

 Snakepit

 v0.9.1

 [image: Logo]

 Table of contents

 	Introduction

 	Snakepit

 	Getting Started

 	Configuration

 	Configuration

 	Worker Profiles

 	Timeout Configuration

 	Session Scoping

 	Features

 	Hardware Detection

 	Fault Tolerance

 	Streaming

 	Development

 	Python Adapters

 	Observability

 	Python Threading Guide

 	Operations

 	Production

 	Release Notes

 	Changelog

 	License

 	LICENSE

 	
 Modules

 	Snakepit.Application

 	Snakepit.Bootstrap

 	Snakepit.Bootstrap.Runner

 	Snakepit.Bridge.InternalToolSpec

 	Snakepit.Compatibility

 	Snakepit.CrashBarrier

 	Snakepit.Defaults

 	Snakepit.EnvDoctor

 	Snakepit.GRPC.ClientImpl

 	Snakepit.HeartbeatMonitor

 	Snakepit.Logger

 	Snakepit.PythonPackages

 	Snakepit.PythonRuntime

 	Snakepit.PythonThreadLimits

 	Snakepit.PythonVersion

 	Snakepit.RuntimeCleanup

 	Snakepit.Telemetry.OpenTelemetry

 	Snakepit.Worker.LifecycleConfig

 	Snakepit.Worker.LifecycleManager

 	Snakepit.Worker.TaintRegistry

 	Snakepit.WorkerProfile

 	Snakepit.WorkerProfile.Process

 	Snakepit.WorkerProfile.Thread

 	Snakepit.ZeroCopy

 	Snakepit.ZeroCopyRef

 	Core API

 	Snakepit

 	Snakepit.Adapter

 	Pool Management

 	Snakepit.Pool

 	Snakepit.Pool.Worker.Starter

 	Snakepit.Pool.WorkerSupervisor

 	Workers

 	Snakepit.GRPCWorker

 	Session & State

 	Snakepit.Bridge.Session

 	Snakepit.Bridge.SessionStore

 	Adapters

 	Snakepit.Adapters.GRPCPython

 	Process Management

 	Snakepit.Pool.ApplicationCleanup

 	Snakepit.Pool.ProcessRegistry

 	Snakepit.ProcessKiller

 	Registry

 	Snakepit.Pool.Registry

 	Snakepit.Pool.Worker.StarterRegistry

 	gRPC & Bridge

 	Snakepit.Bridge.ToolRegistry

 	Snakepit.GRPC.BridgeServer

 	Snakepit.GRPC.Client

 	Snakepit.GRPC.Endpoint

 	Hardware

 	Snakepit.Hardware

 	Snakepit.Hardware.CPUDetector

 	Snakepit.Hardware.CUDADetector

 	Snakepit.Hardware.Detector

 	Snakepit.Hardware.MPSDetector

 	Snakepit.Hardware.ROCmDetector

 	Snakepit.Hardware.Selector

 	Reliability

 	Snakepit.CircuitBreaker

 	Snakepit.Executor

 	Snakepit.HealthMonitor

 	Snakepit.RetryPolicy

 	ML Errors

 	Snakepit.Error.Device

 	Snakepit.Error.Parser

 	Snakepit.Error.Shape

 	Telemetry

 	Snakepit.Telemetry

 	Snakepit.Telemetry.Control

 	Snakepit.Telemetry.Correlation

 	Snakepit.Telemetry.Events

 	Snakepit.Telemetry.GPUProfiler

 	Snakepit.Telemetry.GrpcStream

 	Snakepit.Telemetry.Handlers.Logger

 	Snakepit.Telemetry.Handlers.Metrics

 	Snakepit.Telemetry.Naming

 	Snakepit.Telemetry.SafeMetadata

 	Snakepit.Telemetry.Span

 	Snakepit.TelemetryMetrics

 	Utilities

 	Snakepit.Config

 	Snakepit.Error

 	Snakepit.RunID

 	Exceptions

 	Snakepit.Error.AttributeError

 	Snakepit.Error.DeviceMismatch

 	Snakepit.Error.FileNotFoundError

 	Snakepit.Error.ImportError

 	Snakepit.Error.IndexError

 	Snakepit.Error.KeyError

 	Snakepit.Error.NotImplementedError

 	Snakepit.Error.OutOfMemory

 	Snakepit.Error.PermissionError

 	Snakepit.Error.PythonException

 	Snakepit.Error.RuntimeError

 	Snakepit.Error.ShapeMismatch

 	Snakepit.Error.TypeError

 	Snakepit.Error.ValueError

 	Snakepit.Error.ZeroDivisionError

 	Snakepit.PackageError

 	
 Mix Tasks

 	mix snakepit.doctor

 	mix snakepit.gen.adapter

 	mix snakepit.python_test

 	mix snakepit.setup

 	mix snakepit.status

 Snakepit

 [image: Snakepit Logo]

 Getting Started - Snakepit v0.9.1

 Getting Started with Snakepit

This guide walks you through installing Snakepit and running your first Python command from Elixir. By the end, you will have a working pool of Python workers executing commands via gRPC.

Table of Contents
	Prerequisites
	Installation
	Quick Start
	Creating a Python Adapter
	Running Your First Command
	Next Steps

Prerequisites
Elixir and Erlang
Snakepit requires Elixir 1.18+ and Erlang/OTP 27+:
elixir --version
Elixir 1.18.4 (compiled with Erlang/OTP 27)

If you need to install or upgrade, see elixir-lang.org/install or use a version manager like asdf.
Python
Python 3.9 or later is required. Python 3.13+ is recommended for the thread worker profile:
python3 --version
Python 3.12.4

Python Packages
The Python bridge requires gRPC and related packages. These are installed automatically by mix snakepit.setup, but for reference:
	Package	Minimum Version	Purpose
	grpcio	1.60.0	gRPC runtime
	grpcio-tools	1.60.0	Protocol buffer compiler
	protobuf	4.25.0	Protocol buffer runtime
	numpy	1.21.0	Array operations
	psutil	5.9.0	Process monitoring

Installation
Step 1: Add Snakepit to Your Project
Add Snakepit as a dependency in your mix.exs:
mix.exs
def deps do
 [
 {:snakepit, "~> 0.9.1"}
]
end
Then fetch and compile:
mix deps.get
mix compile

Step 2: Set Up the Python Environment
Snakepit provides Mix tasks to bootstrap the Python environment:
Create virtual environments and install dependencies
mix snakepit.setup

Verify everything is configured correctly
mix snakepit.doctor

The setup task creates .venv (Python 3.12) and optionally .venv-py313 (Python 3.13 with free-threading). The doctor task checks:
	Python executable availability
	gRPC module imports
	Adapter health checks
	Port availability for the Elixir gRPC server

Step 3: Configure Snakepit
Add basic configuration to config/config.exs:
config/config.exs
config :snakepit,
 pooling_enabled: true,
 adapter_module: Snakepit.Adapters.GRPCPython,
 pool_size: 4
For production, increase pool_size based on your workload (typically System.schedulers_online() * 2).

Quick Start
Here is the minimal code to execute a Python command from Elixir:
Ensure Snakepit is started
{:ok, _} = Application.ensure_all_started(:snakepit)

Wait for the pool to initialize
:ok = Snakepit.Pool.await_ready(Snakepit.Pool, 30_000)

Execute a command on any available worker
{:ok, result} = Snakepit.execute("ping", %{message: "hello"})
IO.inspect(result)
=> %{"status" => "ok", "message" => "pong", "timestamp" => 1704067200.123}
The execute/3 function sends the command to a Python worker, which processes it and returns the result.
Understanding the Flow
	Pool Initialization: Snakepit starts Python processes (workers) based on pool_size
	Worker Ready: Each worker connects via gRPC and reports readiness
	Execute Command: Your command is routed to an available worker
	Process and Return: The Python adapter processes the command and returns results

Creating a Python Adapter
Adapters define what commands your Python workers can handle. Here is a simple adapter:
my_adapter.py
from snakepit_bridge.base_adapter import BaseAdapter, tool

class MyAdapter(BaseAdapter):
 """A simple adapter with basic tools."""

 def __init__(self):
 super().__init__()

 @tool(description="Echo a message back")
 def echo(self, message: str) -> dict:
 """Return the message with a timestamp."""
 import time
 return {
 "message": message,
 "timestamp": time.time(),
 "success": True
 }

 @tool(description="Add two numbers")
 def add(self, a: float, b: float) -> dict:
 """Add two numbers and return the result."""
 return {
 "result": a + b,
 "operation": "addition",
 "success": True
 }

 @tool(description="Process a list of items")
 def process_list(self, items: list, operation: str = "count") -> dict:
 """Process a list with the specified operation."""
 operations = {
 "count": len,
 "sum": sum,
 "max": max,
 "min": min
 }

 if operation not in operations:
 return {
 "error": f"Unknown operation: {operation}",
 "available": list(operations.keys()),
 "success": False
 }

 return {
 "result": operations[operation](items),
 "operation": operation,
 "success": True
 }
Key Concepts
	BaseAdapter: Inherit from this class for tool discovery and registration
	@tool decorator: Marks methods as callable tools with metadata
	Type hints: Parameters are automatically documented in tool specifications
	Return dictionaries: Results are serialized to JSON and returned to Elixir

Registering Your Adapter
Configure Snakepit to use your adapter:
config/config.exs
config :snakepit,
 pooling_enabled: true,
 adapter_module: Snakepit.Adapters.GRPCPython,
 adapter_args: ["--adapter", "my_adapter.MyAdapter"]
Ensure your adapter module is in the Python path:
export PYTHONPATH="$PYTHONPATH:/path/to/your/adapters"

Running Your First Command
Basic Execution
Call tools defined in your adapter:
Echo a message
{:ok, result} = Snakepit.execute("echo", %{message: "Hello from Elixir!"})
=> {:ok, %{"message" => "Hello from Elixir!", "timestamp" => 1704067200.5, "success" => true}}

Add two numbers
{:ok, result} = Snakepit.execute("add", %{a: 10, b: 25})
=> {:ok, %{"result" => 35, "operation" => "addition", "success" => true}}

Process a list
{:ok, result} = Snakepit.execute("process_list", %{items: [1, 2, 3, 4, 5], operation: "sum"})
=> {:ok, %{"result" => 15, "operation" => "sum", "success" => true}}
With Timeout
Specify a timeout for long-running operations:
{:ok, result} = Snakepit.execute("long_task", %{data: large_payload}, timeout: 120_000)
Error Handling
Handle execution errors gracefully:
case Snakepit.execute("unknown_command", %{}) do
 {:ok, result} ->
 IO.puts("Success: #{inspect(result)}")

 {:error, %Snakepit.Error{category: :worker_error, message: message}} ->
 IO.puts("Worker error: #{message}")

 {:error, %Snakepit.Error{category: :timeout}} ->
 IO.puts("Request timed out")

 {:error, error} ->
 IO.puts("Error: #{inspect(error)}")
end
Script Mode
For scripts and Mix tasks, use run_as_script/2 to ensure proper cleanup and explicit exit behavior:
my_script.exs
Snakepit.run_as_script(fn ->
 {:ok, result} = Snakepit.execute("process_data", %{input: data})
 IO.puts("Result: #{inspect(result)}")
end, timeout: 30_000, exit_mode: :auto)
Defaults are exit_mode: :none and stop_mode: :if_started. For embedded usage, keep
exit_mode: :none and set stop_mode: :never to avoid shutting down the host VM.
You can also set SNAKEPIT_SCRIPT_EXIT to none|halt|stop|auto when options are not
explicitly provided. SNAKEPIT_SCRIPT_HALT is deprecated in favor of SNAKEPIT_SCRIPT_EXIT.
Cleanup runs whenever cleanup_timeout is greater than zero (default), even if Snakepit
is already started. For embedded usage where you do not own the pool, set
cleanup_timeout: 0 to skip cleanup.
See docs/20251229/documentation-overhaul/01-core-api.md#script-lifecycle-090 for the
authoritative exit precedence and shutdown tables.

Next Steps
Now that you have Snakepit running, explore these topics:
Configuration
Learn about all configuration options including multi-pool setups:
	Configuration Guide - Pool options, logging, Python runtime settings

Worker Profiles
Understand the different worker execution models:
	Worker Profiles Guide - Process vs Thread profiles, when to use each

Advanced Features
Explore more capabilities:
	Streaming - Stream large results incrementally
	Python Adapters - Session context and bidirectional tools
	Observability - Monitor pool health and performance
	Fault Tolerance - Error handling and recovery patterns

Thread-Safe Adapters
For CPU-bound workloads with Python 3.13+:
	Python Threading Guide - Concurrency patterns

Troubleshooting
Workers Not Starting
Check Python setup
mix snakepit.doctor

View detailed logs
config :snakepit, log_level: :debug

Import Errors
Ensure your adapter is in the Python path:
Check if Python can import your adapter
python3 -c "from my_adapter import MyAdapter; print('OK')"

Port Conflicts
If port 50051 is in use:
config :snakepit, grpc_port: 60051
See Production Guide for comprehensive troubleshooting.

 Configuration - Snakepit v0.9.1

 Snakepit Configuration Guide

This guide covers all configuration options for Snakepit, from simple single-pool setups to advanced multi-pool deployments with different worker profiles.

Table of Contents
	Configuration Formats
	Global Options
	Pool Configuration
	Heartbeat Configuration
	Logging Configuration
	Python Runtime Configuration
	Optional Features
	Complete Configuration Example

Configuration Formats
Snakepit supports two configuration formats: legacy (single-pool) and multi-pool (v0.6+).
Simple (Legacy) Configuration
For backward compatibility with v0.5.x and single-pool deployments:
config/config.exs
config :snakepit,
 pooling_enabled: true,
 adapter_module: Snakepit.Adapters.GRPCPython,
 pool_size: 100,
 pool_config: %{
 startup_batch_size: 8,
 startup_batch_delay_ms: 750,
 max_workers: 1000
 }
This format creates a single pool named :default with the specified settings.
Multi-Pool Configuration (v0.6+)
For advanced deployments with multiple pools, each with different profiles:
config/config.exs
config :snakepit,
 pools: [
 %{
 name: :default,
 worker_profile: :process,
 pool_size: 100,
 adapter_module: Snakepit.Adapters.GRPCPython
 },
 %{
 name: :ml_inference,
 worker_profile: :thread,
 pool_size: 4,
 threads_per_worker: 16,
 adapter_module: Snakepit.Adapters.GRPCPython,
 adapter_args: ["--adapter", "myapp.ml.InferenceAdapter"]
 }
]
This creates two pools: :default for general tasks and :ml_inference for CPU-bound ML workloads.

Global Options
These options apply to all pools or the Snakepit application as a whole.
	Option	Type	Default	Description
	pooling_enabled	boolean()	false	Enable or disable worker pooling. Set to true for normal operation.
	adapter_module	module()	nil	Default adapter module for pools that do not specify one.
	pool_size	pos_integer()	System.schedulers_online() * 2	Default pool size. Typically 2x CPU cores.
	capacity_strategy	:pool | :profile | :hybrid	:pool	How worker capacity is managed across pools.
	pool_startup_timeout	pos_integer()	10000	Maximum time (ms) to wait for a worker to start.
	pool_queue_timeout	pos_integer()	5000	Maximum time (ms) a request waits in queue.
	pool_max_queue_size	pos_integer()	1000	Maximum queued requests before rejecting new ones.
	pool_reconcile_interval_ms	non_neg_integer()	1000	Interval (ms) for pool reconciliation to restore worker count (0 disables).
	pool_reconcile_batch_size	pos_integer()	2	Max workers respawned per reconciliation tick (ignored if reconcile disabled).
	worker_starter_max_restarts	non_neg_integer()	3	Restart intensity: max restarts for worker starter supervisor.
	worker_starter_max_seconds	pos_integer()	5	Restart intensity window (seconds) for worker starter supervisor.
	worker_supervisor_max_restarts	non_neg_integer()	3	Restart intensity: max restarts for worker supervisor.
	worker_supervisor_max_seconds	pos_integer()	5	Restart intensity window (seconds) for worker supervisor.
	grpc_port	pos_integer()	50051	Port for the Elixir gRPC server (Python-to-Elixir calls).
	grpc_host	String.t()	"localhost"	Host for gRPC connections.
	graceful_shutdown_timeout_ms	pos_integer()	6000	Time (ms) to wait for Python to terminate gracefully before SIGKILL.

Capacity Strategies
	Strategy	Description
	:pool	Each pool manages its own capacity independently. Default and simplest option.
	:profile	Workers of the same profile share capacity across pools.
	:hybrid	Combination of pool and profile strategies for complex deployments.

Pool Configuration
Each pool can be configured independently with these options.
Required Fields
	Option	Type	Description
	name	atom()	Unique pool identifier. Use :default for the primary pool.

Profile Selection
	Option	Type	Default	Description
	worker_profile	:process | :thread	:process	Worker execution model. See Worker Profiles Guide.

Common Pool Options
	Option	Type	Default	Description
	pool_size	pos_integer()	Global setting	Number of workers in this pool.
	adapter_module	module()	Global setting	Adapter module for this pool.
	adapter_args	list(String.t())	[]	CLI arguments passed to the Python server.
	adapter_env	list({String.t(), String.t()})	[]	Environment variables for Python processes.
	adapter_spec	String.t()	nil	Python adapter module path (e.g., "myapp.adapters.MyAdapter").

Process Profile Options
These options apply when worker_profile: :process:
	Option	Type	Default	Description
	startup_batch_size	pos_integer()	8	Workers started per batch during pool initialization.
	startup_batch_delay_ms	non_neg_integer()	750	Delay between startup batches (ms). Reduces system load during startup.

Thread Profile Options
These options apply when worker_profile: :thread:
	Option	Type	Default	Description
	threads_per_worker	pos_integer()	10	Thread pool size per Python process. Total capacity = pool_size * threads_per_worker.
	thread_safety_checks	boolean()	false	Enable runtime thread safety validation. Useful for development.

Worker Lifecycle Options
	Option	Type	Default	Description
	worker_ttl	:infinity | {value, unit}	:infinity	Maximum worker lifetime before recycling.
	worker_max_requests	:infinity | pos_integer()	:infinity	Maximum requests before recycling a worker.

TTL Units:
	Unit	Example
	:seconds	{3600, :seconds} - 1 hour
	:minutes	{60, :minutes} - 1 hour
	:hours	{1, :hours} - 1 hour

Worker recycling helps prevent memory leaks and ensures fresh worker state.

Heartbeat Configuration
Heartbeats detect unresponsive workers and trigger automatic restarts.
Global Heartbeat Config
config :snakepit,
 heartbeat: %{
 enabled: true,
 ping_interval_ms: 2000,
 timeout_ms: 10000,
 max_missed_heartbeats: 3,
 initial_delay_ms: 0,
 dependent: true
 }
Per-Pool Heartbeat Config
%{
 name: :ml_pool,
 heartbeat: %{
 enabled: true,
 ping_interval_ms: 10000,
 timeout_ms: 30000,
 max_missed_heartbeats: 2
 }
}
Heartbeat Options
	Option	Type	Default	Description
	enabled	boolean()	true	Enable heartbeat monitoring.
	ping_interval_ms	pos_integer()	2000	Interval between heartbeat pings.
	timeout_ms	pos_integer()	10000	Maximum time to wait for heartbeat response.
	max_missed_heartbeats	pos_integer()	3	Missed heartbeats before declaring worker dead.
	initial_delay_ms	non_neg_integer()	0	Delay before first heartbeat ping.
	dependent	boolean()	true	Whether worker terminates if heartbeat monitor dies.

Tuning Guidelines
	Fast detection: Lower ping_interval_ms and max_missed_heartbeats
	Reduce overhead: Higher ping_interval_ms for stable workloads
	Long operations: Increase timeout_ms if workers run long computations
	ML workloads: Use ping_interval_ms: 10000 or higher since inference can block

Logging Configuration
Snakepit uses its own logger for internal operations.
Log Level
config :snakepit,
 log_level: :info # :debug | :info | :warning | :error | :none
	Level	Description
	:debug	Verbose output including worker lifecycle, gRPC calls, heartbeats
	:info	Normal operation messages
	:warning	Potential issues that do not stop operation
	:error	Errors that affect functionality
	:none	Disable all Snakepit logging

Log Categories
Fine-grained control over logging categories:
config :snakepit,
 log_level: :info,
 log_categories: %{
 pool: :debug, # Pool operations
 worker: :debug, # Worker lifecycle
 heartbeat: :info, # Heartbeat monitoring
 grpc: :warning # gRPC communication
 }
Python-Side Logging
The Python bridge respects the SNAKEPIT_LOG_LEVEL environment variable:
%{
 name: :default,
 adapter_env: [{"SNAKEPIT_LOG_LEVEL", "info"}]
}

Python Runtime Configuration
Configure how Python interpreters are discovered and managed.
Interpreter Selection
config :snakepit,
 python_executable: "/path/to/python3"
Or use environment variable (takes precedence):
export SNAKEPIT_PYTHON="/path/to/python3"

Runtime Strategy
config :snakepit,
 python_runtime: %{
 strategy: :venv, # :system | :venv | :managed
 managed: false,
 version: "3.12"
 }
	Strategy	Description
	:system	Use system Python interpreter
	:venv	Use project virtual environment (.venv/bin/python3)
	:managed	Let Snakepit manage Python version (experimental)

Environment Variables per Pool
%{
 name: :ml_pool,
 adapter_env: [
 # Control threading in numerical libraries
 {"OPENBLAS_NUM_THREADS", "1"},
 {"MKL_NUM_THREADS", "1"},
 {"OMP_NUM_THREADS", "1"},
 {"NUMEXPR_NUM_THREADS", "1"},

 # GPU configuration
 {"CUDA_VISIBLE_DEVICES", "0"},

 # Python settings
 {"PYTHONUNBUFFERED", "1"},
 {"SNAKEPIT_LOG_LEVEL", "warning"}
]
}

Optional Features
Zero-Copy Data Transfer
Enable zero-copy for large binary data:
config :snakepit,
 zero_copy: %{
 enabled: true,
 threshold_bytes: 1_048_576 # 1 MB
 }
Zero-copy is beneficial for ML workloads with large tensors.
Crash Barrier
Limit restart attempts for frequently crashing workers:
config :snakepit,
 crash_barrier: %{
 enabled: true,
 max_restarts: 5,
 window_seconds: 60
 }
If a worker restarts more than max_restarts times within window_seconds, it is permanently removed from the pool.
Circuit Breaker
Prevent cascading failures:
config :snakepit,
 circuit_breaker: %{
 enabled: true,
 failure_threshold: 5,
 reset_timeout_ms: 30000
 }
After failure_threshold consecutive failures, the circuit opens and requests fail fast for reset_timeout_ms.

Complete Configuration Example
Here is a production-ready configuration demonstrating all major options:
config/config.exs
config :snakepit,
 # Global settings
 pooling_enabled: true,
 pool_startup_timeout: 30_000,
 pool_queue_timeout: 10_000,
 pool_max_queue_size: 5000,
 grpc_port: 50051,

 # Logging
 log_level: :info,
 log_categories: %{
 pool: :info,
 worker: :warning,
 heartbeat: :warning,
 grpc: :warning
 },

 # Global heartbeat defaults
 heartbeat: %{
 enabled: true,
 ping_interval_ms: 5000,
 timeout_ms: 15000,
 max_missed_heartbeats: 3
 },

 # Multiple pools
 pools: [
 # Default pool for I/O-bound tasks
 %{
 name: :default,
 worker_profile: :process,
 pool_size: 50,
 adapter_module: Snakepit.Adapters.GRPCPython,
 adapter_args: ["--adapter", "myapp.adapters.GeneralAdapter"],
 adapter_env: [
 {"OPENBLAS_NUM_THREADS", "1"},
 {"OMP_NUM_THREADS", "1"}
],
 startup_batch_size: 10,
 startup_batch_delay_ms: 500
 },

 # ML inference pool (CPU-bound, thread profile)
 %{
 name: :ml_inference,
 worker_profile: :thread,
 pool_size: 4,
 threads_per_worker: 8, # 32 total capacity
 adapter_module: Snakepit.Adapters.GRPCPython,
 adapter_args: ["--adapter", "myapp.ml.InferenceAdapter"],
 adapter_env: [
 {"OPENBLAS_NUM_THREADS", "8"},
 {"OMP_NUM_THREADS", "8"},
 {"CUDA_VISIBLE_DEVICES", "0"},
 {"PYTORCH_CUDA_ALLOC_CONF", "max_split_size_mb:512"}
],
 thread_safety_checks: false,
 worker_ttl: {1800, :seconds},
 worker_max_requests: 10000,
 heartbeat: %{
 enabled: true,
 ping_interval_ms: 10000,
 timeout_ms: 60000,
 max_missed_heartbeats: 2
 }
 },

 # Background processing pool
 %{
 name: :background,
 worker_profile: :process,
 pool_size: 10,
 adapter_module: Snakepit.Adapters.GRPCPython,
 adapter_args: ["--adapter", "myapp.adapters.BackgroundAdapter"],
 adapter_env: [
 {"SNAKEPIT_LOG_LEVEL", "warning"}
],
 worker_ttl: {3600, :seconds}
 }
],

 # Optional features
 crash_barrier: %{
 enabled: true,
 max_restarts: 10,
 window_seconds: 300
 }
Environment-Specific Overrides
config/prod.exs
config :snakepit,
 log_level: :warning,
 pool_max_queue_size: 10000

config/dev.exs
config :snakepit,
 log_level: :debug,
 pool_size: 4

config/test.exs
config :snakepit,
 pooling_enabled: false

Validation
Verify your configuration with the doctor task:
mix snakepit.doctor

At runtime, check pool status:
iex> Snakepit.get_stats()
%{
 requests: 15432,
 queued: 5,
 errors: 12,
 queue_timeouts: 3,
 pool_saturated: 0,
 workers: 54,
 available: 49,
 busy: 5
}

Related Guides
	Getting Started - Installation and first steps
	Worker Profiles - Process vs Thread profiles
	Production - Performance tuning and deployment checklist

 Worker Profiles - Snakepit v0.9.1

 Worker Profiles Guide

Snakepit supports two worker profiles that define how Python processes are created and managed. This guide explains each profile, when to use it, and how to configure it.

Table of Contents
	Overview
	Process Profile
	Thread Profile
	Decision Matrix
	Configuration Examples
	Thread Safety Requirements
	Migration Considerations

Overview
Worker profiles determine the concurrency model for your Python workers:
	Profile	Python Processes	Concurrency Model	Total Capacity
	:process	Many (e.g., 100)	One request per process	pool_size
	:thread	Few (e.g., 4)	Many threads per process	pool_size * threads_per_worker

Choose based on your workload characteristics, Python version, and performance requirements.

Process Profile
Module: Snakepit.WorkerProfile.Process
The process profile is the default and most compatible mode. Each worker runs as a separate OS process with a single-threaded Python interpreter.
How It Works
Pool (100 workers)
 |
 +-- Worker 1 [PID 12345] -- 1 gRPC connection -- Handles 1 request at a time
 +-- Worker 2 [PID 12346] -- 1 gRPC connection -- Handles 1 request at a time
 +-- Worker 3 [PID 12347] -- 1 gRPC connection -- Handles 1 request at a time
 ...
 +-- Worker 100 [PID 12444] -- 1 gRPC connection -- Handles 1 request at a time
Isolation
	Full process isolation: Each worker is an independent OS process with its own memory space
	Crash containment: A crash in one worker cannot affect others
	GIL irrelevant: Each process has its own Global Interpreter Lock

Use Cases
The process profile is ideal for:
	I/O-bound workloads: Web scraping, API calls, file operations, database queries
	High concurrency: Applications needing 100+ simultaneous workers
	Legacy Python code: Works with all Python versions (3.8+)
	Untrusted code: Process isolation provides security boundaries
	Memory-sensitive workloads: Each worker's memory can be recycled independently

Configuration
config :snakepit,
 pools: [
 %{
 name: :default,
 worker_profile: :process,
 pool_size: 100,
 adapter_module: Snakepit.Adapters.GRPCPython,
 adapter_env: [
 {"OPENBLAS_NUM_THREADS", "1"},
 {"OMP_NUM_THREADS", "1"}
],
 startup_batch_size: 10,
 startup_batch_delay_ms: 500
 }
]
Environment Variables
The process profile automatically enforces single-threading in scientific libraries to prevent resource contention:
	Variable	Default	Purpose
	OPENBLAS_NUM_THREADS	"1"	OpenBLAS thread control
	MKL_NUM_THREADS	"1"	Intel MKL thread control
	OMP_NUM_THREADS	"1"	OpenMP thread control
	NUMEXPR_NUM_THREADS	"1"	NumExpr thread control
	VECLIB_MAXIMUM_THREADS	"1"	macOS Accelerate framework

Thread Profile
Module: Snakepit.WorkerProfile.Thread
The thread profile runs fewer Python processes, each with an internal thread pool. Optimized for Python 3.13+ with free-threading support.
How It Works
Pool (4 workers)
 |
 +-- Worker 1 [PID 12345]
 | +-- Thread Pool (16 threads)
 | +-- Handles 16 concurrent requests
 |
 +-- Worker 2 [PID 12346]
 | +-- Thread Pool (16 threads)
 | +-- Handles 16 concurrent requests
 ...

Total capacity: 4 workers * 16 threads = 64 concurrent requests
Isolation
	Thread-level isolation: Multiple requests execute concurrently in the same Python interpreter
	Shared memory: Threads within a process can share data without serialization
	GIL handling: Requires Python 3.13+ for optimal free-threading performance

Use Cases
The thread profile is ideal for:
	CPU-bound workloads: Machine learning inference, numerical computation
	Large shared data: Zero-copy data sharing within a worker process
	Memory efficiency: Fewer interpreter instances reduce memory footprint
	High throughput: HTTP/2 multiplexing enables concurrent requests to the same worker

Requirements
	Python 3.13+: For optimal free-threading performance
	Thread-safe adapters: Your Python code must be thread-safe
	Thread-safe libraries: NumPy, PyTorch, TensorFlow are supported

Configuration
config :snakepit,
 pools: [
 %{
 name: :ml_inference,
 worker_profile: :thread,
 pool_size: 4,
 threads_per_worker: 16, # 64 total capacity
 adapter_module: Snakepit.Adapters.GRPCPython,
 adapter_args: ["--adapter", "myapp.ml.InferenceAdapter"],
 adapter_env: [
 {"OPENBLAS_NUM_THREADS", "16"},
 {"OMP_NUM_THREADS", "16"},
 {"CUDA_VISIBLE_DEVICES", "0"}
],
 thread_safety_checks: true,
 worker_ttl: {1800, :seconds},
 worker_max_requests: 10000
 }
]
Capacity Tracking
The thread profile tracks in-flight requests per worker using the CapacityStore module:
	Load-aware worker selection routes requests to least-busy workers
	Capacity limits prevent thread pool exhaustion
	Telemetry provides visibility into load distribution

Decision Matrix
Use this matrix to choose the right profile:
	Consideration	Process Profile	Thread Profile
	Python Version	3.8+	3.13+ recommended
	Workload Type	I/O-bound	CPU-bound
	Concurrency	High (100+ workers)	Moderate (4-16 workers)
	Memory Usage	Higher (many interpreters)	Lower (few interpreters)
	Isolation	Full process isolation	Thread isolation only
	Crash Impact	Single worker	Single worker (all threads)
	Data Sharing	Via serialization	In-process (zero-copy)
	Configuration	Simple	Requires thread-safe code
	Startup Time	Longer (many processes)	Shorter (few processes)

When to Use Process Profile
Choose process profile if:
	You are running Python < 3.13
	Your Python code is not verified thread-safe
	You need maximum isolation between requests
	Your workload is primarily I/O-bound
	You are running untrusted or third-party code

When to Use Thread Profile
Choose thread profile if:
	You are running Python 3.13+ with free-threading
	Your adapter code is verified thread-safe
	You have CPU-bound ML inference workloads
	Memory efficiency is critical
	You need to share large models across requests

Configuration Examples
Process Profile: Web Scraping Pool
%{
 name: :scrapers,
 worker_profile: :process,
 pool_size: 50,
 adapter_module: Snakepit.Adapters.GRPCPython,
 adapter_args: ["--adapter", "myapp.scrapers.WebAdapter"],
 adapter_env: [
 {"OPENBLAS_NUM_THREADS", "1"},
 {"OMP_NUM_THREADS", "1"}
],
 heartbeat: %{
 enabled: true,
 ping_interval_ms: 5000,
 timeout_ms: 15000
 }
}
Thread Profile: ML Inference Pool
%{
 name: :ml_inference,
 worker_profile: :thread,
 pool_size: 4,
 threads_per_worker: 8,
 adapter_module: Snakepit.Adapters.GRPCPython,
 adapter_args: ["--adapter", "myapp.ml.InferenceAdapter"],
 adapter_env: [
 {"OPENBLAS_NUM_THREADS", "8"},
 {"OMP_NUM_THREADS", "8"},
 {"CUDA_VISIBLE_DEVICES", "0"}
],
 thread_safety_checks: true,
 worker_ttl: {1800, :seconds},
 heartbeat: %{
 enabled: true,
 ping_interval_ms: 10000,
 timeout_ms: 60000,
 max_missed_heartbeats: 2
 }
}
Hybrid Setup: Both Profiles
config :snakepit,
 pools: [
 # I/O-bound tasks
 %{
 name: :default,
 worker_profile: :process,
 pool_size: 50,
 adapter_module: Snakepit.Adapters.GRPCPython
 },
 # CPU-bound inference
 %{
 name: :ml,
 worker_profile: :thread,
 pool_size: 4,
 threads_per_worker: 16,
 adapter_args: ["--adapter", "myapp.ml.ModelAdapter"]
 }
]

Thread Safety Requirements
When using the thread profile, your Python adapter must be thread-safe.
Thread-Safe Adapter Pattern
from snakepit_bridge.base_adapter_threaded import ThreadSafeAdapter, thread_safe_method, tool

class MyAdapter(ThreadSafeAdapter):
 __thread_safe__ = True # Required declaration

 def __init__(self):
 super().__init__()
 # Pattern 1: Shared read-only (loaded once)
 self.model = self._load_model()

 # Pattern 3: Shared mutable (requires locking)
 self.request_count = 0

 def _load_model(self):
 import torch
 model = torch.load("model.pt")
 model.eval()
 return model

 @thread_safe_method
 @tool(description="Run inference")
 def predict(self, input_data: list) -> dict:
 # Pattern 2: Thread-local cache
 cache = self.get_thread_local('cache', {})

 # Read shared model (no lock needed)
 with torch.no_grad():
 result = self.model(torch.tensor(input_data))

 # Update shared state (lock required)
 with self.acquire_lock():
 self.request_count += 1

 return {"prediction": result.tolist()}
Three Safety Patterns
	Shared Read-Only: Load data once in __init__, never modify
	Thread-Local Storage: Use get_thread_local() for per-thread caches
	Locked Writes: Use with self.acquire_lock() for shared mutable state

Thread-Safe Libraries
	Library	Thread-Safe	Notes
	NumPy	Yes	Releases GIL during computation
	PyTorch	Yes	Configure with torch.set_num_threads()
	TensorFlow	Yes	Use tf.config.threading
	Scikit-learn	Yes	Set n_jobs=1 per estimator
	Pandas	No	Use Polars or lock all operations

See Python Threading Guide for comprehensive guidance.

Migration Considerations
From Process to Thread Profile
	Verify Python version: Requires Python 3.13+ for best results
	Audit adapter code: Ensure all methods are thread-safe
	Update adapter base class: Change BaseAdapter to ThreadSafeAdapter
	Add thread safety markers: Decorate methods with @thread_safe_method
	Test under load: Use concurrent tests to verify correctness

Configuration Changes
Before (process profile)
%{
 name: :ml,
 pool_size: 32,
 adapter_module: Snakepit.Adapters.GRPCPython
}

After (thread profile)
%{
 name: :ml,
 worker_profile: :thread,
 pool_size: 4,
 threads_per_worker: 8, # Same total capacity
 adapter_module: Snakepit.Adapters.GRPCPython,
 thread_safety_checks: true # Enable during migration
}
Testing Thread Safety
Enable runtime checks during migration:
%{
 name: :ml,
 worker_profile: :thread,
 thread_safety_checks: true
}
Run concurrent load tests:
Hammer test with concurrent requests
tasks = for _ <- 1..1000 do
 Task.async(fn ->
 Snakepit.execute("predict", %{data: [1, 2, 3]}, pool_name: :ml)
 end)
end

results = Task.await_many(tasks, 60_000)
assert Enum.all?(results, &match?({:ok, _}, &1))

Related Guides
	Getting Started - Installation and basics
	Configuration - All configuration options
	Python Adapters - Thread-safe adapter patterns
	Python Threading Guide - Python-side threading details

 Timeout Configuration - Snakepit v0.9.1

 Timeout Configuration Guide

Snakepit includes a unified timeout architecture designed for reliability in production deployments. This guide covers timeout profiles, deadline propagation, and configuration strategies for different workloads.

Table of Contents
	Overview
	Timeout Profiles
	How Timeouts Work
	Configuration Reference
	Common Scenarios
	Debugging Timeout Issues
	Migration Guide

Overview
The Problem
Earlier releases had fragmented timeout configuration with 7+ independent timeout keys that didn't coordinate:
	Issue	Symptom
	pool_request_timeout vs grpc_command_timeout confusion	Unclear which is outer, which is inner
	Queue wait consumed budget invisibly	Inner timeouts didn't account for queue time
	GenServer.call timeouts fired before inner timeouts	Unhandled exits instead of structured errors

The Solution
Snakepit now uses a single-budget, derived deadlines architecture:
	One top-level timeout budget set at request entry
	Deadline propagation tracks remaining time through the stack
	Inner timeouts derived from remaining budget minus safety margins
	Profile-based defaults for different deployment scenarios

Timeout Profiles
Profiles provide sensible defaults for common deployment scenarios. Configure via:
config :snakepit, timeout_profile: :production
Profile Comparison
	Profile	default_timeout	stream_timeout	queue_timeout	Use Case
	:balanced	300s (5m)	900s (15m)	10s	General purpose, default
	:production	300s (5m)	900s (15m)	10s	Production deployments
	:production_strict	60s	300s (5m)	5s	Latency-sensitive APIs
	:development	900s (15m)	3600s (60m)	60s	Local development, debugging
	:ml_inference	900s (15m)	3600s (60m)	60s	ML model inference
	:batch	3600s (60m)	∞	300s (5m)	Batch processing jobs

Profile Selection Guidelines
	Workload Type	Recommended Profile	Rationale
	Web API backends	:production_strict	Fast failure for user-facing requests
	Background jobs	:batch	Long-running operations need patience
	ML inference	:ml_inference	Model loading and inference are slow
	Development	:development	Generous timeouts for debugging
	Mixed workloads	:balanced	Good defaults for most cases

Using Profiles
config/runtime.exs

Production API server
config :snakepit, timeout_profile: :production_strict

ML inference service
config :snakepit, timeout_profile: :ml_inference

Batch processing worker
config :snakepit, timeout_profile: :batch

How Timeouts Work
The Timeout Stack
Requests flow through multiple layers, each with its own timeout:
┌───┐
│ User Code: Snakepit.execute("cmd", args, timeout: 60_000) │
└───┘
 │
 ▼
┌───┐
│ Pool Layer │
│ ├─ GenServer.call timeout: 60_000 │
│ ├─ Queue wait (if workers busy): up to queue_timeout │
│ └─ Deadline stored: now + 60_000 │
└───┘
 │
 ▼
┌───┐
│ Worker Layer │
│ ├─ GenServer.call timeout: remaining - 1000ms margin │
│ └─ Forwards to gRPC adapter │
└───┘
 │
 ▼
┌───┐
│ gRPC Layer │
│ ├─ gRPC call timeout: remaining - 1200ms total margins │
│ └─ Actual Python execution │
└───┘
Margin Formula
Inner timeouts are derived from the total budget minus safety margins:
rpc_timeout = total_timeout - worker_call_margin_ms - pool_reply_margin_ms
	Margin	Default	Purpose
	worker_call_margin_ms	1000ms	GenServer.call overhead to worker
	pool_reply_margin_ms	200ms	Pool reply processing overhead

Example: With a 60-second total budget:
	Total: 60,000ms
	Worker margin: -1,000ms
	Pool margin: -200ms
	RPC timeout: 58,800ms

This ensures inner timeouts expire before outer GenServer.call timeouts, producing structured {:error, %Snakepit.Error{}} returns instead of unhandled exits.
Deadline Propagation
When a request enters the pool, a deadline is computed and stored:
Inside Pool.execute/3
deadline_ms = System.monotonic_time(:millisecond) + timeout
opts_with_deadline = Keyword.put(opts, :deadline_ms, deadline_ms)
As the request moves through the stack:
	Queue handler uses effective_queue_timeout_ms/2 to respect deadline
	Worker execution uses derive_rpc_timeout_from_opts/2 to compute remaining budget
	All layers return structured errors instead of crashing on timeout

Queue-Aware Timeouts
If a request waits in queue, that time is subtracted from the budget:
Request with 60s budget waits 5s in queue
Remaining budget for execution: 55s (minus margins)
This prevents the common bug where queue wait + execution time exceeds the user's expected timeout.

Configuration Reference
Profile-Based Configuration (Recommended)
config/runtime.exs
config :snakepit,
 timeout_profile: :production,

 # Optional: customize margins
 worker_call_margin_ms: 1000,
 pool_reply_margin_ms: 200
Explicit Timeout Configuration
Override profile defaults with explicit values:
config :snakepit,
 timeout_profile: :production,

 # These override profile-derived values
 pool_request_timeout: 120_000, # 2 minutes
 pool_streaming_timeout: 600_000, # 10 minutes
 pool_queue_timeout: 15_000, # 15 seconds
 grpc_command_timeout: 90_000, # 90 seconds
 grpc_worker_execute_timeout: 95_000 # 95 seconds
Complete Timeout Options
	Option	Default	Layer	Description
	timeout_profile	:balanced	Global	Profile to use for defaults
	pool_request_timeout	Profile-derived	Pool	GenServer.call timeout for execute
	pool_streaming_timeout	Profile-derived	Pool	GenServer.call timeout for streaming
	pool_queue_timeout	Profile-derived	Pool	Max time request waits in queue
	checkout_timeout	Profile-derived	Pool	Worker checkout for streaming
	pool_startup_timeout	10,000ms	Pool	Worker startup timeout
	pool_await_ready_timeout	15,000ms	Pool	Wait for pool initialization
	grpc_worker_execute_timeout	Profile-derived	Worker	GenServer.call to GRPCWorker
	grpc_worker_stream_timeout	300,000ms	Worker	Streaming GenServer.call
	grpc_command_timeout	Profile-derived	Adapter	gRPC call timeout
	grpc_batch_inference_timeout	300,000ms	Adapter	Batch inference operations
	grpc_large_dataset_timeout	600,000ms	Adapter	Large dataset processing
	grpc_server_ready_timeout	30,000ms	Worker	Python server readiness
	worker_ready_timeout	30,000ms	Worker	Worker ready notification
	graceful_shutdown_timeout_ms	6,000ms	Worker	Python process shutdown
	worker_call_margin_ms	1,000ms	Margin	Worker GenServer.call overhead
	pool_reply_margin_ms	200ms	Margin	Pool reply overhead

Per-Call Timeout Override
Override timeouts for individual calls:
Use default from profile
Snakepit.execute("fast_command", %{})

Override for slow operation
Snakepit.execute("slow_inference", %{model: "large"}, timeout: 300_000)

Streaming with custom timeout
Snakepit.execute_stream("generate", %{}, callback, timeout: 600_000)

Common Scenarios
Scenario 1: LLM API Calls (60+ seconds)
Problem: Default timeouts are too short for LLM inference.
Solution: Use :ml_inference profile or explicit config:
Option A: Profile-based
config :snakepit, timeout_profile: :ml_inference

Option B: Explicit timeouts
config :snakepit,
 pool_request_timeout: 300_000,
 grpc_command_timeout: 280_000,
 grpc_worker_execute_timeout: 290_000
Per-call override:
Snakepit.execute("llm_generate", %{prompt: prompt}, timeout: 120_000)
Scenario 2: Fast API with Strict SLAs
Problem: Need fast failure for user-facing requests.
Solution: Use :production_strict profile:
config :snakepit, timeout_profile: :production_strict
This gives you:
	60-second default timeout
	5-second queue timeout (fail fast if pool is saturated)
	Quick feedback to users

Scenario 3: Batch Processing Jobs
Problem: Jobs run for hours, need infinite streaming timeout.
Solution: Use :batch profile:
config :snakepit, timeout_profile: :batch
This gives you:
	60-minute default timeout
	Infinite streaming timeout
	5-minute queue tolerance

Scenario 4: Mixed Workloads
Problem: Same pool handles fast and slow operations.
Solution: Use :balanced profile with per-call overrides:
config :snakepit, timeout_profile: :balanced

Fast operations use default
Snakepit.execute("lookup", %{id: id})

Slow operations override
Snakepit.execute("batch_process", %{data: data}, timeout: 600_000)
Scenario 5: Pool Initialization Takes Too Long
Problem: Starting 50+ workers with heavy model loading.
Solution: Increase startup timeouts:
config :snakepit,
 pool_startup_timeout: 120_000, # 2 min per worker
 pool_await_ready_timeout: 600_000, # 10 min total
 grpc_server_ready_timeout: 120_000 # 2 min for Python ready
Scenario 6: Workers Killed During Shutdown
Problem: Python cleanup takes longer than 6 seconds.
Solution: Increase graceful shutdown timeout:
config :snakepit,
 graceful_shutdown_timeout_ms: 15_000 # 15 seconds
Note: This must be >= Python's shutdown envelope: server.stop(2s) + wait_for_termination(3s) = 5s.

