 get_profile_module(config)

 @spec get_profile_module(pool_config()) :: module()

Get the profile module for a pool configuration.
Returns the module that implements the WorkerProfile behaviour.
Examples
iex> Snakepit.Config.get_profile_module(%{worker_profile: :process})
Snakepit.WorkerProfile.Process

iex> Snakepit.Config.get_profile_module(%{worker_profile: :thread})
Snakepit.WorkerProfile.Thread

 grpc_listener_config()

 @spec grpc_listener_config() :: {:ok, grpc_listener_config()} | {:error, term()}

Load and validate the gRPC listener configuration.
Returns {:ok, config} or {:error, reason}.

 grpc_listener_config!()

 @spec grpc_listener_config!() :: grpc_listener_config()

Load the gRPC listener configuration or raise on error.

 grpc_listener_port_check_interval_ms()

 @spec grpc_listener_port_check_interval_ms() :: pos_integer()

Interval (ms) between port readiness checks when reusing an existing gRPC listener.

 grpc_listener_ready_timeout_ms()

 @spec grpc_listener_ready_timeout_ms() :: pos_integer()

Timeout for waiting on the gRPC listener to publish its assigned port.

 grpc_listener_reuse_attempts()

 @spec grpc_listener_reuse_attempts() :: pos_integer()

Number of attempts to reuse or rebind a gRPC listener before failing.

 grpc_listener_reuse_retry_delay_ms()

 @spec grpc_listener_reuse_retry_delay_ms() :: pos_integer()

Delay (ms) between gRPC listener reuse retries.

 grpc_listener_reuse_wait_timeout_ms()

 @spec grpc_listener_reuse_wait_timeout_ms() :: pos_integer()

Max wait (ms) for an already-started gRPC listener to publish its port before retrying.

 heartbeat_defaults()

 @spec heartbeat_defaults() :: map()

Returns the normalized default heartbeat configuration, merged with application env overrides.
This shape is shared with snakepit_bridge.heartbeat.HeartbeatConfig. When adding new keys,
update both modules to keep the cross-language schema aligned.

 instance_name()

 @spec instance_name() :: String.t() | nil

Resolve the instance name used for runtime isolation.

 instance_name_identifier()

 @spec instance_name_identifier() :: String.t() | nil

Resolve a CLI-safe instance name identifier for process scoping.

 instance_token()

 @spec instance_token() :: String.t() | nil

Resolve the instance token used for runtime isolation.

 instance_token_identifier()

 @spec instance_token_identifier() :: String.t() | nil

Resolve a CLI-safe instance token identifier for process scoping.

 normalize_pool_config(config)

 @spec normalize_pool_config(map()) :: pool_config()

Normalize a pool configuration by filling in defaults.
Examples
iex> Snakepit.Config.normalize_pool_config(%{name: :test})
%{
 name: :test,
 worker_profile: :process,
 pool_size: 16,
 # ... other defaults
}

 thread_profile?(config)

 @spec thread_profile?(pool_config()) :: boolean()

Check if a pool configuration is using the thread profile.
Examples
iex> Snakepit.Config.thread_profile?(%{worker_profile: :thread})
true

iex> Snakepit.Config.thread_profile?(%{worker_profile: :process})
false

 validate_pool_config(config)

 @spec validate_pool_config(map()) :: {:ok, pool_config()} | {:error, term()}

Validate a single pool configuration.
Returns {:ok, normalized_config} or {:error, reason}.

Snakepit.Error

Structured error type for Snakepit operations.
Provides detailed context for debugging cross-language and distributed system issues.
Python exceptions translated from the gRPC bridge are returned as
Snakepit.Error.* exception structs (see Snakepit.Error.PythonException).
Snakepit.Error remains the structured error type for Snakepit runtime failures.
Error Categories
	:worker - Worker process errors (not found, crashed, etc.)
	:timeout - Operation timed out
	:python_error - Exception from Python code
	:grpc_error - gRPC communication error
	:validation - Input validation error
	:pool - Pool management error

Examples
Create a worker error
error = Snakepit.Error.worker_error("Worker not found", %{worker_id: "w1"})

Create a Python exception error
error = Snakepit.Error.python_error(
 "ValueError",
 "Invalid input",
 traceback_string,
 %{function: "process_data"}
)

Pattern match in your code
case Snakepit.execute("command", %{}) do
 {:ok, result} -> result
 {:error, %Snakepit.Error{category: :timeout}} -> retry()
 {:error, %Snakepit.Error{category: :python_error} = error} ->
 Snakepit.Logger.error("Python error: #{error.message}")
 Snakepit.Logger.debug("Traceback: #{error.python_traceback}")
 {:error, error} -> {:error, error}
end

 Summary

 Types

 category()

 t()

 Functions

 grpc_error(status, message, details \\ %{})

 Creates a gRPC communication error.

 pool_error(message, details \\ %{})

 Creates a pool management error.

 python_error(exception_type, message, traceback, details \\ %{})

 Creates a Python exception error with traceback.

 timeout_error(message, details \\ %{})

 Creates a timeout error.

 validation_error(message, details \\ %{})

 Creates a validation error.

 worker_error(message, details \\ %{})

 Creates a worker-related error.

 Types

 category()

 @type category() ::
 :worker | :timeout | :python_error | :grpc_error | :validation | :pool

 t()

 @type t() :: %Snakepit.Error{
 category: category(),
 details: map(),
 grpc_status: atom() | nil,
 message: String.t(),
 python_traceback: String.t() | nil
}

 Functions

 grpc_error(status, message, details \\ %{})

 @spec grpc_error(atom(), String.t(), map()) :: t()

Creates a gRPC communication error.
Examples
iex> Snakepit.Error.grpc_error(:unavailable, "Service unavailable")
%Snakepit.Error{
 category: :grpc_error,
 message: "Service unavailable",
 grpc_status: :unavailable
}

 pool_error(message, details \\ %{})

 @spec pool_error(String.t(), map()) :: t()

Creates a pool management error.
Examples
iex> Snakepit.Error.pool_error("Pool not found", %{pool_name: :test})
%Snakepit.Error{category: :pool, message: "Pool not found", details: %{pool_name: :test}}

 python_error(exception_type, message, traceback, details \\ %{})

 @spec python_error(String.t(), String.t(), String.t(), map()) :: t()

Creates a Python exception error with traceback.
Examples
iex> Snakepit.Error.python_error("ValueError", "Invalid input", "Traceback...")
%Snakepit.Error{
 category: :python_error,
 message: "ValueError: Invalid input",
 python_traceback: "Traceback...",
 details: %{exception_type: "ValueError"}
}

 timeout_error(message, details \\ %{})

 @spec timeout_error(String.t(), map()) :: t()

Creates a timeout error.
Examples
iex> Snakepit.Error.timeout_error("Request timed out", %{timeout_ms: 5000})
%Snakepit.Error{category: :timeout, message: "Request timed out", details: %{timeout_ms: 5000}}

 validation_error(message, details \\ %{})

 @spec validation_error(String.t(), map()) :: t()

Creates a validation error.
Examples
iex> Snakepit.Error.validation_error("Invalid field", %{field: "user_id"})
%Snakepit.Error{category: :validation, message: "Invalid field", details: %{field: "user_id"}}

 worker_error(message, details \\ %{})

 @spec worker_error(String.t(), map()) :: t()

Creates a worker-related error.
Examples
iex> Snakepit.Error.worker_error("Worker crashed")
%Snakepit.Error{category: :worker, message: "Worker crashed", details: %{}}

iex> Snakepit.Error.worker_error("Worker not found", %{worker_id: "w1"})
%Snakepit.Error{category: :worker, message: "Worker not found", details: %{worker_id: "w1"}}

Snakepit.RunID

Generates short, unique BEAM run identifiers.
Format: 7 characters, base36-encoded
Components: timestamp (5 chars) + counter (2 chars)
Example: "k3x9a2p"
These IDs are embedded in Python process command lines for reliable
identification and cleanup across BEAM restarts.

 Summary

 Functions

 extract_from_command(command)

 Extracts run ID from a process command line.
Supports both --snakepit-run-id and --run-id formats.

 generate()

 Generates a unique 7-character run ID.

 Functions

 extract_from_command(command)

Extracts run ID from a process command line.
Supports both --snakepit-run-id and --run-id formats.
Examples
iex> cmd = "python3 grpc_server.py --snakepit-run-id k3x9a2p --port 50051"
iex> Snakepit.RunID.extract_from_command(cmd)
{:ok, "k3x9a2p"}

iex> Snakepit.RunID.extract_from_command("no run id here")
{:error, :not_found}

 generate()

Generates a unique 7-character run ID.
Examples
iex> run_id = Snakepit.RunID.generate()
iex> String.length(run_id)
7

Snakepit.Error.AttributeError exception

Snakepit.Error.DeviceMismatch exception

Device mismatch error for tensor operations.
Raised when tensors on different devices are used in an operation
that requires them to be on the same device.