Debugging Timeout Issues
Enable Debug Logging
config :snakepit,
 log_level: :debug,
 log_categories: %{
 pool: :debug,
 grpc: :debug,
 worker: :debug
 }
Identify Which Timeout Fired
	Log Pattern	Timeout Type
	** (exit) {:timeout, {GenServer, :call, ...}	GenServer.call timeout
	gRPC error: %GRPC.RPCError{status: 4...}	gRPC DEADLINE_EXCEEDED
	Request timed out after Xms	Pool queue timeout
	Timeout waiting for Python gRPC server	Server ready timeout
	Pool execute timed out	Pool-level structured timeout

Use Telemetry
:telemetry.attach("timeout-debug", [:snakepit, :request, :executed],
 fn _name, measurements, metadata, _config ->
 if measurements[:duration_us] > 30_000_000 do # > 30s
 Logger.warning("Slow request: #{metadata.command} took #{measurements[:duration_us] / 1_000}ms")
 end
 end, nil)
Check Pool Stats
iex> Snakepit.get_stats()
%{
 requests: 15432,
 queued: 5, # Requests waiting in queue
 queue_timeouts: 12, # Queue timeout count
 pool_saturated: 3, # Times pool was at capacity
 ...
}
High queue_timeouts indicates you need either:
	More workers (pool_size)
	Higher pool_queue_timeout
	Faster Python operations

Verify Timeout Derivation
iex> alias Snakepit.Defaults

Check current profile
iex> Defaults.timeout_profile()
:balanced

Check derived values
iex> Defaults.default_timeout()
300_000

iex> Defaults.rpc_timeout(60_000)
58_800 # 60_000 - 1000 - 200

Migration Guide
Legacy Configuration (Pre-Unified Timeouts)
The timeout architecture is fully backward compatible. Existing configurations continue to work:
This still works in current releases
config :snakepit,
 pool_request_timeout: 60_000,
 grpc_command_timeout: 30_000
Behavior changes:
	When explicit timeouts are set, they take precedence over profile-derived values
	When not set, values now derive from the active profile (default: :balanced)
	Default values are similar to previous versions for :balanced profile

Recommended Migration Path
	Test with defaults: Remove explicit timeout config, use profile defaults
	Select appropriate profile: Choose based on workload type
	Fine-tune if needed: Override specific values that don't fit

Before (legacy timeouts)
config :snakepit,
 pool_request_timeout: 300_000,
 pool_streaming_timeout: 900_000,
 pool_queue_timeout: 10_000,
 grpc_command_timeout: 280_000

After (unified timeouts) - equivalent behavior
config :snakepit, timeout_profile: :balanced
Breaking Changes
None. All existing configuration keys are honored and take precedence over profile-derived values.

API Reference
Snakepit.Defaults Functions
	Function	Returns	Description
	timeout_profiles/0	map()	All available timeout profiles
	timeout_profile/0	atom()	Currently configured profile
	default_timeout/0	timeout()	Profile's default timeout
	stream_timeout/0	timeout()	Profile's streaming timeout
	queue_timeout/0	timeout()	Profile's queue timeout
	rpc_timeout/1	timeout()	Derive RPC timeout from total budget
	worker_call_margin_ms/0	integer()	Worker GenServer.call margin
	pool_reply_margin_ms/0	integer()	Pool reply margin

Snakepit.Pool Functions
	Function	Returns	Description
	get_default_timeout_for_call/3	timeout()	Get timeout for call type
	derive_rpc_timeout_from_opts/2	timeout()	Derive RPC timeout from opts with deadline
	effective_queue_timeout_ms/2	integer()	Queue timeout respecting deadline

Related Guides
	Configuration Guide - General configuration options
	Worker Profiles - Process vs Thread profiles
	Production Guide - Deployment best practices

 Session Scoping - Snakepit v0.9.1

 Session Scoping Guide

This guide describes how sessions and object references are scoped in Snakepit's Python-Elixir bridge. Understanding these rules helps prevent resource leaks and design efficient stateful workflows.

Table of Contents
	Overview
	Session Lifecycle
	Reference Scoping
	Cross-Process Reference Passing
	Recommended Patterns
	Telemetry Events
	ZeroCopy References
	Quick Reference

Overview
Snakepit uses a stateless per-request design for Python adapters, with session state managed entirely on the Elixir side. This provides strong isolation and predictable cleanup semantics.
	Component	Owner	Lifetime
	Session state	Elixir (SessionStore)	TTL-based
	Python adapter	gRPC server	Single request
	Module cache	Python process	Worker lifetime

Session Lifecycle
Ownership
	Elixir SessionStore is the authoritative owner of session lifecycle
	Sessions are stored in ETS with TTL-based expiration
	Python adapters receive a session_id but never own the session

Configuration
1 hour default, configurable via application config
config :snakepit, :session_store,
 default_ttl: 3600, # seconds
 max_sessions: 10_000, # quota limit
 cleanup_interval: 60_000, # ms between cleanup runs
 strict_mode: false # enable for dev/test warnings
	Option	Type	Default	Description
	default_ttl	integer	3600	Session TTL in seconds
	max_sessions	integer	10_000	Maximum concurrent sessions
	cleanup_interval	integer	60_000	Cleanup interval in ms
	strict_mode	boolean	false	Enable loud warnings on accumulation

Automatic Cleanup
Sessions are automatically cleaned up when:
	TTL expires: Session hasn't been accessed within its TTL period
	Explicit deletion: SessionStore.delete_session/1 is called
	Owner process death: If the owning Elixir process terminates and cleans up

Reference Scoping
Python Object References
Python adapters are stateless per-request:
Request arrives → Adapter created → Tool executed → Adapter destroyed
This means:
	Each gRPC request creates a fresh adapter instance
	Adapter state is discarded after the request completes
	No Python object references persist across requests

Module-Level Caching
For expensive resources (ML models, connections), use module-level caching:
Module-level cache - shared across ALL requests
_model_cache = {}

class MyAdapter(BaseAdapter):
 def initialize(self):
 if "model" not in _model_cache:
 _model_cache["model"] = load_expensive_model()
 self.model = _model_cache["model"]

 def cleanup(self):
 # Don't clear module cache - it's shared
 pass
Session-Scoped State
For per-session state that persists across requests, store it on the Elixir side:
class MyAdapter(BaseAdapter):
 def execute_tool(self, tool_name, args, context):
 # Read session state from Elixir
 state = context.call_elixir_tool("get_session_state", key="my_state")

 # Perform computation
 result = process(state, args)

 # Save updated state back to Elixir
 context.call_elixir_tool("set_session_state", key="my_state", value=result)

 return result

Cross-Process Reference Passing
Can references be passed between Elixir processes?
Session IDs: Yes, session IDs are plain strings and can be passed freely.
Worker Affinity: Sessions track their last_worker_id for affinity, but this is a hint rather than a hard constraint. Any worker can service any session.
What happens when the owner process dies?
If an Elixir process that created a session terminates:
	The session remains in the SessionStore until TTL expires
	Other processes can still access the session by ID
	Worker affinity is preserved for warm cache hits

For cleanup on process death, use a process monitor:
defmodule MySessionManager do
 use GenServer

 def init(_) do
 {:ok, session} = SessionStore.create_session(generate_id())
 {:ok, %{session_id: session.id}}
 end

 def terminate(_reason, state) do
 SessionStore.delete_session(state.session_id)
 :ok
 end
end

Recommended Patterns
Short-Lived Sessions (Request-Scoped)
def handle_request(params) do
 {:ok, session} = SessionStore.create_session(generate_id(), ttl: 300)

 try do
 result = Snakepit.execute("my_tool", params, session_id: session.id)
 {:ok, result}
 after
 SessionStore.delete_session(session.id)
 end
end
Long-Lived Sessions (User Sessions)
def get_or_create_session(user_id) do
 session_id = "user_#{user_id}"

 case SessionStore.get_session(session_id) do
 {:ok, session} -> session
 {:error, :not_found} ->
 {:ok, session} = SessionStore.create_session(session_id, ttl: 3600)
 session
 end
end
Explicit Session Context (For Shared Sessions)
defmodule MyApp.SharedSession do
 @moduledoc """
 Manages a shared session for background processing.
 """

 use GenServer

 def start_link(opts) do
 GenServer.start_link(__MODULE__, opts, name: __MODULE__)
 end

 def get_session_id do
 GenServer.call(__MODULE__, :get_session_id)
 end

 def init(_opts) do
 {:ok, session} = SessionStore.create_session(
 "shared_background_session",
 ttl: 86400 # 24 hours
)
 {:ok, %{session_id: session.id}}
 end

 def handle_call(:get_session_id, _from, state) do
 {:reply, state.session_id, state}
 end
end

Telemetry Events
Monitor session lifecycle with these telemetry events:
Session Pruned
Emitted when sessions are cleaned up due to TTL expiration.
[:snakepit, :bridge, :session, :pruned]
	Measurement	Type	Description
	count	integer	Number of sessions pruned
	remaining_sessions	integer	Sessions remaining after cleanup

	Metadata	Type	Description
	reason	atom	:ttl or :overflow
	table_name	atom	ETS table name

Accumulation Warning
Emitted when session count exceeds warning thresholds.
[:snakepit, :bridge, :session, :accumulation_warning]
	Measurement	Type	Description
	current_sessions	integer	Current session count
	max_sessions	integer	Configured maximum
	utilization	float	Percentage of quota used

	Metadata	Type	Description
	reason	atom	:threshold_warning or :quota_exceeded
	strict_mode	boolean	Whether strict mode is enabled

Strict Mode for Development
Enable strict mode to get loud warnings when sessions accumulate:
config :snakepit, :session_store,
 strict_mode: true # Logs warnings when session count exceeds 80% of max

ZeroCopy References
For zero-copy tensor/buffer references (DLPack, Arrow):
	References are ephemeral - valid only for the duration of a single request
	The owner (:elixir or :python) is tracked in the reference metadata
	References cannot be serialized and passed across requests

ZeroCopy refs are request-scoped only
{:ok, ref} = Snakepit.ZeroCopy.from_nx(tensor)

Use within the same request
result = Snakepit.execute("process_tensor", %{tensor: ref})

Don't store refs in session state - they won't work
BAD: SessionStore.put_program(session_id, "cached_tensor", ref)

Quick Reference
	Resource Type	Scope	Lifetime	Cross-Process Safe
	Session IDs	Application	TTL-based	Yes
	Session State	Session	Until deleted/expired	Yes (via SessionStore)
	Python Adapter	Request	Single request	N/A
	Module Cache	Python process	Worker lifetime	N/A
	ZeroCopy Refs	Request	Single request	No

Related Guides
	Configuration - Session store configuration options
	Worker Profiles - How workers manage state
	Python Adapters - Adapter lifecycle and patterns
	Observability - Telemetry and monitoring

 Hardware Detection - Snakepit v0.9.1

 Hardware Detection for ML Workloads

Snakepit provides a unified hardware abstraction layer for machine learning workloads. The hardware detection system automatically identifies available accelerators at startup and provides a consistent API for device selection.
Overview
	Accelerator	Description	Detection Method
	CPU	Always available fallback	Erlang system info
	CUDA	NVIDIA GPUs	nvidia-smi queries
	MPS	Apple Metal Performance Shaders	macOS sysctl
	ROCm	AMD GPUs	rocm-smi queries

Priority order: CUDA > MPS > ROCm > CPU.
Hardware.detect/0
Returns comprehensive hardware information as a map. Results are cached.
info = Snakepit.Hardware.detect()
=> %{
accelerator: :cuda,
platform: "linux-x86_64",
cpu: %{cores: 8, threads: 16, model: "Intel Core i7-9700K", features: [:avx, :avx2], memory_total_mb: 32768},
cuda: %{version: "12.1", driver_version: "535.104.05", cudnn_version: "8.9.0",
devices: [%{id: 0, name: "RTX 3080", memory_total_mb: 10240, compute_capability: "8.6"}]},
mps: nil,
rocm: nil
}
Hardware.capabilities/0
Returns boolean capability flags for quick feature checks.
caps = Snakepit.Hardware.capabilities()
=> %{cuda: true, mps: false, rocm: false, avx: true, avx2: true, avx512: false,
cuda_version: "12.1", cudnn_version: "8.9", cudnn: true}

if caps.cuda and caps.cudnn do
 IO.puts("Full CUDA acceleration available")
end
Hardware.select/1
Selects a device based on preference. Returns {:ok, device} or {:error, :device_not_available}.
{:ok, device} = Snakepit.Hardware.select(:auto) # Best available
{:ok, {:cuda, 0}} = Snakepit.Hardware.select(:cuda)
{:ok, :mps} = Snakepit.Hardware.select(:mps)
{:ok, :cpu} = Snakepit.Hardware.select(:cpu)
{:ok, {:cuda, 1}} = Snakepit.Hardware.select({:cuda, 1}) # Specific GPU
	Option	Description
	:auto	Automatically select best available
	:cpu	Select CPU (always succeeds)
	:cuda	Select CUDA device 0
	:mps	Select Apple MPS
	:rocm	Select ROCm device 0
	{:cuda, id}	Select specific CUDA device
	{:rocm, id}	Select specific ROCm device

Hardware.select_with_fallback/1
Tries devices in order until one is available. Useful for graceful degradation.
{:ok, device} = Snakepit.Hardware.select_with_fallback([:cuda, :mps, :cpu])
On CUDA: {:ok, {:cuda, 0}}
On Mac: {:ok, :mps}
Otherwise: {:ok, :cpu}
Hardware.identity/0
Returns a hardware identity map for lock files and reproducible environments.
identity = Snakepit.Hardware.identity()
=> %{"platform" => "linux-x86_64", "accelerator" => "cuda",
"cpu_features" => ["avx", "avx2"], "gpu_count" => 2}

File.write!("hardware.lock", Jason.encode!(identity))
Accelerator Details
CPU Features
	AVX/AVX2: Vector operations for numerical computing
	AVX-512: Advanced vector extensions for HPC
	SSE4.1/SSE4.2: Streaming SIMD extensions
	FMA: Fused multiply-add operations

CUDA (NVIDIA)
Detection provides: driver/runtime versions, cuDNN version, per-device name, memory, and compute capability.
MPS (Apple Silicon)
Detection provides: availability, device name, unified memory total.
ROCm (AMD)
Detection provides: ROCm version, per-device name and memory.
Complete ML Workload Example
defmodule MyApp.MLWorker do
 alias Snakepit.Hardware

 def select_device do
 caps = Hardware.capabilities()
 cond do
 caps.cuda and caps.cudnn -> Hardware.select(:cuda)
 caps.mps -> Hardware.select(:mps)
 true -> {:ok, :cpu}
 end
 end

 def run_inference(model, input) do
 {:ok, device} = select_device()
 Snakepit.execute("inference", %{model: model, input: input, device: format_device(device)})
 end

 defp format_device(:cpu), do: "cpu"
 defp format_device(:mps), do: "mps"
 defp format_device({:cuda, id}), do: "cuda:#{id}"
 defp format_device({:rocm, id}), do: "rocm:#{id}"
end
Cache Management
Snakepit.Hardware.clear_cache() # Force re-detection

 Fault Tolerance - Snakepit v0.9.1

 Fault Tolerance

Snakepit provides fault tolerance mechanisms to build resilient applications that gracefully handle worker failures and transient errors.
Overview
	Component	Purpose
	CircuitBreaker	Prevents cascading failures by stopping calls to failing services
	RetryPolicy	Configurable retry with exponential backoff and jitter
	HealthMonitor	Tracks worker crashes within a rolling time window
	Executor	Convenience wrappers combining fault tolerance patterns

Circuit Breaker
The Snakepit.CircuitBreaker implements the circuit breaker pattern to prevent cascading failures.
States
	State	Description
	:closed	Normal operation. All calls allowed.
	:open	Threshold exceeded. Calls rejected with {:error, :circuit_open}.
	:half_open	Testing recovery. Limited probe calls allowed.

Configuration
	Option	Default	Description
	:name	nil	GenServer registration name
	:failure_threshold	5	Failures before opening
	:reset_timeout_ms	30000	Time before half-open
	:half_open_max_calls	1	Probe calls in half-open

API
Start circuit breaker
{:ok, cb} = Snakepit.CircuitBreaker.start_link(
 name: :my_cb, failure_threshold: 5, reset_timeout_ms: 30_000
)

Execute through circuit breaker
case Snakepit.CircuitBreaker.call(cb, fn -> risky_operation() end) do
 {:ok, result} -> handle_success(result)
 {:error, :circuit_open} -> handle_circuit_open()
 {:error, reason} -> handle_error(reason)
end

Check state and stats
state = Snakepit.CircuitBreaker.state(cb) # => :closed | :open | :half_open
stats = Snakepit.CircuitBreaker.stats(cb)
=> %{state: :closed, failure_count: 2, success_count: 150, failure_threshold: 5}

Manual reset
Snakepit.CircuitBreaker.reset(cb)
Example
defmodule MyApp.ExternalService do
 alias Snakepit.CircuitBreaker

 def start_link do
 CircuitBreaker.start_link(name: :api_cb, failure_threshold: 5, reset_timeout_ms: 30_000)
 end

 def call_api(params) do
 case CircuitBreaker.call(:api_cb, fn -> do_api_call(params) end) do
 {:ok, result} -> {:ok, result}
 {:error, :circuit_open} -> {:ok, get_cached_result(params)}
 {:error, reason} -> {:error, reason}
 end
 end
end
Retry Policies
The Snakepit.RetryPolicy provides configurable retry behavior with exponential backoff.
RetryPolicy.new/1
	Option	Default	Description
	:max_attempts	3	Maximum retry attempts
	:backoff_ms	[100, 200, 400, 800, 1600]	Backoff delays per attempt
	:base_backoff_ms	100	Base delay for exponential calculation
	:backoff_multiplier	2.0	Multiplier for exponential backoff
	:max_backoff_ms	30000	Maximum backoff cap
	:jitter	false	Enable random jitter
	:jitter_factor	0.25	Jitter range as fraction of delay
	:retriable_errors	[:timeout, :unavailable, :connection_refused, :worker_crash]	Errors to retry

API
policy = Snakepit.RetryPolicy.new(
 max_attempts: 3, backoff_ms: [100, 200, 400], jitter: true,
 retriable_errors: [:timeout, :unavailable]
)

Snakepit.RetryPolicy.should_retry?(policy, attempt) # More retries available?
Snakepit.RetryPolicy.retry_for_error?(policy, error) # Is error retriable?
Snakepit.RetryPolicy.backoff_for_attempt(policy, attempt) # Get delay for attempt
Exponential Backoff with Jitter
With jitter enabled: delay = base_delay +/- (base_delay * jitter_factor)
For 100ms delay with 0.25 jitter: actual delay is 75-125ms. This prevents "thundering herd" problems.
Example
defmodule MyApp.ResilientClient do
 alias Snakepit.RetryPolicy

 def fetch_with_retry(url) do
 policy = RetryPolicy.new(max_attempts: 3, backoff_ms: [100, 200, 400], jitter: true)
 do_fetch(url, policy, 1)
 end

 defp do_fetch(url, policy, attempt) do
 case HTTPoison.get(url) do
 {:ok, response} -> {:ok, response}
 {:error, _} = error ->
 if RetryPolicy.should_retry?(policy, attempt) and RetryPolicy.retry_for_error?(policy, error) do
 Process.sleep(RetryPolicy.backoff_for_attempt(policy, attempt))
 do_fetch(url, policy, attempt + 1)
 else
 error
 end
 end
 end
end
Health Monitoring
The Snakepit.HealthMonitor tracks crashes within a rolling window.
Configuration
	Option	Default	Description
	:name	required	GenServer registration name
	:pool	required	Pool name to monitor
	:max_crashes	10	Max crashes before unhealthy
	:crash_window_ms	60000	Rolling window duration
	:check_interval_ms	30000	Cleanup interval

API
{:ok, hm} = Snakepit.HealthMonitor.start_link(
 name: :pool_health, pool: :default, max_crashes: 10, crash_window_ms: 60_000
)

Snakepit.HealthMonitor.record_crash(hm, "worker_1", %{reason: :segfault})
Snakepit.HealthMonitor.healthy?(hm) # => true | false

stats = Snakepit.HealthMonitor.stats(hm)
=> %{pool: :default, total_crashes: 15, crashes_in_window: 3, is_healthy: true}

health = Snakepit.HealthMonitor.worker_health(hm, "worker_1")
=> %{healthy: false, crash_count: 5, last_crash_time: 1703836800000}
Example
defmodule MyApp.HealthAwarePool do
 alias Snakepit.HealthMonitor

 def execute_with_health_check(pool_name, fun) do
 hm = :"#{pool_name}_health"
 unless HealthMonitor.healthy?(hm), do: Logger.warning("Pool unhealthy")

 case fun.() do
 {:error, {:worker_crash, info}} = error ->
 HealthMonitor.record_crash(hm, info.worker_id, %{reason: info.reason})
 error
 result -> result
 end
 end
end
Executor Helpers
The Snakepit.Executor provides convenience wrappers.
execute_with_timeout/2
result = Snakepit.Executor.execute_with_timeout(fn -> slow_op() end, timeout_ms: 5000)
=> {:ok, value} | {:error, :timeout}
execute_with_retry/2
result = Snakepit.Executor.execute_with_retry(fn -> api_call() end,
 max_attempts: 3, backoff_ms: [100, 200, 400], jitter: true
)
execute_with_protection/3
Combines retry with circuit breaker for defense in depth.
{:ok, cb} = Snakepit.CircuitBreaker.start_link(failure_threshold: 5)

result = Snakepit.Executor.execute_with_protection(cb, fn -> risky_op() end,
 max_attempts: 3, backoff_ms: [100, 200, 400]
)
execute_batch/2
Executes multiple functions in parallel.
functions = [fn -> fetch(1) end, fn -> fetch(2) end, fn -> fetch(3) end]
results = Snakepit.Executor.execute_batch(functions, timeout_ms: 10_000, max_concurrency: 5)
=> [{:ok, r1}, {:ok, r2}, {:error, :not_found}]
Combined Protection Example
defmodule MyApp.ResilientService do
 alias Snakepit.{CircuitBreaker, Executor}

 def start_link do
 CircuitBreaker.start_link(name: :service_cb, failure_threshold: 5, reset_timeout_ms: 30_000)
 end

 def call_service(params) do
 Executor.execute_with_protection(:service_cb,
 fn -> Snakepit.execute("service", params, timeout: 5000) end,
 max_attempts: 3, backoff_ms: [100, 500, 1000], jitter: true
)
 end

 def health_status do
 %{
 state: CircuitBreaker.state(:service_cb),
 stats: CircuitBreaker.stats(:service_cb)
 }
 end
end
Telemetry Events
	Event	Measurements	Metadata
	[:snakepit, :circuit_breaker, :opened]	%{failure_count: n}	%{pool: name}
	[:snakepit, :circuit_breaker, :closed]	%{}	%{pool: name}
	[:snakepit, :retry, :attempt]	%{attempt: n, delay_ms: ms}	%{}
	[:snakepit, :retry, :exhausted]	%{attempts: n}	%{last_error: error}
	[:snakepit, :worker, :crash]	%{}	%{pool: name, worker_id: id}

 Streaming - Snakepit v0.9.1

 Streaming

Snakepit supports streaming execution for real-time progress updates, large data transfers, and continuous data streams.
When to Use Streaming
	Progress updates: Long-running ML operations reporting incremental progress
	Large data transfers: Datasets too large for single responses
	Real-time data: Continuous sensor data, log streams, or live predictions
	Batch processing: Results delivered as items complete

For simple request-response patterns, use Snakepit.execute/3 instead.
Snakepit.execute_stream/4
@spec execute_stream(command(), args(), callback_fn(), keyword()) ::
 :ok | {:error, Snakepit.Error.t()}
	Parameter	Type	Description
	command	String.t()	The streaming command
	args	map()	Command arguments
	callback_fn	(term() -> any())	Called for each chunk
	opts	keyword()	Execution options

	Option	Default	Description
	:pool	Snakepit.Pool	Pool to use
	:timeout	300000	Timeout in ms
	:session_id	nil	Session affinity

Basic Example
:ok = Snakepit.execute_stream("process_items", %{items: list}, fn chunk ->
 IO.puts("Received: #{inspect(chunk)}")
end)
Callback Function
The callback is invoked for each chunk, synchronously and in order.
Logging
callback = fn chunk -> IO.inspect(chunk) end

Sending to another process
callback = fn chunk -> send(consumer_pid, {:chunk, chunk}) end
Python Streaming Tools
Enabling Streaming
Use supports_streaming=True in the @tool decorator:
from snakepit_bridge.base_adapter import BaseAdapter, tool

class MyAdapter(BaseAdapter):

 @tool(description="Stream progress", supports_streaming=True)
 def stream_progress(self, steps: int = 10):
 for i in range(steps):
 yield {"step": i + 1, "total": steps, "progress": (i + 1) / steps * 100}
Using Generators
Each yield becomes a chunk sent to Elixir:
@tool(description="Stream numbers", supports_streaming=True)
def stream_numbers(self, count: int = 10):
 for i in range(count):
 yield {"number": i, "is_last": i == count - 1}
StreamChunk Class
For explicit control over the final marker:
from snakepit_bridge.adapters.showcase.tool import StreamChunk

@tool(description="Stream with metadata", supports_streaming=True)
def stream_items(self, count: int = 5):
 for i in range(count):
 yield StreamChunk(
 data={"index": i + 1, "value": f"Item {i + 1}"},
 is_final=(i == count - 1)
)
Progress Update Patterns
Training Progress
@tool(description="Train with progress", supports_streaming=True)
def train_model(self, epochs: int = 10):
 for epoch in range(epochs):
 loss = 1.0 / (epoch + 1)
 accuracy = min(0.95, 0.5 + epoch * 0.05)
 yield {"type": "progress", "epoch": epoch + 1, "loss": loss, "accuracy": accuracy}

 yield {"type": "complete", "final_loss": loss, "final_accuracy": accuracy}
Elixir consumer:
:ok = Snakepit.execute_stream("train_model", %{epochs: 10}, fn chunk ->
 case chunk["type"] do
 "progress" -> IO.puts("Epoch #{chunk["epoch"]}: loss=#{chunk["loss"]}")
 "complete" -> IO.puts("Training complete!")
 end
end)
Large Data Transfer Patterns
Chunked Dataset
@tool(description="Generate dataset", supports_streaming=True)
def generate_dataset(self, rows: int = 10000, chunk_size: int = 1000):
 import numpy as np
 total_sent = 0
 while total_sent < rows:
 batch = min(chunk_size, rows - total_sent)
 data = np.random.randn(batch, 10)
 total_sent += batch
 yield StreamChunk(
 data={"rows": batch, "total": total_sent, "data": data.tolist()},
 is_final=(total_sent >= rows)
)
Error Handling in Streams
Python Errors
Exceptions propagate to Elixir:
case Snakepit.execute_stream("may_fail", %{}, callback) do
 :ok -> IO.puts("Success")
 {:error, error} -> IO.puts("Failed: #{error.message}")
end
Stream Cancellation
task = Task.async(fn ->
 Snakepit.execute_stream("infinite_stream", %{}, fn chunk ->
 IO.puts("Received: #{inspect(chunk)}")
 end)
end)

Process.sleep(5000)
Task.shutdown(task, :brutal_kill) # Cancel stream
Complete Streaming Example
Python Adapter
from snakepit_bridge.base_adapter import BaseAdapter, tool
from snakepit_bridge.adapters.showcase.tool import StreamChunk
import time

class MLStreamingAdapter(BaseAdapter):

 @tool(description="Train with streaming progress", supports_streaming=True)
 def train_with_progress(self, epochs: int = 10):
 loss, accuracy = 1.0, 0.5
 for epoch in range(epochs):
 time.sleep(0.5)
 loss *= 0.8
 accuracy = min(0.99, accuracy + 0.05)
 yield StreamChunk(
 data={"epoch": epoch + 1, "loss": round(loss, 4), "accuracy": round(accuracy, 4)},
 is_final=False
)
 yield StreamChunk(
 data={"status": "complete", "model_id": f"model_{int(time.time())}"},
 is_final=True
)
Elixir Consumer
defmodule MyApp.MLClient do
 require Logger

 def train_model(epochs) do
 Logger.info("Starting training")

 result = Snakepit.execute_stream("train_with_progress", %{epochs: epochs}, fn chunk ->
 if chunk["status"] == "complete" do
 Logger.info("Complete! Model: #{chunk["model_id"]}")
 else
 Logger.info("Epoch #{chunk["epoch"]}: loss=#{chunk["loss"]}, acc=#{chunk["accuracy"]}")
 end
 end)

 case result do
 :ok -> {:ok, "Training completed"}
 {:error, e} -> {:error, e}
 end
 end
end
Performance Considerations
	Chunk size: Balance responsiveness vs efficiency (1000-10000 items typical)
	Callback overhead: Keep callbacks lightweight; offload heavy processing
	Timeouts: Default is 5 minutes; adjust with :timeout option
	Memory: Streaming reduces peak memory by processing incrementally
	gRPC required: Streaming only works with gRPC adapters

Server-Side Streaming Implementation
Snakepit's BridgeServer fully implements ExecuteStreamingTool,
enabling end-to-end gRPC streaming from external clients through to Python workers.
Requirements for Streaming Tools
	Tool must be a remote (Python) tool
	Tool must have supports_streaming: true in metadata
	Python adapter must implement the streaming tool as a generator

Enabling a Tool for Streaming
In your Python adapter:
@tool(description="Stream results", supports_streaming=True)
def my_streaming_tool(self, param: str):
 for i in range(10):
 yield {"step": i, "result": f"Processing {param}"}
The tool will be registered with streaming support automatically.
Stream Chunk Metadata
Final chunks include automatic metadata decoration:
	execution_time_ms: Total execution time in milliseconds
	tool_type: The type of tool (always "remote" for streaming)
	worker_id: The ID of the worker that executed the tool

If the worker doesn't send a final chunk, Snakepit injects a synthetic final chunk
with synthetic_final: "true" in metadata.

 Python Adapters - Snakepit v0.9.1

 Python Adapters

This guide covers creating Python adapters for Snakepit, including tool definition, session management, streaming, thread safety, and bidirectional communication with Elixir.
Overview
Python adapters expose Python functionality to Elixir through Snakepit's gRPC bridge. An adapter is a Python class that:
	Inherits from BaseAdapter (or ThreadSafeAdapter for concurrent workloads)
	Defines tools using the @tool decorator
	Handles requests from Elixir and returns results
	Optionally calls back into Elixir tools

Creating an Adapter
BaseAdapter Inheritance
All Python adapters inherit from BaseAdapter:
from snakepit_bridge.base_adapter import BaseAdapter, tool

class MyAdapter(BaseAdapter):
 """Custom adapter implementing Python tools."""

 def __init__(self):
 super().__init__()
 self.session_context = None

 def set_session_context(self, session_context):
 """Called by the framework to inject session context."""
 self.session_context = session_context
The @tool Decorator
The @tool decorator marks methods as tools and attaches metadata for registration:
class MyAdapter(BaseAdapter):

 @tool(description="Add two numbers together")
 def add(self, a: float, b: float) -> float:
 return a + b

 @tool(
 description="Search for items",
 supports_streaming=True,
 required_variables=["api_key"]
)
 def search(self, query: str, limit: int = 10):
 return {"results": [], "query": query}
Decorator Options:
	Option	Type	Default	Description
	description	str	Docstring	Human-readable description
	supports_streaming	bool	False	Enable streaming responses
	required_variables	List[str]	[]	Required environment/session variables

Parameter Types and Serialization
Snakepit infers parameter types from Python type annotations:
	Python Type	Protobuf Type	Notes
	str	string	UTF-8 encoded
	int	integer	64-bit integers
	float	float	Double precision
	bool	boolean	True/False
	list	embedding	Lists of floats
	dict	map	Nested structures
	np.ndarray	tensor	Shape preserved
	bytes	binary	Raw binary data

Per-Request Lifecycle
Adapters follow a per-request lifecycle:
	A new adapter instance is created for each incoming RPC request
	initialize() is called (if defined) at the start of each request
	The tool is executed via execute_tool() or a decorated method
	cleanup() is called (if defined) at the end of each request, even on error

Both initialize() and cleanup() can be sync or async.
Module-level cache for expensive resources
_model_cache = {}

class MLAdapter(BaseAdapter):

 def __init__(self):
 super().__init__()
 self.model = None

 def initialize(self):
 """Called at the start of each request."""
 # Cache expensive resources at module level
 if "model" not in _model_cache:
 _model_cache["model"] = load_model("my-model")
 self.model = _model_cache["model"]

 def cleanup(self):
 """Called at the end of each request (even on error)."""
 # Release request-specific resources here
 pass
Important: Since adapters are instantiated per-request, do NOT rely on instance state
persisting across requests. Use module-level caches (as shown above) or external stores
for state that must survive across requests.
Session Context
Accessing session_id
@tool(description="Get session info")
def get_session_info(self) -> dict:
 return {
 "session_id": self.session_context.session_id,
 "metadata": self.session_context.request_metadata
 }
call_elixir_tool() for Cross-Language Calls
@tool(description="Call an Elixir tool")
def call_backend_tool(self, operation: str, data: dict) -> dict:
 if operation not in self.session_context.elixir_tools:
 raise ValueError(f"Tool '{operation}' not found")

 return self.session_context.call_elixir_tool(
 operation,
 input=data,
 options={"timeout": 5000}
)
elixir_tools Proxy
The session context lazily loads available Elixir tools:
available_tools = self.session_context.elixir_tools
Returns: {"validate_data": {"name": "validate_data", "parameters": {...}}, ...}
Streaming Tools
Enabling Streaming
Mark a tool as streaming-capable with supports_streaming=True:
@tool(description="Stream data chunks", supports_streaming=True)
def stream_data(self, count: int = 5):
 for i in range(count):
 yield StreamChunk(
 data={"index": i + 1, "total": count},
 is_final=(i == count - 1)
)
 time.sleep(0.5)
Streaming Patterns
Progress Updates:
@tool(description="Long operation", supports_streaming=True)
def long_operation(self, steps: int = 10):
 for i in range(steps):
 yield StreamChunk({
 "progress": (i + 1) / steps * 100,
 "status": "processing"
 }, is_final=False)

 yield StreamChunk({"status": "complete"}, is_final=True)
Large Dataset Generation:
@tool(description="Generate dataset", supports_streaming=True)
def generate_dataset(self, rows: int = 1000, chunk_size: int = 100):
 total_sent = 0
 while total_sent < rows:
 batch = min(chunk_size, rows - total_sent)
 total_sent += batch
 yield StreamChunk({
 "data": np.random.randn(batch, 10).tolist()
 }, is_final=(total_sent >= rows))
Thread-Safe Adapters (Python 3.13+)
ThreadSafeAdapter Class
For concurrent request handling in multi-threaded environments:
from snakepit_bridge.base_adapter_threaded import ThreadSafeAdapter, thread_safe_method

class ConcurrentMLAdapter(ThreadSafeAdapter):
 __thread_safe__ = True

 def __init__(self):
 super().__init__()
 self.model = load_model("shared-model") # Shared read-only
 self.request_log = [] # Shared mutable: requires locking
The @thread_safe_method Decorator
@thread_safe_method
@tool(description="Make a prediction")
def predict(self, input_data: str) -> dict:
 # Pattern 1: Read shared config (no lock needed)
 model_name = self.config["model_name"]

 # Pattern 2: Thread-local cache
 cache = self.get_thread_local('cache', {})
 if input_data in cache:
 return cache[input_data]

 result = self.model.predict(input_data)
 cache[input_data] = result
 self.set_thread_local('cache', cache)

 # Pattern 3: Write to shared state (MUST use lock)
 with self.acquire_lock():
 self.request_log.append(result)

 return result
Thread-Local Storage
cache = self.get_thread_local('my_cache', {}) # Get with default
self.set_thread_local('my_cache', updated) # Set value
self.clear_thread_local('my_cache') # Clear specific key
self.clear_thread_local() # Clear all
acquire_lock() for Shared State
with self.acquire_lock():
 self.shared_counter += 1
 self.shared_list.append(item)
Bidirectional Tool Bridge
Registering Elixir Tools
On the Elixir side, register tools with exposed_to_python: true:
alias Snakepit.Bridge.ToolRegistry

ToolRegistry.register_elixir_tool(
 session_id,
 "validate_schema",
 &MyModule.validate_schema/1,
 %{
 description: "Validate data against schema",
 exposed_to_python: true,
 parameters: [%{name: "data", type: "map", required: true}]
 }
)
Python Calling Elixir Tools
@tool(description="Process with validation")
def process_with_validation(self, data: dict) -> dict:
 validation = self.session_context.call_elixir_tool(
 "validate_schema",
 data=data,
 schema_name="user_input"
)

 if not validation.get("valid"):
 return {"error": "Validation failed", "details": validation.get("errors")}

 return {"success": True, "result": self.process_data(data)}
Complete Workflow Example
class MLPipelineAdapter(BaseAdapter):
 @tool(description="Run ML pipeline")
 def run_pipeline(self, input_data: dict) -> dict:
 # 1. Validate via Elixir
 validation = self.session_context.call_elixir_tool("validate_input", data=input_data)
 if not validation["valid"]:
 return {"error": "Invalid input"}

 # 2. ML inference (Python)
 predictions = self.model.predict(input_data["features"])

 # 3. Store via Elixir
 storage = self.session_context.call_elixir_tool(
 "store_predictions",
 predictions=predictions.tolist()
)

 return {"success": True, "prediction_id": storage["id"]}
Complete Adapter Example
from typing import Dict, Any
import time
import numpy as np
from snakepit_bridge.base_adapter import BaseAdapter, tool
from snakepit_bridge import telemetry

Module-level cache for expensive resources
_model = None

class ExampleAdapter(BaseAdapter):
 def __init__(self):
 super().__init__()
 self.session_context = None
 self.model = None

 def set_session_context(self, ctx):
 self.session_context = ctx

 def initialize(self):
 """Per-request initialization - load from cache."""
 global _model
 if _model is None:
 _model = self.load_model()
 self.model = _model

 def cleanup(self):
 """Per-request cleanup - release request-specific resources."""
 pass # Model stays cached at module level

 @tool(description="Echo input")
 def echo(self, message: str) -> str:
 return f"Echo: {message}"

 @tool(description="Add two numbers")
 def add(self, a: float, b: float) -> float:
 return a + b

 @tool(description="ML prediction")
 def predict(self, input_data: Dict[str, Any]) -> Dict[str, Any]:
 with telemetry.span("prediction", {"input_size": len(str(input_data))}):
 features = np.array(input_data.get("features", []))
 prediction = self.model.predict(features)
 return {"prediction": prediction.tolist()}

 @tool(description="Stream progress", supports_streaming=True)
 def process_with_progress(self, items: int = 10):
 for i in range(items):
 time.sleep(0.1)
 yield {"data": {"item": i + 1, "progress": (i + 1) / items * 100},
 "is_final": (i == items - 1)}

 @tool(description="Validate and process")
 def validate_and_process(self, data: Dict[str, Any]) -> Dict[str, Any]:
 validation = self.session_context.call_elixir_tool("validate", data=data)
 if not validation.get("valid"):
 return {"error": "Validation failed"}
 result = self.process_data(data)
 self.session_context.call_elixir_tool("store_result", result=result)
 return {"success": True, "result": result}
Generating Adapter Scaffolding
mix snakepit.gen.adapter my_adapter

Creates priv/python/my_adapter/ with adapter.py and handler directories.
Configure in your pool:
adapter_args: ["--adapter", "my_adapter.adapter.MyAdapter"]

 Observability - Snakepit v0.9.1

 Observability

This guide covers Snakepit's telemetry system for monitoring, metrics, and distributed tracing across Elixir and Python workers.
Overview
Snakepit provides a unified observability system built on Elixir's standard :telemetry library. All events from both Elixir infrastructure and Python workers flow through the same interface, enabling performance monitoring, resource tracking, worker health monitoring, and distributed tracing.
Key features:
	Python-to-Elixir Event Folding - Python metrics appear as Elixir :telemetry events
	Atom Safety - Curated event catalog prevents atom table exhaustion
	Runtime Control - Adjust sampling rates and filtering without restarting workers
	Low Overhead - Less than 10 microseconds per event

Telemetry Event Categories
Pool Events ([:snakepit, :pool, :*])
[:snakepit, :pool, :initialized] # Pool initialization complete
[:snakepit, :pool, :status] # Periodic pool status snapshot
[:snakepit, :pool, :queue, :enqueued] # Request queued
[:snakepit, :pool, :queue, :dequeued] # Request dequeued
[:snakepit, :pool, :queue, :timeout] # Request timed out in queue
[:snakepit, :pool, :saturated] # Pool reached capacity

[:snakepit, :pool, :worker, :spawn_started] # Worker spawn initiated
[:snakepit, :pool, :worker, :spawned] # Worker ready
[:snakepit, :pool, :worker, :spawn_failed] # Worker failed to start
[:snakepit, :pool, :worker, :terminated] # Worker terminated
[:snakepit, :pool, :worker, :restarted] # Worker restarted
gRPC Worker Events ([:snakepit, :grpc_worker, :*])
[:snakepit, :grpc, :call, :start] # gRPC call initiated
[:snakepit, :grpc, :call, :stop] # gRPC call completed
[:snakepit, :grpc, :call, :exception] # gRPC call failed

[:snakepit, :grpc, :stream, :opened] # Stream opened
[:snakepit, :grpc, :stream, :message] # Stream message
[:snakepit, :grpc, :stream, :closed] # Stream closed

[:snakepit, :grpc, :connection, :established] # Channel connected
[:snakepit, :grpc, :connection, :lost] # Connection lost
[:snakepit, :grpc, :connection, :reconnected] # Reconnected
Python Events ([:snakepit, :python, :*])
[:snakepit, :python, :call, :start] # Command started
[:snakepit, :python, :call, :stop] # Command completed
[:snakepit, :python, :call, :exception] # Command raised exception

[:snakepit, :python, :tool, :execution, :start] # Tool started
[:snakepit, :python, :tool, :execution, :stop] # Tool completed
[:snakepit, :python, :tool, :execution, :exception] # Tool failed

[:snakepit, :python, :memory, :sampled] # Memory usage
[:snakepit, :python, :cpu, :sampled] # CPU usage
Script Shutdown Events ([:snakepit, :script, :shutdown, :*]) (v0.9.0+)
[:snakepit, :script, :shutdown, :start] # Shutdown sequence started
[:snakepit, :script, :shutdown, :stop] # Snakepit application stopped
[:snakepit, :script, :shutdown, :cleanup] # Worker cleanup completed
[:snakepit, :script, :shutdown, :exit] # VM exit applied
Metadata includes: run_id, exit_mode, stop_mode, owned?, status, cleanup_result.
cleanup_result may be :skipped when cleanup is disabled (cleanup_timeout: 0).
See docs/20251229/documentation-overhaul/01-core-api.md#telemetry-contract-090 for details.
Attaching Handlers
Use :telemetry.attach/4 or :telemetry.attach_many/4:
defmodule MyApp.Application do
 def start(_type, _args) do
 # Attach handlers BEFORE starting Snakepit
 :telemetry.attach(
 "python-monitor",
 [:snakepit, :python, :call, :stop],
 &MyApp.Telemetry.handle_python_call/4,
 nil
)

 :telemetry.attach_many(
 "pool-monitor",
 [
 [:snakepit, :pool, :worker, :spawned],
 [:snakepit, :pool, :worker, :terminated]
],
 &MyApp.Telemetry.handle_pool_event/4,
 nil
)

 # ... start children
 end
end
Measurements and Metadata
defmodule MyApp.Telemetry do
 require Logger

 def handle_python_call(_event, measurements, metadata, _config) do
 duration_ms = measurements.duration / 1_000_000

 Logger.info("Python call completed",
 command: metadata.command,
 duration_ms: duration_ms,
 worker_id: metadata.worker_id
)

 if duration_ms > 1000 do
 Logger.warning("Slow Python call: #{metadata.command}")
 end
 end
end
Logging Configuration
config :snakepit,
 log_level: :info # :debug | :info | :warning | :error | :none
Log Categories
Fine-tune logging by category:
config :snakepit,
 log_level: :info,
 log_categories: %{
 pool: :debug,
 worker: :info,
 grpc: :warning
 }
Per-Process Log Levels
Snakepit.Logger.set_process_level("worker_1", :debug)
Snakepit.Logger.reset_process_level("worker_1")
OpenTelemetry Integration
Configuration
mix.exs
{:opentelemetry_telemetry, "~> 1.0"},
{:opentelemetry_exporter, "~> 1.0"}

config/config.exs
config :snakepit,
 opentelemetry: %{
 enabled: true,
 exporters: %{otlp: %{endpoint: "http://collector:4318"}}
 }
Trace Correlation
:telemetry.attach_many(
 "otel-tracer",
 [
 [:snakepit, :python, :call, :start],
 [:snakepit, :python, :call, :stop],
 [:snakepit, :python, :call, :exception]
],
 &OpentelemetryTelemetry.handle_event/4,
 %{span_name: "snakepit.python.call"}
)
Python Telemetry API
telemetry.emit()
from snakepit_bridge import telemetry

telemetry.emit(
 "tool.execution.stop",
 {"duration": 1234, "bytes": 5000},
 {"tool": "predict", "status": "success"},
 correlation_id="abc-123"
)
telemetry.span()
Automatically emits start/stop/exception events:
@tool(description="Perform inference")
def inference(self, input_data: str) -> dict:
 with telemetry.span("inference", {"model": "gpt-4"}):
 result = self.model.predict(input_data)
 return result
Nested spans:
def complex_operation(self, data):
 with telemetry.span("complex_operation"):
 with telemetry.span("preprocessing"):
 processed = self.preprocess(data)
 with telemetry.span("inference"):
 result = self.model.predict(processed)
 return result
Correlation IDs
correlation_id = telemetry.new_correlation_id()
telemetry.set_correlation_id(correlation_id)
current_id = telemetry.get_correlation_id()
telemetry.reset_correlation_id()
Complete Monitoring Example
defmodule MyApp.SnakepitMonitor do
 use Supervisor
 import Telemetry.Metrics

 def start_link(arg) do
 Supervisor.start_link(__MODULE__, arg, name: __MODULE__)
 end

 def init(_arg) do
 attach_handlers()
 children = [{:telemetry_metrics_prometheus, metrics: metrics()}]
 Supervisor.init(children, strategy: :one_for_one)
 end

 defp attach_handlers do
 :telemetry.attach("slow-calls", [:snakepit, :python, :call, :stop],
 fn _event, %{duration: d}, meta, _ ->
 if d / 1_000_000 > 1000 do
 Logger.warning("Slow call: #{meta.command}")
 end
 end, nil)

 :telemetry.attach("queue-depth", [:snakepit, :pool, :status],
 fn _event, %{queue_depth: depth}, meta, _ ->
 if depth > 50 do
 Logger.error("High queue depth: #{depth}")
 end
 end, nil)
 end

 defp metrics do
 [
 last_value("snakepit.pool.status.queue_depth", tags: [:pool_name]),
 last_value("snakepit.pool.status.available_workers", tags: [:pool_name]),
 summary("snakepit.python.call.stop.duration",
 unit: {:native, :millisecond}, tags: [:command]),
 counter("snakepit.python.call.exception.count", tags: [:error_type]),
 counter("snakepit.pool.worker.spawned.count", tags: [:pool_name])
]
 end
end

 Python Threading Guide - Snakepit v0.9.1

 Snakepit Multi-Threaded Python Workers

Guide to writing thread-safe adapters for Python 3.13+ free-threading mode.
Table of Contents
	Overview
	When to Use Threaded Mode
	Quick Start
	Thread Safety Patterns
	Writing Thread-Safe Adapters
	Testing for Thread Safety
	Performance Optimization
	Common Pitfalls
	Library Compatibility

Overview
Snakepit includes multi-threaded Python workers that can handle multiple concurrent requests within a single Python process. This is designed for Python 3.13+ free-threading mode (PEP 703) which removes the Global Interpreter Lock (GIL).
Architecture Comparison
	Mode	Description	Best For
	Process	Many single-threaded Python processes	I/O-bound, legacy Python, high concurrency
	Thread	Few multi-threaded Python processes	CPU-bound, Python 3.13+, large data

When to Use Threaded Mode
✅ Use threaded mode when:
	Running Python 3.13+ with free-threading enabled
	CPU-intensive workloads (NumPy, PyTorch, data processing)
	Large shared data (models, configurations)
	Low memory overhead required

❌ Use process mode when:
	Running Python ≤3.12 (GIL present)
	Thread-unsafe libraries (Pandas, Matplotlib, SQLite3)
	Maximum process isolation needed
	Debugging thread issues

Quick Start
1. Start Threaded Server
python grpc_server_threaded.py \
 --port 50052 \
 --adapter snakepit_bridge.adapters.threaded_showcase.ThreadedShowcaseAdapter \
 --elixir-address localhost:50051 \
 --max-workers 16 \
 --thread-safety-check

2. Configure Pool in Elixir
config/config.exs
config :snakepit,
 pools: [
 %{
 name: :hpc_pool,
 worker_profile: :thread,
 pool_size: 4, # 4 processes
 threads_per_worker: 16, # 64 total capacity
 adapter_module: Snakepit.Adapters.GRPCPython,
 adapter_args: ["--mode", "threaded", "--max-workers", "16"],
 adapter_env: [
 {"OPENBLAS_NUM_THREADS", "16"},
 {"OMP_NUM_THREADS", "16"}
]
 }
]
3. Execute from Elixir
{:ok, result} = Snakepit.execute(:hpc_pool, "compute_intensive", %{data: [1,2,3]})

Thread Safety Patterns
Pattern 1: Shared Read-Only Resources
Resources that are loaded once and never modified are safe for concurrent access.
class MyAdapter(ThreadSafeAdapter):
 __thread_safe__ = True

 def __init__(self):
 super().__init__()
 # Safe: Loaded once, never modified
 self.model = load_pretrained_model()
 self.config = {"timeout": 30, "batch_size": 10}
Examples: Pre-trained models, configuration dictionaries, lookup tables
Pattern 2: Thread-Local Storage
Per-thread isolated state that doesn't need sharing.
@thread_safe_method
def predict(self, input_data):
 # Safe: Each thread has its own cache
 cache = self.get_thread_local('cache', {})

 if input_data in cache:
 return cache[input_data]

 result = self.model.predict(input_data)

 # Update thread-local cache
 cache[input_data] = result
 self.set_thread_local('cache', cache)

 return result
Examples: Caches, temporary buffers, request-specific state
Pattern 3: Locked Access to Shared Mutable State
State that must be shared and modified requires explicit locking.
@thread_safe_method
def log_prediction(self, prediction):
 # Safe: Protected by lock
 with self.acquire_lock():
 self.prediction_log.append({
 "prediction": prediction,
 "timestamp": time.time()
 })
 self.total_predictions += 1
Examples: Shared counters, logs, accumulated results

Writing Thread-Safe Adapters
Step 1: Declare Thread Safety
from snakepit_bridge.base_adapter_threaded import ThreadSafeAdapter, thread_safe_method, tool

class MyAdapter(ThreadSafeAdapter):
 __thread_safe__ = True # Required declaration
Step 2: Initialize Safely
def __init__(self):
 super().__init__() # Initialize base class

 # Pattern 1: Shared read-only
 self.model = load_model()

 # Pattern 3: Shared mutable (will need locking)
 self.request_count = 0
 self.results = []
Step 3: Use Decorators
@thread_safe_method
@tool(description="Thread-safe prediction")
def predict(self, input_data: str) -> dict:
 # Method is automatically tracked and protected
 result = self.model.predict(input_data)

 # Update shared state with lock
 with self.acquire_lock():
 self.request_count += 1

 return {"prediction": result}
Step 4: Handle Shared State
@thread_safe_method
def get_stats(self) -> dict:
 # Read shared mutable state safely
 with self.acquire_lock():
 return {
 "request_count": self.request_count,
 "results_count": len(self.results)
 }

Testing for Thread Safety
Method 1: Thread Safety Checker
from snakepit_bridge.thread_safety_checker import ThreadSafetyChecker

Enable checking
checker = ThreadSafetyChecker(enabled=True, strict_mode=False)

Run your tests
def test_concurrent_access():
 adapter = MyAdapter()

 def make_request(i):
 adapter.predict(f"input_{i}")

 threads = [threading.Thread(target=make_request, args=(i,)) for i in range(100)]
 for t in threads:
 t.start()
 for t in threads:
 t.join()

 # Get report
 report = checker.get_report()
 print(report)
Method 2: Stress Testing
import concurrent.futures

def stress_test_adapter():
 adapter = MyAdapter()

 with concurrent.futures.ThreadPoolExecutor(max_workers=20) as executor:
 futures = [executor.submit(adapter.predict, f"input_{i}") for i in range(1000)]
 results = [f.result() for f in futures]

 assert len(results) == 1000
 print("Stress test passed!")
Method 3: Race Condition Detection
def test_race_conditions():
 adapter = MyAdapter()
 results = []

 def increment():
 for _ in range(1000):
 # This WILL have race conditions without locking!
 adapter.counter += 1

 threads = [threading.Thread(target=increment) for _ in range(10)]
 for t in threads:
 t.start()
 for t in threads:
 t.join()

 # If thread-unsafe, counter will be < 10000
 print(f"Counter: {adapter.counter} (expected: 10000)")
 assert adapter.counter == 10000, "Race condition detected!"

Performance Optimization
1. NumPy/SciPy Optimization
NumPy operations release the GIL, enabling true parallelism:
import numpy as np

@thread_safe_method
def matrix_multiply(self, data):
 # This releases GIL - true parallel execution!
 arr = np.array(data)
 result = np.dot(arr, self.weights)
 return result.tolist()
2. Thread Pool Sizing
Rule of thumb: threads = CPU cores × 2
For 8-core machine:
--max-workers 16

3. Reduce Lock Contention
BAD: Lock held during computation
with self.acquire_lock():
 result = expensive_computation() # Blocks other threads!
 self.results.append(result)

GOOD: Lock only for shared state update
result = expensive_computation() # No lock - other threads run
with self.acquire_lock():
 self.results.append(result) # Lock held briefly
4. Use Thread-Local Caching
@thread_safe_method
def compute(self, key):
 # Check thread-local cache first (no lock!)
 cache = self.get_thread_local('cache', {})
 if key in cache:
 return cache[key]

 # Compute and cache
 result = expensive_function(key)
 cache[key] = result
 self.set_thread_local('cache', cache)

 return result

Common Pitfalls
Pitfall 1: Forgetting to Lock Shared State
❌ WRONG: Race condition!
@thread_safe_method
def increment(self):
 self.counter += 1 # NOT thread-safe!

✅ CORRECT:
@thread_safe_method
def increment(self):
 with self.acquire_lock():
 self.counter += 1
Pitfall 2: Locking Inside GIL-Releasing Operations
❌ WRONG: Lock held during NumPy operation
with self.acquire_lock():
 result = np.dot(large_matrix_a, large_matrix_b) # Blocks threads!

✅ CORRECT: Compute first, then lock for state update
result = np.dot(large_matrix_a, large_matrix_b)
with self.acquire_lock():
 self.results.append(result)
Pitfall 3: Using Thread-Unsafe Libraries
❌ WRONG: Pandas is NOT thread-safe
import pandas as pd

@thread_safe_method
def process_data(self, data):
 df = pd.DataFrame(data)
 return df.groupby('category').sum() # Race conditions!

✅ CORRECT: Use thread-local DataFrames or locking
@thread_safe_method
def process_data(self, data):
 with self.acquire_lock():
 df = pd.DataFrame(data)
 return df.groupby('category').sum()
Pitfall 4: Not Declaring Thread Safety
❌ WRONG: Missing declaration
class MyAdapter(ThreadSafeAdapter):
 # __thread_safe__ not declared!
 pass

✅ CORRECT:
class MyAdapter(ThreadSafeAdapter):
 __thread_safe__ = True

Library Compatibility
Thread-Safe Libraries ✅
These libraries release the GIL and are safe for threaded mode:
	Library	Thread-Safe	Notes
	NumPy	✅ Yes	Releases GIL during computation
	SciPy	✅ Yes	Releases GIL for numerical operations
	PyTorch	✅ Yes	Configure with torch.set_num_threads()
	TensorFlow	✅ Yes	Use tf.config.threading API
	Scikit-learn	✅ Yes	Set n_jobs=1 per estimator
	Requests	✅ Yes	Separate sessions per thread
	HTTPx	✅ Yes	Async-first, thread-safe

Thread-Unsafe Libraries ❌
These libraries require process mode or explicit locking:
	Library	Thread-Safe	Workaround
	Pandas	❌ No	Use locking or process mode
	Matplotlib	❌ No	Use threading.local() for figures
	SQLite3	❌ No	Connection per thread

Example: Thread-Safe PyTorch
import torch

class PyTorchAdapter(ThreadSafeAdapter):
 __thread_safe__ = True

 def __init__(self):
 super().__init__()
 # Shared read-only model
 self.model = torch.load("model.pt")
 self.model.eval()

 # Configure threading
 torch.set_num_threads(4) # Per-thread parallelism

 @thread_safe_method
 def inference(self, input_tensor):
 # PyTorch releases GIL during forward pass
 with torch.no_grad():
 output = self.model(torch.tensor(input_tensor))
 return output.tolist()

Advanced Topics
Worker Recycling
Long-running threaded workers can accumulate memory. Configure automatic recycling:
config :snakepit,
 pools: [
 %{
 name: :hpc_pool,
 worker_profile: :thread,
 worker_ttl: {3600, :seconds}, # Recycle hourly
 worker_max_requests: 1000 # Or after 1000 requests
 }
]
Monitoring Thread Utilization
@thread_safe_method
def get_thread_stats(self):
 return self.get_stats()
{:ok, stats} = Snakepit.execute(:hpc_pool, "get_thread_stats", %{})
=> %{
total_requests: 1234,
active_requests: 8,
max_workers: 16,
thread_utilization: %{...}
}

Debugging
Enable Thread Safety Checks
python grpc_server_threaded.py \
 --thread-safety-check # Enable runtime validation

View Detailed Logs
Logs show thread names
2025-10-11 10:30:45 - [ThreadPoolExecutor-0_0] - INFO - Request #1 starting
2025-10-11 10:30:45 - [ThreadPoolExecutor-0_1] - INFO - Request #2 starting

Common Error Messages
⚠️ THREAD SAFETY: Method 'predict' accessed by 5 different threads concurrently.
Solution: Ensure proper locking for shared mutable state.
⚠️ Adapter MyAdapter does not declare thread safety.
Solution: Add __thread_safe__ = True to your adapter class.
⚠️ THREAD SAFETY: Unsafe library 'pandas' detected
Solution: Use process mode or add explicit locking.

Summary
Do's ✅
	Declare __thread_safe__ = True
	Use @thread_safe_method decorator
	Lock shared mutable state
	Use thread-local storage for caches
	Test with concurrent load
	Use NumPy/PyTorch for CPU-bound work

Don'ts ❌
	Don't modify shared state without locking
	Don't use thread-unsafe libraries without protection
	Don't hold locks during expensive operations
	Don't forget to test concurrent access
	Don't use threaded mode with Python ≤3.12

Resources
	PEP 703: Making the GIL Optional
	Python 3.13 Free-Threading Docs
	Snakepit threading technical plan (see project documentation)
	Thread Safety Compatibility Matrix

Need Help?
	Check existing examples in snakepit_bridge/adapters/threaded_showcase.py
	Run thread safety checker with --thread-safety-check
	Review logs for concurrent access warnings
	Test with multiple concurrent requests before deployment

 Production - Snakepit v0.9.1

 Production Deployment

This guide covers deploying Snakepit in production environments, including setup, process management, troubleshooting, and performance tuning.
Pre-Deployment Checklist
Before deploying Snakepit to production:
	[] Python 3.10+ installed (3.13+ for thread-safe adapters)
	[] Virtual environment created with dependencies installed
	[] SNAKEPIT_PYTHON environment variable set (if not using system Python)
	[] gRPC proto files compiled (mix snakepit.setup)
	[] Pool size appropriate for workload
	[] Logging level set (:warning or :error for production)
	[] Telemetry handlers attached
	[] DETS storage directory writable (priv/data/)

Mix Tasks
mix snakepit.setup
Bootstrap the environment, installing Python dependencies and compiling gRPC protos:
mix snakepit.setup

mix snakepit.doctor
Run environment diagnostics:
mix snakepit.doctor

Checks Python version, gRPC tools, proto files, and virtual environment configuration.
mix snakepit.status
Check pool status and worker health:
mix snakepit.status

Output:
Pool: default (process)
 Workers: 8
 Queued: 0
 Requests: 1523
 Errors: 2
mix snakepit.gen.adapter
Generate a Python adapter skeleton:
mix snakepit.gen.adapter my_adapter

Creates priv/python/my_adapter/ with adapter.py. Configure with:
adapter_args: ["--adapter", "my_adapter.adapter.MyAdapter"]
Process Management
Run IDs and Orphan Detection
Each BEAM instance gets a unique run ID on startup, enabling identification of workers belonging to the current process and detection of orphaned workers from crashed instances.
Automatic Cleanup on Restart
When Snakepit starts, it automatically:
	Identifies processes from previous BEAM runs using run IDs
	Sends SIGTERM for graceful shutdown
	Sends SIGKILL to unresponsive processes
	Cleans up stale registry entries

Only processes matching Snakepit's command-line patterns (grpc_server.py with --snakepit-run-id) are considered. To disable:
config :snakepit, :rogue_cleanup, enabled: false
Graceful Shutdown
During application shutdown:
	Workers receive SIGTERM (2 second timeout)
	Unresponsive workers receive SIGKILL
	Final pkill safety net for missed processes

Manual Cleanup
case Snakepit.cleanup() do
 :ok -> Logger.info("Cleanup completed")
 {:timeout, pids} -> Logger.warning("Some processes did not terminate")
end
Script Mode (run_as_script/2)
For short-lived scripts and Mix tasks:
defmodule Mix.Tasks.MyApp.ProcessData do
 use Mix.Task

 def run(args) do
 Snakepit.run_as_script(fn ->
 {:ok, result} = Snakepit.execute("process_batch", %{input: args})
 IO.puts("Complete: #{inspect(result)}")
 end, timeout: 30_000, cleanup_timeout: 10_000, exit_mode: :auto)
 end
end
Defaults are exit_mode: :none and stop_mode: :if_started. Use exit_mode: :auto
for scripts that may run under --no-halt, and set stop_mode: :never for embedded
usage where the host VM must stay alive.
Warning: exit_mode: :halt or :stop terminates the entire VM regardless of stop_mode.
Cleanup runs whenever cleanup_timeout is greater than zero (default), even if Snakepit
is already started. For embedded usage where you do not own the pool, set
cleanup_timeout: 0 to skip cleanup.
Options: :timeout, :shutdown_timeout, :cleanup_timeout, :exit_mode, :stop_mode
(:halt is legacy and deprecated).
Common Troubleshooting
Python Process Will Not Start
mix snakepit.doctor # Check environment
echo $SNAKEPIT_PYTHON # Verify Python path
python3 -c "import grpc" # Test gRPC import

Solutions: Set SNAKEPIT_PYTHON, verify dependencies, check adapter module path.
gRPC Connection Failures
Snakepit.list_workers() # Check running workers
Snakepit.get_stats() # Check pool stats
Solutions: Check port conflicts, firewall rules, compile proto files.
Memory Issues
:telemetry.attach("mem", [:snakepit, :worker, :recycled],
 fn _, _, meta, _ -> IO.inspect(meta) end, nil)
Solutions: Increase memory_threshold_mb, reduce pool_size, enable worker TTL.
Orphaned Processes
ps aux | grep grpc_server.py
pkill -f "grpc_server.py.*--snakepit-run-id" # Manual cleanup

Orphans are cleaned automatically on next startup.
Performance Tuning
Pool Size Selection
%{name: :default, pool_size: System.schedulers_online() * 2}
	Workload	Pool Size
	CPU-bound	schedulers * 1-2
	I/O-bound	schedulers * 4-8
	Mixed	schedulers * 2-4

For thread-profile workers:
%{name: :hpc, worker_profile: :thread, pool_size: 4, threads_per_worker: 16}
Batch Configuration
%{
 pool_size: 100,
 startup_batch_size: 8,
 startup_batch_delay_ms: 750
}
Heartbeat Tuning
heartbeat: %{
 enabled: true,
 ping_interval_ms: 2000,
 timeout_ms: 10000,
 max_missed_heartbeats: 3
}
	Environment	Interval	Timeout	Max Missed
	Development	5000ms	30000ms	5
	Production	2000ms	10000ms	3
	Critical	1000ms	5000ms	2

Complete Production Configuration
config/prod.exs
config :snakepit,
 pooling_enabled: true,
 log_level: :warning,

 pools: [
 %{
 name: :default,
 worker_profile: :process,
 pool_size: System.schedulers_online() * 2,
 adapter_module: Snakepit.Adapters.GRPCPython,
 adapter_args: ["--adapter", "myapp.adapter.MainAdapter"],
 startup_batch_size: 8,
 startup_batch_delay_ms: 750,
 worker_ttl: {1, :hours},
 worker_max_requests: 10_000,
 heartbeat: %{
 enabled: true,
 ping_interval_ms: 2000,
 timeout_ms: 10000,
 max_missed_heartbeats: 3
 }
 },
 %{
 name: :hpc,
 worker_profile: :thread,
 pool_size: 4,
 threads_per_worker: 16,
 adapter_args: ["--adapter", "myapp.adapter.MLAdapter"],
 heartbeat: %{enabled: true, ping_interval_ms: 5000}
 }
],

 pool_queue_timeout: 5000,
 pool_max_queue_size: 1000,
 pool_startup_timeout: 30000,

 crash_barrier: %{
 enabled: true,
 retry: :idempotent,
 max_retries: 1,
 taint_ms: 5000
 },

 rogue_cleanup: %{enabled: true},

 telemetry_metrics: %{prometheus: %{enabled: true}},

 opentelemetry: %{
 enabled: true,
 exporters: %{otlp: %{endpoint: "http://collector:4318"}}
 }
Environment Variables
	Variable	Description
	SNAKEPIT_PYTHON	Path to Python binary
	SNAKEPIT_SCRIPT_EXIT	Exit behavior for scripts (none, halt, stop, auto)
	SNAKEPIT_SCRIPT_HALT	Deprecated; use SNAKEPIT_SCRIPT_EXIT=halt
	SNAKEPIT_OTEL_ENDPOINT	OpenTelemetry collector endpoint

Deployment Recommendations
	Use Releases - Build OTP releases for production
	Separate Python Env - Use a dedicated virtual environment
	Monitor Early - Attach telemetry handlers before starting pools
	Start Conservative - Begin with smaller pool sizes
	Test Failure Modes - Verify orphan cleanup and crash recovery

 Changelog - Snakepit v0.9.1

 Changelog

All notable changes to this project will be documented in this file.
The format is based on Keep a Changelog,
and this project adheres to Semantic Versioning.
Unreleased
0.9.1 - 2026-01-09
Added
	ClientSupervisor wrapper for safe gRPC client supervision across gRPC variants.
	gRPC server request logging interceptor with optional :grpc_request_logging and category-aware debug output.
	mix snakepit.python_test task to bootstrap and run the Python test suite (supports --no-bootstrap).
	Pool reconciliation loop to restore minimum worker counts after crash storms (configurable via pool_reconcile_interval_ms and pool_reconcile_batch_size).
	Configurable restart intensity for worker starters and worker supervisors (worker_starter_* and worker_supervisor_* defaults).

Changed
	gRPC client and worker stream defaults now derive from grpc_command_timeout/0 and stream_timeout/0.
	Pool and worker execution now handle :infinity timeouts without deadline bookkeeping.
	Python gRPC server now runs sync adapter calls in worker threads by default; use thread_sensitive metadata or SNAKEPIT_THREAD_SENSITIVE to keep execution on the main thread.
	Snakepit.Pool metadata validation now accepts Snakepit.Pool as the default pool identifier.
	gRPC is pinned to 0.11.5 and protobuf is pinned to 0.16.0 (override).

Fixed
	gRPC status code 4 now maps to {:error, :timeout} in the client.
	Process group shutdown waits for group exit using /proc or ps, avoiding zombie false positives.
	Test suite now tracks and terminates leaked external Python processes after runs.

0.9.0 - 2026-01-02
Added
	run_as_script/2 :exit_mode option and SNAKEPIT_SCRIPT_EXIT env var for explicit exit semantics.
	Integration tests for external VM exit behavior and broken-pipe safety.
	run_as_script/2 :stop_mode option for ownership-aware application shutdown.
	Shutdown orchestrator for script shutdown sequencing.
	Script shutdown telemetry events ([:snakepit, :script, :shutdown, ...]) with required metadata.
	CI docs build gate (mix docs) to catch documentation build errors.

Changed
	Exit selection precedence now favors :exit_mode over legacy :halt and env vars.
	Snakepit.Examples.Bootstrap.run_example/2 now defaults to exit_mode: :auto and respects stop_mode.
	run_as_script/2 now captures cleanup targets before stopping and routes shutdown through the orchestrator.
	Documentation now aligns README/guides with exit_mode/stop_mode semantics and the Script Lifecycle tables.
	Tests now avoid timing sleeps, using deterministic polling, receive timeouts, and Logger.flush/0 for async-safe synchronization.
	Test timing constants were tightened (heartbeat, circuit breaker, queue churn, gRPC slow-operation paths) to reduce suite runtime.
	Long-running integration and randomized flow tests are tagged :slow, and random worker flow iterations were trimmed.
	Pool size isolation checks now wait on pool stats instead of fixed delays.
	gRPC errors during shutdown now log at debug level to reduce noise during expected teardown.
	Refactored Snakepit.Pool and Snakepit.GRPCWorker internals into focused helpers (dispatcher/scheduler/event handler, bootstrap/instrumentation) without behavior changes.
	Snakepit.TaskSupervisor now starts even when pooling is disabled so queue dispatch paths can spawn tasks safely.

Fixed
	Removed direct IO from the script exit path to avoid hangs on closed pipes.
	run_as_script/2 no longer stops Snakepit in embedded usage unless explicitly requested.
	Script shutdown now marks shutdown-in-progress whenever cleanup runs, so cleanup-only runs (when Snakepit is already started) treat Python exits as expected.
	Shape mismatch telemetry test now filters events by operation to avoid cross-test telemetry bleed.
	Worker lifecycle memory-probe warning test now synchronizes probe failures and log capture to prevent flakes.
	BEAM run IDs now use second-resolution timestamps plus a monotonic counter to avoid collisions during rapid restarts.
	ProcessRegistry rebuilds DETS metadata when index corruption is detected, preventing stale entries after crash/restart cycles.

[0.8.9] - 2026-01-01
Breaking Changes
	uv is now required - pip support has been removed. Snakepit now requires uv for Python package management.	Install uv: curl -LsSf https://astral.sh/uv/install.sh | sh

	Or via Homebrew: brew install uv
	The :installer config option has been removed (was :auto, :uv, or :pip)
	uv provides 10-100x faster package operations and more reliable version resolution

Fixed
	Version checking now validates constraints - PythonPackages.check_installed/2 now properly verifies that installed package versions satisfy the version constraints in requirements (e.g., grpcio>=1.76.0).
	Previously, only package existence was checked, not version satisfaction
	This caused runtime errors when outdated packages were installed (e.g., grpcio 1.67.1 when >=1.76.0 was required)
	Now uses uv pip install --dry-run for accurate PEP-440 version checking
	Packages that need upgrading are correctly identified as "missing" and reinstalled

	Bootstrap now uses quiet pip install - Reduced noise from "Requirement already satisfied" messages during mix test --include python_integration

	Added startup feedback - Shows "🐍 Checking Python package requirements..." during app startup in dev/test when checking packages (once per BEAM session)

Changed
	Removed unused configuration keys from config/config.exs, config/test.exs, and config/grpc_test.exs to trim dead config surface (legacy worker timeouts and unused grpc_test flags)
	Virtual environments are now created using uv venv for consistency with package management
	Simplified PythonPackages module by removing all pip-specific code paths

[0.8.8] - 2025-12-31
Added
	Centralized configurable defaults - New Snakepit.Defaults module provides runtime-configurable defaults for all hardcoded values
	All 68 previously hardcoded timeout, sizing, and threshold values are now configurable via Application.get_env/3
	Values are read at runtime, allowing configuration changes in config/runtime.exs without recompilation
	Defaults remain unchanged from previous versions for backward compatibility
	See Snakepit.Defaults module documentation for complete list of configurable keys

	Timeout profile architecture - New single-budget, derived deadlines, profile-based timeout system
	Six predefined profiles: :balanced, :production, :production_strict, :development, :ml_inference, :batch
	New user-facing API: default_timeout/0, stream_timeout/0, queue_timeout/0
	Margin configuration: worker_call_margin_ms/0 (default 1000), pool_reply_margin_ms/0 (default 200)
	RPC timeout derivation: rpc_timeout/1 computes inner timeout from total budget
	Legacy getters (pool_request_timeout, grpc_command_timeout, etc.) now derive from profile when not explicitly configured
	Configure via: config :snakepit, timeout_profile: :production

	Pool deadline-aware execution - Pool.execute/3 now stores deadline_ms for queue-aware timeout handling
	New helper: Pool.get_default_timeout_for_call/3 for call-type-aware timeout lookup
	New helper: Pool.derive_rpc_timeout_from_opts/2 for deadline-aware RPC timeout derivation
	New helper: Pool.effective_queue_timeout_ms/2 for budget-aware queue timeout
	GenServer.call timeout caught and returned as structured {:error, %Snakepit.Error{}}

Changed
	Pool module - Timeout and sizing defaults now read from Snakepit.Defaults:
	pool_request_timeout, pool_streaming_timeout, pool_startup_timeout, pool_queue_timeout
	checkout_timeout, default_command_timeout, pool_await_ready_timeout
	pool_max_queue_size, pool_max_workers, pool_max_cancelled_entries
	pool_startup_batch_size, pool_startup_batch_delay_ms

	GRPCWorker - Execute and streaming timeouts now configurable:
	grpc_worker_execute_timeout, grpc_worker_stream_timeout
	grpc_server_ready_timeout, worker_ready_timeout
	grpc_worker_health_check_interval
	Heartbeat configuration: heartbeat_ping_interval_ms, heartbeat_timeout_ms, heartbeat_max_missed, heartbeat_initial_delay_ms

	Fault tolerance modules - Circuit breaker, retry policy, crash barrier, and health monitor defaults now configurable:
	circuit_breaker_failure_threshold, circuit_breaker_reset_timeout_ms, circuit_breaker_half_open_max_calls
	retry_max_attempts, retry_backoff_sequence, retry_max_backoff_ms, retry_jitter_factor
	crash_barrier_taint_duration_ms, crash_barrier_max_restarts, crash_barrier_backoff_ms
	health_monitor_check_interval, health_monitor_crash_window_ms, health_monitor_max_crashes

	Session store - Session management defaults now configurable:
	session_cleanup_interval, session_default_ttl, session_max_sessions, session_warning_threshold

	Process registry - Cleanup intervals now configurable:
	process_registry_cleanup_interval, process_registry_unregister_cleanup_delay, process_registry_unregister_cleanup_attempts

	Application and gRPC - Server configuration now configurable:
	grpc_port, grpc_num_acceptors, grpc_max_connections, grpc_socket_backlog
	cleanup_on_stop_timeout_ms, cleanup_poll_interval_ms

	Config module - Pool and worker profile defaults now configurable:
	default_pool_size, default_worker_profile, default_capacity_strategy
	config_default_batch_size, config_default_batch_delay, config_default_threads_per_worker

Timeout Architecture Proposal
The following documents the design rationale for the timeout architecture implemented in this release.
Problem Statement
Snakepit's timeout configuration was fragmented with 7+ independent timeout keys that didn't coordinate:
	pool_request_timeout vs grpc_command_timeout - Which is outer? Which is inner?
	Queue wait time consumed part of the budget, but inner timeouts didn't account for it
	GenServer.call timeouts firing before inner timeouts produced unhandled exits instead of structured errors

Solution: Single-Budget, Derived Deadlines
Core principle: One top-level timeout budget, all inner timeouts derived from remaining time.
Profile-based defaults provide sensible starting points for different deployment scenarios:
	Profile	default_timeout	stream_timeout	queue_timeout
	:balanced	300_000 (5m)	900_000 (15m)	10_000 (10s)
	:production	300_000 (5m)	900_000 (15m)	10_000 (10s)
	:production_strict	60_000 (60s)	300_000 (5m)	5_000 (5s)
	:development	900_000 (15m)	3_600_000 (60m)	60_000 (60s)
	:ml_inference	900_000 (15m)	3_600_000 (60m)	60_000 (60s)
	:batch	3_600_000 (60m)	:infinity	300_000 (5m)

Margin formula ensures inner timeouts fire before outer:
rpc_timeout = total_timeout - worker_call_margin_ms (1000) - pool_reply_margin_ms (200)
Deadline propagation tracks remaining budget:
	Pool.execute stores deadline_ms = now + timeout in opts
	Queue handler uses effective_queue_timeout_ms/2 to respect deadline
	Worker execution uses derive_rpc_timeout_from_opts/2 to compute remaining budget
	All GenServer.call timeouts are caught and returned as structured errors

Backward Compatibility
	All legacy config keys (pool_request_timeout, grpc_command_timeout, etc.) still work
	When explicitly set, they take precedence over profile-derived values
	When not set, they derive from the active profile
	Default profile is :balanced which provides similar values to previous defaults

[0.8.7] - 2025-12-31
Fixed
	Python Any encoding performance - Avoided extra UTF-8 decode/encode round-trips in TypeSerializer	JSON payloads now stay as bytes for google.protobuf.Any.value
	Stabilizes orjson benchmark expectations on large payloads

	Test isolation - Prevented telemetry/logging state bleed across tests	OOM telemetry assertions now scoped by operation ID
	Logging tests reset global logging disable state

	Python integration test bootstrap - Ensure --include python_integration reliably provisions deps	CLI tag detection now triggers bootstrap and real env doctor checks
	Test helper validates .venv exists after bootstrap and skips redundant deps fetches

	HealthMonitor cleanup - Ignore benign shutdown races in test teardown
	Ready file race condition on CI - Fixed flaky gRPC server startup on slow/loaded systems	read_ready_file/1 now returns :not_ready instead of error when file is empty
	Polling loop continues retrying instead of failing immediately
	Resolves {:invalid_ready_file, ""} errors on GitHub Actions runners
	Python already uses atomic rename (os.replace), but edge cases on slow filesystems could still produce empty reads

[0.8.6] - 2025-12-31
Added
	Session cleanup telemetry - Emit telemetry events for session lifecycle monitoring
	[:snakepit, :bridge, :session, :pruned] - Emitted when sessions expire via TTL
	[:snakepit, :bridge, :session, :accumulation_warning] - Emitted when session count exceeds thresholds

	Strict mode for session store - New strict_mode: true option for dev/test environments
	Logs loud warnings when session count exceeds 80% of max_sessions
	Helps detect session leaks during development

	BaseAdapter session context - Added session_id property and set_session_context() to BaseAdapter
	Ensures consistent session_id handling across all adapters
	Backward compatible with existing adapter implementations

	Session Scoping Guide - New documentation at guides/session-scoping-rules.md
	Explains session lifecycle, reference scoping, and recommended patterns
	Documents telemetry events and strict mode configuration

0.8.5 - 2025-12-31
Fixed
	GRPCWorker graceful shutdown - Eliminated spurious crash logs during application shutdown
	Added shutting_down flag to distinguish expected exits from unexpected crashes
	Handle supervisor EXIT signals (:shutdown, {:shutdown, _}) explicitly
	Detect shutdown via mailbox peek and pool liveness checks to handle message race conditions
	Shutdown exit codes (0, 137/SIGKILL, 143/SIGTERM) logged at debug level during shutdown
	Non-zero exits only logged as errors when not in shutdown context

	Configurable shutdown timeouts - Graceful shutdown timeout now configurable via :graceful_shutdown_timeout_ms
	Default increased from 2s to 6s to accommodate Python's async shutdown envelope
	child_spec and Worker.Starter derive supervisor shutdown timeout from this config
	New Snakepit.GRPCWorker.supervisor_shutdown_timeout/0 for custom supervision trees

	Python server shutdown - Improved graceful termination sequence
	Server stop grace period increased to 2 seconds
	wait_for_termination now awaited with 3s timeout before force-cancel
	Sequential shutdown: close servicer → stop server → await termination task

	Python dependency version mismatch - Updated requirements.txt to match generated protobuf/grpc stubs
	grpcio: >=1.60.0 → >=1.76.0
	protobuf: >=4.25.0 → >=6.31.1
	Previously, users installing minimum versions would get runtime import errors

	Proto README documentation drift - Rewrote priv/proto/README.md to match actual implementation
	Fixed service name: SnakepitBridge → BridgeService
	Removed non-existent methods (GetVariable, SetVariable, WatchVariables, optimization APIs)
	Documented only implemented RPC methods
	Added Any encoding convention documentation
	Clarified binary payload format (opaque bytes, not pickle/ETF specific)
	Moved aspirational features to "Roadmap" section

	Streaming backpressure - Added bounded queue (maxsize=100) to ExecuteStreamingTool
	Prevents unbounded memory growth when producer outpaces consumer
	drain_sync now blocks on enqueue with proper exception handling

	Streaming cancellation handling - Producer now stops when client disconnects
	Added cancellation event propagation to drain loops
	Added disconnect watcher task that polls context.is_active()
	Producer task explicitly cancelled on cleanup
	Iterator/generator properly closed via aclose()/close()

	Adapter lifecycle cleanup - Added cleanup() calls to adapter lifecycle
	ExecuteTool: Calls adapter.cleanup() in finally block (always runs)
	ExecuteStreamingTool: Calls adapter.cleanup() in finally block
	Uses inspect.isawaitable() pattern for robust sync/async handling
	Added _maybe_cleanup() and _close_iterator() helper functions

	Threaded server parity - Applied all streaming/cleanup fixes to grpc_server_threaded.py
	Bounded queue, cancellation handling, iterator closing, adapter cleanup

	CancelledError handling - Producer now properly re-raises CancelledError
	Prevents task from blocking on queue.put() when consumer is gone
	On cancellation, task terminates immediately without sentinel (consumer is already gone)

	Sentinel delivery under backpressure - Fixed potential hang when queue is full
	Sentinel is now await queue.put(sentinel) (guaranteed delivery) on normal completion
	Previous put_nowait could silently drop sentinel, causing consumer to hang forever

	Sentinel delivery on disconnect - Fixed hang when watch_disconnect() sets cancelled flag
	watch_disconnect() now injects sentinel directly into queue when disconnect detected
	Drops buffered chunks if needed to make room for sentinel (consumer is gone anyway)
	Prevents hang when producer exits normally (not via CancelledError) with cancelled flag set

	Binary parameters handling - Fixed unconditional pickle.loads security issue
	binary_parameters now treated as opaque bytes by default (per proto docs)
	Pickle only used if metadata["binary_format:<param>"] == "pickle"
	Enables safe handling of images, audio, and other binary data

	Loadtest demo formatting - Fixed format_number/1 crash on nil values and spacing in output

Added
	CI version guard - New scripts/check_stub_versions.py validates that requirements.txt versions match generated protobuf/grpc stubs
	Integrated into GitHub Actions CI workflow
	Checks protobuf, grpcio, and grpcio-tools versions
	Prevents "works for us, breaks for users" dependency issues

	Streaming cancellation tests - New tests for streaming cleanup behavior
	test_streaming_cleanup_called_on_normal_completion
	test_streaming_producer_stops_on_client_disconnect
	test_async_streaming_cleanup_called
	test_streaming_completes_under_backpressure - verifies sentinel delivery with >maxsize chunks

Changed
	Adapter lifecycle documentation - Clarified per-request adapter lifecycle in base_adapter.py
	Documented that adapters are instantiated per-request
	Added example showing module-level caching pattern for expensive resources
	Explained initialize()/cleanup() semantics

	Streaming demo modernization - Updated execute_streaming_tool_demo.exs to use standard bootstrap pattern

0.8.4 - 2025-12-30
Added
	ExecuteStreamingTool Implementation - Full gRPC streaming support in BridgeServer	End-to-end streaming from clients through to Python workers
	Automatic final chunk injection if worker doesn't send one
	Execution time metadata on final chunks
	Proper error handling for streaming failures

Fixed
	Timeout Parsing Bug - Fixed precedence issue in tool_call_options/1 that caused string timeout values to bypass parsing
	Binary Parameter Encoding - Fixed remote tool execution to properly handle binary parameters without attempting JSON encoding of tuples

0.8.3 - 2025-12-29
Fixed
	Hardware Detector Cache - Replaced ETS cache creation with :persistent_term to eliminate race conditions and table ownership hazards under concurrent access.

Removed
	Deprecated/Unused APIs - Removed RetryPolicy.exponential_backoff/2, RetryPolicy.with_circuit_breaker/2, HeartbeatMonitor.get_status/1, RunID.valid?/1, and deprecated ProcessRegistry.register_worker/4.

0.8.2 - 2025-12-29
Added
	Process-Level Log Isolation - New Snakepit.Logger functions for per-process log level control	set_process_level/1 - Set log level for current process only
	get_process_level/0 - Get effective log level for current process
	clear_process_level/0 - Clear process-level override
	with_level/2 - Execute function with temporary log level

	Test Helper Module - Snakepit.Logger.TestHelper for test isolation	setup_log_isolation/0 - Set up per-test log level isolation
	capture_at_level/2 - Capture logs at specific level without affecting other tests
	capture_at_level_with_result/2 - Capture logs and return function result
	suppress_logs/1 - Suppress all logs for duration of function

Fixed
	Flaky Test Race Condition - Tests that modify log levels no longer interfere with each other when running concurrently	Root cause: Multiple async tests modifying global Application.get_env(:snakepit, :log_level) caused race conditions
	Solution: Logger now checks process-local override first, then Elixir Logger process level, then global config

Changed
	Log level resolution now uses priority order:	Process-level override (via set_process_level/1) - highest priority
	Elixir Logger process level (via Logger.put_process_level/2)
	Application config (via config :snakepit, log_level: ...) - lowest priority

0.8.1 - 2025-12-27
Changed
	BREAKING: Default log level changed from :warning to :error for silent-by-default behavior
	Centralized all logging through Snakepit.Logger module
	Python logging now respects SNAKEPIT_LOG_LEVEL environment variable
	Replaced stdout GRPC_READY signaling with a non-console control channel
	Removed all hardcoded IO.puts and Python print() statements

Added
	Category-based logging: :lifecycle, :pool, :grpc, :bridge, :worker, :startup, :shutdown, :telemetry, :general
	config :snakepit, log_categories: [...] to enable specific categories
	priv/python/snakepit_bridge/logging_config.py for centralized Python logging

Fixed
	Noisy startup messages no longer pollute console output
	Health-check messages suppressed by default
	gRPC server startup messages suppressed by default

Migration Guide
If you relied on seeing startup logs, add to your config:
config :snakepit, log_level: :info
0.8.0 - 2025-12-27
Added
Hardware Abstraction Layer
	Hardware Detection - New Snakepit.Hardware module providing automatic detection of CPU, NVIDIA CUDA, Apple MPS, and AMD ROCm accelerators.
	Hardware Detector - Snakepit.Hardware.Detector with unified detection API and caching.
	CPU Detection - Snakepit.Hardware.CPUDetector with cores, threads, model, and feature detection (AVX, AVX2, SSE4.2).
	CUDA Detection - Snakepit.Hardware.CUDADetector for NVIDIA GPUs via nvidia-smi with version, driver, and memory info.
	MPS Detection - Snakepit.Hardware.MPSDetector for Apple Metal Performance Shaders on macOS.
	ROCm Detection - Snakepit.Hardware.ROCmDetector for AMD GPUs via rocm-smi.
	Device Selection - Snakepit.Hardware.Selector with automatic selection and fallback strategies.

Enhanced ML Telemetry
	Telemetry Events - Snakepit.Telemetry.Events defining ML-specific telemetry events for hardware, errors, circuit breaker, and GPU profiling.
	Logger Handler - Snakepit.Telemetry.Handlers.Logger for automatic logging of all ML telemetry events.
	Metrics Handler - Snakepit.Telemetry.Handlers.Metrics with Prometheus-compatible metric definitions.
	GPU Profiler - Snakepit.Telemetry.GPUProfiler GenServer for periodic GPU memory, utilization, temperature, and power sampling.
	Span Helper - Snakepit.Telemetry.Span for convenient timing of operations with automatic start/stop telemetry.

Structured Exception Protocol
	Shape Errors - Snakepit.Error.Shape with ShapeMismatch and DTypeMismatch exceptions with dimension detection.
	Device Errors - Snakepit.Error.Device with DeviceMismatch and OutOfMemory exceptions with recovery suggestions.
	Error Parser - Snakepit.Error.Parser for automatic parsing of Python errors with pattern detection for shape, device, and OOM errors.

Crash Barrier Supervision
	Circuit Breaker - Snakepit.CircuitBreaker GenServer with closed/open/half-open states for fault tolerance.
	Health Monitor - Snakepit.HealthMonitor for tracking crash patterns with rolling windows and health status.
	Retry Policy - Snakepit.RetryPolicy with configurable exponential backoff, jitter, and retriable error filtering.
	Executor - Snakepit.Executor with execute_with_retry/2, execute_with_timeout/2, execute_with_circuit_breaker/3, and batch execution.

Documentation
	New guide: guides/hardware-detection.md - Hardware detection usage and device selection.
	New guide: guides/crash-recovery.md - Circuit breaker, health monitoring, and retry patterns.
	New guide: guides/error-handling.md - ML-specific error types and parsing.
	New guide: guides/ml-telemetry.md - ML telemetry events, GPU profiling, and metrics.

Changed
	ExDoc Configuration - Added new module groups for Hardware, Reliability, ML Errors, and enhanced Telemetry.
	Telemetry Module Groups - Expanded to include Events, GPUProfiler, Span, and Handlers submodules.

0.7.7 - 2025-12-26
Changed
	Pool GenServer initialization redesigned for OTP compliance. Worker startup now uses an async spawn_link pattern instead of blocking receive in handle_continue, keeping the GenServer responsive to shutdown signals during batch initialization.
	Multi-pool configuration now correctly isolates pool_size per pool. Each pool in :pools config uses its own pool_size value; the global pool_config[:pool_size] is only used in legacy single-pool mode.
	Test harness improvements: after_suite now monitors the supervisor and waits for actual termination before returning, preventing orphaned process warnings between test runs.
	ProcessRegistry defers unregistration when external OS processes are still alive, with automatic retry cleanup after process termination.

Fixed
	Pool no longer crashes during application shutdown when WorkerSupervisor terminates before batch initialization completes. Added supervisor health checks before starting each worker batch.
	ProcessKiller process_alive?/1 on Linux now detects zombie processes by reading /proc/{pid}/stat state, preventing false positives for terminated-but-not-reaped processes.
	Test configuration pollution fixed: tests that modify :pools config now properly save and restore :pool_config to prevent pool_size leakage between tests.

Added
	README_TESTING.md updated with test isolation patterns, application lifecycle documentation, and multi-pool configuration examples for integration tests.
	REMEDIATION_PLAN.md documenting the root cause analysis and fixes for test harness race conditions.

0.7.6 - 2025-12-26
Added
	Deterministic shutdown cleanup via Snakepit.RuntimeCleanup and manual cleanup via Snakepit.cleanup/0, with cleanup telemetry events.
	Process group lifecycle support with process_group_kill, pgid tracking in ProcessRegistry, and new ProcessKiller helpers for group kill/pgid lookup.
	Python gRPC servers can create their own process group when SNAKEPIT_PROCESS_GROUP is set.
	Python package management supports isolated virtualenvs via :python_packages env_dir, auto-creating venvs and honoring command timeouts.
	Documentation suites for FFI ergonomics, Python process cleanup, and runtime hygiene (docs/20251226/*).
	New tests for runtime cleanup, logger defaults, process group kill, process registry cleanup deferrals, and uv venv integration.