 Summary

 Types

 device()

 t()

 Types

 device()

 @type device() ::
 :cpu | :mps | {:cuda, non_neg_integer()} | {:rocm, non_neg_integer()}

 t()

 @type t() :: %Snakepit.Error.DeviceMismatch{
 __exception__: true,
 expected: device() | nil,
 got: device() | nil,
 message: String.t(),
 operation: String.t() | nil
}

Snakepit.Error.FileNotFoundError exception

Snakepit.Error.ImportError exception

Snakepit.Error.IndexError exception

Snakepit.Error.KeyError exception

Snakepit.Error.NotImplementedError exception

Snakepit.Error.OutOfMemory exception

Out of memory error for GPU operations.
Contains information about the requested allocation, available memory,
and suggestions for recovery.

 Summary

 Types

 device()

 t()

 Types

 device()

 @type device() ::
 :cpu | :mps | {:cuda, non_neg_integer()} | {:rocm, non_neg_integer()}

 t()

 @type t() :: %Snakepit.Error.OutOfMemory{
 __exception__: true,
 available_bytes: non_neg_integer(),
 device: device(),
 message: String.t(),
 operation: String.t() | nil,
 requested_bytes: non_neg_integer(),
 suggestions: [String.t()]
}

Snakepit.Error.PermissionError exception

Snakepit.Error.PythonException exception

Snakepit.Error.RuntimeError exception

Snakepit.Error.ShapeMismatch exception

Shape mismatch error for tensor operations.
Contains detailed information about the shape mismatch including
which dimension differs and what the expected vs actual values were.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Snakepit.Error.ShapeMismatch{
 __exception__: true,
 dimension: non_neg_integer() | nil,
 expected: [integer()] | nil,
 expected_dim: integer() | nil,
 got: [integer()] | nil,
 got_dim: integer() | nil,
 message: String.t(),
 operation: String.t() | nil
}

Snakepit.Error.TypeError exception

Snakepit.Error.ValueError exception

Snakepit.Error.ZeroDivisionError exception

Snakepit.PackageError exception

Structured error for Python package installation and inspection.

 Summary

 Types

 t()

 type()

 Types

 t()

 @type t() :: %Snakepit.PackageError{
 __exception__: true,
 message: String.t(),
 output: String.t() | nil,
 packages: [String.t()],
 suggestion: String.t() | nil,
 type: type()
}

 type()

 @type type() ::
 :not_installed | :install_failed | :version_mismatch | :invalid_requirement

mix snakepit.doctor

Diagnose the local Python and gRPC tooling required by Snakepit.

mix snakepit.gen.adapter

Generate a Python adapter skeleton under priv/python.

mix snakepit.python_test

Bootstraps the Snakepit Python environment and runs the Python test suite.
Usage:
mix snakepit.python_test
mix snakepit.python_test -- --maxfail=1
Options:
	--no-bootstrap - Skip mix snakepit.setup

mix snakepit.setup

Bootstrap the Snakepit development environment.
This task mirrors make bootstrap and prepares both the Elixir and Python
tooling so tests can run without manual steps.

mix snakepit.status

Report the current status of Snakepit pools and worker queues.

 OEBPS/dist/epub-7LKEGYS5.js
(() => {
 // js/helpers.js
 var s = document.querySelector.bind(document), o = document.querySelectorAll.bind(document);
 function r(e) {
 document.readyState !== "loading" ? e() : document.addEventListener("DOMContentLoaded", e);
 }

 // js/makeup.js
 var l = "hll";
 window.addEventListener("exdoc:loaded", t);
 function t() {
 o("[data-group-id]").forEach((e) => {
 e.addEventListener("mouseenter", i), e.addEventListener("mouseleave", i);
 });
 }
 function i(e) {
 let n = e.currentTarget, a = e.type === "mouseenter", c = n.getAttribute("data-group-id");
 n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach((u) => {
 u.classList.toggle(l, a);
 });
 }

 // js/entry/epub.js
 r(() => {
 t();
 });
})();