Changed
	Quiet-by-default library config: library_mode: true, log_level: :warning, grpc_log_level: :error, log_python_output: false, plus new cleanup defaults (cleanup_on_stop, cleanup_on_stop_timeout_ms, cleanup_poll_interval_ms, cleanup_retry_interval_ms, cleanup_max_retries).
	Application supervision always starts Snakepit.Pool.ProcessRegistry and Snakepit.Pool.ApplicationCleanup even without pooling; Application.stop/1 now runs a cleanup pass when enabled.
	gRPC worker startup/shutdown now tracks pgid/process_group, can kill process groups, buffers startup output, suppresses Python stdout unless enabled, and passes SNAKEPIT_PROCESS_GROUP while extending PYTHONPATH with SnakeBridge priv Python.
	Snakepit.EnvDoctor now locates grpc_server.py from the project or installed app root and expands PYTHONPATH to include Snakepit/SnakeBridge priv Python when running checks.
	Python runtime selection now prefers explicit overrides, then :python_packages venv Python, then managed/system fallback; package operations resolve Python from the configured venv.
	Cleanup retry timing for worker supervisor is now read from runtime config with _ms suffix.
	Version references updated to 0.7.6 in mix.exs and README dependency docs. Updated supertester to v0.4.0.

Fixed
	Taint registry ETS initialization now tolerates a pre-existing table.
	Process registry cleanup no longer drops entries while external OS processes remain alive, and DETS is synced on cleanup/unregister.
	Startup failure diagnostics now include buffered Python output to aid gRPC server troubleshooting.

0.7.5 - 2025-12-25
Added
	Snakepit.PythonPackages module for uv/pip package management.
	Snakepit.PackageError structured error type for package operations.
	:python_packages application config for installer, timeout, and env settings.
	Snakepit.PythonPackages.ensure!/2 for provisioning required packages.
	Snakepit.PythonPackages.check_installed/2 for verifying package presence.
	Snakepit.PythonPackages.lock_metadata/2 for lockfile package metadata.
	Snakepit.PythonPackages.install!/2 for direct requirement installs.

0.7.4 - 2025-12-25
Added
	Zero-copy interop – Snakepit.ZeroCopy + Snakepit.ZeroCopyRef handle DLPack/Arrow exports/imports with explicit close/1 and telemetry for export/import/fallback flows.
	Crash barrier – Worker crash classification, taint tracking, and idempotent retry policy with new crash/taint/restart telemetry events.
	Hermetic Python runtime support – uv-managed interpreter selection, bootstrap integration, and runtime identity metadata propagation.
	Exception translation – Structured Python error payloads mapped into Snakepit.Error.* exception structs with telemetry for mapped/unmapped translations.
	Runtime contract coverage – Integration test coverage for kwargs, call_type, and payload version fields.

Changed
	gRPC bridge error payloads – Python gRPC servers now return JSON-structured error payloads for tooling failures.
	Telemetry catalog – Added runtime event listings for zero-copy, crash barrier, and exception translation.

Fixed
	Queue resiliency – Tainted workers no longer drive queued requests; queue dispatch selects non-tainted workers when available.

0.7.3 - 2025-12-25
Fixed
	CI test infrastructure – Fixed python_integration test failures in CI by starting GRPC.Client.Supervisor in PythonIntegrationCase setup and enabling pooling in StreamingRegressionTest setup.
	EnvDoctor port check race condition – Fixed intermittent env_doctor_test failures caused by :grpc_port check reading from global Application env instead of opts. The check now accepts grpc_port via opts (consistent with other state values), eliminating conflicts when tests or the application bind to overlapping port ranges.

0.7.2 - 2025-12-25
Changed
	Codebase cleanup – Removed dead code, unused modules, and obsolete files across the Elixir and Python codebases.
	Static analysis compliance – Resolved Dialyzer warnings and Credo issues for cleaner, more maintainable code.
	Documentation overhaul – Rewrote README.md and ARCHITECTURE.md for v0.7.2; consolidated DIAGS.md and DIAGS2.md into a single DIAGRAMS.md with mermaid diagrams; updated all README_* guides with version markers; removed obsolete test_bidirectional.py and remaining_handlers.txt.

0.7.1 - 2025-12-24
Added
	Script ergonomics – Snakepit.run_as_script/2 now supports restart, await_pool, and halt options plus configurable shutdown/cleanup timeouts.
	Example runner controls – examples/run_all.sh honors SNAKEPIT_EXAMPLE_DURATION_MS and SNAKEPIT_RUN_TIMEOUT_MS.
	Examples bootstrap helper – Snakepit.Examples.Bootstrap.run_example/2 centralizes pool readiness and script exit behavior.

Changed
	Pooling defaults to opt-in – pooling_enabled now defaults to false to avoid auto-start surprises in scripts.
	Examples cleanup – bidirectional and documentation-only examples now shut down cleanly under both mix run and run_all.sh.

Fixed
	Mix-run config drift – examples now restart Snakepit to apply script-level env overrides, preventing port mismatches and orphaned workers.

0.7.0 - 2025-12-22
Added
	Capacity-aware scheduling – Pool tracks per-worker load and threads_per_worker, with capacity_strategy (:pool default, :profile, :hybrid) configurable globally or per pool.
	Request metadata exposure – Python SessionContext now carries request_metadata for adapters; grpc_server.py wraps ExecuteTool/ExecuteStreamingTool in telemetry spans.

Changed
	Correlation propagation – gRPC calls now set x-snakepit-correlation-id headers and ExecuteToolRequest.metadata on execute + streaming paths; streaming calls ensure a correlation ID exists.
	Process profile env merge – Worker env defaults merge system thread limits with user overrides instead of replacing them.

Fixed
	ToolRegistry cleanup logging – Cleanup logs now report the correct count of removed tools.

0.6.11 - 2025-12-20
Added
	Pool status CLI – mix snakepit.status reports pool size, queue depth, and error counts without requiring a full dashboard stack.
	Adapter generator – mix snakepit.gen.adapter scaffolds a minimal Python adapter under priv/python with a ready-to-copy adapter_args snippet.
	Binary gRPC results – Bridge responses now include binary_result support so tools can return {:binary, payload[, metadata]} tuples for large outputs.
	Examples runner – examples/run_all.sh executes every example (including showcase/loadtest) via mix run, with auto-stop and configurable loadtest sizes.

Changed
	Doctor checks – Snakepit.EnvDoctor validates the Elixir grpc_port and runs per-pool adapter import health checks via grpc_server.py --health-check --adapter
	Bootstrap consolidation – scripts/docs/examples now standardize on mix snakepit.setup + mix snakepit.doctor, and examples prefer mix run with the shared bootstrap helper.
	Python env defaults – gRPC workers merge default PYTHONPATH and SNAKEPIT_PYTHON into adapter environments to keep imports predictable.
	Docs organization – legacy unified-bridge and unified-example design docs are archived, and install guidance now differentiates repo bootstrap from app usage.

Fixed
	Threaded server loop – grpc_server_threaded.py now ensures a running asyncio event loop to avoid deprecation warnings.
	Worker spawn telemetry – gRPC worker spawn/terminate durations now use consistent monotonic units, preventing negative duration values in telemetry handlers.
	Elixir tool decoding in Python – SessionContext.call_elixir_tool/2 decodes JSON/binary payloads via TypeSerializer instead of returning raw protobuf Any values.
	Python ML workflow serialization – showcase ML handlers coerce NumPy-derived stats into JSON-safe floats to avoid orjson errors.
	Tool registration noise – Python bridge caches tool registration per session and treats duplicate registrations as info, avoiding false error reports.

0.6.10 - 2025-11-13
Added
	Canonical worker metadata – Snakepit.Pool.Registry.metadata_keys/0 exposes the authoritative metadata keys (:worker_module, :pool_name, :pool_identifier, :adapter_module) and the surrounding docs call out how pool helpers, diagnostics, and worker profiles should treat that map as the single source of truth.
	Telemetry catalog + filters – Snakepit.Telemetry.Naming.python_event_catalog/0 now documents the full event/measurement schema emitted by snakepit_bridge, while the Python telemetry stream implements glob-style allow/deny filters pushed from Elixir so noisy adapters can be muted without redeploying workers.
	Async adapter registration – snakepit_bridge.base_adapter.BaseAdapter adds register_with_session_async/2 (plus regression coverage) so asyncio/aio stubs can advertise tool surfaces without blocking while the synchronous helper stays intact for classic stubs.
	Self-managing Python tests – test_python.sh now creates/updates .venv, fingerprints priv/python/requirements.txt, installs deps, regenerates protobuf stubs, and exports quiet OTEL defaults so ./test_python.sh is a one-command pytest runner on any Linux/WSL host.

Changed
	Queue timeout enforcement – Queued requests now carry their timer reference, the pool cancels those timers as soon as the request is dequeued or dropped, and statistics/logging happen in one place, preventing runaway timers when pools churn.
	Threaded adapter guardrails – priv/python/grpc_server_threaded.py refuses to boot adapters that don’t set __thread_safe__ = True, logging a clear remediation path and forcing unsafe adapters back to process mode.
	Tool registration resilience – snakepit_bridge.base_adapter.BaseAdapter wraps gRPC stub responses in _coerce_stub_response/1, unwrapping awaitables, UnaryUnaryCall structs, or lazy callables before checking response.success, which stabilizes adapters that mix sync and async gRPC stubs.
	Heartbeat/schema documentation – Snakepit.Config now ships typedocs for the normalized pool/heartbeat map shared with Python, and the architecture plus gRPC guides emphasize that BEAM is the authoritative heartbeat monitor with SNAKEPIT_HEARTBEAT_CONFIG kept in sync across languages.

Fixed
	Stale queue timeouts – Queue timeout messages that arrive after a request has already been serviced are ignored, and clients now receive {:error, :queue_timeout} exactly once when their request is actually dropped.

0.6.9 - 2025-11-13
Added
	Registry helpers: Introduced Snakepit.Pool.Registry.fetch_worker/1 plus metadata helpers used throughout the pool, bridge server, worker profiles, and diagnostics so worker_module, pool_identifier, and pool_name are always looked up in a single, tested place.
	Binary parameter validation: Snakepit.GRPC.BridgeServer now rejects non-binary entries in ExecuteToolRequest.binary_parameters, guaranteeing local tools only ever see {:binary, payload} tuples while remote workers still receive the untouched proto map.
	Slow-test workflow: Tagged the long-running suites with @tag :slow, defaulted mix test to skip them, and documented the opt-in commands plus the 2025-11-13 slow-test inventory in README_TESTING and docs/20251113/slow-test-report.md.
	Lifecycle observability: Memory-based recycling now logs a warning whenever a worker cannot answer the :get_memory_usage probe, preventing silent configuration drift.
	Rogue cleanup controls: Operators can configure the exact script names and run-id markers that qualify Python processes for startup cleanup, with defaults matching grpc_server.py/grpc_server_threaded.py.
	Memory recycle telemetry & diagnostics: [:snakepit, :worker, :recycled] now emits memory_mb/memory_threshold_mb, Prometheus metrics expose snakepit.worker.recycled counters, and both Snakepit.Diagnostics.ProfileInspector plus mix snakepit.profile_inspector show per-pool “Memory Recycles” totals for operators.

Changed
	GRPC worker lookups: GRPCWorker, ToolRegistry clients, pool helpers, and worker profiles call the new Registry helpers instead of Registry.lookup/2, ensuring metadata stays normalized and reverse lookups never crash when metadata is missing.
	Bridge test coverage: Added binary-parameter regression tests that prove malformed payloads are rejected before reaching Elixir tools, plus lifecycle tests that simulate failing memory probes.
	Process killer tests: Rogue cleanup unit tests now cover the customizable scripts/markers path so changes to the configuration surface immediately.
	Heartbeat contract clarity: Documented what dependent: true|false means, exported SNAKEPIT_HEARTBEAT_CONFIG expectations, and added both HeartbeatMonitor- and GRPCWorker-level regression tests so fail-fast vs independent behavior stays well defined.
	Telemetry stream shutdown noise: gRPC telemetry stream shutdowns that report :normal or :shutdown now log at debug level, eliminating the warning spam that buried actionable failures during slow-test runs.

Fixed
	Registry metadata race: Pool.Registry.put_metadata/2 now reports {:error, :not_registered} when clients attempt to attach metadata before the worker is registered and downgrades those expected attempts to debug logs, eliminating silent successes that previously returned :ok.
	Heartbeat metrics stability: The snakepit.worker.memory_mb summary now pulls values via Map.get/2 and non-dependent monitors retain timeout/missed-heartbeat counters, so Telemetry/Prometheus exporters stop crashing when measurements arrive as maps and status checks reflect the real failure budget.
	Docs parity: README, README_GRPC, README_PROCESS_MANAGEMENT, and ARCHITECTURE now describe the binary parameter contract, registry helper usage, lifecycle behavior, and rogue cleanup assumptions introduced in this release.

0.6.8 - 2025-11-12
This release also rolls up the previously undocumented fail-fast docs/tests work from 074f2260f703d16ccfecf937c10af905165419f0 (heartbeat fail-fast suites, orphan cleanup stress tests, queue probe adapter, and config fail-fast coverage).
Added
	Bootstrap automation: Introduced Snakepit.Bootstrap, mix snakepit.setup, and a make bootstrap target to install Mix deps, provision .venv/.venv-py313, install Python requirements, run scripts/setup_test_pythons.sh, and regenerate gRPC stubs with fully instrumented logging.
	Environment doctor: New Snakepit.EnvDoctor module plus mix snakepit.doctor task verify interpreter availability, grpc import, .venv/.venv-py313, priv/python/grpc_server.py --health-check, and worker port availability with actionable remediation messages.
	Runtime guardrails: Snakepit.Application now invokes Snakepit.EnvDoctor.ensure_python!/0 before pools start, failing fast when Python prerequisites are missing. Test helpers (test/support/fake_doctor.ex, test/support/bootstrap_runner.ex, test/support/command_runner.ex) enable deterministic unit coverage for the bootstrap/doctor path.
	Python-aware CI: GitHub Actions workflow now runs bootstrap, doctor, the default suite, and mix test --only python_integration so bridge coverage is validated when the doctor passes.
	New documentation: README + README_TESTING describe the make bootstrap → mix snakepit.doctor → mix test workflow, explain how to run python integration tests, and highlight the new Mix tasks.
	Lifecycle config & memory recycling: Added %Snakepit.Worker.LifecycleConfig{} to capture adapter/profile/env data for every worker, wired Snakepit.GRPCWorker to answer :get_memory_usage, and extended lifecycle tests so TTL/request/memory recycling use the same canonical config.
	Binary tool parameters: Snakepit.GRPC.BridgeServer, Snakepit.GRPC.Client, and Snakepit.GRPC.ClientImpl now decode/forward ExecuteToolRequest.binary_parameters, exposing binaries to local tools as {:binary, payload} while sending the untouched map to Python workers. README.md and README_GRPC.md document the contract.
	Worker-flow integration test: New Snakepit.Pool.WorkerFlowIntegrationTest exercises the WorkerSupervisor → MockGRPCWorker path, ensuring registry/process tracking stays consistent after execution and crash/restart flows.
	Randomized worker stress test: Snakepit.Pool.RandomWorkerFlowTest throws randomized execute/kill sequences at pools to ensure Registry ↔ ProcessRegistry invariants hold under churn.

Changed
	Test gating: Default mix test excludes :python_integration while Python-heavy suites (thread profile, session affinity, streaming regression, etc.) carry the tag; test/unit/exunit_configuration_test.exs locks the config in place.
	Thread-profile test harness: Snakepit.ThreadProfilePython313Test now uses Snakepit.Test.PythonEnv.skip_unless_python_313/1 to skip cleanly when .venv-py313 is unavailable.
	Process killer regression: Ports spawned during kill_by_run_id/1 tests close via safe_close_port/1, eliminating :port_close race exceptions.
	Queue saturation regression: Snakepit.Pool.QueueSaturationRuntimeTest focuses on stats + agent tracking instead of brittle global ETS assertions, removing a common source of flaky failures.
	gRPC generation script: priv/python/generate_grpc.sh now prefers .venv/bin/python3, falling back to system python3/python only when the virtualenv is missing, and emits helpful logs when no interpreter is found.
	Registry metadata semantics: Snakepit.GRPCWorker now writes canonical metadata (worker_module, pool_name, pool_identifier) via Snakepit.Pool.Registry.put_metadata/2, unblocking pool-name extraction and worker-module discovery without parsing IDs. Tests cover PID→worker lookups.
	LifecycleManager internals: Tracking records store lifecycle structs instead of ad-hoc maps so replacement workers inherit adapter args/env, and memory thresholds now exercise the worker call path in tests.
	Process cleanup safety: Rogue process cleanup only targets commands containing grpc_server.py/grpc_server_threaded.py with --snakepit-run-id/--run-id flags, and operators can disable the sweep with config :snakepit, :rogue_cleanup, enabled: false. Docs explain the ownership contract.
	Pool integration coverage: Replaced the unstable test/snakepit/pool/high_risk_flow_test.exs harness with targeted unit-level integration coverage (WorkerSupervisor + MockGRPCWorker), keeping the suite reliable while still covering the critical registry/ProcessRegistry chain.
	Worker profile metadata lookup: Process/thread profiles now resolve worker modules via Pool.Registry.get_worker_id_by_pid/1 + metadata lookup, so non-GRPC workers can be supported and Dialyzer warnings are gone.

Fixed
	Shell instrumentation around bootstrap (reporting command start/finish and verbose pip output) prevents "silent hangs" and surfaced the root causes of previous provisioning confusion.
	scripts/setup_test_pythons.sh now runs under set -x, streaming its progress during bootstrap.
	Rogue cleanup tests verify we no longer kill unrelated Python processes, and docs call out the run-id requirements so multi-tenant hosts stay safe.

0.6.7 - 2025-10-28
Added
Phase 1: Type System MVP + Performance
	6x JSON performance boost: Integrated orjson for Python serialization, delivering 4-6x speedup for raw JSON operations and 1.5x improvement for large payloads (priv/python/snakepit_bridge/serialization.py, priv/python/tests/test_orjson_integration.py).
	Structured error type: New Snakepit.Error struct provides detailed context for debugging with fields including category, message, details, python_traceback, and grpc_status (lib/snakepit/error.ex, test/unit/error_test.exs).
	Complete type specifications: All public API functions in Snakepit module now have @spec annotations with structured error return types for better IDE support and Dialyzer analysis.
	Performance benchmarks: Comprehensive benchmark suite validates 4-6x raw JSON speedup and verifies no regression on small payloads (priv/python/tests/test_orjson_integration.py).

Phase 2: Distributed Telemetry System
	Bidirectional telemetry streaming: Python workers can now emit telemetry events via gRPC that are re-emitted as Elixir :telemetry events for unified observability (lib/snakepit/telemetry/grpc_stream.ex, priv/python/snakepit_bridge/telemetry/).
	Complete event catalog: 43 telemetry events across 3 layers (Infrastructure, Python Execution, gRPC Bridge) with atom-safe event names to prevent atom table exhaustion (lib/snakepit/telemetry/naming.ex, docs/20251028/telemetry/01_EVENT_CATALOG.md).
	Python telemetry API: High-level Python API with telemetry.emit() for events and telemetry.span() for automatic timing, plus correlation ID propagation across the Elixir/Python boundary (priv/python/snakepit_bridge/telemetry/__init__.py).
	Runtime telemetry control: Adjust sampling rates, enable/disable telemetry, and filter events for individual workers without restarts (lib/snakepit/telemetry/control.ex).
	Metadata safety: Automatic sanitization of Python metadata to prevent atom table exhaustion from untrusted string keys (lib/snakepit/telemetry/safe_metadata.ex).
	Multiple backend support: Python telemetry supports gRPC streaming (default) and stderr backends, with extensible backend architecture (priv/python/snakepit_bridge/telemetry/backends/).
	Worker lifecycle hooks: Automatic telemetry stream registration/unregistration integrated into worker lifecycle (lib/snakepit/grpc_worker.ex:479, lib/snakepit/grpc_worker.ex:783).
	Integration tests: Comprehensive test suite covering event catalog, validation, sanitization, and control messages (test/integration/telemetry_flow_test.exs).

Changed
	Python serialization now uses orjson with graceful fallback to stdlib json if orjson is unavailable, maintaining full backward compatibility.
	Error returns in Snakepit.Pool and Snakepit modules now use structured Snakepit.Error types with detailed context instead of atoms.
	Snakepit.Pool.await_ready/2 now returns {:error, %Snakepit.Error{category: :timeout}} instead of {:error, :timeout}.
	Streaming validation errors now include adapter context in error details.
	Old telemetry.span() (OpenTelemetry) renamed to telemetry.otel_span() to avoid naming conflict with new telemetry streaming span.
	Snakepit.Application supervision tree now includes Snakepit.Telemetry.GrpcStream for managing bidirectional telemetry streams.

Fixed
	Updated Dialyzer type specifications to match new structured error returns, reducing type warnings.
	Corrected grpc_worker.ex metadata fields for telemetry events (state.stats.start_time, state.stats.requests).

Documentation
	New TELEMETRY.md: Complete user guide for the distributed telemetry system with usage examples, integration patterns for Prometheus/StatsD/OpenTelemetry, and troubleshooting guidance (320 lines).
	Telemetry design docs: 9 comprehensive design documents covering architecture, event catalog, Python integration, client guide, gRPC implementation, and backend architecture (docs/20251028/telemetry/).
	New examples: 5 comprehensive examples demonstrating v0.6.7 features with ~50KB of production-ready code:	examples/telemetry_basic.exs - Introduction to telemetry handlers and Python telemetry API
	examples/telemetry_advanced.exs - Correlation tracking, performance monitoring, runtime control
	examples/telemetry_monitoring.exs - Production monitoring patterns with real-time dashboard
	examples/telemetry_metrics_integration.exs - Prometheus/StatsD integration patterns
	examples/structured_errors.exs - New Snakepit.Error struct usage and pattern matching

	Updated examples/README.md: Comprehensive guide to all examples with clear learning paths and troubleshooting.
	Updated README.md with v0.6.7 release notes highlighting type system improvements, performance gains, and telemetry system.
	Updated mix.exs version to 0.6.7 with TELEMETRY.md in package files and docs extras.
	Added comprehensive test coverage for structured error types (12 new tests in test/unit/error_test.exs).

Performance
	Telemetry overhead: <10μs per event, <1% CPU impact at 100% sampling, <0.1% CPU at 10% sampling.
	Bounded resources: Python telemetry queue limited to 1024 events (~100KB), with graceful degradation (drops events vs blocking).
	Zero regression: All 235+ existing tests pass with full backward compatibility maintained.

Zero breaking changes: All existing code continues to work. Telemetry is fully opt-in via standard :telemetry.attach() patterns.
[0.6.6] - 2025-10-27
Added
	Configurable session/program quotas now surface tagged errors when limits are exceeded, with regression coverage in test/unit/bridge/session_store_test.exs.
	Introduced a logger redaction helper so adapters and bridge code can log sensitive inputs safely (test/unit/logger/redaction_test.exs).

Changed
	Snakepit.GRPC.BridgeServer reuses worker-owned gRPC channels and only dials a disposable connection when the worker has not yet published one; fallbacks are closed after each invocation.
	gRPC streaming helpers document and enforce the JSON-plus-metadata chunk envelope, clarifying _metadata and raw_data_base64 handling.
	Worker startup handshake waits for the negotiated gRPC port before publishing worker metadata, eliminating transient routing failures during boot.
	Snakepit.GRPC.ClientImpl now returns structured {:error, {:invalid_parameter, :json_encode_failed, message}} tuples when parameters cannot be JSON-encoded, preventing calling processes from crashing (test/unit/grpc/client_impl_test.exs).
	Snakepit.GRPC.BridgeServer.execute_streaming_tool/2 raises UNIMPLEMENTED with remediation guidance so callers can fall back gracefully when streaming is disabled (test/snakepit/grpc/bridge_server_test.exs).

Fixed
	Snakepit.GRPCWorker persists the OS-assigned port discovered during startup so BridgeServer never receives 0 when routing requests (test/unit/grpc/grpc_worker_ephemeral_port_test.exs).
	Parameter decoding now rejects malformed protobuf payloads with descriptive {:invalid_parameter, key, reason} errors, preventing unexpected crashes (test/snakepit/grpc/bridge_server_test.exs).
	Process registry ETS tables are :protected and DETS handles remain private, guarding against external mutation attempts (test/unit/pool/process_registry_security_test.exs).
	Pool name inference prefers registry metadata and logs once when falling back to worker-id parsing, eliminating silent misroutes (test/unit/pool/pool_registry_lookup_test.exs).

Documentation
	Refreshed README, gRPC guides (including the streaming and quick reference docs), and testing notes to cover port persistence, channel reuse, quota enforcement, DETS/ETS protections, streaming payload envelopes and fallbacks, metadata-driven pool routing, logging redaction guardrails, and the expanded regression suite.

[0.6.5] - 2025-10-26
Added
	Regression suites covering worker supervisor stop/restart flows and profile-level shutdown helpers (test/unit/pool/worker_supervisor_test.exs, test/unit/worker_profile/worker_profile_stop_worker_test.exs).

Changed
	Snakepit.Application now reads the current environment from compile-time configuration instead of calling Mix.env/0, keeping OTP releases Mix-free.
	Introduced Snakepit.PythonThreadLimits.resolve/1 to merge partial thread-limit overrides with defaults before applying environment variables.

Fixed
	Snakepit.Pool.WorkerSupervisor.stop_worker/1 targets worker starter supervisors and accepts either worker ids or pids, ensuring restarts actually decommission the old worker.
	Snakepit.WorkerProfile.Process and Snakepit.WorkerProfile.Thread resolve worker ids through the pool registry so lifecycle manager shutdowns succeed for pid handles.

[0.6.4] - 2025-10-30
Added
	Streaming regression guard in test/snakepit/streaming_regression_test.exs covering both success and adapter capability failures
	examples/stream_progress_demo.exs showcasing five timed streaming updates with rich progress output
	test_python.sh helper that regenerates protobuf stubs, activates the project virtualenv, wires PYTHONPATH, and forwards arguments to pytest

Changed
	Python gRPC servers now bridge streaming iterators through an asyncio.Queue, yielding chunks as soon as they are produced and removing ad-hoc log files
	Snakepit.Adapters.GRPCPython consumes streaming chunks incrementally, decoding JSON payloads, surfacing metadata, and safeguarding callback failures
	Showcase stream_progress tool accepts delay_ms and reports elapsed timing so demos and diagnostics show meaningful pacing

Fixed
	Eliminated burst delivery of streaming responses by ensuring each chunk is forwarded to Elixir immediately, restoring real-time feedback for execute_stream/4

[0.6.3] - 2025-10-19
Added
	Dependent/Independent Heartbeat Mode - New dependent configuration flag allows workers to optionally continue running when Elixir heartbeats fail, enabling debugging scenarios where Python workers should remain alive
	Environment variable-based heartbeat configuration via SNAKEPIT_HEARTBEAT_CONFIG for passing settings from Elixir to Python workers
	Python unit test coverage for dependent heartbeat termination behavior (priv/python/tests/test_heartbeat_client.py)
	CLI flags --heartbeat-dependent and --heartbeat-independent for Python gRPC server configuration

Changed
	Default heartbeat enabled state changed from false to true for better production reliability
	HeartbeatMonitor now suppresses worker termination when dependent: false is configured, logging warnings instead
	Python HeartbeatClient includes default shutdown handler for dependent mode
	Snakepit.GRPCWorker passes heartbeat configuration to Python via environment variables
	Updated configuration tests to reflect new heartbeat defaults

Fixed
	Heartbeat configuration now properly propagates from Elixir to Python across all code paths

[0.6.2] - 2025-10-26
Added
	End-to-end heartbeat regression suite covering monitor boot, timeout handling, and OS-level process cleanup (test/snakepit/grpc/heartbeat_end_to_end_test.exs)
	Long-running heartbeat stability test to guard against drift and missed ping accumulation (test/snakepit/heartbeat_monitor_test.exs)
	Python-side telemetry regression ensuring outbound metadata preserves correlation identifiers (priv/python/tests/test_telemetry.py)
	Deep-dive documentation for the heartbeat and observability stack plus consolidated testing command guide (docs/20251019/*.md)

Changed
	Snakepit.GRPCWorker now terminates itself whenever the heartbeat monitor exits, preventing pools from keeping unhealthy workers alive
	make test preferentially uses the repository’s virtualenv interpreter, exports PYTHONPATH, and runs mix test --color for consistent local runs

Fixed
	Guard against leaking heartbeat monitors by stopping the worker when the monitor crashes, ensuring registry entries and OS ports are released

[0.6.1] - 2025-10-19
Added
	Proactive worker heartbeat monitoring via Snakepit.HeartbeatMonitor with configurable cadence, miss thresholds, and per-pool overrides
	Comprehensive telemetry stack: Snakepit.Telemetry.OpenTelemetry boot hook, Snakepit.TelemetryMetrics Prometheus exporter, and correlation helpers for tracing spans
	Rich gRPC client utilities (Snakepit.GRPC.ClientImpl) covering ping, session lifecycle, heartbeats, and streaming tooling
	Python bridge instrumentation (snakepit_bridge.heartbeat, snakepit_bridge.telemetry) plus new unit tests for telemetry and threaded servers
	Default telemetry/heartbeat configuration shipped in config/config.exs, including OTLP environment toggles and Prometheus port selection
	Configurable logging system via the new Snakepit.Logger module with centralized control over verbosity (:debug, :info, :warning, :error, :none)

Changed
	Snakepit.GRPCWorker now emits detailed telemetry, manages heartbeats, and wires correlation IDs through tracing spans
	Snakepit.Application activates OTLP exporters based on environment variables, registers telemetry reporters alongside pool supervisors, and routes logs through Snakepit.Logger
	Python gRPC servers (grpc_server.py, grpc_server_threaded.py) updated with structured logging, execution metrics, and heartbeat responses
	Examples refreshed with observability storylines, dual-mode telemetry demos, and cleaner default output through Snakepit.Logger
	GitHub workflows tightened to reflect new test layout and planning artifacts
	25+ Elixir modules migrated to Snakepit.Logger for consistent log suppression in demos and production

Configuration
	New :log_level option under the :snakepit application config to control internal logging# config/config.exs
config :snakepit,
 log_level: :warning # Options: :debug, :info, :warning, :error, :none

Fixed
	Hardened CI skips for ApplicationCleanupTest to avoid nondeterministic BEAM run IDs
	Addressed flaky test ordering through targeted cleanup helpers and telemetry-aware assertions

Documentation
	Major rewrite of ARCHITECTURE.md, new AGENTS.md, and comprehensive design dossiers for v0.7/v0.8 feature tracks
	Added heartbeat, telemetry, and OTLP upgrade plans under docs/2025101x/
	README refreshed with v0.6.1 highlights, logging guidance, installation tips, and observability walkthroughs

Notes
	Existing configurations continue to work with the default :info log level
	Log suppression is optional—set log_level: :debug to restore verbose output
	Provides cleaner logs for production deployments and demos while retaining full visibility for debugging

[0.6.0] - 2025-10-11
Added - Phase 1: Dual-Mode Architecture Foundation
	Worker Profile System
	New Snakepit.WorkerProfile behaviour for pluggable parallelism strategies
	Snakepit.WorkerProfile.Process - Multi-process profile (default, backward compatible)
	Snakepit.WorkerProfile.Thread - Multi-threaded profile stub (Phase 2-3 implementation)
	Profile abstraction enables switching between process and thread execution modes

	Python Environment Detection
	New Snakepit.PythonVersion module for Python version detection
	Automatic detection of Python 3.13+ free-threading support (PEP 703)
	Profile recommendation based on Python capabilities
	Version validation and compatibility warnings

	Library Compatibility Matrix
	New Snakepit.Compatibility module with thread-safety database
	Compatibility tracking for 20+ popular Python libraries (NumPy, PyTorch, Pandas, etc.)
	Per-library thread safety status, recommendations, and workarounds
	Automatic compatibility checking for thread profile configurations

	Configuration System Enhancements
	New Snakepit.Config module for multi-pool configuration management
	Support for named pools with different worker profiles
	Backward-compatible legacy configuration conversion
	Comprehensive configuration validation and normalization
	Profile-specific defaults (process vs thread)

	Documentation
	Comprehensive v0.6.0 technical plan (8,000+ words)
	GIL removal research and dual-mode architecture design
	Phase-by-phase implementation roadmap (10 weeks)
	Performance benchmarks and migration strategies

Changed
	Architecture Evolution	Foundation laid for Python 3.13+ free-threading support
	Worker management abstracted to support multiple parallelism models
	Configuration system generalized for multi-pool scenarios

Added - Phase 2: Multi-Threaded Python Worker
	Threaded gRPC Server
	New grpc_server_threaded.py - Multi-threaded server with ThreadPoolExecutor
	Concurrent request handling via HTTP/2 multiplexing
	Thread safety monitoring with ThreadSafetyMonitor class
	Request tracking per thread with performance metrics
	Automatic adapter thread safety validation on startup
	Configurable thread pool size (--max-workers parameter)

	Thread-Safe Adapter Infrastructure
	New base_adapter_threaded.py - Base class for thread-safe adapters
	ThreadSafeAdapter with built-in locking primitives
	ThreadLocalStorage manager for per-thread state
	RequestTracker for monitoring concurrent requests
	@thread_safe_method decorator for automatic tracking
	Context managers for safe lock acquisition
	Built-in statistics and performance monitoring

	Example Implementations
	threaded_showcase.py - Comprehensive thread-safe adapter example
	Pattern 1: Shared read-only resources (models, configurations)
	Pattern 2: Thread-local storage (caches, buffers)
	Pattern 3: Locked shared mutable state (counters, logs)
	CPU-intensive workloads with NumPy integration
	Stress testing and performance monitoring tools
	Example tools: compute_intensive, matrix_multiply, batch_process, stress_test

	Thread Safety Validation
	New thread_safety_checker.py - Runtime validation toolkit
	Concurrent access detection with detailed warnings
	Known unsafe library detection (Pandas, Matplotlib, SQLite3)
	Thread contention monitoring and analysis
	Performance profiling per thread
	Automatic recommendations for detected issues
	Global checker with strict mode option

	Documentation
	New README_THREADING.md - Comprehensive threading guide
	Thread safety patterns and best practices
	Writing thread-safe adapters tutorial
	Testing strategies for concurrent code
	Performance optimization techniques
	Library compatibility matrix (20+ libraries)
	Common pitfalls and solutions
	Advanced topics: worker recycling, monitoring, debugging

Added - Phase 3: Elixir Thread Profile Integration
	Complete ThreadProfile Implementation
	Full implementation of Snakepit.WorkerProfile.Thread
	Worker capacity tracking via ETS table (:snakepit_worker_capacity)
	Atomic load increment/decrement for thread-safe capacity management
	Support for concurrent requests to same worker (HTTP/2 multiplexing)
	Automatic script selection (threaded vs standard gRPC server)

	Worker Capacity Management
	ETS-based capacity tracking: {worker_pid, capacity, current_load}
	Atomic operations for thread-safe load updates
	Capacity checking before request execution
	Automatic load decrement after request completion (even on error)
	Real-time capacity monitoring via get_capacity/1 and get_load/1

	Adapter Configuration Enhancement
	Updated GRPCPython.script_path/0 to select correct server variant
	Automatic detection of threaded mode from adapter args
	Seamless switching between process and thread servers
	Enhanced argument merging for user customization

	Load Balancing
	Capacity-aware worker selection
	Prevents over-subscription of workers
	Returns :worker_at_capacity when no slots available
	Automatic queueing handled by pool layer

	Example Demonstration
	New examples/threaded_profile_demo.exs - Interactive demo script
	Shows configuration patterns for threaded mode
	Explains concurrent request handling
	Demonstrates capacity management
	Performance monitoring examples

Added - Phase 4: Worker Lifecycle Management
	LifecycleManager GenServer
	New Snakepit.Worker.LifecycleManager - Automatic worker recycling
	TTL-based recycling (configurable: seconds/minutes/hours/days)
	Request-count based recycling (recycle after N requests)
	Memory threshold recycling (optional, requires worker support)
	Periodic health checks (every 5 minutes)
	Graceful worker replacement with zero downtime

	Worker Tracking Infrastructure
	Automatic worker registration on startup
	Per-worker metadata tracking (start time, request count, config)
	Process monitoring for crash detection
	Lifecycle statistics and reporting

	Recycling Logic
	Configurable TTL: {3600, :seconds}, {1, :hours}, etc.
	Max requests: worker_max_requests: 1000
	Memory threshold: memory_threshold_mb: 2048 (optional)
	Manual recycling: LifecycleManager.recycle_worker(pool, worker_id)
	Automatic replacement after recycling

	Request Counting
	Automatic increment after successful request
	Per-worker request tracking
	Triggers recycling at configured threshold
	Integrated with Pool's execute path

	Telemetry Events
	[:snakepit, :worker, :recycled] - Worker recycled with reason
	[:snakepit, :worker, :health_check_failed] - Health check failure
	Rich metadata (worker_id, pool, reason, uptime, request_count)
	Integration with Prometheus, LiveDashboard, custom monitors

	Documentation
	New docs/telemetry_events.md - Complete telemetry reference
	Event schemas and metadata descriptions
	Usage examples for monitoring systems
	Prometheus and LiveDashboard integration patterns
	Best practices and debugging tips

	Supervisor Integration
	LifecycleManager added to application supervision tree
	Positioned after WorkerSupervisor, before Pool
	Automatic startup with pooling enabled
	Clean shutdown handling

Changed - Phase 4
	GRPCWorker Enhanced
	Workers now register with LifecycleManager on startup
	Lifecycle config passed during initialization
	Untracking on worker shutdown

	Pool Enhanced
	Request counting integrated into execute path
	Automatic notification to LifecycleManager on success
	Supports lifecycle management without modifications to existing flow

Added - Phase 5: Enhanced Diagnostics and Monitoring
	ProfileInspector Module
	New Snakepit.Diagnostics.ProfileInspector - Programmatic pool inspection
	Functions for pool statistics, capacity analysis, and memory usage
	Profile-aware metrics for both process and thread pools
	get_pool_stats/1 - Comprehensive pool statistics
	get_capacity_stats/1 - Capacity utilization and thread info
	get_memory_stats/1 - Memory usage breakdown per worker
	get_comprehensive_report/0 - All pools analysis
	check_saturation/2 - Capacity warning system
	get_recommendations/1 - Intelligent optimization suggestions

	Mix Task: Profile Inspector
	New mix snakepit.profile_inspector - Interactive pool inspection tool
	Text and JSON output formats
	Detailed per-worker statistics with --detailed flag
	Pool-specific inspection with --pool option
	Optimization recommendations with --recommendations flag
	Color-coded utilization indicators (🔴🟡🟢⚪)
	Profile-specific insights (process vs thread)

	Enhanced Scaling Diagnostics
	Extended mix diagnose.scaling with profile-aware analysis
	New TEST 0: Pool Profile Analysis
	Thread pool vs process pool comparison
	Capacity utilization monitoring
	Profile-specific recommendations
	System-wide optimization opportunities
	Real-time pool statistics integration

	Telemetry Events
	[:snakepit, :pool, :saturated] - Pool queue at max capacity	Measurements: queue_size, max_queue_size
	Metadata: pool, available_workers, busy_workers

	[:snakepit, :pool, :capacity_reached] - Worker reached capacity (thread profile)	Measurements: capacity, load
	Metadata: worker_pid, profile, rejected (optional)

	[:snakepit, :request, :executed] - Request completed with duration	Measurements: duration_us (microseconds)
	Metadata: pool, worker_id, command, success

	Diagnostic Features
	Worker memory usage tracking per process
	Thread pool utilization analysis
	Capacity saturation warnings
	Profile-appropriate recommendations
	Performance duration tracking
	Queue depth monitoring

Status
	Phase 1 ✅ Complete - Foundation modules and behaviors defined
	Phase 2 ✅ Complete - Multi-threaded Python worker implementation
	Phase 3 ✅ Complete - Elixir thread profile integration
	Phase 4 ✅ Complete - Worker lifecycle management and recycling
	Phase 5 ✅ Complete - Enhanced diagnostics and monitoring
	Phase 6 🔄 Pending - Documentation and examples

Notes
	No Breaking Changes: All v0.5.1 configurations remain fully compatible
	Thread Profile: Stub implementation (returns :not_implemented) until Phase 2-3
	Default Behavior: Process profile remains default for maximum stability
	Python 3.13+: Free-threading support enables true multi-threaded workers
	Migration: Existing code requires zero changes to continue working

0.5.1 - 2025-10-11
Added
	Diagnostic Tools
	New mix diagnose.scaling task for comprehensive bottleneck analysis
	Captures resource metrics (ports, processes, TCP connections, memory usage)
	Enhanced error logging with port buffer drainage

	Configuration Enhancements
	Explicit gRPC port range constraint documentation and validation
	Batched worker startup configuration (startup_batch_size: 8, startup_batch_delay_ms: 750)
	Resource limit safeguards with max_workers: 1000 hard limit

Changed
	Worker Pool Scaling Improvements
	Pool now reliably scales to 250+ workers (previously limited to ~105)
	Resolved thread explosion during concurrent startup (fixed "fork bomb" issue)
	Dynamic port allocation using OS-assigned ports (port=0) eliminates port collision races
	Batched worker startup prevents system resource exhaustion during concurrent initialization

	Performance Optimizations
	Aggressive thread limiting via environment variables for optimal pool-level parallelism:	OPENBLAS_NUM_THREADS=1 (numpy/scipy)
	OMP_NUM_THREADS=1 (OpenMP)
	MKL_NUM_THREADS=1 (Intel MKL)
	NUMEXPR_NUM_THREADS=1 (NumExpr)
	GRPC_POLL_STRATEGY=poll (single-threaded)

	Increased GRPC server connection backlog to 512
	Extended worker ready timeout to 30s for large pools

	Configuration Updates
	Increased port_range to 1000 (accommodates max_workers)
	Enhanced configuration comments explaining each tuning parameter
	Resource usage tracking during pool initialization

Fixed
	Concurrent Startup Issues
	Fixed "Cannot fork" / EAGAIN errors from thread explosion during worker spawn
	Eliminated port collision races with dynamic port allocation
	Resolved fork bomb caused by Python scientific libraries spawning excessive threads (6,000+ threads from OpenBLAS, gRPC, MKL)

	Resource Management
	Better port binding error handling in Python gRPC server
	Improved error diagnostics during pool initialization
	Enhanced connection management in GRPC server

Performance
	Successfully tested with 250 workers (2.5x previous limit)
	Startup time increases with pool size (~60s for 250 workers vs ~10s for 100 workers)
	Eliminated port collision races and fork resource exhaustion
	Dynamic port allocation provides reliable scaling

Notes
	Thread limiting optimizes for high concurrency with many small tasks
	CPU-intensive workloads that perform heavy numerical computation within a single task may need different threading configuration
	For computationally intensive per-task workloads, consider:	Workload-specific environment variables passed per task
	Separate worker pools with different threading profiles
	Dynamic thread limit adjustment based on task type
	Allowing higher OpenBLAS threads but reducing max_workers accordingly

	See commit dc67572 for detailed technical analysis and future considerations

0.5.0 - 2025-10-10
Added
	Process Management & Lifecycle
	New Snakepit.RunId module for unique process run identification with nanosecond precision
	New Snakepit.ProcessKiller module for robust OS-level process cleanup with SIGTERM/SIGKILL escalation
	Enhanced ProcessRegistry with run_id tracking and improved cleanup logic
	Added scripts/setup_python.sh for automated Python environment setup

	Test Infrastructure Improvements
	Added comprehensive Supertester refactoring plan (SUPERTESTER_REFACTOR_PLAN.md)
	Phase 1 foundation updates complete with TestableGenServer support
	New assert_eventually helper for polling conditions without Process.sleep
	Enhanced test documentation and baseline establishment
	New worker lifecycle tests for process management validation
	New application cleanup tests with run_id integration

	Python Cleanup & Testing
	Created Python test infrastructure with test_python.sh script
	Added comprehensive SessionContext test suite (15 tests)
	Created Elixir integration tests for Python SessionContext (9 tests)
	Python cleanup summary documentation (PYTHON_CLEANUP_SUMMARY.md)
	Enhanced Python gRPC server with improved process management and signal handling

	Documentation
	Phase 1 completion report with detailed test results
	Python cleanup and testing infrastructure summary
	Enhanced test planning and refactoring documentation
	Added comprehensive process management design documents (robust_process_cleanup_with_run_id.md)
	Added implementation summaries and debugging session reports
	New production deployment checklist (PRODUCTION_DEPLOYMENT_CHECKLIST.md)
	New example status documentation (EXAMPLE_STATUS_FINAL.md)
	Enhanced README with new icons and improved organization
	Added README_GRPC.md and README_BIDIRECTIONAL_TOOL_BRIDGE.md
	Created docs/archive/ structure for historical analysis and design documents

	Assets & Branding
	Added 29 new SVG icons for documentation (architecture, binary, book, bug, chart, etc.)
	New snakepit-icon.svg for branding
	Enhanced visual documentation throughout

Changed
	Process Management Improvements
	ApplicationCleanup rewritten with run_id-based cleanup strategy
	GRPCWorker enhanced with run_id tracking and improved termination handling
	ProcessRegistry optimized cleanup from O(n) to O(1) operations using run_id
	Enhanced GRPCPython adapter with run_id support

	Code Cleanup
	Removed dead Python code
	Deleted obsolete backup files and unused modules
	Streamlined Python SessionContext
	Cleaned up test infrastructure and removed duplicate code
	Archived ~60 historical documentation files to docs/archive/

	Examples Refactoring
	Simplified grpc_streaming_demo.exs
	Refactored grpc_advanced.exs for better clarity
	Enhanced grpc_sessions.exs with improved structure
	Streamlined grpc_streaming.exs
	Improved grpc_concurrent.exs with better patterns

	Test Coverage
	Increased total test coverage from 27 to 51 tests (+89%)
	37 Elixir tests passing (27 + 9 new integration tests + 1 new helper test)
	15 Python SessionContext tests passing
	Enhanced test helpers with improved synchronization and cleanup

	Build Configuration
	Enhanced mix.exs with expanded documentation and package metadata
	Updated dependencies and build configurations

Removed
	DSPy Integration (as announced in v0.4.3)
	Removed deprecated dspy_integration.py module
	Removed deprecated types.py with VariableType enum
	Removed session_context.py.backup
	Removed obsolete test_server.py
	Removed unused CLI directory referencing non-existent modules
	All __pycache__/ directories cleaned up

	Variables Feature (Temporary Removal)
	Removed incomplete variables implementation pending future redesign:	lib/snakepit/bridge/variables.ex
	lib/snakepit/bridge/variables/variable.ex
	lib/snakepit/bridge/variables/types.ex
	All variable type modules (boolean, choice, embedding, float, integer, module, string, tensor)
	examples/grpc_variables.exs
	lib/snakepit_showcase/demos/variables_demo.ex
	Related test files and Python code

	Deprecated Components
	Removed lib/snakepit/bridge/serialization.ex
	Removed lib/snakepit/grpc/stream_handler.ex
	Removed integration test infrastructure (test/integration/ directory)
	Removed property-based tests pending refactor
	Removed session and serialization tests pending redesign

Fixed
	Process Cleanup & Lifecycle
	Fixed race conditions in worker cleanup and termination
	Improved OS-level process cleanup with proper signal handling
	Enhanced DETS cleanup with run_id-based identification
	Fixed test flakiness with improved synchronization

	gRPC & Session Management
	Improved session initialization and cleanup in Python gRPC server
	Enhanced error handling in bidirectional tool bridge
	Better isolation between test runs

	Test Infrastructure
	Isolation level configuration documented (staying with :basic until test refactoring)
	Test infrastructure conflicts between manual cleanup and Supertester automatic cleanup resolved
	Enhanced debugging capabilities for test failures

Notes
	Breaking Changes:	DSPy integration fully removed (deprecated in v0.4.3)
	Variables feature temporarily removed pending redesign
	Users must migrate to DSPex for DSPy functionality (see v0.4.3 migration guide)

	Test suite reliability improved with better synchronization patterns
	Foundation laid for full Supertester conformance in future releases
	Process management significantly improved with run_id tracking system
	Documentation reorganized with archive structure for historical content

0.4.3 - 2025-10-07
Deprecated
	DSPy Integration (snakepit_bridge.dspy_integration)	Deprecated in favor of DSPex-native integration
	Will be removed in v0.5.0
	Deprecation warnings added to all DSPy-specific classes:	VariableAwarePredict
	VariableAwareChainOfThought
	VariableAwareReAct
	VariableAwareProgramOfThought
	ModuleVariableResolver
	create_variable_aware_program()

	See migration guide: https://github.com/nshkrdotcom/dspex/blob/main/docs/architecture_review_20251007/04_DECOUPLING_PLAN.md

Changed
	VariableAwareMixin docstring updated to emphasize generic applicability	Clarified it's generic, not DSPy-specific
	Can be used with any Python library (scikit-learn, PyTorch, Pandas, etc.)

Documentation
	Added prominent deprecation notice to README
	Added migration guide for DSPex users
	Clarified architectural boundaries (Snakepit = infrastructure, DSPex = domain)
	Added comprehensive architecture review documents

Notes
	No breaking changes - existing code continues to work with deprecation warnings
	Core Snakepit functionality unaffected
	Non-DSPy users unaffected
	Deprecation period: 3-6 months before removal in v0.5.0

0.4.2 - 2025-10-07
Fixed
	DETS accumulation bug - Fixed ProcessRegistry indefinite growth (1994+ stale entries cleaned up)
	Session creation race condition - Implemented atomic session creation with :ets.insert_new to eliminate concurrent initialization errors
	Resource cleanup race condition - Fixed wait_for_worker_cleanup to check actual resources (port availability + registry cleanup) instead of dead Elixir PID
	Test cleanup race condition - Added proper error handling in test teardown for already-stopped workers
	ExDoc warnings - Fixed documentation references by moving INSTALLATION.md to guides/ and adding to ExDoc extras

Changed
	ApplicationCleanup simplified - Simplified implementation, changed to emergency-only handler with telemetry
	Worker.Starter documentation - Added comprehensive moduledoc with ADR-001 link explaining external process management rationale
	DETS cleanup optimization - Changed from O(n) per-PID syscalls to O(1) beam_run_id-based cleanup
	Process.alive? filter removed - Eliminated redundant check (Supervisor.which_children already returns alive children only)

Added
	ADR-001 - Architecture Decision Record documenting Worker.Starter supervision pattern rationale
	External Process Supervision Design - Comprehensive 1074-line design document covering multi-mode architecture
	Issue #2 critical review - Detailed analysis addressing all community feedback concerns
	Performance benchmarks - Added baseline benchmarks showing 1400-1500 ops/sec sustained throughput
	Telemetry in ApplicationCleanup - Added events for tracking orphan detection and emergency cleanup

Removed
	Dead code cleanup - Removed unused/aspirational code:	Snakepit.Python module (referenced non-existent adapter)
	GRPCBridge adapter (never used)
	Dead Python adapters (dspy_streaming.py, enhanced.py, grpc_streaming.py)
	Redundant helper functions in ApplicationCleanup
	Catch-all rescue clauses (follows "let it crash" philosophy)

Performance
	100 workers initialize in ~3 seconds (unchanged)
	1400-1500 operations/second sustained (maintained)
	DETS cleanup now O(1) vs O(n) (significant improvement for large process counts)

Documentation
	Complete installation guide with platform-specific instructions (Ubuntu, macOS, WSL, Docker)
	Marked working vs WIP examples clearly (3 working, 6 aspirational)
	Added comprehensive analysis documents (150KB total)

Testing
	All 139/139 tests passing ✅
	No orphaned processes ✅
	Clean shutdown behavior validated ✅

0.4.1 - 2025-07-24
Added
	New process_text tool - Text processing capabilities with upper, lower, reverse, and length operations
	New get_stats tool - Real-time adapter and system monitoring with memory usage, CPU usage, and system information
	Enhanced ShowcaseAdapter - Added missing tools (adapter_info, echo, process_text, get_stats) for complete tool bridge demonstration

Fixed
	gRPC tool registration issues - Resolved async/sync mismatch causing UnaryUnaryCall objects to be returned instead of actual responses
	Missing tool errors - Fixed "Unknown tool: adapter_info" and "Unknown tool: echo" errors by implementing missing @tool decorated methods
	Automatic session initialization - Fixed "Failed to register tools: not_found" error by automatically creating sessions before tool registration
	Remote tool dispatch - Implemented complete bidirectional tool execution between Elixir BridgeServer and Python workers
	Async/sync compatibility - Added proper handling for both sync and async gRPC stubs with fallback logic for UnaryUnaryCall objects

Changed
	BridgeServer enhancement - Added remote tool execution capabilities with worker port lookup and gRPC forwarding
	Python gRPC server - Enhanced with automatic session initialization before tool registration
	ShowcaseAdapter refactoring - Expanded tool set to demonstrate full bidirectional tool bridge capabilities

0.4.0 - 2025-07-23
Added
	Complete gRPC bridge implementation with full bidirectional tool execution
	Tool bridge streaming support for efficient real-time communication
	Variables feature with type system (string, integer, float, boolean, choice, tensor, embedding)
	Comprehensive process management and cleanup system
	Process registry with enhanced tracking and orphan detection
	SessionStore with TTL support and automatic expiration
	BridgeServer implementation for gRPC protocol
	StreamHandler for managing gRPC streaming responses
	Telemetry module for comprehensive metrics and monitoring
	MockGRPCWorker and test infrastructure improvements
	Showcase application with multiple demo scenarios
	Binary serialization support for large data (>10KB) with 5-10x performance improvement
	Automatic binary encoding with threshold detection
	Protobuf schema updates with binary fields support
	Tool registration and discovery system
	Elixir tool exposure to Python workers
	Batch variable operations for performance
	Variable watching/reactive updates support
	Heartbeat mechanism for session health monitoring

Changed
	Major refactoring from legacy bridge system to gRPC-only architecture
	Removed all legacy bridge implementations (V1, V2, MessagePack)
	Unified all adapters to use gRPC protocol exclusively
	Worker module completely rewritten for gRPC support
	Pool module enhanced with configurable adapter support
	ProcessRegistry rewritten with improved tracking and cleanup
	Test framework upgraded with SuperTester integration
	Examples reorganized and updated for gRPC usage
	Python client library restructured as snakepit_bridge package
	Serialization module now returns 3-tuple {:ok, any_map, binary_data}
	Large tensors and embeddings automatically use binary encoding
	Integration tests updated to use new infrastructure

Fixed
	Process cleanup and orphan detection issues
	Worker termination and registry cleanup
	Module redefinition warnings in test environment
	SessionStore TTL validation and expiration timing
	Mock adapter message handling
	Integration test pool timeouts and shutdown
	GitHub Actions deprecation warnings
	Elixir version compatibility in integration tests

Removed
	All legacy bridge implementations (generic_python.ex, generic_python_v2.ex, etc.)
	MessagePack protocol support (moved to gRPC exclusively)
	Old Python bridge scripts (generic_bridge.py, enhanced_bridge.py)
	Legacy session_context.py implementation
	V1/V2 adapter pattern in favor of unified gRPC approach

0.3.3 - 2025-07-20
Added
	Support for custom adapter arguments in gRPC adapter via pool configuration
	Enhanced Python API commands (call, store, retrieve, list_stored, delete_stored) in gRPC adapter
	Dynamic command validation based on adapter type in gRPC adapter

Changed
	GRPCPython adapter now accepts custom adapter arguments through pool_config.adapter_args
	Improved supported_commands/0 to dynamically include commands based on the adapter in use

Fixed
	gRPC adapter now properly supports third-party Python adapters like DSPy integration

0.3.2 - 2025-07-20
Fixed
	Added missing files to the repository

0.3.1 - 2025-07-20
Changed
	Merged MessagePack optimizations into main codebase
	Unified documentation for gRPC and MessagePack features
	Set GenericPythonV2 as default adapter with auto-negotiation

0.3.0 - 2025-07-20
Added
	Complete gRPC bridge implementation with streaming support
	MessagePack serialization protocol support
	Comprehensive gRPC integration documentation and setup guides
	Enhanced bridge documentation and examples

Changed
	Deprecated V1 Python bridge in favor of V2 architecture
	Updated demo implementations to use V2 Python bridge
	Improved gRPC streaming bridge implementation
	Enhanced debugging capabilities and cleanup

Fixed
	Resolved init/1 blocking issues in V2 Python bridge
	General debugging improvements and code cleanup

0.2.1 - 2025-07-20
Fixed
	Eliminated "unexpected message" logs in Pool module by properly handling Task completion messages from Task.Supervisor.async_nolink

0.2.0 - 2025-07-19
Added
	Complete Enhanced Python Bridge V2 Extension implementation
	Built-in type support for Python Bridge V2
	Test rework specifications and improved testing infrastructure
	Commercial refactoring recommendations documentation

Changed
	Enhanced Python Bridge V2 with improved architecture and session management
	Improved debugging capabilities for V2 examples
	Better error handling and robustness in Python Bridge

Fixed
	Bug fixes in Enhanced Python Bridge examples
	Data science example debugging improvements
	General cleanup and code improvements

0.1.2 - 2025-07-18
Added
	Python Bridge V2 with improved architecture and session management
	Generalized Python bridge implementation
	Enhanced session management capabilities

Changed
	Major architectural improvements to Python bridge
	Better integration with external Python processes

0.1.1 - 2025-07-18
Added
	DIAGS.md with comprehensive Mermaid architecture diagrams
	Elixir-themed styling and proper subgraph format for diagrams
	Logo support to ExDoc and hex package
	Mermaid diagram support in documentation

Changed
	Updated configuration to include assets and documentation
	Improved documentation structure and visual presentation

Fixed
	README logo path for hex docs
	Asset organization (moved img/ to assets/)

0.1.0 - 2025-07-18
Added
	Initial release of Snakepit
	High-performance pooling system for external processes
	Session-based execution with worker affinity
	Built-in adapters for Python and JavaScript/Node.js
	Comprehensive session management with ETS storage
	Telemetry and monitoring support
	Graceful shutdown and process cleanup
	Extensive documentation and examples

Features
	Lightning-fast concurrent worker initialization (1000x faster than sequential)
	Session affinity for stateful operations
	Built on OTP primitives (DynamicSupervisor, Registry, GenServer)
	Adapter pattern for any external language/runtime
	Production-ready with health checks and error handling
	Configurable pool sizes and timeouts
	Built-in bridge scripts for Python and JavaScript

 LICENSE - Snakepit v0.9.1

 LICENSE

MIT License

Copyright (c) 2025 NSHkr

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

 Snakepit.Application - Snakepit v0.9.1

Snakepit.Application

Application supervisor for Snakepit pooler.
Starts the core infrastructure:
	Registry for worker process registration
	StarterRegistry for worker starter supervisors
	ProcessRegistry for external PID tracking
	SessionStore for session management
	WorkerSupervisor for managing worker processes
	Pool manager for request distribution

 Snakepit.Bootstrap - Snakepit v0.9.1

Snakepit.Bootstrap

Provisioning workflow for development and CI environments.
It installs Mix dependencies, prepares the default Python virtual
environments, regenerates gRPC stubs, and surfaces the interpreter path the
application will use at runtime.

 Summary

 Functions

 run(opts \\ [])

 Execute the bootstrap workflow.

 Functions

 run(opts \\ [])

 @spec run(Keyword.t()) :: :ok | {:error, term()}

Execute the bootstrap workflow.
Options:
	:project_root - overrides the working directory (defaults to File.cwd!/0)
	:runner - injects a custom runner, useful for tests
	:skip_mix_deps - skips mix deps.get (useful for test bootstrapping)

 Snakepit.Bootstrap.Runner - Snakepit v0.9.1

Snakepit.Bootstrap.Runner behaviour

Behaviour for executing bootstrap steps. Allows tests to inject fakes.

 Summary

 Callbacks

 cmd(command, args, keyword)

 mix(task, args)

 Callbacks

 cmd(command, args, keyword)

 @callback cmd(command :: String.t(), args :: [String.t()], keyword()) ::
 :ok | {:error, term()}

 mix(task, args)

 @callback mix(task :: String.t(), args :: [String.t()]) :: :ok | {:error, term()}

 Snakepit.Bridge.InternalToolSpec - Snakepit v0.9.1

Snakepit.Bridge.InternalToolSpec

Internal specification for a tool in the registry.
Separate from the protobuf ToolSpec to avoid conflicts.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Snakepit.Bridge.InternalToolSpec{
 description: String.t(),
 exposed_to_python: boolean(),
 handler: (any() -> any()) | nil,
 metadata: map(),
 name: String.t(),
 parameters: [map()],
 type: :local | :remote,
 worker_id: String.t() | nil
}

 Snakepit.Compatibility - Snakepit v0.9.1

Snakepit.Compatibility

Thread-safety compatibility matrix for common Python libraries.

 Summary

 Types

 library_info()

 thread_safety()

 Functions

 check(library, profile)

 generate_report(libraries, profile)

 get_library_info(library)

 list_all(arg1)

 Types

 library_info()

 @type library_info() :: %{thread_safe: thread_safety(), notes: String.t()}

 thread_safety()

 @type thread_safety() :: true | false | :conditional

 Functions

 check(library, profile)

 @spec check(String.t() | atom(), :thread | :process) ::
 {:ok, String.t()} | {:warning, String.t()} | {:error, String.t()}

 generate_report(libraries, profile)

 @spec generate_report([String.t() | atom()], :thread | :process) ::
 {:ok, map()} | {:error, term()}

 get_library_info(library)

 @spec get_library_info(String.t() | atom()) :: library_info() | nil

 list_all(arg1)

 @spec list_all(:thread_safe | :thread_unsafe | :conditional | :all) :: [String.t()]

 Snakepit.CrashBarrier - Snakepit v0.9.1

Snakepit.CrashBarrier

Crash barrier policy for worker failures.
Classifies worker crashes, taints unstable workers, and determines retry eligibility.

 Summary

 Functions

 config(pool_config \\ %{})

 crash_info(arg1, config)

 enabled?(config)

 idempotent?(args)

 maybe_emit_restart(pool_name, worker_id)

 normalize_crash_error(result, info)

 retry_allowed?(config, idempotent, attempt)

 retry_backoff(config, attempt)

 taint_worker(pool_name, worker_id, info, config)

 worker_tainted?(worker_id)

 Functions

 config(pool_config \\ %{})

 crash_info(arg1, config)

 enabled?(config)

 @spec enabled?(map()) :: boolean()

 idempotent?(args)

 maybe_emit_restart(pool_name, worker_id)

 normalize_crash_error(result, info)

 retry_allowed?(config, idempotent, attempt)

 @spec retry_allowed?(map(), boolean(), non_neg_integer()) :: boolean()

 retry_backoff(config, attempt)

 taint_worker(pool_name, worker_id, info, config)

 worker_tainted?(worker_id)

 @spec worker_tainted?(String.t()) :: boolean()

 Snakepit.Defaults - Snakepit v0.9.1

Snakepit.Defaults

Centralized defaults for all configurable values in Snakepit.
This module provides functions that read from Application.get_env(:snakepit, key, default)
for every configurable value. This allows operators to override defaults via application
configuration while maintaining backward compatibility.
All defaults are the EXACT values that were previously hardcoded throughout the codebase.
Snakepit behaves identically before and after this change unless configuration is explicitly
provided.
Configuration Example
config/runtime.exs
config :snakepit,
 # Timeouts
 default_command_timeout: 30_000,
 pool_request_timeout: 60_000,
 pool_streaming_timeout: 300_000,
 pool_startup_timeout: 10_000,
 pool_queue_timeout: 5_000,
 checkout_timeout: 5_000,
 grpc_worker_execute_timeout: 30_000,
 grpc_worker_stream_timeout: 300_000,
 grpc_command_timeout: 30_000,
 executor_batch_timeout: 30_000,
 health_check_interval: 30_000,
 circuit_breaker_reset_timeout: 30_000,
 graceful_shutdown_timeout_ms: 6_000,

 # Pool settings
 pool_max_queue_size: 1000,
 pool_max_workers: 150,
 pool_max_cancelled_entries: 1024,
 pool_cancelled_retention_multiplier: 4,
 pool_startup_batch_size: 10,
 pool_startup_batch_delay_ms: 500,

 # Retry settings
 retry_max_attempts: 3,
 retry_max_backoff_ms: 30_000,
 retry_jitter_factor: 0.25,
 retry_backoff_sequence: [100, 200, 400, 800, 1600],

 # Circuit breaker settings
 circuit_breaker_failure_threshold: 5,
 circuit_breaker_half_open_max_calls: 1,

 # Crash barrier settings
 crash_barrier_taint_duration_ms: 60_000,
 crash_barrier_max_restarts: 1,
 crash_barrier_backoff_ms: [50, 100, 200],

 # Health monitor settings
 health_monitor_crash_window_ms: 60_000,
 health_monitor_max_crashes: 10,

 # Lifecycle manager settings
 lifecycle_check_interval: 60_000,
 lifecycle_health_check_interval: 300_000,

 # Session store settings
 session_cleanup_interval: 60_000,
 session_default_ttl: 3600,
 session_max_sessions: 10_000,
 session_warning_threshold: 0.8,

 # Process registry settings
 process_registry_cleanup_interval: 30_000,
 process_registry_unregister_cleanup_delay: 500,
 process_registry_unregister_cleanup_attempts: 10,

 # gRPC settings
 grpc_num_acceptors: 20,
 grpc_max_connections: 1000,
 grpc_socket_backlog: 512,

 # Heartbeat settings
 heartbeat_ping_interval_ms: 2_000,
 heartbeat_timeout_ms: 10_000,
 heartbeat_max_missed: 3,
 heartbeat_initial_delay_ms: 0
Usage
Instead of hardcoding values like 30_000, modules now call:
Snakepit.Defaults.default_command_timeout()
This returns the configured value or the original default if not configured.
Timeout Profiles (v0.8.8+)
Snakepit supports profile-based timeout configuration for different deployment scenarios:
	Profile	default_timeout	stream_timeout	queue_timeout
	:balanced	300_000 (5m)	900_000 (15m)	10_000 (10s)
	:production	300_000 (5m)	900_000 (15m)	10_000 (10s)
	:production_strict	60_000 (60s)	300_000 (5m)	5_000 (5s)
	:development	900_000 (15m)	3_600_000 (60m)	60_000 (60s)
	:ml_inference	900_000 (15m)	3_600_000 (60m)	60_000 (60s)
	:batch	3_600_000 (60m)	:infinity	300_000 (5m)

Configure via:
config :snakepit, timeout_profile: :production
Legacy per-key configuration is still supported and takes precedence when set.

 Summary

 Functions

 affinity_cache_ttl_seconds()

 TTL for session affinity cache entries in seconds.
Used in Snakepit.Pool for ETS affinity caching.

 checkout_timeout()

 Default timeout for checking out a worker for streaming.
Used in Snakepit.Pool for worker checkout during streaming operations.

 circuit_breaker_failure_threshold()

 Default failure threshold before circuit opens.
Used in Snakepit.CircuitBreaker.

 circuit_breaker_half_open_max_calls()

 Default max calls allowed in half-open state.
Used in Snakepit.CircuitBreaker.

 circuit_breaker_reset_timeout_ms()

 Default reset timeout before transitioning to half-open.
Used in Snakepit.CircuitBreaker.

 cleanup_on_stop_timeout_ms()

 Timeout for cleanup on stop.
Used in Snakepit.Application.

 cleanup_poll_interval_ms()

 Poll interval for cleanup operations.
Used in Snakepit.Application.

 config_default_batch_delay()

 Default batch delay for process profile.
Used in Snakepit.Config.

 config_default_batch_size()

 Default batch size for process profile.
Used in Snakepit.Config.

 config_default_threads_per_worker()

 Default threads per worker for thread profile.
Used in Snakepit.Config.

 crash_barrier_backoff_ms()

 Default backoff sequence for crash barrier retries.
Used in Snakepit.CrashBarrier.

 crash_barrier_checkout_timeout()

 Timeout for checking out worker during crash barrier retry.
Used in Snakepit.Pool crash barrier retry logic.

 crash_barrier_max_restarts()

 Default max restarts for crash barrier retry.
Used in Snakepit.CrashBarrier.

 crash_barrier_taint_duration_ms()

 Default taint duration for crashed workers.
Used in Snakepit.CrashBarrier.

 default_capacity_strategy()

 Default capacity strategy.
Used in Snakepit.Config.

 default_command_timeout()

 Default command timeout for worker execute operations.
Used in Snakepit.Pool for command timeout calculation.

 default_pool_size()

 Default pool size based on system schedulers.
Used when no explicit pool_size is configured.

 default_timeout()

 Returns the default timeout for regular execute operations based on the current profile.

 default_worker_profile()

 Default worker profile.
Used in Snakepit.Config.

 executor_batch_timeout()

 Default timeout for batch operations in Executor.
Used in Snakepit.Executor.execute_batch/2.

 graceful_shutdown_timeout_ms()

 Graceful shutdown timeout for Python process termination.
Must be >= Python's shutdown envelope: server.stop(2s) + wait_for_termination(3s) = 5s.

 grpc_batch_inference_timeout()

 Timeout for batch inference commands.
Used in Snakepit.Adapters.GRPCPython for batch inference operations.

 grpc_client_execute_timeout()

 Default timeout for gRPC client execute calls.
Used in Snakepit.GRPC.Client.

 grpc_command_timeout()

 Default command timeout for gRPC adapter.
Used in Snakepit.Adapters.GRPCPython for default command timeouts.

 grpc_large_dataset_timeout()

 Timeout for large dataset processing commands.
Used in Snakepit.Adapters.GRPCPython for large dataset processing operations.

 grpc_max_connections()

 Default maximum connections for gRPC server.
Used in Snakepit.Application.

 grpc_num_acceptors()

 Default number of acceptors for gRPC server.
Used in Snakepit.Application.

 grpc_port()

 Default gRPC port for Elixir server.
Used in Snakepit.Application.

 grpc_server_ready_timeout()

 Timeout for waiting for gRPC server to become ready.
Used in Snakepit.GRPCWorker during initialization.

 grpc_socket_backlog()

 Default socket backlog for gRPC server.
Used in Snakepit.Application.

 grpc_worker_execute_timeout()

 Default timeout for GRPCWorker execute calls.
Used in Snakepit.GRPCWorker.execute/4.

 grpc_worker_health_check_interval()

 Interval for health checks in GRPCWorker.
Used in Snakepit.GRPCWorker for periodic health check scheduling.

 grpc_worker_stream_timeout()

 Default timeout for GRPCWorker streaming calls.
Used in Snakepit.GRPCWorker.execute_stream/5.

 health_monitor_check_interval()

 Default interval for health monitor cleanup.
Used in Snakepit.HealthMonitor.

 health_monitor_crash_window_ms()

 Default crash window for health monitor.
Rolling window for crash counting.

 health_monitor_max_crashes()

 Default max crashes before pool is considered unhealthy.
Used in Snakepit.HealthMonitor.

 heartbeat_initial_delay_ms()

 Initial delay before starting heartbeat monitoring.
Used in Snakepit.GRPCWorker heartbeat configuration.

 heartbeat_max_missed()

 Maximum missed heartbeats before worker is considered unhealthy.
Used in Snakepit.GRPCWorker heartbeat configuration.

 heartbeat_ping_interval_ms()

 Default heartbeat ping interval.
Used in Snakepit.GRPCWorker heartbeat configuration.

 heartbeat_timeout_ms()

 Default heartbeat timeout.
Used in Snakepit.GRPCWorker heartbeat configuration.

 lifecycle_check_interval()

 Default interval for lifecycle checks.
Used in Snakepit.Worker.LifecycleManager.

 lifecycle_health_check_interval()

 Default interval for health checks in lifecycle manager.
Used in Snakepit.Worker.LifecycleManager.

 pool_await_ready_timeout()

 Default timeout for awaiting pool readiness.
Used in Snakepit.Pool.await_ready/2.

 pool_cancelled_retention_multiplier()

 Multiplier for cancelled request retention time.
Retention time = queue_timeout * this multiplier.

 pool_max_cancelled_entries()

 Maximum number of cancelled request entries to track.
Used in Snakepit.Pool for cancelled request management.

 pool_max_queue_size()

 Maximum queue size for pending requests.
Used in Snakepit.Pool for queue management.

 pool_max_workers()

 Maximum number of workers allowed per pool.
Used in Snakepit.Pool for worker limit enforcement.

 pool_queue_timeout()

 Default timeout for queued requests.
Used in Snakepit.Pool for queue management.

 pool_reconcile_batch_size()

 pool_reconcile_interval_ms()

 pool_reply_margin_ms()

 Margin reserved for pool reply overhead.

 pool_request_timeout()

 Default timeout for pool execute calls.
Used in Snakepit.Pool.execute/3.

 pool_startup_batch_delay_ms()

 Delay between worker startup batches in milliseconds.
Used in Snakepit.Pool for batched startup.

 pool_startup_batch_size()

 Number of workers to start per batch during pool initialization.
Used in Snakepit.Pool for batched startup.

 pool_startup_timeout()

 Default timeout for worker startup.
Used in pool initialization.

 pool_streaming_timeout()

 Default timeout for pool streaming calls.
Used in Snakepit.Pool.execute_stream/4.

 process_registry_cleanup_interval()

 Default cleanup interval for process registry.
Used in Snakepit.Pool.ProcessRegistry.

 process_registry_unregister_cleanup_attempts()

 Maximum attempts to retry unregister cleanup.
Used in Snakepit.Pool.ProcessRegistry.

 process_registry_unregister_cleanup_delay()

 Delay before retrying unregister when external process is still alive.
Used in Snakepit.Pool.ProcessRegistry.

 queue_timeout()

 Returns the default queue timeout based on the current profile.

 retry_backoff_multiplier()

 Default backoff multiplier for exponential backoff.
Used in Snakepit.RetryPolicy.

 retry_backoff_sequence()

 Default backoff sequence for retries.
Used in Snakepit.RetryPolicy.

 retry_base_backoff_ms()

 Default base backoff for retry calculations.
Used in Snakepit.RetryPolicy.

 retry_jitter_factor()

 Default jitter factor for retry delays.
Used in Snakepit.RetryPolicy.

 retry_max_attempts()

 Default maximum retry attempts.
Used in Snakepit.RetryPolicy.

 retry_max_backoff_ms()

 Default maximum backoff delay.
Used in Snakepit.RetryPolicy.

 rpc_timeout(total_timeout)

 Derives the RPC (inner) timeout from the total timeout budget.

 session_cleanup_interval()

 Default cleanup interval for expired sessions.
Used in Snakepit.Bridge.SessionStore.

 session_default_ttl()

 Default TTL for sessions in seconds.
Used in Snakepit.Bridge.SessionStore.

 session_max_sessions()

 Default maximum number of sessions.
Used in Snakepit.Bridge.SessionStore.

 session_warning_threshold()

 Session warning threshold as a fraction of max_sessions.
When session count exceeds this percentage, warnings are emitted.

 shutdown_margin_ms()

 Margin added to graceful_shutdown_timeout for supervisor shutdown.
This gives the worker time to complete its terminate/2 callback.

 stream_timeout()

 Returns the default timeout for streaming operations based on the current profile.

 timeout_profile()

 Returns the currently configured timeout profile.

 timeout_profiles()

 Returns all available timeout profiles.

 worker_call_margin_ms()

 Margin reserved for GenServer.call overhead when routing to workers.

 worker_ready_timeout()

 Timeout for worker ready notification to pool.
Used in Snakepit.GRPCWorker when notifying pool of readiness.

 worker_starter_max_restarts()

 worker_starter_max_seconds()

 worker_supervisor_max_restarts()

 worker_supervisor_max_seconds()

 Functions

 affinity_cache_ttl_seconds()

 @spec affinity_cache_ttl_seconds() :: pos_integer()

TTL for session affinity cache entries in seconds.
Used in Snakepit.Pool for ETS affinity caching.
Default: 60 seconds (1 minute)

 checkout_timeout()

 @spec checkout_timeout() :: timeout()

Default timeout for checking out a worker for streaming.
Used in Snakepit.Pool for worker checkout during streaming operations.
When not explicitly configured, derives from queue_timeout/0 based on the
current timeout profile.
Default: derived from profile (10_000 ms for :balanced)

 circuit_breaker_failure_threshold()

 @spec circuit_breaker_failure_threshold() :: pos_integer()

Default failure threshold before circuit opens.
Used in Snakepit.CircuitBreaker.
Default: 5

 circuit_breaker_half_open_max_calls()

 @spec circuit_breaker_half_open_max_calls() :: pos_integer()

Default max calls allowed in half-open state.
Used in Snakepit.CircuitBreaker.
Default: 1

 circuit_breaker_reset_timeout_ms()

 @spec circuit_breaker_reset_timeout_ms() :: pos_integer()

Default reset timeout before transitioning to half-open.
Used in Snakepit.CircuitBreaker.
Default: 30_000 ms (30 seconds)

 cleanup_on_stop_timeout_ms()

 @spec cleanup_on_stop_timeout_ms() :: pos_integer()

Timeout for cleanup on stop.
Used in Snakepit.Application.
Default: 3_000 ms (3 seconds)

 cleanup_poll_interval_ms()

 @spec cleanup_poll_interval_ms() :: pos_integer()

Poll interval for cleanup operations.
Used in Snakepit.Application.
Default: 50 ms

 config_default_batch_delay()

 @spec config_default_batch_delay() :: pos_integer()

Default batch delay for process profile.
Used in Snakepit.Config.
Default: 750 ms

 config_default_batch_size()

 @spec config_default_batch_size() :: pos_integer()

Default batch size for process profile.
Used in Snakepit.Config.
Default: 8

 config_default_threads_per_worker()

 @spec config_default_threads_per_worker() :: pos_integer()

Default threads per worker for thread profile.
Used in Snakepit.Config.
Default: 10

 crash_barrier_backoff_ms()

 @spec crash_barrier_backoff_ms() :: [pos_integer()]

Default backoff sequence for crash barrier retries.
Used in Snakepit.CrashBarrier.
Default: [50, 100, 200]

 crash_barrier_checkout_timeout()

 @spec crash_barrier_checkout_timeout() :: timeout()

Timeout for checking out worker during crash barrier retry.
Used in Snakepit.Pool crash barrier retry logic.
Default: 5_000 ms (5 seconds)

 crash_barrier_max_restarts()

 @spec crash_barrier_max_restarts() :: pos_integer()

Default max restarts for crash barrier retry.
Used in Snakepit.CrashBarrier.
Default: 1

 crash_barrier_taint_duration_ms()

 @spec crash_barrier_taint_duration_ms() :: pos_integer()

Default taint duration for crashed workers.
Used in Snakepit.CrashBarrier.
Default: 60_000 ms (1 minute)

 default_capacity_strategy()

 @spec default_capacity_strategy() :: :pool | :profile | :hybrid

Default capacity strategy.
Used in Snakepit.Config.
Default: :pool

 default_command_timeout()

 @spec default_command_timeout() :: timeout()

Default command timeout for worker execute operations.
Used in Snakepit.Pool for command timeout calculation.
When not explicitly configured, derives from rpc_timeout(default_timeout()) based on the
current timeout profile.
Default: derived from profile (rpc_timeout of default_timeout)

 default_pool_size()

 @spec default_pool_size() :: pos_integer()

Default pool size based on system schedulers.
Used when no explicit pool_size is configured.
Default: System.schedulers_online() * 2

 default_timeout()

 @spec default_timeout() :: timeout()

Returns the default timeout for regular execute operations based on the current profile.
This is the primary user-facing timeout API. Legacy getters derive from this value
when not explicitly configured.

 default_worker_profile()

 @spec default_worker_profile() :: :process | :thread

Default worker profile.
Used in Snakepit.Config.
Default: :process

 executor_batch_timeout()

 @spec executor_batch_timeout() :: timeout()

Default timeout for batch operations in Executor.
Used in Snakepit.Executor.execute_batch/2.
Default: 30_000 ms (30 seconds)

 graceful_shutdown_timeout_ms()

 @spec graceful_shutdown_timeout_ms() :: pos_integer()

Graceful shutdown timeout for Python process termination.
Must be >= Python's shutdown envelope: server.stop(2s) + wait_for_termination(3s) = 5s.
Default: 6_000 ms (6 seconds)

 grpc_batch_inference_timeout()

 @spec grpc_batch_inference_timeout() :: timeout()

Timeout for batch inference commands.
Used in Snakepit.Adapters.GRPCPython for batch inference operations.
Default: 300_000 ms (5 minutes)

 grpc_client_execute_timeout()

 @spec grpc_client_execute_timeout() :: timeout()

Default timeout for gRPC client execute calls.
Used in Snakepit.GRPC.Client.
Default: derived from grpc_command_timeout/0

 grpc_command_timeout()

 @spec grpc_command_timeout() :: timeout()

Default command timeout for gRPC adapter.
Used in Snakepit.Adapters.GRPCPython for default command timeouts.
When not explicitly configured, derives from rpc_timeout(default_timeout()) based on the
current timeout profile.
Default: derived from profile (rpc_timeout of default_timeout)

 grpc_large_dataset_timeout()

 @spec grpc_large_dataset_timeout() :: timeout()

Timeout for large dataset processing commands.
Used in Snakepit.Adapters.GRPCPython for large dataset processing operations.
Default: 600_000 ms (10 minutes)

 grpc_max_connections()

 @spec grpc_max_connections() :: pos_integer()

Default maximum connections for gRPC server.
Used in Snakepit.Application.
Default: 1000

 grpc_num_acceptors()

 @spec grpc_num_acceptors() :: pos_integer()

Default number of acceptors for gRPC server.
Used in Snakepit.Application.
Default: 20

 grpc_port()

 @spec grpc_port() :: pos_integer()

Default gRPC port for Elixir server.
Used in Snakepit.Application.
Default: 50_051

 grpc_server_ready_timeout()

 @spec grpc_server_ready_timeout() :: timeout()

Timeout for waiting for gRPC server to become ready.
Used in Snakepit.GRPCWorker during initialization.
Default: 30_000 ms (30 seconds)

 grpc_socket_backlog()

 @spec grpc_socket_backlog() :: pos_integer()

Default socket backlog for gRPC server.
Used in Snakepit.Application.
Default: 512

 grpc_worker_execute_timeout()

 @spec grpc_worker_execute_timeout() :: timeout()

Default timeout for GRPCWorker execute calls.
Used in Snakepit.GRPCWorker.execute/4.
When not explicitly configured, derives from rpc_timeout(default_timeout()) based on the
current timeout profile.
Default: derived from profile (rpc_timeout of default_timeout)

 grpc_worker_health_check_interval()

 @spec grpc_worker_health_check_interval() :: pos_integer()

Interval for health checks in GRPCWorker.
Used in Snakepit.GRPCWorker for periodic health check scheduling.
Default: 30_000 ms (30 seconds)

 grpc_worker_stream_timeout()

 @spec grpc_worker_stream_timeout() :: timeout()

Default timeout for GRPCWorker streaming calls.
Used in Snakepit.GRPCWorker.execute_stream/5.
Default: derived from stream_timeout/0

 health_monitor_check_interval()

 @spec health_monitor_check_interval() :: pos_integer()

Default interval for health monitor cleanup.
Used in Snakepit.HealthMonitor.
Default: 30_000 ms (30 seconds)

 health_monitor_crash_window_ms()

 @spec health_monitor_crash_window_ms() :: pos_integer()

Default crash window for health monitor.
Rolling window for crash counting.
Default: 60_000 ms (1 minute)

 health_monitor_max_crashes()

 @spec health_monitor_max_crashes() :: pos_integer()

Default max crashes before pool is considered unhealthy.
Used in Snakepit.HealthMonitor.
Default: 10

 heartbeat_initial_delay_ms()

 @spec heartbeat_initial_delay_ms() :: non_neg_integer()

Initial delay before starting heartbeat monitoring.
Used in Snakepit.GRPCWorker heartbeat configuration.
Default: 0 ms

 heartbeat_max_missed()

 @spec heartbeat_max_missed() :: pos_integer()

Maximum missed heartbeats before worker is considered unhealthy.
Used in Snakepit.GRPCWorker heartbeat configuration.
Default: 3

 heartbeat_ping_interval_ms()

 @spec heartbeat_ping_interval_ms() :: pos_integer()

Default heartbeat ping interval.
Used in Snakepit.GRPCWorker heartbeat configuration.
Default: 2_000 ms (2 seconds)

 heartbeat_timeout_ms()

 @spec heartbeat_timeout_ms() :: pos_integer()

Default heartbeat timeout.
Used in Snakepit.GRPCWorker heartbeat configuration.
Default: 10_000 ms (10 seconds)

 lifecycle_check_interval()

 @spec lifecycle_check_interval() :: pos_integer()

Default interval for lifecycle checks.
Used in Snakepit.Worker.LifecycleManager.
Default: 60_000 ms (1 minute)

 lifecycle_health_check_interval()

 @spec lifecycle_health_check_interval() :: pos_integer()

Default interval for health checks in lifecycle manager.
Used in Snakepit.Worker.LifecycleManager.
Default: 300_000 ms (5 minutes)

 pool_await_ready_timeout()

 @spec pool_await_ready_timeout() :: timeout()

Default timeout for awaiting pool readiness.
Used in Snakepit.Pool.await_ready/2.
Default: 15_000 ms (15 seconds)

 pool_cancelled_retention_multiplier()

 @spec pool_cancelled_retention_multiplier() :: pos_integer()

Multiplier for cancelled request retention time.
Retention time = queue_timeout * this multiplier.
Default: 4

 pool_max_cancelled_entries()

 @spec pool_max_cancelled_entries() :: pos_integer()

Maximum number of cancelled request entries to track.
Used in Snakepit.Pool for cancelled request management.
Default: 1024

 pool_max_queue_size()

 @spec pool_max_queue_size() :: pos_integer()

Maximum queue size for pending requests.
Used in Snakepit.Pool for queue management.
Default: 1000

 pool_max_workers()

 @spec pool_max_workers() :: pos_integer()

Maximum number of workers allowed per pool.
Used in Snakepit.Pool for worker limit enforcement.
Default: 150

 pool_queue_timeout()

 @spec pool_queue_timeout() :: timeout()

Default timeout for queued requests.
Used in Snakepit.Pool for queue management.
When not explicitly configured, derives from queue_timeout/0 based on the
current timeout profile.
Default: derived from profile (10_000 ms for :balanced)

 pool_reconcile_batch_size()

 @spec pool_reconcile_batch_size() :: pos_integer()

 pool_reconcile_interval_ms()

 @spec pool_reconcile_interval_ms() :: non_neg_integer()

 pool_reply_margin_ms()

 @spec pool_reply_margin_ms() :: pos_integer()

Margin reserved for pool reply overhead.
This is subtracted from the total timeout budget to derive the RPC timeout.
Default: 200 ms

 pool_request_timeout()

 @spec pool_request_timeout() :: timeout()

Default timeout for pool execute calls.
Used in Snakepit.Pool.execute/3.
When not explicitly configured, derives from default_timeout/0 based on the
current timeout profile.
Default: derived from profile (300_000 ms for :balanced)

 pool_startup_batch_delay_ms()

 @spec pool_startup_batch_delay_ms() :: non_neg_integer()

Delay between worker startup batches in milliseconds.
Used in Snakepit.Pool for batched startup.
Default: 500 ms

 pool_startup_batch_size()

 @spec pool_startup_batch_size() :: pos_integer()

Number of workers to start per batch during pool initialization.
Used in Snakepit.Pool for batched startup.
Default: 10

 pool_startup_timeout()

 @spec pool_startup_timeout() :: timeout()

Default timeout for worker startup.
Used in pool initialization.
Default: 10_000 ms (10 seconds)

 pool_streaming_timeout()

 @spec pool_streaming_timeout() :: timeout()

Default timeout for pool streaming calls.
Used in Snakepit.Pool.execute_stream/4.
When not explicitly configured, derives from stream_timeout/0 based on the
current timeout profile.
Default: derived from profile (900_000 ms for :balanced)

 process_registry_cleanup_interval()

 @spec process_registry_cleanup_interval() :: pos_integer()

Default cleanup interval for process registry.
Used in Snakepit.Pool.ProcessRegistry.
Default: 30_000 ms (30 seconds)

 process_registry_unregister_cleanup_attempts()

 @spec process_registry_unregister_cleanup_attempts() :: pos_integer()

Maximum attempts to retry unregister cleanup.
Used in Snakepit.Pool.ProcessRegistry.
Default: 10

 process_registry_unregister_cleanup_delay()

 @spec process_registry_unregister_cleanup_delay() :: pos_integer()

Delay before retrying unregister when external process is still alive.
Used in Snakepit.Pool.ProcessRegistry.
Default: 500 ms

 queue_timeout()

 @spec queue_timeout() :: timeout()

Returns the default queue timeout based on the current profile.

 retry_backoff_multiplier()

 @spec retry_backoff_multiplier() :: float()

Default backoff multiplier for exponential backoff.
Used in Snakepit.RetryPolicy.
Default: 2.0

 retry_backoff_sequence()

 @spec retry_backoff_sequence() :: [pos_integer()]

Default backoff sequence for retries.
Used in Snakepit.RetryPolicy.
Default: [100, 200, 400, 800, 1600]

 retry_base_backoff_ms()

 @spec retry_base_backoff_ms() :: pos_integer()

Default base backoff for retry calculations.
Used in Snakepit.RetryPolicy.
Default: 100 ms

 retry_jitter_factor()

 @spec retry_jitter_factor() :: float()

Default jitter factor for retry delays.
Used in Snakepit.RetryPolicy.
Default: 0.25 (25%)

 retry_max_attempts()

 @spec retry_max_attempts() :: pos_integer()

Default maximum retry attempts.
Used in Snakepit.RetryPolicy.
Default: 3

 retry_max_backoff_ms()

 @spec retry_max_backoff_ms() :: pos_integer()

Default maximum backoff delay.
Used in Snakepit.RetryPolicy.
Default: 30_000 ms (30 seconds)

 rpc_timeout(total_timeout)

 @spec rpc_timeout(timeout()) :: timeout()

Derives the RPC (inner) timeout from the total timeout budget.
Formula: rpc_timeout = total_timeout - worker_call_margin_ms - pool_reply_margin_ms
This ensures inner timeouts expire before outer GenServer.call timeouts,
producing structured error returns instead of unhandled exits.
Examples
iex> Snakepit.Defaults.rpc_timeout(60_000)
58_800 # 60_000 - 1000 - 200

iex> Snakepit.Defaults.rpc_timeout(:infinity)
:infinity

 session_cleanup_interval()

 @spec session_cleanup_interval() :: pos_integer()

Default cleanup interval for expired sessions.
Used in Snakepit.Bridge.SessionStore.
Default: 60_000 ms (1 minute)

 session_default_ttl()

 @spec session_default_ttl() :: pos_integer()

Default TTL for sessions in seconds.
Used in Snakepit.Bridge.SessionStore.
Default: 3600 seconds (1 hour)

 session_max_sessions()

 @spec session_max_sessions() :: pos_integer() | :infinity

Default maximum number of sessions.
Used in Snakepit.Bridge.SessionStore.
Default: 10_000

 session_warning_threshold()

 @spec session_warning_threshold() :: float()

Session warning threshold as a fraction of max_sessions.
When session count exceeds this percentage, warnings are emitted.
Default: 0.8 (80%)

 shutdown_margin_ms()

 @spec shutdown_margin_ms() :: pos_integer()

Margin added to graceful_shutdown_timeout for supervisor shutdown.
This gives the worker time to complete its terminate/2 callback.
Default: 2_000 ms (2 seconds)

 stream_timeout()

 @spec stream_timeout() :: timeout()

Returns the default timeout for streaming operations based on the current profile.

 timeout_profile()

 @spec timeout_profile() :: atom()

Returns the currently configured timeout profile.
Defaults to :balanced if not configured.

 timeout_profiles()

 @spec timeout_profiles() :: %{required(atom()) => %{required(atom()) => timeout()}}

Returns all available timeout profiles.
Each profile contains default_timeout, stream_timeout, and queue_timeout values.

 worker_call_margin_ms()

 @spec worker_call_margin_ms() :: pos_integer()

Margin reserved for GenServer.call overhead when routing to workers.
This is subtracted from the total timeout budget to derive the RPC timeout.
Default: 1000 ms

 worker_ready_timeout()

 @spec worker_ready_timeout() :: timeout()

Timeout for worker ready notification to pool.
Used in Snakepit.GRPCWorker when notifying pool of readiness.
Default: 30_000 ms (30 seconds)

 worker_starter_max_restarts()

 @spec worker_starter_max_restarts() :: non_neg_integer()

 worker_starter_max_seconds()

 @spec worker_starter_max_seconds() :: pos_integer()

 worker_supervisor_max_restarts()

 @spec worker_supervisor_max_restarts() :: non_neg_integer()

 worker_supervisor_max_seconds()

 @spec worker_supervisor_max_seconds() :: pos_integer()

 Snakepit.EnvDoctor - Snakepit v0.9.1

Snakepit.EnvDoctor

Environment diagnostics for the Python bridge.
Provides both a Mix task integration (mix snakepit.doctor) and runtime
guardrails via ensure_python!/1.

 Summary

 Types

 check_result()

 Functions

 ensure_python!(opts \\ [])

 Ensure the Python runtime is ready. Raises if any critical check fails.

 run(opts \\ [])

 Run the full doctor suite. Returns {:ok, results} or {:error, results}.

 Types

 check_result()

 @type check_result() :: %{
 name: atom(),
 status: :ok | :warning | :error,
 message: String.t()
}

 Functions

 ensure_python!(opts \\ [])

 @spec ensure_python!(Keyword.t()) :: :ok | no_return()

Ensure the Python runtime is ready. Raises if any critical check fails.

 run(opts \\ [])

 @spec run(Keyword.t()) :: {:ok, [check_result()]} | {:error, [check_result()]}

Run the full doctor suite. Returns {:ok, results} or {:error, results}.

 Snakepit.GRPC.ClientImpl - Snakepit v0.9.1

Snakepit.GRPC.ClientImpl

Real gRPC client implementation using generated stubs.

 Summary

 Functions

 cleanup_session(channel, session_id, force \\ false, opts \\ [])

 connect(port)

 execute_streaming_tool(channel, session_id, tool_name, parameters, opts \\ [])

 execute_tool(channel, session_id, tool_name, parameters, opts \\ [])

 get_session(channel, session_id, opts \\ [])

 heartbeat(channel, session_id, opts \\ [])

 initialize_session(channel, session_id, config \\ %{}, opts \\ [])

 ping(channel, message, opts \\ [])

 Functions

 cleanup_session(channel, session_id, force \\ false, opts \\ [])

 connect(port)

 execute_streaming_tool(channel, session_id, tool_name, parameters, opts \\ [])

 execute_tool(channel, session_id, tool_name, parameters, opts \\ [])

 get_session(channel, session_id, opts \\ [])

 heartbeat(channel, session_id, opts \\ [])

 initialize_session(channel, session_id, config \\ %{}, opts \\ [])

 ping(channel, message, opts \\ [])

 Snakepit.HeartbeatMonitor - Snakepit v0.9.1

Snakepit.HeartbeatMonitor

Monitors a worker process using a configurable heartbeat protocol.
The monitor periodically invokes a ping function and expects the worker
to send a pong via notify_pong/2. Missed heartbeats trigger worker
termination, allowing supervisors to restart the worker.

 Summary

 Types

 start_option()

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 notify_pong(monitor_pid, timestamp)

 Notify the monitor that a pong response has been received.

 start_link(opts)

 Types

 start_option()

 @type start_option() ::
 {:worker_pid, pid()}
 | {:worker_id, String.t()}
 | {:ping_interval_ms, non_neg_integer()}
 | {:timeout_ms, non_neg_integer()}
 | {:max_missed_heartbeats, non_neg_integer()}
 | {:ping_fun, (integer() -> :ok | {:ok, term()} | {:error, term()} | term())}
 | {:dependent, boolean()}

 Functions

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 notify_pong(monitor_pid, timestamp)

 @spec notify_pong(pid(), integer()) :: :ok

Notify the monitor that a pong response has been received.

 start_link(opts)

 @spec start_link([start_option()]) :: GenServer.on_start()

 Snakepit.Logger - Snakepit v0.9.1

Snakepit.Logger

Centralized, silent-by-default logging for Snakepit.
Configuration
Silent (default) - only errors
config :snakepit, log_level: :error

Warnings and errors
config :snakepit, log_level: :warning

Verbose - info, warnings, errors
config :snakepit, log_level: :info

Debug - everything
config :snakepit, log_level: :debug

Completely silent (not even errors)
config :snakepit, log_level: :none
Categories
Enable specific categories for targeted debugging:
config :snakepit, log_categories: [:lifecycle, :grpc]
Process-Level Isolation (for Testing)
Log levels can be set per-process to avoid race conditions in async tests:
Set log level for current process only
Snakepit.Logger.set_process_level(:debug)

Execute with temporary log level
Snakepit.Logger.with_level(:warning, fn ->
 # ... code that should log at warning level
end)

Clear process-level override
Snakepit.Logger.clear_process_level()
The resolution order is:
	Process-level override (via set_process_level/1)
	Elixir Logger process level (via Logger.put_process_level/2)
	Application config (via config :snakepit, log_level: ...)

 Summary

 Types

 category()

 level()

 Functions

 clear_process_level()

 Clear the process-level log level override.

 debug(message)

 debug(category, message)

 debug(category, message, metadata)

 Log at debug level if configured log level allows it.

 error(message)

 error(category, message)

 error(category, message, metadata)

 Log at error level if configured log level allows it.

 get_process_level()

 Get the effective log level for the current process.

 info(message)

 info(category, message)

 info(category, message, metadata)

 Log at info level if configured log level allows it.

 set_process_level(level)

 Set the log level for the current process only.

 should_log?(level)

 Check if logging at the given level is enabled.

 should_log?(level, category)

 Check if logging at the given level/category is enabled.

 warning(message)

 warning(category, message)

 warning(category, message, metadata)

 Log at warning level if configured log level allows it.

 with_level(level, fun)

 Execute a function with a temporary log level for the current process.

 Types

 category()

 @type category() ::
 :lifecycle
 | :pool
 | :grpc
 | :bridge
 | :worker
 | :startup
 | :shutdown
 | :telemetry
 | :general

 level()

 @type level() :: :debug | :info | :warning | :error | :none

 Functions

 clear_process_level()

 @spec clear_process_level() :: :ok

Clear the process-level log level override.
After calling this, the process will use the global Application config.

 debug(message)

 debug(category, message)

 debug(category, message, metadata)

Log at debug level if configured log level allows it.

 error(message)

 error(category, message)

 error(category, message, metadata)

Log at error level if configured log level allows it.

 get_process_level()

 @spec get_process_level() :: level()

Get the effective log level for the current process.
Returns the log level in priority order:
	Process-level override (set via set_process_level/1)
	Elixir Logger process level
	Application config

 info(message)

 info(category, message)

 info(category, message, metadata)

Log at info level if configured log level allows it.

 set_process_level(level)

 @spec set_process_level(level()) :: :ok

Set the log level for the current process only.
This is useful for test isolation - each test process can have its own
log level without affecting other concurrent tests.
Examples
Snakepit.Logger.set_process_level(:debug)
All logging in this process now uses :debug level

Snakepit.Logger.set_process_level(:none)
All logging in this process is now suppressed

 should_log?(level)

Check if logging at the given level is enabled.

 should_log?(level, category)

Check if logging at the given level/category is enabled.

 warning(message)

 warning(category, message)

 warning(category, message, metadata)

Log at warning level if configured log level allows it.

 with_level(level, fun)

 @spec with_level(level(), (-> result)) :: result when result: term()

Execute a function with a temporary log level for the current process.
The previous log level is restored after the function completes,
even if it raises an exception.
Examples
Snakepit.Logger.with_level(:debug, fn ->
 # Debug logs are enabled here
 Snakepit.Logger.debug(:pool, "detailed info")
end)
Previous log level is restored

 Snakepit.PythonPackages - Snakepit v0.9.1

Snakepit.PythonPackages

Package installation and inspection for Snakepit-managed Python runtimes.
Requires uv for package management. Install with:
curl -LsSf https://astral.sh/uv/install.sh | sh
Examples
Snakepit.PythonPackages.ensure!({:list, ["numpy~=1.26", "scipy~=1.11"]})

{:ok, :all_installed} =
 Snakepit.PythonPackages.check_installed(["numpy~=1.26", "scipy~=1.11"])

{:ok, metadata} = Snakepit.PythonPackages.lock_metadata(["numpy~=1.26"])

Snakepit.PythonPackages.ensure!({:file, "requirements.txt"}, upgrade: true)

 Summary

 Types

 requirement()

 requirements_spec()

 Functions

 check_installed(requirements, opts \\ [])

 Check which packages are installed and satisfy their version constraints.

 ensure!(spec, opts \\ [])

 Ensure all packages in the requirements spec are installed and satisfy version constraints.

 install!(requirements, opts \\ [])

 Install the given package requirements using uv.

 lock_metadata(requirements, opts \\ [])

 Return package metadata for lockfiles.

 Types

 requirement()

 @type requirement() :: String.t()

 requirements_spec()

 @type requirements_spec() :: {:list, [requirement()]} | {:file, Path.t()}

 Functions

 check_installed(requirements, opts \\ [])

 @spec check_installed(
 [requirement()],
 keyword()
) :: {:ok, :all_installed} | {:ok, {:missing, [requirement()]}}

Check which packages are installed and satisfy their version constraints.
Uses uv pip install --dry-run for accurate PEP-440 version checking.
Returns {:ok, :all_installed} when every requirement is satisfied, or
{:ok, {:missing, requirements}} when any are missing or have version mismatches.

 ensure!(spec, opts \\ [])

 @spec ensure!(
 requirements_spec(),
 keyword()
) :: :ok | no_return()

Ensure all packages in the requirements spec are installed and satisfy version constraints.
Uses uv pip install --dry-run to check if packages need to be installed or upgraded,
then installs any missing or outdated packages.
Options:
	:upgrade - upgrade matching packages
	:quiet - suppress installer output
	:timeout - install timeout in ms

 install!(requirements, opts \\ [])

 @spec install!(
 [requirement()],
 keyword()
) :: :ok | no_return()

Install the given package requirements using uv.
Prefer ensure!/2 unless you already know which requirements are missing.

 lock_metadata(requirements, opts \\ [])

 @spec lock_metadata(
 [requirement()],
 keyword()
) :: {:ok, map()} | {:error, term()}

Return package metadata for lockfiles.
The result maps package name to %{version: version, hash: hash} entries.

 Snakepit.PythonRuntime - Snakepit v0.9.1

Snakepit.PythonRuntime

Resolve and manage the Python runtime used by Snakepit.

 Summary

 Functions

 config()

 executable_path()

 install_managed(runner, opts \\ [])

 managed?(config \\ config())

 missing_reason(config \\ config())

 resolve_executable()

 runtime_env()

 runtime_identity()

 runtime_metadata()

 Functions

 config()

 executable_path()

 install_managed(runner, opts \\ [])

 managed?(config \\ config())

 missing_reason(config \\ config())

 resolve_executable()

 runtime_env()

 runtime_identity()

 runtime_metadata()

 Snakepit.PythonThreadLimits - Snakepit v0.9.1

Snakepit.PythonThreadLimits

Normalizes Python threading configuration with safe defaults.
Resolves partial overrides pulled from application environment and
produces a complete map ready for runtime consumption.

 Summary

 Types

 t()

 Thread limit configuration keyed by known library identifiers.

 Functions

 defaults()

 Default thread limit configuration.

 resolve(config)

 Merge a user-supplied configuration with defaults.

 Types

 t()

 @type t() :: %{
 optional(:openblas) => pos_integer(),
 optional(:omp) => pos_integer(),
 optional(:mkl) => pos_integer(),
 optional(:numexpr) => pos_integer(),
 optional(:grpc_poll_threads) => pos_integer()
}

Thread limit configuration keyed by known library identifiers.

 Functions

 defaults()

 @spec defaults() :: t()

Default thread limit configuration.

 resolve(config)

 @spec resolve(nil | map() | keyword()) :: t()

Merge a user-supplied configuration with defaults.
Accepts nil, maps with atom keys, or keyword lists.
Unknown keys are ignored; non-integer values are coerced with String.to_integer/1
when possible.

 Snakepit.PythonVersion - Snakepit v0.9.1

Snakepit.PythonVersion

Detects the active Python runtime version and recommends worker profiles.

 Summary

 Types

 version()

 Functions

 detect()

 detect(path)

 recommend_profile()

 recommend_profile(version)

 supports_free_threading?(version)

 validate()

 Types

 version()

 @type version() :: {non_neg_integer(), non_neg_integer(), non_neg_integer()}

 Functions

 detect()

 @spec detect() :: {:ok, version()} | {:error, term()}

 detect(path)

 @spec detect(binary()) :: {:ok, version()} | {:error, term()}

 recommend_profile()

 @spec recommend_profile() :: :process | :thread

 recommend_profile(version)

 @spec recommend_profile(version()) :: :process | :thread

 supports_free_threading?(version)

 @spec supports_free_threading?(version()) :: boolean()

 validate()

 @spec validate() :: :ok | {:error, term()}

 Snakepit.RuntimeCleanup - Snakepit v0.9.1

Snakepit.RuntimeCleanup

Deterministic shutdown cleanup for external worker processes.
This module performs a bounded cleanup pass:
	SIGTERM all known worker processes
	Wait until they exit or timeout
	Escalate to SIGKILL for survivors

 Summary

 Functions

 cleanup_current_run(opts \\ [])

 run(entries, opts \\ [])

 Functions

 cleanup_current_run(opts \\ [])

 run(entries, opts \\ [])

 Snakepit.Telemetry.OpenTelemetry - Snakepit v0.9.1

Snakepit.Telemetry.OpenTelemetry

Bootstraps OpenTelemetry tracing and telemetry bridges for Snakepit.
When enabled via :snakepit, :opentelemetry configuration this module ensures
the OpenTelemetry runtime is started, exporters are configured, and telemetry
events are mapped to spans and span events. Exporters remain opt-in; by default
spans are created but not shipped anywhere.

 Summary

 Functions

 setup()

 Configures OpenTelemetry and attaches telemetry handlers when enabled.

 Functions

 setup()

 @spec setup() :: :ok

Configures OpenTelemetry and attaches telemetry handlers when enabled.

 Snakepit.Worker.LifecycleConfig - Snakepit v0.9.1

Snakepit.Worker.LifecycleConfig

Canonical configuration for lifecycle-managed workers.
Pools assemble rich worker_config maps that flow through the worker
pipeline. The lifecycle manager only needs a stable subset of those values
to make recycling decisions and to start replacement workers. This module
normalizes that subset into a struct so the contract is explicit and tested.

 Summary

 Types

 t()

 Functions

 ensure(pool_name, config, opts \\ [])

 Ensures lifecycle config is represented as a %LifecycleConfig{} struct.

 to_worker_config(config, worker_id)

 Builds a worker_config map for a replacement worker using the canonical data.

 Types

 t()

 @type t() :: %Snakepit.Worker.LifecycleConfig{
 adapter_args: list(),
 adapter_env: list(),
 adapter_module: module(),
 base_worker_config: map(),
 memory_threshold_mb: nil | pos_integer(),
 pool_identifier: atom() | nil,
 pool_name: term(),
 profile_module: module(),
 raw_worker_ttl: term(),
 worker_max_requests: :infinity | pos_integer(),
 worker_module: module(),
 worker_profile: atom() | module(),
 worker_ttl_seconds: :infinity | non_neg_integer()
}

 Functions

 ensure(pool_name, config, opts \\ [])

 @spec ensure(term(), map() | t(), keyword()) :: t()

Ensures lifecycle config is represented as a %LifecycleConfig{} struct.
Accepts either an existing struct or a worker_config map. The optional
pool_name argument acts as a fallback when the map does not include one.

 to_worker_config(config, worker_id)

 @spec to_worker_config(t(), String.t()) :: map()

Builds a worker_config map for a replacement worker using the canonical data.

 Snakepit.Worker.LifecycleManager - Snakepit v0.9.1

Snakepit.Worker.LifecycleManager

Worker lifecycle manager for automatic recycling and health monitoring.
Manages worker lifecycle events:
	TTL-based recycling: Recycle workers after configured time
	Request-count recycling: Recycle after N requests
	Memory monitoring: Recycle when the BEAM worker process exceeds a configurable threshold (optional)
	Health checks: Monitor worker health and restart if needed

Why Worker Recycling?
Long-running Python processes can accumulate memory due to:
	Memory fragmentation
	Cache growth
	Subtle memory leaks in C libraries
	ML model weight accumulation

Automatic recycling prevents these issues from impacting production. The current
implementation samples the BEAM Snakepit.GRPCWorker process memory via
:get_memory_usage; Python child process memory is not yet measured directly.
Configuration
config :snakepit,
 pools: [
 %{
 name: :hpc_pool,
 worker_profile: :thread,
 worker_ttl: {3600, :seconds}, # Recycle hourly
 worker_max_requests: 1000, # Or after 1000 requests
 memory_threshold_mb: 2048 # Or at 2GB (optional)
 }
]
Usage
The LifecycleManager runs automatically when started in the supervision tree.
It monitors all workers across all pools.
Manual worker recycling
Snakepit.Worker.LifecycleManager.recycle_worker(pool_name, worker_id)

Get lifecycle statistics
Snakepit.Worker.LifecycleManager.get_stats()
Implementation
	Runs periodic health checks (every 60 seconds)
	Tracks worker metadata (start time, request count)
	Gracefully replaces workers when recycling
	Emits telemetry events for monitoring

 Summary

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 get_stats()

 Get lifecycle statistics.

 increment_request_count(worker_id)

 Increment request count for a worker.

 memory_recycle_counts()

 Returns a map of pools to the number of memory-threshold-based recycles observed
since the lifecycle manager started.

 recycle_worker(pool_name, worker_id)

 Manually recycle a worker.

 start_link(opts \\ [])

 Start the lifecycle manager.

 track_worker(pool_name, worker_id, worker_pid, config)

 Track a worker for lifecycle management.

 untrack_worker(worker_id)

 Untrack a worker (called when worker stops).

 Functions

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 get_stats()

Get lifecycle statistics.

 increment_request_count(worker_id)

Increment request count for a worker.
Called after each successful request.

 memory_recycle_counts()

Returns a map of pools to the number of memory-threshold-based recycles observed
since the lifecycle manager started.

 recycle_worker(pool_name, worker_id)

Manually recycle a worker.

 start_link(opts \\ [])

Start the lifecycle manager.

 track_worker(pool_name, worker_id, worker_pid, config)

Track a worker for lifecycle management.
Called automatically when workers start.

 untrack_worker(worker_id)

Untrack a worker (called when worker stops).

 Snakepit.Worker.TaintRegistry - Snakepit v0.9.1

Snakepit.Worker.TaintRegistry

Tracks tainted workers and devices after crash classification.

 Summary

 Functions

 clear_worker(worker_id)

 consume_restart(worker_id)

 taint_worker(worker_id, opts)

 worker_info(worker_id)

 worker_tainted?(worker_id)

 Functions

 clear_worker(worker_id)

 consume_restart(worker_id)

 taint_worker(worker_id, opts)

 worker_info(worker_id)

 worker_tainted?(worker_id)

 Snakepit.WorkerProfile - Snakepit v0.9.1

Snakepit.WorkerProfile behaviour

Behaviour for worker profiles (process vs thread).
A worker profile defines how workers are created, managed, and utilized.
Snakepit v0.6.0 introduces dual-mode parallelism:
Process Profile (:process)
	Many single-threaded Python processes
	Process isolation and GIL compatibility
	Optimal for: I/O-bound workloads, high concurrency, legacy Python

Thread Profile (:thread)
	Few multi-threaded Python processes
	Shared memory and CPU parallelism
	Optimal for: CPU-bound workloads, Python 3.13+, large data

Implementing a Profile
Profiles control the full worker lifecycle:
defmodule MyProfile do
 @behaviour Snakepit.WorkerProfile

 def start_worker(config) do
 # Start worker according to profile
 {:ok, worker_handle}
 end

 def get_capacity(worker_handle) do
 # Return concurrent request capacity
 1 # or N for multi-threaded
 end
end
See Snakepit.WorkerProfile.Process and Snakepit.WorkerProfile.Thread for reference implementations.

 Summary

 Types

 capacity()

 config()

 worker_handle()

 Callbacks

 execute_request(worker_handle, request, timeout)

 Execute a request on a worker.

 get_capacity(worker_handle)

 Get the maximum capacity of a worker (how many concurrent requests it can handle).

 get_load(worker_handle)

 Get the current load of a worker (how many requests are currently in-flight).

 get_metadata(worker_handle)

 Get profile-specific metadata about a worker.

 health_check(worker_handle)

 Check if a worker is healthy and responsive.

 start_worker(config)

 Start a worker with the given configuration.

 stop_worker(worker_handle)

 Stop a worker gracefully.

 Types

 capacity()

 @type capacity() :: pos_integer()

 config()

 @type config() :: map()

 worker_handle()

 @type worker_handle() :: pid() | reference()

 Callbacks

 execute_request(worker_handle, request, timeout)

 @callback execute_request(worker_handle(), request :: map(), timeout :: timeout()) ::
 {:ok, term()} | {:error, term()}

Execute a request on a worker.
For process-based workers, this typically blocks until the request completes.
For thread-based workers, this may execute concurrently with other requests
on the same worker.
The timeout is in milliseconds.

 get_capacity(worker_handle)

 @callback get_capacity(worker_handle()) :: capacity()

Get the maximum capacity of a worker (how many concurrent requests it can handle).
	Process profile: returns 1 (single-threaded)
	Thread profile: returns N (thread pool size)

This is used by the pool for load balancing decisions.

 get_load(worker_handle)

 @callback get_load(worker_handle()) :: non_neg_integer()

Get the current load of a worker (how many requests are currently in-flight).
Returns 0 if no requests are active, up to the worker's capacity.

 get_metadata(worker_handle)

 (optional)

 @callback get_metadata(worker_handle()) :: {:ok, map()} | {:error, term()}

Get profile-specific metadata about a worker.
Optional callback. Returns a map with profile-specific information.

 health_check(worker_handle)

 @callback health_check(worker_handle()) :: :ok | {:error, term()}

Check if a worker is healthy and responsive.
Returns :ok if healthy, {:error, reason} if unhealthy.

 start_worker(config)

 @callback start_worker(config()) :: {:ok, worker_handle()} | {:error, term()}

Start a worker with the given configuration.
Returns {:ok, worker_handle} where worker_handle is typically a GenServer PID,
or {:error, reason} if startup fails.
The config map contains all pool and adapter configuration for this worker.

 stop_worker(worker_handle)

 @callback stop_worker(worker_handle()) :: :ok

Stop a worker gracefully.
Should perform cleanup and shutdown the worker process.

 Snakepit.WorkerProfile.Process - Snakepit v0.9.1

Snakepit.WorkerProfile.Process

Multi-process worker profile (default).
Each worker is a separate OS process, providing:
	Process isolation: Crashes don't affect other workers
	GIL compatibility: Works with all Python versions
	High concurrency: Optimal for 100+ workers with I/O-bound tasks

This is the default profile and maintains 100% backward compatibility
with Snakepit v0.5.x configurations.
Configuration
config :snakepit,
 pools: [
 %{
 name: :default,
 worker_profile: :process, # Explicit (or omit for default)
 pool_size: 100,
 adapter_module: Snakepit.Adapters.GRPCPython,
 adapter_env: [
 {"OPENBLAS_NUM_THREADS", "1"},
 {"OMP_NUM_THREADS", "1"}
]
 }
]
Implementation Details
	Each worker runs a single-threaded Python process
	Workers are single-capacity (one request at a time)
	Environment variables enforce single-threading in scientific libraries
	Startup is batched to prevent resource exhaustion

 Snakepit.WorkerProfile.Thread - Snakepit v0.9.1

Snakepit.WorkerProfile.Thread

Multi-threaded worker profile (Python 3.13+ optimized).
Each worker is a Python process with a thread pool, providing:
	Shared memory: Zero-copy data sharing within worker
	CPU parallelism: True multi-threading without GIL (Python 3.13+)
	Lower memory: One interpreter vs many
	High throughput: Optimal for CPU-bound tasks

Configuration
config :snakepit,
 pools: [
 %{
 name: :hpc_pool,
 worker_profile: :thread,
 pool_size: 4, # 4 processes
 threads_per_worker: 16, # 16 threads each = 64 total capacity
 adapter_module: Snakepit.Adapters.GRPCPython,
 adapter_args: ["--mode", "threaded", "--max-workers", "16"],
 adapter_env: [
 # Allow multi-threading in libraries
 {"OPENBLAS_NUM_THREADS", "16"},
 {"OMP_NUM_THREADS", "16"}
],
 worker_ttl: {3600, :seconds}, # Recycle hourly
 worker_max_requests: 1000, # Or after 1000 requests
 thread_safety_checks: true # Enable runtime validation
 }
]
Requirements
	Python 3.13+ for optimal performance (free-threading)
	Thread-safe Python adapters
	Thread-safe ML libraries (NumPy, PyTorch, etc.)

Status
Thread profile is fully supported when paired with Python 3.13+ and thread-safe adapters.
Implementation Notes
The thread profile:
	Starts fewer Python processes (4-16 instead of 100+)
	Runs a ThreadPoolExecutor per worker process
	Tracks per-worker capacity via threads_per_worker for pool scheduling
	Supports optional CapacityStore telemetry with capacity_strategy: :hybrid
	Allows concurrent requests to the same worker via HTTP/2 multiplexing

 Snakepit.ZeroCopy - Snakepit v0.9.1

Snakepit.ZeroCopy

Zero-copy interop helpers for DLPack and Arrow.
Handles create/import lifecycle for zero-copy handles, with copy-based
fallbacks when unavailable.

 Summary

 Types

 export_opts()

 Functions

 close(ref)

 from_arrow(ref, opts \\ [])

 from_dlpack(ref, opts \\ [])

 to_arrow(term, opts \\ [])

 to_dlpack(term, opts \\ [])

 Types

 export_opts()

 @type export_opts() :: [
 device: Snakepit.ZeroCopyRef.device(),
 dtype: atom() | String.t(),
 shape: tuple() | list(),
 owner: :elixir | :python
]

 Functions

 close(ref)

 from_arrow(ref, opts \\ [])

 from_dlpack(ref, opts \\ [])

 to_arrow(term, opts \\ [])

 to_dlpack(term, opts \\ [])

 Snakepit.ZeroCopyRef - Snakepit v0.9.1

Snakepit.ZeroCopyRef

Opaque handle for zero-copy payloads.
The handle metadata travels through the runtime so adapters can resolve
DLPack or Arrow buffers without copying.

 Summary

 Types

 device()

 kind()

 t()

 Types

 device()

 @type device() :: :cpu | :cuda | :mps

 kind()

 @type kind() :: :dlpack | :arrow

 t()

 @type t() :: %Snakepit.ZeroCopyRef{
 bytes: non_neg_integer() | nil,
 copy: boolean() | nil,
 device: device() | nil,
 dtype: atom() | String.t() | nil,
 kind: kind(),
 metadata: map() | nil,
 owner: :elixir | :python | nil,
 ref: reference(),
 shape: tuple() | list() | nil
}

 Snakepit - Snakepit v0.9.1

Snakepit

Snakepit - A generalized high-performance pooler and session manager.
Extracted from DSPex V3 pool implementation, Snakepit provides:
	Concurrent worker initialization and management
	Stateless pool system with session affinity
	Generalized adapter pattern for any external process
	High-performance OTP-based process management

Basic Usage
Configure in config/config.exs
config :snakepit,
 pooling_enabled: true,
 adapter_module: YourAdapter

Execute commands on any available worker
{:ok, result} = Snakepit.execute("ping", %{test: true})

Session-based execution with worker affinity
{:ok, result} = Snakepit.execute_in_session("my_session", "command", %{})

 Summary

 Types

 args()

 callback_fn()

 command()

 pool_name()

 result()

 session_id()

 Functions

 cleanup()

 Manually trigger cleanup of external worker processes for the current run.

 execute(command, args, opts \\ [])

 Convenience function to execute commands on the pool.

 execute_in_session(session_id, command, args, opts \\ [])

 Executes a command in session context with worker affinity.

 execute_in_session_stream(session_id, command, args \\ %{}, callback_fn, opts \\ [])

 Executes a command in a session with a callback function.

 execute_stream(command, args \\ %{}, callback_fn, opts \\ [])

 Executes a streaming command with a callback function.

 get_stats(pool \\ Snakepit.Pool)

 Get pool statistics.

 list_workers(pool \\ Snakepit.Pool)

 List workers from the pool.

 run_as_script(fun, opts \\ [])

 Starts the Snakepit application, executes a given function,
and ensures graceful shutdown.

 Types

 args()

 @type args() :: map()

 callback_fn()

 @type callback_fn() :: (term() -> any())

 command()

 @type command() :: String.t()

 pool_name()

 @type pool_name() :: atom() | pid()

 result()

 @type result() :: term()

 session_id()

 @type session_id() :: String.t()

 Functions

 cleanup()

 @spec cleanup() :: :ok | {:timeout, list()}

Manually trigger cleanup of external worker processes for the current run.
Useful for library embedding or scripts that control the lifecycle directly.

 execute(command, args, opts \\ [])

 @spec execute(command(), args(), keyword()) ::
 {:ok, result()} | {:error, Snakepit.Error.t()}

Convenience function to execute commands on the pool.
Examples
{:ok, result} = Snakepit.execute("ping", %{test: true})
Options
	:pool - The pool to use (default: Snakepit.Pool)
	:timeout - Request timeout in ms (default: 60000)
	:session_id - Execute with session affinity

 execute_in_session(session_id, command, args, opts \\ [])

 @spec execute_in_session(session_id(), command(), args(), keyword()) ::
 {:ok, result()} | {:error, Snakepit.Error.t()}

Executes a command in session context with worker affinity.
This function executes commands with session-based worker affinity,
ensuring that subsequent calls with the same session_id prefer
the same worker when possible for state continuity.
Args are passed through unchanged - no domain-specific enhancement.

 execute_in_session_stream(session_id, command, args \\ %{}, callback_fn, opts \\ [])

 @spec execute_in_session_stream(
 session_id(),
 command(),
 args(),
 callback_fn(),
 keyword()
) ::
 :ok | {:error, Snakepit.Error.t()}

Executes a command in a session with a callback function.

 execute_stream(command, args \\ %{}, callback_fn, opts \\ [])

 @spec execute_stream(command(), args(), callback_fn(), keyword()) ::
 :ok | {:error, Snakepit.Error.t()}

Executes a streaming command with a callback function.
Examples
Snakepit.execute_stream("batch_inference", %{items: [...]}, fn chunk ->
 handle_chunk(chunk)
end)
Options
	:pool - The pool to use (default: Snakepit.Pool)
	:timeout - Request timeout in ms (default: 300000)
	:session_id - Run in a specific session

Returns
Returns :ok on success or {:error, %Snakepit.Error{}} on failure.
Note: Streaming is only supported with gRPC adapters.

 get_stats(pool \\ Snakepit.Pool)

 @spec get_stats(pool_name()) :: map()

Get pool statistics.
Returns aggregate stats across all pools or stats for a specific pool.

 list_workers(pool \\ Snakepit.Pool)

 @spec list_workers(pool_name()) :: [String.t()]

List workers from the pool.
Returns a list of worker IDs.

 run_as_script(fun, opts \\ [])

 @spec run_as_script(
 (-> any()),
 keyword()
) :: any() | {:error, term()}

Starts the Snakepit application, executes a given function,
and ensures graceful shutdown.
This is the recommended way to use Snakepit for short-lived scripts or
Mix tasks to prevent orphaned processes.
It handles the full OTP application lifecycle (start, run, stop)
automatically.
Examples
In a Mix task
Snakepit.run_as_script(fn ->
 {:ok, result} = Snakepit.execute("my_command", %{data: "value"})
 handle_result(result)
end)

For demos or scripts
Snakepit.run_as_script(fn ->
 MyApp.run_load_test()
end)
Options
	:timeout - Maximum time to wait for pool initialization (default: 15000ms)
	:shutdown_timeout - Time to wait for supervisor shutdown confirmation (default: 15000ms)
	:cleanup_timeout - Time to wait for worker process cleanup before forcing cleanup (default: 5000ms).
When greater than zero, cleanup runs even if Snakepit was already started; set to 0 to skip cleanup.
Cleanup is bounded; if it exceeds cleanup_timeout + 1000 ms the script continues.
	:restart - Restart Snakepit if already started to apply script config (:auto | true | false)

	:await_pool - Wait for pool readiness (default: pooling_enabled setting)
	:exit_mode - Exit behavior (:none | :halt | :stop | :auto, default: :none).
May also be set with SNAKEPIT_SCRIPT_EXIT.

	:stop_mode - Stop behavior (:if_started | :always | :never, default: :if_started).

	:halt - Legacy boolean for System.halt/1 after cleanup (default: false,
or set SNAKEPIT_SCRIPT_HALT=true). Ignored when :exit_mode is set.

Returns
Returns the result of the provided function, or {:error, reason} if
the pool fails to initialize.

 Snakepit.Adapter - Snakepit v0.9.1

Snakepit.Adapter behaviour

Behaviour for implementing adapters in Snakepit.
Adapters define how to communicate with external processes (Python, Node.js, etc.).
This allows Snakepit to be truly generalized and support multiple ML frameworks
or external systems.
Required Callbacks
	executable_path/0 - Returns the path to the runtime executable (python3, node, etc.)
	script_path/0 - Returns the path to the external script to execute
	script_args/0 - Returns additional arguments for the script

Example Implementation
defmodule MyApp.PythonMLAdapter do
 @behaviour Snakepit.Adapter

 def executable_path, do: System.find_executable("python3") || System.find_executable("python")
 def script_path, do: Path.join(:code.priv_dir(:my_app), "python/ml_bridge.py")
 def script_args, do: ["--mode", "pool-worker"]
end

 Summary

 Callbacks

 command_timeout(command, args)

 Optional callback to get a command-specific timeout in milliseconds.

 executable_path()

 Returns the path to the runtime executable.

 script_args()

 Returns additional command-line arguments for the script.

 script_path()

 Returns the path to the external script that will be executed.

 Callbacks

 command_timeout(command, args)

 (optional)

 @callback command_timeout(command :: String.t(), args :: map()) :: pos_integer()

Optional callback to get a command-specific timeout in milliseconds.
This allows adapters to specify appropriate timeouts for different
commands based on their expected execution time.

 executable_path()

 @callback executable_path() :: String.t()

Returns the path to the runtime executable.
This is the interpreter or runtime that will execute the script.
Examples: "python3", "node", "ruby", "R", etc.

 script_args()

 @callback script_args() :: [String.t()]

Returns additional command-line arguments for the script.
These arguments will be passed to the script when it's started.
Common examples: ["--mode", "pool-worker"], ["--config", "prod"]

 script_path()

 @callback script_path() :: String.t()

Returns the path to the external script that will be executed.
This should be an absolute path to a script that implements the
bridge protocol for communication with Snakepit.

 Snakepit.Pool - Snakepit v0.9.1

Snakepit.Pool

Pool manager for external workers with concurrent initialization.
Features:
	Concurrent worker startup (all workers start in parallel)
	Simple queue-based request distribution
	Non-blocking async execution
	Automatic request queueing when workers are busy
	Adapter-based support for any external process

 Summary

 Functions

 await_ready(pool \\ __MODULE__, timeout \\ nil)

 Waits for the pool to be fully initialized.

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 derive_rpc_timeout_from_opts(opts, default_timeout)

 Derives the RPC timeout from opts, considering deadline if present.

 effective_queue_timeout_ms(opts, configured_queue_timeout)

 Computes effective queue timeout considering deadline.

 execute(command, args, opts \\ [])

 Executes a command on any available worker.

 execute_stream(command, args, callback_fn, opts \\ [])

 Execute a streaming command with callback.

 get_default_timeout_for_call(call_type, args, opts)

 Returns the default timeout for a given call type.

 get_stats(pool \\ __MODULE__)

 Gets pool statistics.

 get_stats(pool, pool_name)

 Gets statistics for a specific pool name.

 list_workers(pool \\ __MODULE__)

 Lists all worker IDs in the pool.

 list_workers(pool, pool_name)

 start_link(opts \\ [])

 Starts the pool manager.

 Functions

 await_ready(pool \\ __MODULE__, timeout \\ nil)

 @spec await_ready(atom() | pid(), timeout() | nil) ::
 :ok | {:error, Snakepit.Error.t()}

Waits for the pool to be fully initialized.
Returns :ok when all workers are ready, or {:error, %Snakepit.Error{}} if
the pool doesn't initialize within the given timeout.

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 derive_rpc_timeout_from_opts(opts, default_timeout)

 @spec derive_rpc_timeout_from_opts(Keyword.t(), timeout()) :: timeout()

Derives the RPC timeout from opts, considering deadline if present.
When a request has been queued, time has already elapsed. This function
calculates the remaining time budget for the actual RPC call.
Examples
Fresh request with 60s budget
iex> Snakepit.Pool.derive_rpc_timeout_from_opts([], 60_000)
58_800 # 60_000 - 1000 - 200 margins

Request that waited 500ms in queue
iex> now = System.monotonic_time(:millisecond)
iex> opts = [deadline_ms: now + 59_500]
iex> Snakepit.Pool.derive_rpc_timeout_from_opts(opts, 60_000)
~= 58_300 (remaining - margins)

 effective_queue_timeout_ms(opts, configured_queue_timeout)

 @spec effective_queue_timeout_ms(Keyword.t(), timeout()) :: non_neg_integer()

Computes effective queue timeout considering deadline.
If a deadline is set and less time remains than the configured queue timeout,
returns the remaining time instead.
Examples
No deadline - use configured queue timeout
iex> Snakepit.Pool.effective_queue_timeout_ms([], 10_000)
10_000

Deadline with 5s remaining - use remaining time
iex> now = System.monotonic_time(:millisecond)
iex> opts = [deadline_ms: now + 5_000]
iex> Snakepit.Pool.effective_queue_timeout_ms(opts, 10_000)
~= 5_000 (remaining time)

 execute(command, args, opts \\ [])

Executes a command on any available worker.

 execute_stream(command, args, callback_fn, opts \\ [])

Execute a streaming command with callback.

 get_default_timeout_for_call(call_type, args, opts)

 @spec get_default_timeout_for_call(atom(), map(), Keyword.t()) :: timeout()

Returns the default timeout for a given call type.
Call types
	:execute - Regular execute operations
	:execute_stream - Streaming operations
	:queue - Queue wait operations

Examples
iex> Snakepit.Pool.get_default_timeout_for_call(:execute, %{}, [])
300_000 # from default_timeout()

iex> Snakepit.Pool.get_default_timeout_for_call(:execute, %{}, [timeout: 45_000])
45_000

 get_stats(pool \\ __MODULE__)

Gets pool statistics.

 get_stats(pool, pool_name)

Gets statistics for a specific pool name.

 list_workers(pool \\ __MODULE__)

Lists all worker IDs in the pool.
Can be called with pool process or pool name:
	list_workers() - all workers from all pools
	list_workers(Snakepit.Pool) - all workers from all pools
	list_workers(Snakepit.Pool, :pool_name) - workers from specific pool

 list_workers(pool, pool_name)

 start_link(opts \\ [])

Starts the pool manager.

 Snakepit.Pool.Worker.Starter - Snakepit v0.9.1

Snakepit.Pool.Worker.Starter

Supervisor wrapper for individual workers that provides automatic restart capability.
This module implements the "Permanent Wrapper" pattern for managing workers that
control external OS processes (Python gRPC servers).
Architecture Decision
See: docs/architecture/adr-001-worker-starter-supervision-pattern.md for
detailed rationale, alternatives considered, and trade-offs.
Why This Pattern?
TL;DR: Workers manage external Python processes, not just Elixir state.
This pattern provides:
	Automatic restart without Pool intervention
	Atomic resource cleanup (worker + Python process)
	Future extensibility for per-worker resources

Trade-off: Extra process (~1KB) per worker for better encapsulation.
Architecture
DynamicSupervisor (WorkerSupervisor)
└── Worker.Starter (Supervisor, :permanent)
 └── GRPCWorker (GenServer, :transient)
 └── Port → Python grpc_server.py
Lifecycle
When GRPCWorker crashes:
	Worker.Starter detects crash via :one_for_one strategy
	Worker.Starter automatically restarts GRPCWorker
	Pool notified via :DOWN but doesn't manage restart
	New GRPCWorker spawns new Python process and re-registers

When Worker.Starter terminates:
	GRPCWorker receives shutdown signal
	GRPCWorker.terminate sends SIGTERM to Python
	Python process exits gracefully
	Worker.Starter confirms all children stopped
	Clean atomic shutdown

This decouples Pool (availability management) from Worker lifecycle (crash/restart).
Related
	Issue #2: Community feedback questioning this complexity
	ADR-001: Full architecture decision record with alternatives
	External Process Design: docs/20251007_external_process_supervision_design.md

 Summary

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 start_link(worker_id)

 Starts a worker starter supervisor.

 via_name(worker_id)

 Returns a via tuple for this starter supervisor.

 Functions

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 start_link(worker_id)

Starts a worker starter supervisor.
Parameters
	worker_id - Unique identifier for the worker

 via_name(worker_id)

Returns a via tuple for this starter supervisor.

 Snakepit.Pool.WorkerSupervisor - Snakepit v0.9.1

Snakepit.Pool.WorkerSupervisor

DynamicSupervisor for pool worker processes.
This supervisor manages the lifecycle of workers:
	Starts workers on demand
	Handles crashes with automatic restarts
	Provides clean shutdown of workers

 Summary

 Functions

 child_spec(arg)

 Returns a specification to start this module under a supervisor.

 list_workers()

 Lists all supervised workers.

 restart_worker(worker_id)

 Restarts a worker by ID.

 start_link(init_arg)

 Starts the worker supervisor.

 start_worker(worker_id, worker_module \\ Snakepit.GRPCWorker, adapter_module \\ nil, pool_name \\ nil, worker_config \\ %{})

 Starts a new pool worker with the given ID.

 stop_worker(worker_pid)

 Stops a worker gracefully.

 worker_count()

 Returns the count of active workers.

 Functions

 child_spec(arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 list_workers()

Lists all supervised workers.

 restart_worker(worker_id)

Restarts a worker by ID.

 start_link(init_arg)

Starts the worker supervisor.

 start_worker(worker_id, worker_module \\ Snakepit.GRPCWorker, adapter_module \\ nil, pool_name \\ nil, worker_config \\ %{})

Starts a new pool worker with the given ID.
Examples
iex> Snakepit.Pool.WorkerSupervisor.start_worker("worker_123")
{:ok, #PID<0.123.0>}

 stop_worker(worker_pid)

Stops a worker gracefully.

 worker_count()

Returns the count of active workers.

 Snakepit.GRPCWorker - Snakepit v0.9.1

Snakepit.GRPCWorker

 A GenServer that manages gRPC connections to external processes.
 This worker can handle both traditional request/response and streaming operations
 via gRPC instead of stdin/stdout communication.
 ## Features
	Automatic gRPC connection management
	Health check monitoring
	Streaming support with callback-based API
	Session affinity for stateful operations
	Graceful fallback to traditional workers if gRPC unavailable

Usage
Start a gRPC worker
{:ok, worker} = Snakepit.GRPCWorker.start_link(adapter: Snakepit.Adapters.GRPCPython)

Simple execution
{:ok, result} = Snakepit.GRPCWorker.execute(worker, "ping", %{})

Streaming execution
Snakepit.GRPCWorker.execute_stream(worker, "batch_inference", %{
 batch_items: ["img1.jpg", "img2.jpg"]
}, fn chunk ->
 handle_chunk(chunk)
end)

 Summary

 Types

 worker_state()

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 execute(worker, command, args, timeout_or_opts \\ nil)

 Execute a command and return the result.

 execute(worker_id, command, args, timeout, opts)

 execute_in_session(worker, session_id, command, args, timeout_or_opts \\ nil)

 Execute a command in a specific session.

 execute_in_session(worker, session_id, command, args, timeout, opts)

 execute_stream(worker, command, args, callback_fn, timeout_or_opts \\ nil)

 Execute a streaming command with callback.

 execute_stream(worker_id, command, args, callback_fn, timeout, opts)

 get_channel(worker)

 Get the gRPC channel for direct client usage.

 get_health(worker)

 Get worker health and statistics.

 get_info(worker)

 Get worker information and capabilities.

 get_session_id(worker)

 Get the session ID for this worker.

 start_link(opts)

 Start a gRPC worker with the given adapter.

 supervisor_shutdown_timeout()

 Returns the recommended supervisor shutdown timeout.

 Types

 worker_state()

 @type worker_state() :: %{
 adapter: module(),
 connection: map() | nil,
 port: integer(),
 process_pid: integer() | nil,
 pgid: integer() | nil,
 process_group?: boolean(),
 server_port: port() | nil,
 id: String.t(),
 pool_name: atom() | pid(),
 health_check_ref: reference() | nil,
 heartbeat_monitor: pid() | nil,
 heartbeat_config: map(),
 ready_file: String.t(),
 stats: map(),
 session_id: String.t(),
 worker_config: map(),
 shutting_down: boolean()
}

 Functions

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 execute(worker, command, args, timeout_or_opts \\ nil)

Execute a command and return the result.

 execute(worker_id, command, args, timeout, opts)

 execute_in_session(worker, session_id, command, args, timeout_or_opts \\ nil)

Execute a command in a specific session.

 execute_in_session(worker, session_id, command, args, timeout, opts)

 execute_stream(worker, command, args, callback_fn, timeout_or_opts \\ nil)

Execute a streaming command with callback.

 execute_stream(worker_id, command, args, callback_fn, timeout, opts)

 get_channel(worker)

Get the gRPC channel for direct client usage.

 get_health(worker)

Get worker health and statistics.

 get_info(worker)

Get worker information and capabilities.

 get_session_id(worker)

Get the session ID for this worker.

 start_link(opts)

Start a gRPC worker with the given adapter.

 supervisor_shutdown_timeout()

Returns the recommended supervisor shutdown timeout.
This is graceful_shutdown_timeout + margin to ensure supervisors give workers
enough time to complete their terminate/2 callback (which includes graceful
Python process termination).
Use this value for:
	shutdown: in child_spec
	shutdown: in Worker.Starter
	Any other supervisor that manages GRPCWorker processes

Example
children = [
 %{
 id: MyWorker,
 start: {Snakepit.GRPCWorker, :start_link, [opts]},
 shutdown: Snakepit.GRPCWorker.supervisor_shutdown_timeout()
 }
]

 Snakepit.Bridge.Session - Snakepit v0.9.1

Snakepit.Bridge.Session

Session data structure for centralized session management.
Stores program metadata and session state for worker affinity.

 Summary

 Types

 t()

 Functions

 delete_program(session, program_id)

 Removes a program from the session.

 expired?(session, current_time \\ nil)

 Checks if a session has expired based on its TTL.

 get_metadata(session, key, default \\ nil)

 Gets metadata from the session.

 get_program(session, program_id)

 Gets a program from the session.

 get_stats(session)

 Gets session statistics.

 new(id, opts \\ [])

 Creates a new session with the given ID and options.

 put_metadata(session, key, value)

 Updates session metadata.

 put_program(session, program_id, program_data)

 Adds or updates a program in the session.

 touch(session)

 Updates the last_accessed timestamp to the current time.

 validate(session)

 Validates that a session struct has all required fields and valid data.

 Types

 t()

 @type t() :: %Snakepit.Bridge.Session{
 created_at: integer(),
 id: String.t(),
 last_accessed: integer(),
 last_worker_id: String.t() | nil,
 metadata: map(),
 programs: map(),
 stats: map(),
 ttl: integer()
}

 Functions

 delete_program(session, program_id)

 @spec delete_program(t(), String.t()) :: t()

Removes a program from the session.
Parameters
	session - The session to update
	program_id - The program identifier to remove

Returns
Updated session with the program removed.

 expired?(session, current_time \\ nil)

 @spec expired?(t(), integer() | nil) :: boolean()

Checks if a session has expired based on its TTL.
Parameters
	session - The session to check
	current_time - Optional current time (defaults to current monotonic time)

Returns
true if the session has expired, false otherwise.

 get_metadata(session, key, default \\ nil)

 @spec get_metadata(t(), term(), term()) :: term()

Gets metadata from the session.
Parameters
	session - The session to query
	key - The metadata key
	default - Default value if key not found

Returns
The metadata value or the default.

 get_program(session, program_id)

 @spec get_program(t(), String.t()) :: {:ok, term()} | {:error, :not_found}

Gets a program from the session.
Parameters
	session - The session to query
	program_id - The program identifier

Returns
{:ok, program_data} if found, {:error, :not_found} if not found.

 get_stats(session)

 @spec get_stats(t()) :: map()

Gets session statistics.

 new(id, opts \\ [])

 @spec new(
 String.t(),
 keyword()
) :: t()

Creates a new session with the given ID and options.

 put_metadata(session, key, value)

 @spec put_metadata(t(), term(), term()) :: t()

Updates session metadata.
Parameters
	session - The session to update
	key - The metadata key
	value - The metadata value

Returns
Updated session with the metadata updated.

 put_program(session, program_id, program_data)

 @spec put_program(t(), String.t(), term()) :: t()

Adds or updates a program in the session.
Parameters
	session - The session to update
	program_id - The program identifier
	program_data - The program data to store

Returns
Updated session with the program added/updated.

 touch(session)

 @spec touch(t()) :: t()

Updates the last_accessed timestamp to the current time.
Parameters
	session - The session to touch

Returns
Updated session with current last_accessed timestamp.

 validate(session)

 @spec validate(t()) :: :ok | {:error, term()}

Validates that a session struct has all required fields and valid data.
Parameters
	session - The session to validate

Returns
:ok if valid, {:error, reason} if invalid.

 Snakepit.Bridge.SessionStore - Snakepit v0.9.1

Snakepit.Bridge.SessionStore

Centralized session store using ETS for high-performance session management.
This GenServer manages a centralized ETS table for storing session data,
providing CRUD operations, TTL-based expiration, and automatic cleanup.
The store is designed for high concurrency with optimized ETS settings.

 Summary

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 cleanup_expired_sessions()

 Manually triggers cleanup of expired sessions.

 cleanup_expired_sessions(server)

 create_session(session_id, opts \\ [])

 Creates a new session with the given ID and options.

 create_session(server, session_id, opts)

 delete_session(session_id)

 Deletes a session by ID.

 delete_session(server, session_id)

 get_session(session_id)

 Gets a session by ID, automatically updating the last_accessed timestamp.

 get_session(server, session_id)

 get_stats()

 Gets statistics about the session store.

 get_stats(server)

 list_sessions()

 Lists all active session IDs.

 list_sessions(server)

 session_exists?(session_id)

 Checks if a session exists.

 session_exists?(server, session_id)

 start_link(opts \\ [])

 Starts the SessionStore GenServer.

 store_worker_session(session_id, worker_id)

 Stores worker-session affinity mapping.

 update_session(session_id, update_fn)

 Updates a session using the provided update function.

 update_session(server, session_id, update_fn)

 Functions

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 cleanup_expired_sessions()

 @spec cleanup_expired_sessions() :: non_neg_integer()

Manually triggers cleanup of expired sessions.
Returns
The number of sessions that were cleaned up.

 cleanup_expired_sessions(server)

 @spec cleanup_expired_sessions(GenServer.server()) :: non_neg_integer()

 create_session(session_id, opts \\ [])

 @spec create_session(
 String.t(),
 keyword()
) :: {:ok, Snakepit.Bridge.Session.t()} | {:error, term()}

Creates a new session with the given ID and options.
Parameters
	session_id - Unique session identifier
	opts - Keyword list of options passed to Session.new/2

Returns
{:ok, session} if successful, {:error, reason} if failed.
Examples
{:ok, session} = SessionStore.create_session("session_123")
{:ok, session} = SessionStore.create_session("session_456", ttl: 7200)

 create_session(server, session_id, opts)

 @spec create_session(GenServer.server(), String.t(), keyword()) ::
 {:ok, Snakepit.Bridge.Session.t()} | {:error, term()}

 delete_session(session_id)

 @spec delete_session(String.t()) :: :ok

Deletes a session by ID.
Parameters
	session_id - The session identifier

Returns
:ok always (idempotent operation).

 delete_session(server, session_id)

 @spec delete_session(GenServer.server(), String.t()) :: :ok

 get_session(session_id)

 @spec get_session(String.t()) ::
 {:ok, Snakepit.Bridge.Session.t()} | {:error, :not_found}

Gets a session by ID, automatically updating the last_accessed timestamp.
Parameters
	session_id - The session identifier

Returns
{:ok, session} if found, {:error, :not_found} if not found.

 get_session(server, session_id)

 @spec get_session(GenServer.server(), String.t()) ::
 {:ok, Snakepit.Bridge.Session.t()} | {:error, :not_found}

 get_stats()

 @spec get_stats() :: map()

Gets statistics about the session store.
Returns
A map containing various statistics about the session store.

 get_stats(server)

 @spec get_stats(GenServer.server()) :: map()

 list_sessions()

 @spec list_sessions() :: [String.t()]

Lists all active session IDs.
Returns
A list of all active session IDs.

 list_sessions(server)

 @spec list_sessions(GenServer.server()) :: [String.t()]

 session_exists?(session_id)

 @spec session_exists?(String.t()) :: boolean()

Checks if a session exists.
Parameters
	session_id - The session identifier

Returns
true if the session exists, false otherwise.

 session_exists?(server, session_id)

 @spec session_exists?(GenServer.server(), String.t()) :: boolean()

 start_link(opts \\ [])

 @spec start_link(keyword()) :: GenServer.on_start()

Starts the SessionStore GenServer.
Options
	:name - The name to register the GenServer (default: MODULE)
	:table_name - The ETS table name (default: :snakepit_sessions)
	:cleanup_interval - Cleanup interval in milliseconds (default: 60_000)
	:default_ttl - Default TTL for sessions in seconds (default: 3600)

 store_worker_session(session_id, worker_id)

 @spec store_worker_session(String.t(), String.t()) :: :ok

Stores worker-session affinity mapping.

 update_session(session_id, update_fn)

 @spec update_session(String.t(), (Snakepit.Bridge.Session.t() ->
 Snakepit.Bridge.Session.t())) ::
 {:ok, Snakepit.Bridge.Session.t()} | {:error, term()}

Updates a session using the provided update function.
The update function receives the current session and should return
the updated session. The operation is atomic.
Parameters
	session_id - The session identifier
	update_fn - Function that takes a session and returns an updated session

Returns
{:ok, updated_session} if successful, {:error, reason} if failed.
Examples
{:ok, session} = SessionStore.update_session("session_123", fn session ->
 Map.put(session, :data, %{key: "value"})
end)

 update_session(server, session_id, update_fn)

 @spec update_session(GenServer.server(), String.t(), (Snakepit.Bridge.Session.t() ->
 Snakepit.Bridge.Session.t())) ::
 {:ok, Snakepit.Bridge.Session.t()} | {:error, term()}

 Snakepit.Adapters.GRPCPython - Snakepit v0.9.1

Snakepit.Adapters.GRPCPython

 gRPC-based Python adapter for Snakepit.
 This adapter replaces the stdin/stdout protocol with gRPC for better performance,
 streaming capabilities, and more robust communication.
 ## Configuration
 Application.put_env(:snakepit, :adapter_module, Snakepit.Adapters.GRPCPython)
 Application.put_env(:snakepit, :grpc_port, 50051)
 Application.put_env(:snakepit, :grpc_host, "localhost")
 Worker ports are OS-assigned (ephemeral) and reported back during startup.
Features
	Native streaming support for progressive results
	HTTP/2 multiplexing for concurrent requests
	Built-in health checks and monitoring
	Better error handling with gRPC status codes
	Binary data support without base64 encoding

Streaming Examples
Stream ML inference results
Snakepit.execute_stream("batch_inference", %{
 batch_items: ["image1.jpg", "image2.jpg", "image3.jpg"]
}, fn chunk ->
 handle_chunk(chunk)
end)

Stream large dataset processing with progress
Snakepit.execute_stream("process_large_dataset", %{
 total_rows: 10000,
 chunk_size: 500
}, fn chunk ->
 handle_progress(chunk)
end)

 Summary

 Functions

 get_port()

 Get the gRPC port for this adapter instance.

 grpc_available?()

 Check if gRPC dependencies are available at runtime.

 grpc_execute(connection, session_id, command, args, timeout \\ nil, opts \\ [])

 Execute a command via gRPC.

 grpc_execute_stream(connection, session_id, command, args, callback_fn, timeout \\ nil, opts \\ [])

 Execute a streaming command via gRPC with callback.

 init_grpc_connection(port)

 Initialize gRPC connection for the worker.
Called by GRPCWorker during initialization.

 uses_grpc?()

 Check if this adapter uses gRPC.
Returns true only if gRPC dependencies are actually available.

 Functions

 get_port()

Get the gRPC port for this adapter instance.
ROBUST FIX: Use port 0 to let the OS dynamically assign an available port.
This completely eliminates:
	Port collision races
	TIME_WAIT conflicts
	Manual port range management
	Port leak tracking

Python will bind to an OS-assigned port and report it back via the readiness file
(SNAKEPIT_READY_FILE).

 grpc_available?()

Check if gRPC dependencies are available at runtime.

 grpc_execute(connection, session_id, command, args, timeout \\ nil, opts \\ [])

Execute a command via gRPC.

 grpc_execute_stream(connection, session_id, command, args, callback_fn, timeout \\ nil, opts \\ [])

Execute a streaming command via gRPC with callback.

 init_grpc_connection(port)

Initialize gRPC connection for the worker.
Called by GRPCWorker during initialization.
CRITICAL FIX: This includes retry logic to handle the race condition where
the Python process signals readiness before the OS socket is fully bound
and accepting connections. This is common in polyglot systems where the
external process startup timing is non-deterministic.

 uses_grpc?()

Check if this adapter uses gRPC.
Returns true only if gRPC dependencies are actually available.

 Snakepit.Pool.ApplicationCleanup - Snakepit v0.9.1

Snakepit.Pool.ApplicationCleanup

Provides hard guarantees for worker process cleanup when the application exits.
This module ensures that NO worker processes survive application shutdown,
preventing orphaned processes while still allowing normal pool operations.

 Summary

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 init(opts)

 Callback implementation for GenServer.init/1.

 start_link(opts \\ [])

 Functions

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 init(opts)

Callback implementation for GenServer.init/1.

 start_link(opts \\ [])

 Snakepit.Pool.ProcessRegistry - Snakepit v0.9.1

Snakepit.Pool.ProcessRegistry

Registry for tracking external worker processes with OS-level PID management.
This module maintains a mapping between:
	Worker IDs
	Elixir worker PIDs
	External process PIDs
	Process fingerprints

Enables robust orphaned process detection and cleanup.

 Summary

 Functions

 activate_worker(worker_id, elixir_pid, process_pid, fingerprint)

 Activates a reserved worker with its actual process information.

 activate_worker(worker_id, elixir_pid, process_pid, fingerprint, opts)

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 cleanup_dead_workers()

 Cleans up dead worker entries from the registry.

 current_run_entries()

 Gets all registered worker entries for the current BEAM run.

 debug_show_all_entries()

 Debug function to show all DETS entries with their BEAM run IDs.

 dets_table_size()

 Returns the number of entries currently stored in the DETS table.

 get_active_process_pids()

 Gets all active external process PIDs from registered workers.

 get_all_process_pids()

 Gets all registered external process PIDs, regardless of worker status.

 get_beam_run_id()

 Get the current BEAM run ID.

 get_stats()

 Gets registry statistics.

 get_worker_info(worker_id)

 Gets information for a specific worker.

 get_workers_by_fingerprint(fingerprint)

 Gets workers with specific fingerprints.

 list_all_workers()

 Gets all registered worker information.

 manual_orphan_cleanup()

 Manually trigger orphan cleanup. Useful for testing and debugging.

 reserve_worker(worker_id)

 Reserves a worker slot before spawning the process.
This ensures we can track the process even if we crash during spawn.

 start_link(opts \\ [])

 unregister_worker(worker_id)

 Unregisters a worker from tracking.
Returns :ok regardless of whether the worker was registered.

 validate_workers()

 Validates that all registered workers are still alive.
Returns a list of dead workers that should be cleaned up.

 worker_registered?(worker_id)

 Checks if a worker is currently registered.

 Functions

 activate_worker(worker_id, elixir_pid, process_pid, fingerprint)

Activates a reserved worker with its actual process information.
This is a synchronous call that blocks until the worker is registered.
This ensures the happens-before relationship: worker registration completes
before the worker is considered ready for work.

 activate_worker(worker_id, elixir_pid, process_pid, fingerprint, opts)

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 cleanup_dead_workers()

Cleans up dead worker entries from the registry.

 current_run_entries()

Gets all registered worker entries for the current BEAM run.

 debug_show_all_entries()

Debug function to show all DETS entries with their BEAM run IDs.

 dets_table_size()

Returns the number of entries currently stored in the DETS table.

 get_active_process_pids()

Gets all active external process PIDs from registered workers.

 get_all_process_pids()

Gets all registered external process PIDs, regardless of worker status.
This is useful during shutdown when workers may have been terminated
but external processes still need cleanup.

 get_beam_run_id()

Get the current BEAM run ID.

 get_stats()

Gets registry statistics.

 get_worker_info(worker_id)

Gets information for a specific worker.

 get_workers_by_fingerprint(fingerprint)

Gets workers with specific fingerprints.

 list_all_workers()

Gets all registered worker information.

 manual_orphan_cleanup()

Manually trigger orphan cleanup. Useful for testing and debugging.

 reserve_worker(worker_id)

Reserves a worker slot before spawning the process.
This ensures we can track the process even if we crash during spawn.

 start_link(opts \\ [])

 unregister_worker(worker_id)

Unregisters a worker from tracking.
Returns :ok regardless of whether the worker was registered.

 validate_workers()

Validates that all registered workers are still alive.
Returns a list of dead workers that should be cleaned up.

 worker_registered?(worker_id)

Checks if a worker is currently registered.

 Snakepit.ProcessKiller - Snakepit v0.9.1

Snakepit.ProcessKiller

Robust OS process management using Erlang primitives.
No shell commands, pure Erlang/Elixir.
This module provides POSIX-compliant process management that works
across Linux, macOS, and BSD systems without relying on shell-specific
features like pkill.

 Summary

 Functions

 find_python_processes()

 Finds all Python processes on the system.
Returns a list of OS PIDs.

 get_process_command(os_pid)

 Gets the command line of a process.
POSIX-compliant using /proc on Linux, ps on macOS/BSD.

 get_process_group_id(os_pid)

 Gets the process group ID (PGID) for a process.

 kill_by_run_id(run_id)

 Kills all processes matching a run ID.
Pure Erlang implementation, no pkill.

 kill_process(os_pid, signal \\ :sigterm)

 Kills a process by PID using proper Erlang signals.

 kill_process_group(pgid, signal \\ :sigterm)

 Kills a process group by PGID using proper Erlang signals.

 kill_process_group_with_escalation(pgid, timeout_ms \\ 2000)

 Kills a process group with escalation: SIGTERM -> wait -> SIGKILL.

 kill_with_escalation(os_pid, timeout_ms \\ 2000)

 Kills a process with escalation: SIGTERM -> wait -> SIGKILL

 process_alive?(os_pid)

 Checks if a process is alive.
Uses kill -0 (signal 0) which doesn't kill but checks existence.

 process_group_supported?()

 Returns true if the platform supports process group kill semantics.

 setsid_executable()

 Returns the path to the setsid executable, or {:error, :not_found}.

 setsid_executable!()

 Returns the setsid executable path or raises if not available.

 Functions

 find_python_processes()

Finds all Python processes on the system.
Returns a list of OS PIDs.

 get_process_command(os_pid)

Gets the command line of a process.
POSIX-compliant using /proc on Linux, ps on macOS/BSD.

 get_process_group_id(os_pid)

Gets the process group ID (PGID) for a process.

 kill_by_run_id(run_id)

Kills all processes matching a run ID.
Pure Erlang implementation, no pkill.

 kill_process(os_pid, signal \\ :sigterm)

Kills a process by PID using proper Erlang signals.
Parameters
	os_pid: OS process ID (integer)
	signal: :sigterm | :sigkill | :sighup

Returns
	:ok if kill succeeded
	{:error, reason} if kill failed

 kill_process_group(pgid, signal \\ :sigterm)

Kills a process group by PGID using proper Erlang signals.
Parameters
	pgid: Process group ID (integer)
	signal: :sigterm | :sigkill | :sighup

 kill_process_group_with_escalation(pgid, timeout_ms \\ 2000)

Kills a process group with escalation: SIGTERM -> wait -> SIGKILL.

 kill_with_escalation(os_pid, timeout_ms \\ 2000)

Kills a process with escalation: SIGTERM -> wait -> SIGKILL

 process_alive?(os_pid)

Checks if a process is alive.
Uses kill -0 (signal 0) which doesn't kill but checks existence.

 process_group_supported?()

Returns true if the platform supports process group kill semantics.

 setsid_executable()

Returns the path to the setsid executable, or {:error, :not_found}.

 setsid_executable!()

Returns the setsid executable path or raises if not available.

 Snakepit.Pool.Registry - Snakepit v0.9.1

Snakepit.Pool.Registry

Registry for pool worker processes.
This is a thin wrapper around Elixir's Registry that provides:
	Consistent naming for worker processes
	Easy migration path to distributed registry (Horde)
	Helper functions for worker lookup

Canonical Metadata
All workers store a metadata map containing the following canonical keys:
	:worker_module – module that owns the worker implementation (usually Snakepit.GRPCWorker)
	:pool_name – atom name of the logical pool (e.g. :default)
	:pool_identifier – optional human-friendly identifier used in docs/metrics
	:adapter_module – adapter used to launch the Python worker

Higher-level helpers (pool, diagnostics, worker profiles) should prefer
Snakepit.Pool.Registry.fetch_worker/1 so these keys stay authoritative.

 Summary

 Functions

 child_spec(opts)

 Returns the child spec for the registry.

 fetch_worker(worker_id)

 Returns {pid, metadata} for a registered worker.

 get_worker_id_by_pid(pid)

 Get worker_id from PID for O(1) lookups in :DOWN messages.

 get_worker_metadata(worker_id)

 Returns only the metadata for a worker.

 get_worker_pid(worker_id)

 Gets the PID for a worker ID.

 list_workers()

 Lists all registered worker IDs.

 metadata_keys()

 Returns the list of canonical metadata keys maintained for each worker.

 put_metadata(worker_id, metadata)

 Adds or updates metadata for a registered worker.

 register_worker(worker_id, pid)

 Register a worker with metadata for O(1) reverse lookups.
This is only used for manual registration - workers started with via_tuple are already registered.

 via_tuple(worker_id)

 Returns a via tuple for registering/looking up a worker process.

 worker_count()

 Counts the number of registered workers.

 worker_exists?(worker_id)

 Checks if a worker is registered.

 Functions

 child_spec(opts)

Returns the child spec for the registry.

 fetch_worker(worker_id)

Returns {pid, metadata} for a registered worker.

 get_worker_id_by_pid(pid)

Get worker_id from PID for O(1) lookups in :DOWN messages.

 get_worker_metadata(worker_id)

Returns only the metadata for a worker.

 get_worker_pid(worker_id)

Gets the PID for a worker ID.

 list_workers()

Lists all registered worker IDs.

 metadata_keys()

Returns the list of canonical metadata keys maintained for each worker.

 put_metadata(worker_id, metadata)

Adds or updates metadata for a registered worker.
Accepts maps to keep metadata consistent across callers. When Registry
has nil metadata (the default when using :via tuples), this function
replaces it with the provided map. Future updates merge with the existing map.
Returns :ok on success or {:error, :not_registered} if the worker has
not been registered yet (best-effort semantics).

 register_worker(worker_id, pid)

Register a worker with metadata for O(1) reverse lookups.
This is only used for manual registration - workers started with via_tuple are already registered.

 via_tuple(worker_id)

Returns a via tuple for registering/looking up a worker process.
Examples
iex> Snakepit.Pool.Registry.via_tuple("worker_123")
{:via, Registry, {Snakepit.Pool.Registry, "worker_123"}}

 worker_count()

Counts the number of registered workers.

 worker_exists?(worker_id)

Checks if a worker is registered.

 Snakepit.Pool.Worker.StarterRegistry - Snakepit v0.9.1

Snakepit.Pool.Worker.StarterRegistry

Registry for worker starter supervisors.
This registry provides a clean separation between worker processes and
their starter supervisors, making debugging and process tracking easier.
Worker starters are registered with their worker_id as the key, allowing
for easy lookup and management of individual starter supervisors.

 Summary

 Functions

 child_spec(opts)

 Returns the child spec for the starter registry.

 get_starter_pid(worker_id)

 Gets the PID for a worker starter supervisor.

 list_starters()

 Lists all registered worker starter IDs.

 starter_count()

 Counts the number of registered worker starters.

 starter_exists?(worker_id)

 Checks if a worker starter is registered.

 via_tuple(worker_id)

 Returns a via tuple for registering/looking up a worker starter supervisor.

 Functions

 child_spec(opts)

Returns the child spec for the starter registry.

 get_starter_pid(worker_id)

Gets the PID for a worker starter supervisor.

 list_starters()

Lists all registered worker starter IDs.

 starter_count()

Counts the number of registered worker starters.

 starter_exists?(worker_id)

Checks if a worker starter is registered.

 via_tuple(worker_id)

Returns a via tuple for registering/looking up a worker starter supervisor.
Examples
iex> Snakepit.Pool.Worker.StarterRegistry.via_tuple("worker_123")
{:via, Registry, {Snakepit.Pool.Worker.StarterRegistry, "worker_123"}}

 Snakepit.Bridge.ToolRegistry - Snakepit v0.9.1

Snakepit.Bridge.ToolRegistry

Registry for managing tool metadata and execution.
Maintains a registry of both local (Elixir) and remote (Python) tools,
handles tool discovery, registration, and provides execution dispatch.

 Summary

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 cleanup_session(session_id)

 Removes all tools for a session (cleanup).

 execute_local_tool(session_id, tool_name, params)

 Executes a local Elixir tool.

 get_tool(session_id, tool_name)

 Gets a specific tool by name.

 list_exposed_elixir_tools(session_id)

 Lists only Elixir tools exposed to Python for a session.

 list_tools(session_id)

 Lists all tools available for a session.

 register_elixir_tool(session_id, tool_name, handler, metadata \\ %{})

 Registers a local Elixir tool.

 register_python_tool(session_id, tool_name, worker_id, metadata \\ %{})

 Registers a remote Python tool.

 register_tools(session_id, tool_specs)

 Registers multiple tools at once (used by Python workers on startup).

 start_link(opts \\ [])

 Starts the ToolRegistry GenServer.

 Functions

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 cleanup_session(session_id)

Removes all tools for a session (cleanup).

 execute_local_tool(session_id, tool_name, params)

Executes a local Elixir tool.

 get_tool(session_id, tool_name)

Gets a specific tool by name.

 list_exposed_elixir_tools(session_id)

Lists only Elixir tools exposed to Python for a session.

 list_tools(session_id)

Lists all tools available for a session.

 register_elixir_tool(session_id, tool_name, handler, metadata \\ %{})

Registers a local Elixir tool.

 register_python_tool(session_id, tool_name, worker_id, metadata \\ %{})

Registers a remote Python tool.

 register_tools(session_id, tool_specs)

Registers multiple tools at once (used by Python workers on startup).

 start_link(opts \\ [])

Starts the ToolRegistry GenServer.

 Snakepit.GRPC.BridgeServer - Snakepit v0.9.1

Snakepit.GRPC.BridgeServer

gRPC server implementation for the Snakepit Bridge service.
Handles tool execution and session management through the unified bridge protocol.

 Summary

 Functions

 cleanup_session(cleanup_session_request, stream)

 execute_elixir_tool(request, stream)

 execute_streaming_tool(request, stream)

 execute_tool(request, stream)

 get_exposed_elixir_tools(get_exposed_elixir_tools_request, stream)

 get_session(get_session_request, stream)

 heartbeat(heartbeat_request, stream)

 initialize_session(request, stream)

 ping(ping_request, stream)

 register_tools(request, stream)

 service_name(_)

 Functions

 cleanup_session(cleanup_session_request, stream)

 execute_elixir_tool(request, stream)

 execute_streaming_tool(request, stream)

 execute_tool(request, stream)

 get_exposed_elixir_tools(get_exposed_elixir_tools_request, stream)

 get_session(get_session_request, stream)

 heartbeat(heartbeat_request, stream)

 initialize_session(request, stream)

 ping(ping_request, stream)

 register_tools(request, stream)

 service_name(_)

 Snakepit.GRPC.Client - Snakepit v0.9.1

Snakepit.GRPC.Client

gRPC client for the unified bridge protocol.
Delegates to the real implementation when available.

 Summary

 Functions

 cleanup_session(channel, session_id, force \\ false, opts \\ [])

 connect(port)

 execute(channel, command, args, timeout \\ nil)

 execute_streaming_tool(channel, session_id, tool_name, parameters, opts \\ [])

 execute_tool(channel, session_id, tool_name, parameters, opts \\ [])

 get_info(channel)

 get_session(channel, session_id, opts \\ [])

 health(channel, client_id)

 heartbeat(channel, session_id, opts \\ [])

 initialize_session(channel, session_id, config \\ %{}, opts \\ [])

 ping(channel, message, opts \\ [])

 Functions

 cleanup_session(channel, session_id, force \\ false, opts \\ [])

 connect(port)

 execute(channel, command, args, timeout \\ nil)

 execute_streaming_tool(channel, session_id, tool_name, parameters, opts \\ [])

 execute_tool(channel, session_id, tool_name, parameters, opts \\ [])

 get_info(channel)

 get_session(channel, session_id, opts \\ [])

 health(channel, client_id)

 heartbeat(channel, session_id, opts \\ [])

 initialize_session(channel, session_id, config \\ %{}, opts \\ [])

 ping(channel, message, opts \\ [])

 Snakepit.GRPC.Endpoint - Snakepit v0.9.1

Snakepit.GRPC.Endpoint

gRPC endpoint for the Snakepit bridge server.
This module defines the gRPC endpoint that handles incoming
requests for the unified bridge protocol.

 Snakepit.Hardware - Snakepit v0.9.1

Snakepit.Hardware

Hardware abstraction layer for Snakepit.
Provides unified hardware detection and device selection for ML workloads.
Supports CPU, NVIDIA CUDA, Apple MPS, and AMD ROCm accelerators.
Features
	Automatic Detection: Detects available hardware at startup
	Device Selection: Intelligent device selection with fallback strategies
	Caching: Results are cached for performance
	Lock File Support: Identity map for lock file generation

Usage
Detect all hardware
info = Snakepit.Hardware.detect()
=> %{accelerator: :cuda, cpu: %{...}, cuda: %{...}, ...}

Check capabilities
caps = Snakepit.Hardware.capabilities()
=> %{cuda: true, mps: false, avx2: true, ...}

Select device
{:ok, device} = Snakepit.Hardware.select(:auto)
=> {:ok, {:cuda, 0}}

Select with fallback
{:ok, device} = Snakepit.Hardware.select_with_fallback([:cuda, :mps, :cpu])
=> {:ok, :cpu}
Identity Map
The identity/0 function returns a map suitable for lock file generation:
identity = Snakepit.Hardware.identity()
=> %{"platform" => "linux-x86_64", "accelerator" => "cuda", ...}
This can be serialized to JSON/YAML for lock files that need to track
the hardware environment.

 Summary

 Types

 capabilities()

 device()

 device_preference()

 hardware_info()

 Functions

 capabilities()

 Returns hardware capability flags.

 clear_cache()

 Clears the hardware detection cache.

 detect()

 Detects all hardware information.

 device_info(device)

 Returns device information for a selected device.

 identity()

 Returns a hardware identity map for lock files.

 info()

 Alias for detect/0.

 select(preference)

 Selects a device based on preference.

 select_with_fallback(preferences)

 Selects the first available device from a preference list.

 Types

 capabilities()

 @type capabilities() :: Snakepit.Hardware.Detector.capabilities()

 device()

 @type device() :: Snakepit.Hardware.Selector.device()

 device_preference()

 @type device_preference() :: Snakepit.Hardware.Selector.device_preference()

 hardware_info()

 @type hardware_info() :: Snakepit.Hardware.Detector.hardware_info()

 Functions

 capabilities()

 @spec capabilities() :: capabilities()

Returns hardware capability flags.
Returns a map of boolean flags for quick feature checks:
	:cuda - CUDA available
	:mps - Apple MPS available
	:rocm - AMD ROCm available
	:avx - AVX instruction set available
	:avx2 - AVX2 instruction set available
	:avx512 - AVX-512 instruction set available
	:cuda_version - CUDA version string or nil
	:cudnn_version - cuDNN version string or nil
	:cudnn - cuDNN available

Examples
caps = Snakepit.Hardware.capabilities()
if caps.cuda do
 cuda_version = caps.cuda_version
end

 clear_cache()

 @spec clear_cache() :: :ok

Clears the hardware detection cache.
Forces re-detection on next call. Useful after hardware changes
or for testing.
Examples
Snakepit.Hardware.clear_cache()
:ok

 detect()

 @spec detect() :: hardware_info()

Detects all hardware information.
Returns a map with:
	:accelerator - Primary accelerator type (:cpu, :cuda, :mps, :rocm)
	:cpu - CPU information (cores, threads, model, features, memory)
	:cuda - NVIDIA CUDA info or nil
	:mps - Apple MPS info or nil
	:rocm - AMD ROCm info or nil
	:platform - Platform string (e.g., "linux-x86_64")

Examples
info = Snakepit.Hardware.detect()
info.accelerator
#=> :cuda

info.cpu.cores
#=> 8

 device_info(device)

 @spec device_info(device()) :: map()

Returns device information for a selected device.
Returns a map with device-specific details useful for logging,
telemetry, and diagnostics.
Examples
info = Snakepit.Hardware.device_info({:cuda, 0})
=> %{type: :cuda, device_id: 0, name: "NVIDIA GeForce RTX 3080", ...}

 identity()

 @spec identity() :: map()

Returns a hardware identity map for lock files.
The identity map contains string keys and is suitable for
serialization to JSON/YAML lock files that need to track
the hardware environment.
Keys
	"platform" - Platform string (e.g., "linux-x86_64")
	"accelerator" - Primary accelerator type as string
	"cpu_features" - List of CPU feature strings
	"gpu_count" - Number of GPUs detected

Examples
identity = Snakepit.Hardware.identity()
Jason.encode!(identity)
=> "{\"platform\":\"linux-x86_64\",\"accelerator\":\"cuda\",...}"

 info()

 @spec info() :: hardware_info()

Alias for detect/0.
Returns the same hardware info map as detect/0.

 select(preference)

 @spec select(device_preference()) :: {:ok, device()} | {:error, :device_not_available}

Selects a device based on preference.
Options
	:auto - Automatically select best available accelerator
	:cpu - Select CPU (always available)
	:cuda - Select CUDA (fails if not available)
	:mps - Select MPS (fails if not macOS with Apple Silicon)
	:rocm - Select ROCm (fails if not available)
	{:cuda, device_id} - Select specific CUDA device by ID

Returns
	{:ok, device} on success
	{:error, :device_not_available} if requested device is unavailable

Examples
Auto-select best device
{:ok, device} = Snakepit.Hardware.select(:auto)

Request specific device
case Snakepit.Hardware.select(:cuda) do
 {:ok, {:cuda, 0}} -> :ok
 {:error, :device_not_available} -> :error
end

 select_with_fallback(preferences)

 @spec select_with_fallback([device_preference()]) ::
 {:ok, device()} | {:error, :no_device}

Selects the first available device from a preference list.
Tries each device in order until one is available. This is useful
for graceful degradation strategies.
Examples
Prefer CUDA, fall back to MPS, then CPU
{:ok, device} = Snakepit.Hardware.select_with_fallback([:cuda, :mps, :cpu])

Returns :cpu if CUDA and MPS are unavailable

 Snakepit.Hardware.CPUDetector - Snakepit v0.9.1

Snakepit.Hardware.CPUDetector

CPU hardware detection.
Detects CPU model, cores, threads, memory, and CPU features (SSE, AVX, etc.).

 Summary

 Types

 cpu_info()

 Functions

 detect()

 Detects CPU hardware information.

 Types

 cpu_info()

 @type cpu_info() :: %{
 cores: pos_integer(),
 threads: pos_integer(),
 model: String.t(),
 features: [atom()],
 memory_total_mb: non_neg_integer()
}

 Functions

 detect()

 @spec detect() :: cpu_info()

Detects CPU hardware information.
Returns a map with:
	:cores - Number of physical CPU cores
	:threads - Number of logical threads (cores * hyperthreading)
	:model - CPU model name string
	:features - List of detected CPU feature atoms (e.g., :avx, :sse4_2)
	:memory_total_mb - Total system memory in MB

 Snakepit.Hardware.CUDADetector - Snakepit v0.9.1

Snakepit.Hardware.CUDADetector

CUDA GPU hardware detection.
Detects NVIDIA CUDA-capable GPUs using nvidia-smi when available.

 Summary

 Types

 cuda_device()

 cuda_info()

 Functions

 detect()

 Detects CUDA GPU information.

 Types

 cuda_device()

 @type cuda_device() :: %{
 id: non_neg_integer(),
 name: String.t(),
 memory_total_mb: non_neg_integer(),
 memory_free_mb: non_neg_integer(),
 compute_capability: String.t() | nil
}

 cuda_info()

 @type cuda_info() :: %{
 version: String.t(),
 driver_version: String.t(),
 devices: [cuda_device()],
 cudnn_version: String.t() | nil
}

 Functions

 detect()

 @spec detect() :: cuda_info() | nil

Detects CUDA GPU information.
Returns nil if CUDA is not available, or a map with:
	:version - CUDA runtime version (e.g., "12.1")
	:driver_version - NVIDIA driver version
	:devices - List of CUDA device maps
	:cudnn_version - cuDNN version if available, nil otherwise

 Snakepit.Hardware.Detector - Snakepit v0.9.1

Snakepit.Hardware.Detector

Unified hardware detection module.
Aggregates CPU, CUDA, MPS, and ROCm detection into a single hardware info structure.
Results are cached in ETS for performance.

 Summary

 Types

 accelerator()

 capabilities()

 hardware_info()

 Functions

 capabilities()

 Returns hardware capability flags.

 clear_cache()

 Clears the hardware detection cache.

 detect()

 Detects all hardware information.

 Types

 accelerator()

 @type accelerator() :: :cpu | :cuda | :mps | :rocm

 capabilities()

 @type capabilities() :: %{
 cuda: boolean(),
 mps: boolean(),
 rocm: boolean(),
 avx: boolean(),
 avx2: boolean(),
 avx512: boolean(),
 cuda_version: String.t() | nil,
 cudnn_version: String.t() | nil,
 cudnn: boolean()
}

 hardware_info()

 @type hardware_info() :: %{
 accelerator: accelerator(),
 cpu: Snakepit.Hardware.CPUDetector.cpu_info(),
 cuda: Snakepit.Hardware.CUDADetector.cuda_info() | nil,
 mps: Snakepit.Hardware.MPSDetector.mps_info() | nil,
 rocm: Snakepit.Hardware.ROCmDetector.rocm_info() | nil,
 platform: String.t()
}

 Functions

 capabilities()

 @spec capabilities() :: capabilities()

Returns hardware capability flags.
Returns a map of boolean capability flags for quick feature checks.

 clear_cache()

 @spec clear_cache() :: :ok

Clears the hardware detection cache.
Forces re-detection on next call to detect/0 or capabilities/0.

 detect()

 @spec detect() :: hardware_info()

Detects all hardware information.
Returns a map with aggregated hardware info from all detectors.
Results are cached for performance.

 Snakepit.Hardware.MPSDetector - Snakepit v0.9.1

Snakepit.Hardware.MPSDetector

Apple Metal Performance Shaders (MPS) hardware detection.
Detects Apple Silicon GPU availability on macOS.

 Summary

 Types

 mps_info()

 Functions

 detect()

 Detects MPS (Apple Metal) availability.

 Types

 mps_info()

 @type mps_info() :: %{
 available: boolean(),
 device_name: String.t(),
 memory_total_mb: non_neg_integer()
}

 Functions

 detect()

 @spec detect() :: mps_info() | nil

Detects MPS (Apple Metal) availability.
Returns nil on non-macOS platforms, or a map with:
	:available - true if MPS is available
	:device_name - Name of the Metal device
	:memory_total_mb - GPU memory (shared memory on Apple Silicon)

 Snakepit.Hardware.ROCmDetector - Snakepit v0.9.1

Snakepit.Hardware.ROCmDetector

AMD ROCm GPU hardware detection.
Detects AMD GPUs with ROCm support using rocm-smi when available.

 Summary

 Types

 rocm_device()

 rocm_info()

 Functions

 detect()

 Detects ROCm GPU information.

 Types

 rocm_device()

 @type rocm_device() :: %{
 id: non_neg_integer(),
 name: String.t(),
 memory_total_mb: non_neg_integer(),
 memory_free_mb: non_neg_integer()
}

 rocm_info()

 @type rocm_info() :: %{version: String.t(), devices: [rocm_device()]}

 Functions

 detect()

 @spec detect() :: rocm_info() | nil

Detects ROCm GPU information.
Returns nil if ROCm is not available, or a map with:
	:version - ROCm version
	:devices - List of ROCm device maps

 Snakepit.Hardware.Selector - Snakepit v0.9.1

Snakepit.Hardware.Selector

Device selection logic for hardware abstraction.
Provides intelligent device selection based on availability, preferences,
and fallback strategies.

 Summary

 Types

 device()

 device_preference()

 Functions

 device_info(arg1)

 Returns information about a selected device.

 select(arg1)

 Selects a device based on preference.

 select_with_fallback(list)

 Selects the first available device from a preference list.

 Types

 device()

 @type device() ::
 :cpu
 | :cuda
 | :mps
 | :rocm
 | {:cuda, non_neg_integer()}
 | {:rocm, non_neg_integer()}

 device_preference()

 @type device_preference() ::
 :auto | :cpu | :cuda | :mps | :rocm | {:cuda, non_neg_integer()}

 Functions

 device_info(arg1)

 @spec device_info(device()) :: map()

Returns information about a selected device.
Returns a map with device details useful for logging and telemetry.

 select(arg1)

 @spec select(device_preference()) :: {:ok, device()} | {:error, :device_not_available}

Selects a device based on preference.
Options
	:auto - Automatically select the best available accelerator
	:cpu - Select CPU (always available)
	:cuda - Select CUDA (fails if not available)
	:mps - Select MPS (fails if not available or not on macOS)
	:rocm - Select ROCm (fails if not available)
	{:cuda, device_id} - Select specific CUDA device

Returns
	{:ok, device} on success
	{:error, :device_not_available} if requested device is unavailable

 select_with_fallback(list)

 @spec select_with_fallback([device_preference()]) ::
 {:ok, device()} | {:error, :no_device}

Selects the first available device from a preference list.
Tries each device in order until one is available, returning that device.
If no devices are available, returns {:error, :no_device}.
Examples
iex> Hardware.Selector.select_with_fallback([:cuda, :mps, :cpu])
{:ok, :cpu} # if CUDA and MPS unavailable

 Snakepit.CircuitBreaker - Snakepit v0.9.1

Snakepit.CircuitBreaker

Circuit breaker for Python worker fault tolerance.
Implements the circuit breaker pattern to prevent cascading failures
when workers are experiencing issues.
States
	:closed - Normal operation, all calls allowed
	:open - Failure threshold exceeded, calls rejected
	:half_open - Testing if service recovered, limited calls allowed

Usage
{:ok, cb} = CircuitBreaker.start_link(name: :my_cb, failure_threshold: 5)

case CircuitBreaker.call(cb, fn -> risky_operation() end) do
 {:ok, result} -> handle_success(result)
 {:error, :circuit_open} -> handle_circuit_open()
 {:error, reason} -> handle_error(reason)
end

 Summary

 Types

 state()

 t()

 Functions

 allow_call?(server)

 Checks if a call is allowed through the circuit.

 call(server, fun)

 Executes a function through the circuit breaker.

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 record_failure(server)

 Records a failed call.

 record_success(server)

 Records a successful call.

 reset(server)

 Resets the circuit breaker to closed state.

 start_link(opts \\ [])

 Starts a circuit breaker.

 state(server)

 Returns the current circuit state.

 stats(server)

 Returns circuit breaker statistics.

 Types

 state()

 @type state() :: :closed | :open | :half_open

 t()

 @type t() :: %{
 state: state(),
 failure_count: non_neg_integer(),
 success_count: non_neg_integer(),
 failure_threshold: pos_integer(),
 reset_timeout_ms: pos_integer(),
 half_open_max_calls: pos_integer(),
 half_open_calls: non_neg_integer(),
 last_failure_time: integer() | nil,
 name: atom() | nil
}

 Functions

 allow_call?(server)

 @spec allow_call?(GenServer.server()) :: boolean()

Checks if a call is allowed through the circuit.

 call(server, fun)

 @spec call(GenServer.server(), (-> any())) :: any()

Executes a function through the circuit breaker.
Returns {:error, :circuit_open} if the circuit is open.

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 record_failure(server)

 @spec record_failure(GenServer.server()) :: :ok

Records a failed call.

 record_success(server)

 @spec record_success(GenServer.server()) :: :ok

Records a successful call.

 reset(server)

 @spec reset(GenServer.server()) :: :ok

Resets the circuit breaker to closed state.

 start_link(opts \\ [])

 @spec start_link(keyword()) :: GenServer.on_start()

Starts a circuit breaker.
Options
	:name - GenServer name (optional)
	:failure_threshold - Number of failures before opening (default: 5)
	:reset_timeout_ms - Time before transitioning to half-open (default: 30000)
	:half_open_max_calls - Max calls allowed in half-open state (default: 1)

 state(server)

 @spec state(GenServer.server()) :: state()

Returns the current circuit state.

 stats(server)

 @spec stats(GenServer.server()) :: map()

Returns circuit breaker statistics.

 Snakepit.Executor - Snakepit v0.9.1

Snakepit.Executor

Execution helpers with retry, circuit breaker, and timeout support.
Provides various execution strategies for running operations
with fault tolerance.
Usage
Simple execution with retry
result = Executor.execute_with_retry(
 fn -> risky_operation() end,
 max_attempts: 3,
 backoff_ms: [100, 200, 400]
)

With circuit breaker
result = Executor.execute_with_circuit_breaker(cb, fn ->
 external_call()
end)

With timeout
result = Executor.execute_with_timeout(
 fn -> slow_operation() end,
 timeout_ms: 5000
)

 Summary

 Functions

 execute(fun, opts \\ [])

 Executes a function directly.

 execute_async(fun, opts \\ [])

 Executes a function asynchronously.

 execute_batch(functions, opts \\ [])

 Executes multiple functions in parallel.

 execute_with_circuit_breaker(circuit_breaker, fun, opts \\ [])

 Executes a function through a circuit breaker.

 execute_with_protection(circuit_breaker, fun, opts \\ [])

 Executes with retry and circuit breaker.

 execute_with_retry(fun, opts \\ [])

 Executes a function with retry on transient failures.

 execute_with_timeout(fun, opts)

 Executes a function with a timeout.

 Functions

 execute(fun, opts \\ [])

 @spec execute(
 (-> any()),
 keyword()
) :: any()

Executes a function directly.

 execute_async(fun, opts \\ [])

 @spec execute_async(
 (-> any()),
 keyword()
) :: Task.t()

Executes a function asynchronously.
Returns a Task that can be awaited.

 execute_batch(functions, opts \\ [])

 @spec execute_batch(
 [(-> any())],
 keyword()
) :: [any()]

Executes multiple functions in parallel.
Returns results in the same order as the input functions.
Options
	:timeout_ms - Timeout for all operations (default: 30000)
	:max_concurrency - Maximum concurrent operations (default: unlimited)

 execute_with_circuit_breaker(circuit_breaker, fun, opts \\ [])

 @spec execute_with_circuit_breaker(GenServer.server(), (-> any()), keyword()) :: any()

Executes a function through a circuit breaker.

 execute_with_protection(circuit_breaker, fun, opts \\ [])

 @spec execute_with_protection(GenServer.server(), (-> any()), keyword()) :: any()

Executes with retry and circuit breaker.
Combines retry logic with circuit breaker protection.

 execute_with_retry(fun, opts \\ [])

 @spec execute_with_retry(
 (-> any()),
 keyword()
) :: any()

Executes a function with retry on transient failures.
Options
	:max_attempts - Maximum attempts (default: 3)
	:backoff_ms - List of backoff delays (default: [100, 200, 400])
	:retriable_errors - Errors to retry (default: [:timeout, :unavailable])
	:jitter - Add random jitter (default: false)

 execute_with_timeout(fun, opts)

 @spec execute_with_timeout(
 (-> any()),
 keyword()
) :: any()

Executes a function with a timeout.
Returns {:error, :timeout} if the function doesn't complete in time.
Options
	:timeout_ms - Timeout in milliseconds (required)

 Snakepit.HealthMonitor - Snakepit v0.9.1

Snakepit.HealthMonitor

Monitors worker health and crash patterns.
Tracks crashes within a rolling window and determines overall pool health.
Can be used to trigger circuit breaker actions or alerting.
Usage
{:ok, hm} = HealthMonitor.start_link(
 name: :my_pool_health,
 pool: :default,
 max_crashes: 10,
 crash_window_ms: 60_000
)

HealthMonitor.record_crash(hm, "worker_1", %{reason: :segfault})

if HealthMonitor.healthy?(hm) do
 # Pool is healthy
else
 # Too many crashes, consider action
end

 Summary

 Types

 t()

 worker_stats()

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 healthy?(server)

 Returns whether the pool is considered healthy.

 record_crash(server, worker_id, info \\ %{})

 Records a worker crash.

 start_link(opts)

 Starts a health monitor.

 stats(server)

 Returns comprehensive health statistics.

 worker_health(server, worker_id)

 Returns health status for a specific worker.

 Types

 t()

 @type t() :: %{
 pool: atom(),
 workers: %{required(String.t()) => worker_stats()},
 crash_window_ms: pos_integer(),
 max_crashes: pos_integer(),
 total_crashes: non_neg_integer(),
 check_interval_ms: pos_integer(),
 check_timer: reference() | nil
}

 worker_stats()

 @type worker_stats() :: %{
 crash_count: non_neg_integer(),
 last_crash_time: integer() | nil,
 crash_reasons: [term()]
}

 Functions

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 healthy?(server)

 @spec healthy?(GenServer.server()) :: boolean()

Returns whether the pool is considered healthy.

 record_crash(server, worker_id, info \\ %{})

 @spec record_crash(GenServer.server(), String.t(), map()) :: :ok

Records a worker crash.

 start_link(opts)

 @spec start_link(keyword()) :: GenServer.on_start()

Starts a health monitor.
Options
	:name - GenServer name (required)
	:pool - Pool name to monitor (required)
	:check_interval_ms - Health check interval (default: 30000)
	:crash_window_ms - Rolling window for crash counting (default: 60000)
	:max_crashes - Max crashes in window before unhealthy (default: 10)

 stats(server)

 @spec stats(GenServer.server()) :: map()

Returns comprehensive health statistics.

 worker_health(server, worker_id)

 @spec worker_health(GenServer.server(), String.t()) :: map()

Returns health status for a specific worker.

 Snakepit.RetryPolicy - Snakepit v0.9.1

Snakepit.RetryPolicy

Retry policy with exponential backoff.
Configures retry behavior including max attempts, backoff timing,
and which errors are retriable.
Usage
policy = RetryPolicy.new(
 max_attempts: 3,
 backoff_ms: [100, 200, 400],
 jitter: true
)

if RetryPolicy.should_retry?(policy, attempt) do
 delay = RetryPolicy.backoff_for_attempt(policy, attempt)
 Process.sleep(delay)
 # retry...
end

 Summary

 Types

 t()

 Functions

 backoff_for_attempt(policy, attempt)

 Returns the backoff delay for a given attempt.

 new(opts)

 Creates a new retry policy.

 retry_for_error?(arg1, arg2)

 Checks if an error is retriable according to the policy.

 should_retry?(retry_policy, attempt)

 Checks if another retry attempt should be made.

 Types

 t()

 @type t() :: %Snakepit.RetryPolicy{
 backoff_ms: [non_neg_integer()],
 backoff_multiplier: float(),
 base_backoff_ms: non_neg_integer(),
 jitter: boolean(),
 jitter_factor: float(),
 max_attempts: pos_integer(),
 max_backoff_ms: non_neg_integer(),
 retriable_errors: [atom()] | :all
}

 Functions

 backoff_for_attempt(policy, attempt)

 @spec backoff_for_attempt(t(), pos_integer()) :: non_neg_integer()

Returns the backoff delay for a given attempt.

 new(opts)

 @spec new(keyword()) :: t()

Creates a new retry policy.
Options
	:max_attempts - Maximum retry attempts (default: 3)
	:backoff_ms - List of backoff delays in ms (default: [100, 200, 400, 800, 1600])
	:base_backoff_ms - Base for exponential backoff (default: 100)
	:backoff_multiplier - Multiplier for exponential backoff (default: 2.0)
	:max_backoff_ms - Maximum backoff delay (default: 30000)
	:jitter - Add random jitter to delays (default: false)
	:jitter_factor - Jitter range as fraction of delay (default: 0.25)
	:retriable_errors - List of error atoms to retry, or :all (default: common errors)

 retry_for_error?(arg1, arg2)

 @spec retry_for_error?(t(), {:error, atom()} | term()) :: boolean()

Checks if an error is retriable according to the policy.

 should_retry?(retry_policy, attempt)

 @spec should_retry?(t(), non_neg_integer()) :: boolean()

Checks if another retry attempt should be made.

 Snakepit.Error.Device - Snakepit v0.9.1

Snakepit.Error.Device

Device error creation helpers.
Provides functions for creating device-related errors with
telemetry emission and helpful suggestions.

 Summary

 Functions

 device_mismatch(expected, got, operation)

 Creates a device mismatch error.

 device_unavailable(device, operation)

 Creates a device unavailable error.

 out_of_memory(device, requested_bytes, available_bytes, operation \\ nil)

 Creates an out of memory error with recovery suggestions.

 Functions

 device_mismatch(expected, got, operation)

 @spec device_mismatch(term(), term(), String.t()) :: Snakepit.Error.DeviceMismatch.t()

Creates a device mismatch error.
Examples
error = Device.device_mismatch(:cpu, {:cuda, 0}, "matmul")

 device_unavailable(device, operation)

 @spec device_unavailable(term(), String.t()) :: Snakepit.Error.DeviceMismatch.t()

Creates a device unavailable error.
Examples
error = Device.device_unavailable({:cuda, 2}, "matrix_multiply")

 out_of_memory(device, requested_bytes, available_bytes, operation \\ nil)

 @spec out_of_memory(term(), non_neg_integer(), non_neg_integer(), String.t() | nil) ::
 Snakepit.Error.OutOfMemory.t()

Creates an out of memory error with recovery suggestions.
Examples
error = Device.out_of_memory({:cuda, 0}, 1024 * 1024 * 1024, 512 * 1024 * 1024)

 Snakepit.Error.Parser - Snakepit v0.9.1

Snakepit.Error.Parser

Parses Python exception data into structured Elixir errors.
Automatically detects error patterns (OOM, shape mismatch, device errors)
and creates appropriate structured exceptions.

 Summary

 Functions

 extract_shape(str)

 Extracts a shape from a string representation.

 from_grpc_error(arg1)

 Parses a gRPC error response into a structured error.

 parse(data)

 Parses error data into a structured error.

 Functions

 extract_shape(str)

 @spec extract_shape(String.t()) :: [integer()] | nil

Extracts a shape from a string representation.
Examples
iex> Parser.extract_shape("[3, 224, 224]")
[3, 224, 224]

iex> Parser.extract_shape("(10, 20)")
[10, 20]

 from_grpc_error(arg1)

 @spec from_grpc_error(map()) :: {:ok, Exception.t()} | {:error, :invalid_input}

Parses a gRPC error response into a structured error.

 parse(data)

 @spec parse(map() | term()) :: {:ok, Exception.t()} | {:error, :invalid_input}

Parses error data into a structured error.
Accepts a map with "type", "message", and optionally "traceback".
Examples
{:ok, error} = Parser.parse(%{
 "type" => "ValueError",
 "message" => "Invalid input"
})

 Snakepit.Error.Shape - Snakepit v0.9.1

Snakepit.Error.Shape

Shape error creation helpers.
Provides functions for creating detailed shape mismatch errors
with automatic dimension detection and telemetry emission.

 Summary

 Functions

 broadcast_error(shape1, shape2, operation)

 Creates a broadcast error.

 dimension_mismatch(dimension, expected_dim, got_dim, operation)

 Creates a dimension-specific mismatch error.

 shape_mismatch(expected, got, operation)

 Creates a shape mismatch error.

 Functions

 broadcast_error(shape1, shape2, operation)

 @spec broadcast_error([integer()], [integer()], String.t()) ::
 Snakepit.Error.ShapeMismatch.t()

Creates a broadcast error.
Use when shapes cannot be broadcast together.

 dimension_mismatch(dimension, expected_dim, got_dim, operation)

 @spec dimension_mismatch(non_neg_integer(), integer(), integer(), String.t()) ::
 Snakepit.Error.ShapeMismatch.t()

Creates a dimension-specific mismatch error.
Use when you know exactly which dimension has the mismatch.

 shape_mismatch(expected, got, operation)

 @spec shape_mismatch([integer()], [integer()], String.t()) ::
 Snakepit.Error.ShapeMismatch.t()

Creates a shape mismatch error.
Automatically detects which dimension differs and emits telemetry.
Examples
error = Shape.shape_mismatch([3, 224, 224], [3, 256, 256], "conv2d")

 Snakepit.Telemetry - Snakepit v0.9.1

Snakepit.Telemetry

Telemetry event definitions for Snakepit.
This module provides:
	Complete event catalog (Layer 1: Infrastructure, Layer 2: Python, Layer 3: gRPC)
	Event handler management
	Integration with the distributed telemetry system

See Snakepit.Telemetry.Naming for event name validation and atom safety.
See Snakepit.Telemetry.GrpcStream for Python telemetry folding.
Usage
Attach handlers to specific events
:telemetry.attach(
 "my-handler",
 [:snakepit, :python, :call, :stop],
 &MyApp.Telemetry.handle_python_call/4,
 nil
)

Emit a pool event
:telemetry.execute(
 [:snakepit, :pool, :worker, :spawned],
 %{duration: 1000, system_time: System.system_time()},
 %{node: node(), worker_id: "worker_1", pool_name: :default}
)

 Summary

 Functions

 attach_handlers()

 Attaches default handlers for all events.

 attach_heartbeat_handlers()

 Attaches default handlers for heartbeat events.

 attach_program_handlers()

 Attaches default handlers for program events.

 attach_session_handlers()

 Attaches default handlers for session events.

 events()

 Lists all telemetry events used by Snakepit.

 grpc_events()

 gRPC communication events.

 heartbeat_events()

 Heartbeat and monitor telemetry events.

 pool_events()

 Pool and worker lifecycle events.

 program_events()

 Program-related telemetry events (session store).

 python_events()

 Python worker telemetry events (folded back from Python workers).

 runtime_events()

 Runtime enhancement events (zero-copy, crash barrier, exception translation).

 script_events()

 Script shutdown lifecycle telemetry events.

 session_events()

 Session-related telemetry events (session store).

 Functions

 attach_handlers()

Attaches default handlers for all events.

 attach_heartbeat_handlers()

Attaches default handlers for heartbeat events.

 attach_program_handlers()

Attaches default handlers for program events.

 attach_session_handlers()

Attaches default handlers for session events.

 events()

Lists all telemetry events used by Snakepit.

 grpc_events()

gRPC communication events.

 heartbeat_events()

Heartbeat and monitor telemetry events.

 pool_events()

Pool and worker lifecycle events.

 program_events()

Program-related telemetry events (session store).

 python_events()

Python worker telemetry events (folded back from Python workers).

 runtime_events()

Runtime enhancement events (zero-copy, crash barrier, exception translation).

 script_events()

Script shutdown lifecycle telemetry events.

 session_events()

Session-related telemetry events (session store).

 Snakepit.Telemetry.Control - Snakepit v0.9.1

Snakepit.Telemetry.Control

Helper functions for creating telemetry control messages.
Control messages flow from Elixir to Python workers over the gRPC
telemetry stream to adjust telemetry behavior at runtime.

 Summary

 Functions

 filter(opts \\ [])

 Creates a control message to filter events.

 sampling(rate, patterns \\ [])

 Creates a control message to adjust sampling rate.

 toggle(enabled)

 Creates a control message to enable or disable telemetry.

 Functions

 filter(opts \\ [])

Creates a control message to filter events.
Allows explicit whitelisting or blacklisting of events.
Examples
iex> Snakepit.Telemetry.Control.filter(allow: ["python.call.start"])
%Snakepit.Bridge.TelemetryControl{
 control: {:filter, %Snakepit.Bridge.TelemetryEventFilter{
 allow: ["python.call.start"],
 deny: []
 }}
}

iex> Snakepit.Telemetry.Control.filter(deny: ["python.memory.sampled"])
%Snakepit.Bridge.TelemetryControl{
 control: {:filter, %Snakepit.Bridge.TelemetryEventFilter{
 allow: [],
 deny: ["python.memory.sampled"]
 }}
}

 sampling(rate, patterns \\ [])

Creates a control message to adjust sampling rate.
The sampling rate must be between 0.0 and 1.0, where:
	0.0 = no events emitted
	1.0 = all events emitted
	0.1 = 10% of events emitted

Event patterns use glob-style matching (e.g., "python.*").
Examples
iex> Snakepit.Telemetry.Control.sampling(0.5)
%Snakepit.Bridge.TelemetryControl{
 control: {:sampling, %Snakepit.Bridge.TelemetrySamplingUpdate{
 sampling_rate: 0.5,
 event_patterns: []
 }}
}

iex> Snakepit.Telemetry.Control.sampling(0.1, ["python.call.*"])
%Snakepit.Bridge.TelemetryControl{
 control: {:sampling, %Snakepit.Bridge.TelemetrySamplingUpdate{
 sampling_rate: 0.1,
 event_patterns: ["python.call.*"]
 }}
}

 toggle(enabled)

Creates a control message to enable or disable telemetry.
Examples
iex> Snakepit.Telemetry.Control.toggle(true)
%Snakepit.Bridge.TelemetryControl{
 control: {:toggle, %Snakepit.Bridge.TelemetryToggle{enabled: true}}
}

 Snakepit.Telemetry.Correlation - Snakepit v0.9.1

Snakepit.Telemetry.Correlation

Utilities for generating and propagating correlation identifiers.

 Summary

 Functions

 ensure(id)

 Ensures a non-empty correlation identifier is present.

 new_id()

 Generates a new correlation identifier.

 Functions

 ensure(id)

 @spec ensure(String.t() | nil) :: String.t()

Ensures a non-empty correlation identifier is present.

 new_id()

 @spec new_id() :: String.t()

Generates a new correlation identifier.

 Snakepit.Telemetry.Events - Snakepit v0.9.1

Snakepit.Telemetry.Events

ML-specific telemetry event definitions.
Defines telemetry events for hardware detection, GPU profiling,
circuit breaker operations, and structured exceptions.

 Summary

 Types

 event()

 measurement_type()

 metadata_type()

 schema()

 Functions

 all_ml_events()

 Returns all ML-related telemetry events.

 circuit_breaker_events()

 Returns all circuit breaker telemetry events.

 event_schema(event)

 Returns the schema for a given event.

 exception_events()

 Returns all exception/error telemetry events.

 gpu_profiler_events()

 Returns all GPU profiler telemetry events.

 hardware_events()

 Returns all hardware-related telemetry events.

 retry_events()

 Returns all retry/backoff telemetry events.

 Types

 event()

 @type event() :: [atom()]

 measurement_type()

 @type measurement_type() :: :integer | :float | :monotonic_time | :system_time

 metadata_type()

 @type metadata_type() :: :string | :atom | :integer | :map | :list | :any

 schema()

 @type schema() :: %{
 measurements: %{required(atom()) => measurement_type()},
 metadata: %{required(atom()) => metadata_type()}
}

 Functions

 all_ml_events()

 @spec all_ml_events() :: [event()]

Returns all ML-related telemetry events.
This combines hardware, circuit breaker, exception, GPU profiler,
and retry events.

 circuit_breaker_events()

 @spec circuit_breaker_events() :: [event()]

Returns all circuit breaker telemetry events.

 event_schema(event)

 @spec event_schema(event()) :: schema() | nil

Returns the schema for a given event.
Returns nil for unknown events.

 exception_events()

 @spec exception_events() :: [event()]

Returns all exception/error telemetry events.

 gpu_profiler_events()

 @spec gpu_profiler_events() :: [event()]

Returns all GPU profiler telemetry events.

 hardware_events()

 @spec hardware_events() :: [event()]

Returns all hardware-related telemetry events.

 retry_events()

 @spec retry_events() :: [event()]

Returns all retry/backoff telemetry events.

 Snakepit.Telemetry.GPUProfiler - Snakepit v0.9.1

Snakepit.Telemetry.GPUProfiler

GPU memory and utilization profiler.
Periodically samples GPU metrics and emits telemetry events.
Supports NVIDIA CUDA GPUs via nvidia-smi.

 Summary

 Types

 state()

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 disable(server \\ __MODULE__)

 Disables GPU sampling.

 enable(server \\ __MODULE__)

 Enables GPU sampling.

 get_stats(server \\ __MODULE__)

 Returns profiler statistics.

 sample_now(server \\ __MODULE__)

 Triggers an immediate GPU sample.

 set_interval(server \\ __MODULE__, interval_ms)

 Updates the sampling interval.

 start_link(opts \\ [])

 Starts the GPU profiler.

 Types

 state()

 @type state() :: %{
 interval_ms: pos_integer(),
 enabled: boolean(),
 sample_count: non_neg_integer(),
 last_sample_time: integer() | nil,
 timer_ref: reference() | nil,
 devices: [Snakepit.Hardware.Selector.device()]
}

 Functions

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 disable(server \\ __MODULE__)

 @spec disable(GenServer.server()) :: :ok

Disables GPU sampling.

 enable(server \\ __MODULE__)

 @spec enable(GenServer.server()) :: :ok

Enables GPU sampling.

 get_stats(server \\ __MODULE__)

 @spec get_stats(GenServer.server()) :: map()

Returns profiler statistics.

 sample_now(server \\ __MODULE__)

 @spec sample_now(GenServer.server()) :: :ok | {:error, :no_gpu}

Triggers an immediate GPU sample.

 set_interval(server \\ __MODULE__, interval_ms)

 @spec set_interval(GenServer.server(), pos_integer()) ::
 :ok | {:error, :invalid_interval}

Updates the sampling interval.

 start_link(opts \\ [])

 @spec start_link(keyword()) :: GenServer.on_start()

Starts the GPU profiler.
Options
	:interval_ms - Sampling interval in milliseconds (default: 5000)
	:enabled - Whether to start sampling immediately (default: true)
	:name - GenServer name (default: MODULE)

 Snakepit.Telemetry.GrpcStream - Snakepit v0.9.1

Snakepit.Telemetry.GrpcStream

Manages gRPC telemetry streams from Python workers.
This GenServer maintains bidirectional telemetry streams with Python workers,
translating Python telemetry events into Elixir :telemetry events.
Features:
	Automatic stream registration when workers connect
	Dynamic sampling rate adjustments
	Event filtering
	Graceful handling of worker disconnections

 Summary

 Types

 worker_ctx()

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 list_streams()

 Gets the current state of all registered streams.

 register_worker(channel, worker_ctx)

 Registers a worker for telemetry streaming.

 start_link(opts)

 Starts the telemetry stream manager.

 toggle(worker_id, enabled)

 Enables or disables telemetry for a specific worker.

 unregister_worker(worker_id)

 Removes a worker from telemetry streaming.

 update_filter(worker_id, opts)

 Updates event filters for a specific worker.

 update_sampling(worker_id, rate, patterns \\ [])

 Updates the sampling rate for a specific worker.

 Types

 worker_ctx()

 @type worker_ctx() :: %{
 worker_id: String.t(),
 pool_name: atom(),
 python_pid: integer() | nil
}

 Functions

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 list_streams()

Gets the current state of all registered streams.

 register_worker(channel, worker_ctx)

Registers a worker for telemetry streaming.
Automatically initiates a telemetry stream with the worker and starts
consuming events.
Examples
iex> channel = connect_to_worker()
iex> Snakepit.Telemetry.GrpcStream.register_worker(channel, %{
...> worker_id: "worker_1",
...> pool_name: :default,
...> python_pid: 12345
...> })
:ok

 start_link(opts)

Starts the telemetry stream manager.

 toggle(worker_id, enabled)

Enables or disables telemetry for a specific worker.

 unregister_worker(worker_id)

Removes a worker from telemetry streaming.
Called when a worker disconnects or terminates.

 update_filter(worker_id, opts)

Updates event filters for a specific worker.

 update_sampling(worker_id, rate, patterns \\ [])

Updates the sampling rate for a specific worker.
Examples
iex> Snakepit.Telemetry.GrpcStream.update_sampling("worker_1", 0.1)
:ok

iex> Snakepit.Telemetry.GrpcStream.update_sampling("worker_1", 0.5, ["python.call.*"])
:ok

 Snakepit.Telemetry.Handlers.Logger - Snakepit v0.9.1

Snakepit.Telemetry.Handlers.Logger

Telemetry handler that logs ML-related events.
Provides structured logging for hardware detection, circuit breaker
state changes, GPU profiling, and error events.

 Summary

 Functions

 attach()

 Attaches the logger handler to all ML events.

 detach()

 Detaches the logger handler.

 Functions

 attach()

 @spec attach() :: :ok

Attaches the logger handler to all ML events.

 detach()

 @spec detach() :: :ok

Detaches the logger handler.

 Snakepit.Telemetry.Handlers.Metrics - Snakepit v0.9.1

Snakepit.Telemetry.Handlers.Metrics

Telemetry metrics definitions for ML-related events.
Provides telemetry_metrics compatible metric definitions for
hardware detection, circuit breaker, GPU profiling, and error events.

 Summary

 Functions

 definitions()

 Returns all ML-related telemetry metrics definitions.

 prometheus_definitions()

 Returns Prometheus-compatible metric definitions.

 Functions

 definitions()

 @spec definitions() :: [Telemetry.Metrics.t()]

Returns all ML-related telemetry metrics definitions.
These can be used with TelemetryMetricsPrometheus or other
telemetry metrics reporters.

 prometheus_definitions()

 @spec prometheus_definitions() :: [Telemetry.Metrics.t()]

Returns Prometheus-compatible metric definitions.
Same as definitions/0 but ensures all metrics have names
compatible with Prometheus naming conventions.

 Snakepit.Telemetry.Naming - Snakepit v0.9.1

Snakepit.Telemetry.Naming

Event catalog and naming validation for Snakepit telemetry.
This module ensures atom safety by maintaining a curated catalog of all
valid telemetry events and measurement keys. Python-originated events
must pass through this module to prevent arbitrary atom creation.
Python Event Catalog
python_event_catalog/0 lists the event strings emitted by snakepit_bridge
and the measurement keys they are expected to use. When adding a new Python
telemetry event, update that catalog and the allowlist in
snakepit_bridge.telemetry.stream together so both languages agree on the
schema.

 Summary

 Functions

 event(component, resource, action)

 Build an event name from components.

 from_parts(parts)

 Convert Python event parts to a valid Elixir telemetry event name.

 grpc_event(resource, action)

 Build a gRPC event name.

 grpc_events()

 Get all valid gRPC events.

 measurement_key(key)

 Validate a measurement key and convert to atom if it's in the allowlist.

 measurement_keys()

 Get all valid measurement keys.

 pool_event(atom)

 Build a pool event name.

 pool_events()

 Get all valid pool events.

 python_event(action)

 Build a Python event name.

 python_event_catalog()

 Return the catalog describing Python event names, their telemetry atoms, and expected measurements.

 python_events()

 Get all valid Python events.

 session_event(action)

 Build a session event name.

 session_events()

 Get all valid session events.

 Functions

 event(component, resource, action)

Build an event name from components.
Examples
iex> Snakepit.Telemetry.Naming.event(:pool, :worker, :spawned)
[:snakepit, :pool, :worker, :spawned]

 from_parts(parts)

Convert Python event parts to a valid Elixir telemetry event name.
Returns {:ok, event_name} if the parts map to a known event,
{:error, reason} otherwise.
Examples
iex> Snakepit.Telemetry.Naming.from_parts(["python", "call", "start"])
{:ok, [:snakepit, :python, :call, :start]}

iex> Snakepit.Telemetry.Naming.from_parts(["unknown", "event"])
{:error, :unknown_event}

 grpc_event(resource, action)

Build a gRPC event name.

 grpc_events()

Get all valid gRPC events.

 measurement_key(key)

Validate a measurement key and convert to atom if it's in the allowlist.
Examples
iex> Snakepit.Telemetry.Naming.measurement_key("duration")
{:ok, :duration}

iex> Snakepit.Telemetry.Naming.measurement_key("unknown_key")
{:error, :unknown_measurement_key}

 measurement_keys()

Get all valid measurement keys.

 pool_event(atom)

Build a pool event name.

 pool_events()

Get all valid pool events.

 python_event(action)

Build a Python event name.

 python_event_catalog()

Return the catalog describing Python event names, their telemetry atoms, and expected measurements.

 python_events()

Get all valid Python events.

 session_event(action)

Build a session event name.

 session_events()

Get all valid session events.

 Snakepit.Telemetry.SafeMetadata - Snakepit v0.9.1

Snakepit.Telemetry.SafeMetadata

Safe metadata handling for telemetry events.
This module ensures that metadata from Python workers doesn't create
new atoms at runtime, which could exhaust the BEAM atom table.
Only keys from the allowlist are converted to atoms; everything else
remains as strings.

 Summary

 Functions

 allowed_atom_keys()

 Returns the list of allowed atom keys.

 enrich(python_metadata, elixir_context)

 Enriches metadata from Python with Elixir context.

 measurements(measurements)

 Validates and converts measurements map.

 merge(metadata1, metadata2)

 Merges two metadata maps safely.

 sanitize(metadata)

 Sanitizes a metadata map, converting only allowed keys to atoms.

 Functions

 allowed_atom_keys()

Returns the list of allowed atom keys.

 enrich(python_metadata, elixir_context)

Enriches metadata from Python with Elixir context.
Only allowed keys are converted to atoms; unknown keys remain as strings.
Examples
iex> Snakepit.Telemetry.SafeMetadata.enrich(
...> %{"tool" => "predict"},
...> [node: :nonode@nohost, worker_id: "worker_1"]
...>)
{:ok, %{tool: "predict", node: :nonode@nohost, worker_id: "worker_1"}}

 measurements(measurements)

Validates and converts measurements map.
All measurement keys must be from the allowlist (enforced by Naming module).
Examples
iex> Snakepit.Telemetry.SafeMetadata.measurements(%{"duration" => 1000})
{:ok, %{duration: 1000}}

 merge(metadata1, metadata2)

Merges two metadata maps safely.
Examples
iex> Snakepit.Telemetry.SafeMetadata.merge(%{"tool" => "predict"}, %{node: :nonode@nohost})
{:ok, %{"tool" => "predict", node: :nonode@nohost}}

 sanitize(metadata)

Sanitizes a metadata map, converting only allowed keys to atoms.
Examples
iex> Snakepit.Telemetry.SafeMetadata.sanitize(%{"node" => "test@host", "unknown" => "value"})
{:ok, %{node: "test@host", "unknown" => "value"}}

 Snakepit.Telemetry.Span - Snakepit v0.9.1

Snakepit.Telemetry.Span

Telemetry span helpers for wrapping operations.
Provides convenient helpers for emitting start/stop/exception
telemetry events around function calls.
Usage
Automatic span with function
result = Snakepit.Telemetry.Span.span(
 [:snakepit, :my_operation],
 %{pool: :default},
 fn -> do_operation() end
)

Manual span management
span_ref = Snakepit.Telemetry.Span.start_span([:snakepit, :operation], %{})
... do work ...
Snakepit.Telemetry.Span.end_span(span_ref)

 Summary

 Types

 event()

 metadata()

 span_ref()

 Functions

 end_span(span_ref)

 Ends a telemetry span.

 end_span(span_ref, additional_metadata)

 Ends a telemetry span with additional metadata.

 end_span_exception(span_ref, kind, reason, stacktrace)

 Ends a span with an exception.

 span(event, metadata, fun)

 Executes a function wrapped in telemetry span events.

 start_span(event, metadata \\ %{})

 Starts a telemetry span.

 Types

 event()

 @type event() :: [atom()]

 metadata()

 @type metadata() :: map()

 span_ref()

 @type span_ref() :: %{event: event(), start_time: integer(), metadata: metadata()}

 Functions

 end_span(span_ref)

 @spec end_span(span_ref()) :: :ok

Ends a telemetry span.
Emits event ++ [:stop] with the duration measurement.
Examples
span_ref = Span.start_span([:myapp, :operation], %{})
... do work ...
Span.end_span(span_ref)

 end_span(span_ref, additional_metadata)

 @spec end_span(span_ref(), metadata()) :: :ok

Ends a telemetry span with additional metadata.
Merges the additional metadata with the original span metadata
before emitting the stop event.
Examples
span_ref = Span.start_span([:myapp, :operation], %{})
result = do_work()
Span.end_span(span_ref, %{result: result, items_processed: 100})

 end_span_exception(span_ref, kind, reason, stacktrace)

 @spec end_span_exception(
 span_ref(),
 :error | :exit | :throw,
 term(),
 Exception.stacktrace()
) :: :ok

Ends a span with an exception.
Use this when you catch an exception but want to emit the
exception telemetry event before re-raising or handling it.
Examples
span_ref = Span.start_span([:myapp, :operation], %{})
try do
 do_risky_work()
rescue
 e ->
 Span.end_span_exception(span_ref, :error, e, __STACKTRACE__)
 handle_error(e)
end

 span(event, metadata, fun)

 @spec span(event(), metadata(), (-> result)) :: result when result: any()

Executes a function wrapped in telemetry span events.
Emits event ++ [:start] before the function runs,
and event ++ [:stop] after it completes successfully.
If the function raises, throws, or exits, emits event ++ [:exception].
Examples
Span.span([:myapp, :operation], %{user_id: 123}, fn ->
 perform_operation()
end)

 start_span(event, metadata \\ %{})

 @spec start_span(event(), metadata()) :: span_ref()

Starts a telemetry span.
Returns a span reference that should be passed to end_span/1 or end_span/2.
Emits event ++ [:start] immediately.
Examples
span_ref = Span.start_span([:myapp, :operation], %{user_id: 123})
... do work ...
Span.end_span(span_ref)

 Snakepit.TelemetryMetrics - Snakepit v0.9.1

Snakepit.TelemetryMetrics

Telemetry metric definitions and reporters for Snakepit.
Metrics focus on heartbeat and worker lifecycle events. Reporters are opt-in
via configuration under :snakepit, :telemetry_metrics.

 Summary

 Types

 reporter_child_spec()

 Functions

 metrics()

 Returns the metric definitions for Snakepit telemetry.

 reporter_children()

 Returns reporter child specs enabled via configuration.

 Types

 reporter_child_spec()

 @type reporter_child_spec() :: Supervisor.child_spec()

 Functions

 metrics()

 @spec metrics() :: [Telemetry.Metrics.t()]

Returns the metric definitions for Snakepit telemetry.

 reporter_children()

 @spec reporter_children() :: [reporter_child_spec()]

Returns reporter child specs enabled via configuration.

 Snakepit.Config - Snakepit v0.9.1

Snakepit.Config

Configuration management for Snakepit pools.
Handles validation and normalization of pool configurations,
supporting both legacy single-pool and new multi-pool configurations.
Backward Compatibility
Existing v0.5.x configurations continue to work:
Legacy config (v0.5.x) - still works!
config :snakepit,
 pooling_enabled: true,
 adapter_module: Snakepit.Adapters.GRPCPython,
 pool_size: 100
New Multi-Pool Configuration (v0.6.0+)
config :snakepit,
 pools: [
 %{
 name: :default,
 worker_profile: :process,
 pool_size: 100,
 adapter_module: Snakepit.Adapters.GRPCPython
 },
 %{
 name: :hpc,
 worker_profile: :thread,
 pool_size: 4,
 threads_per_worker: 16
 }
]
Configuration Schema
Per-pool configuration options:
Required
	name - Pool identifier (atom)
	adapter_module - Adapter module

Profile Selection
	worker_profile - :process or :thread (default: :process)

Common Options
	pool_size - Number of workers
	adapter_args - CLI arguments for adapter
	adapter_env - Environment variables
	capacity_strategy - :pool, :profile, or :hybrid (default: :pool)

Process Profile Specific
	startup_batch_size - Workers per batch (default: 8)
	startup_batch_delay_ms - Delay between batches (default: 750)

Thread Profile Specific
	threads_per_worker - Thread pool size per worker
	thread_safety_checks - Enable runtime checks

Lifecycle Management
	worker_ttl - Time-to-live (:infinity or {value, :seconds/:minutes/:hours})
	worker_max_requests - Max requests before recycling (:infinity or integer)

Heartbeat options are mirrored in snakepit_bridge.heartbeat.HeartbeatConfig,
so any new keys added here must be added to the Python struct and documented
in the heartbeat guides to keep both sides in sync.
Normalized Shape
Snakepit.Config.normalize_pool_config/1 converts user input into a canonical
map that downstream components rely on. The resulting structure (documented
under normalized_pool_config/0) always includes heartbeat defaults,
adapter metadata, and profile-specific knobs so pool, worker supervisor, and
diagnostics modules never have to pattern-match on partial user input.

 Summary

 Types

 normalized_pool_config()

 pool_config()

 Normalized pool configuration returned by normalize_pool_config/1.

 validation_result()

 Functions

 get_pool_config(pool_name)

 Get configuration for a specific named pool.

 get_pool_configs()

 Get and validate pool configurations from application environment.

 get_profile_module(config)

 Get the profile module for a pool configuration.

 heartbeat_defaults()

 Returns the normalized default heartbeat configuration, merged with application env overrides.

 normalize_pool_config(config)

 Normalize a pool configuration by filling in defaults.

 thread_profile?(config)

 Check if a pool configuration is using the thread profile.

 validate_pool_config(config)

 Validate a single pool configuration.

 Types

 normalized_pool_config()

 @type normalized_pool_config() :: map()

 pool_config()

 @type pool_config() :: map()

Normalized pool configuration returned by normalize_pool_config/1.
%{
 name: atom(),
 worker_profile: :process | :thread,
 pool_size: pos_integer(),
 adapter_module: module(),
 adapter_args: list(),
 adapter_env: list(),
 capacity_strategy: :pool | :profile | :hybrid,
 pool_identifier: atom() | nil,
 worker_ttl: :infinity | {integer(), :seconds | :minutes | :hours},
 worker_max_requests: :infinity | pos_integer(),
 heartbeat: map(),
 # Profile-specific fields:
 startup_batch_size: pos_integer(),
 startup_batch_delay_ms: non_neg_integer(),
 threads_per_worker: pos_integer(),
 thread_safety_checks: boolean()
}

 validation_result()

 @type validation_result() :: {:ok, [pool_config()]} | {:error, term()}

 Functions

 get_pool_config(pool_name)

 @spec get_pool_config(atom()) :: {:ok, pool_config()} | {:error, term()}

Get configuration for a specific named pool.
Returns {:ok, config} or {:error, reason}.
The error can be :pool_not_found if the pool doesn't exist, or any error
from get_pool_configs/0 if there's a configuration issue.
Examples
iex> Snakepit.Config.get_pool_config(:default)
{:ok, %{name: :default, worker_profile: :process, ...}}

 get_pool_configs()

 @spec get_pool_configs() :: validation_result()

Get and validate pool configurations from application environment.
Supports both legacy single-pool and new multi-pool configurations.
Returns {:ok, [pool_configs]} or {:error, reason}.
Examples
With legacy config
{:ok, [%{name: :default, worker_profile: :process, ...}]}

With multi-pool config
{:ok, [%{name: :default, ...}, %{name: :hpc, ...}]}

 get_profile_module(config)

 @spec get_profile_module(pool_config()) :: module()

Get the profile module for a pool configuration.
Returns the module that implements the WorkerProfile behaviour.
Examples
iex> Snakepit.Config.get_profile_module(%{worker_profile: :process})
Snakepit.WorkerProfile.Process

iex> Snakepit.Config.get_profile_module(%{worker_profile: :thread})
Snakepit.WorkerProfile.Thread

 heartbeat_defaults()

 @spec heartbeat_defaults() :: map()

Returns the normalized default heartbeat configuration, merged with application env overrides.
This shape is shared with snakepit_bridge.heartbeat.HeartbeatConfig. When adding new keys,
update both modules to keep the cross-language schema aligned.

 normalize_pool_config(config)

 @spec normalize_pool_config(map()) :: pool_config()

Normalize a pool configuration by filling in defaults.
Examples
iex> Snakepit.Config.normalize_pool_config(%{name: :test})
%{
 name: :test,
 worker_profile: :process,
 pool_size: 16,
 # ... other defaults
}

 thread_profile?(config)

 @spec thread_profile?(pool_config()) :: boolean()

Check if a pool configuration is using the thread profile.
Examples
iex> Snakepit.Config.thread_profile?(%{worker_profile: :thread})
true

iex> Snakepit.Config.thread_profile?(%{worker_profile: :process})
false

 validate_pool_config(config)

 @spec validate_pool_config(map()) :: {:ok, pool_config()} | {:error, term()}

Validate a single pool configuration.
Returns {:ok, normalized_config} or {:error, reason}.

 Snakepit.Error - Snakepit v0.9.1

Snakepit.Error

Structured error type for Snakepit operations.
Provides detailed context for debugging cross-language and distributed system issues.
Python exceptions translated from the gRPC bridge are returned as
Snakepit.Error.* exception structs (see Snakepit.Error.PythonException).
Snakepit.Error remains the structured error type for Snakepit runtime failures.
Error Categories
	:worker - Worker process errors (not found, crashed, etc.)
	:timeout - Operation timed out
	:python_error - Exception from Python code
	:grpc_error - gRPC communication error
	:validation - Input validation error
	:pool - Pool management error

Examples
Create a worker error
error = Snakepit.Error.worker_error("Worker not found", %{worker_id: "w1"})

Create a Python exception error
error = Snakepit.Error.python_error(
 "ValueError",
 "Invalid input",
 traceback_string,
 %{function: "process_data"}
)

Pattern match in your code
case Snakepit.execute("command", %{}) do
 {:ok, result} -> result
 {:error, %Snakepit.Error{category: :timeout}} -> retry()
 {:error, %Snakepit.Error{category: :python_error} = error} ->
 Snakepit.Logger.error("Python error: #{error.message}")
 Snakepit.Logger.debug("Traceback: #{error.python_traceback}")
 {:error, error} -> {:error, error}
end

 Summary

 Types

 category()

 t()

 Functions

 grpc_error(status, message, details \\ %{})

 Creates a gRPC communication error.

 pool_error(message, details \\ %{})

 Creates a pool management error.

 python_error(exception_type, message, traceback, details \\ %{})

 Creates a Python exception error with traceback.

 timeout_error(message, details \\ %{})

 Creates a timeout error.

 validation_error(message, details \\ %{})

 Creates a validation error.

 worker_error(message, details \\ %{})

 Creates a worker-related error.

 Types

 category()

 @type category() ::
 :worker | :timeout | :python_error | :grpc_error | :validation | :pool

 t()

 @type t() :: %Snakepit.Error{
 category: category(),
 details: map(),
 grpc_status: atom() | nil,
 message: String.t(),
 python_traceback: String.t() | nil
}

 Functions

 grpc_error(status, message, details \\ %{})

 @spec grpc_error(atom(), String.t(), map()) :: t()

Creates a gRPC communication error.
Examples
iex> Snakepit.Error.grpc_error(:unavailable, "Service unavailable")
%Snakepit.Error{
 category: :grpc_error,
 message: "Service unavailable",
 grpc_status: :unavailable
}

 pool_error(message, details \\ %{})

 @spec pool_error(String.t(), map()) :: t()

Creates a pool management error.
Examples
iex> Snakepit.Error.pool_error("Pool not found", %{pool_name: :test})
%Snakepit.Error{category: :pool, message: "Pool not found", details: %{pool_name: :test}}

 python_error(exception_type, message, traceback, details \\ %{})

 @spec python_error(String.t(), String.t(), String.t(), map()) :: t()

Creates a Python exception error with traceback.
Examples
iex> Snakepit.Error.python_error("ValueError", "Invalid input", "Traceback...")
%Snakepit.Error{
 category: :python_error,
 message: "ValueError: Invalid input",
 python_traceback: "Traceback...",
 details: %{exception_type: "ValueError"}
}

 timeout_error(message, details \\ %{})

 @spec timeout_error(String.t(), map()) :: t()

Creates a timeout error.
Examples
iex> Snakepit.Error.timeout_error("Request timed out", %{timeout_ms: 5000})
%Snakepit.Error{category: :timeout, message: "Request timed out", details: %{timeout_ms: 5000}}

 validation_error(message, details \\ %{})

 @spec validation_error(String.t(), map()) :: t()

Creates a validation error.
Examples
iex> Snakepit.Error.validation_error("Invalid field", %{field: "user_id"})
%Snakepit.Error{category: :validation, message: "Invalid field", details: %{field: "user_id"}}

 worker_error(message, details \\ %{})

 @spec worker_error(String.t(), map()) :: t()

Creates a worker-related error.
Examples
iex> Snakepit.Error.worker_error("Worker crashed")
%Snakepit.Error{category: :worker, message: "Worker crashed", details: %{}}

iex> Snakepit.Error.worker_error("Worker not found", %{worker_id: "w1"})
%Snakepit.Error{category: :worker, message: "Worker not found", details: %{worker_id: "w1"}}

 Snakepit.RunID - Snakepit v0.9.1

Snakepit.RunID

Generates short, unique BEAM run identifiers.
Format: 7 characters, base36-encoded
Components: timestamp (5 chars) + counter (2 chars)
Example: "k3x9a2p"
These IDs are embedded in Python process command lines for reliable
identification and cleanup across BEAM restarts.

 Summary

 Functions

 extract_from_command(command)

 Extracts run ID from a process command line.
Supports both --snakepit-run-id and --run-id formats.

 generate()

 Generates a unique 7-character run ID.

 Functions

 extract_from_command(command)

Extracts run ID from a process command line.
Supports both --snakepit-run-id and --run-id formats.
Examples
iex> cmd = "python3 grpc_server.py --snakepit-run-id k3x9a2p --port 50051"
iex> Snakepit.RunID.extract_from_command(cmd)
{:ok, "k3x9a2p"}

iex> Snakepit.RunID.extract_from_command("no run id here")
{:error, :not_found}

 generate()

Generates a unique 7-character run ID.
Examples
iex> run_id = Snakepit.RunID.generate()
iex> String.length(run_id)
7

 Snakepit.Error.AttributeError - Snakepit v0.9.1

Snakepit.Error.AttributeError exception

 Snakepit.Error.DeviceMismatch - Snakepit v0.9.1

Snakepit.Error.DeviceMismatch exception

Device mismatch error for tensor operations.
Raised when tensors on different devices are used in an operation
that requires them to be on the same device.

 Summary

 Types

 device()

 t()

 Types

 device()

 @type device() ::
 :cpu | :mps | {:cuda, non_neg_integer()} | {:rocm, non_neg_integer()}

 t()

 @type t() :: %Snakepit.Error.DeviceMismatch{
 __exception__: true,
 expected: device() | nil,
 got: device() | nil,
 message: String.t(),
 operation: String.t() | nil
}

 Snakepit.Error.FileNotFoundError - Snakepit v0.9.1

Snakepit.Error.FileNotFoundError exception

 Snakepit.Error.ImportError - Snakepit v0.9.1

Snakepit.Error.ImportError exception

 Snakepit.Error.IndexError - Snakepit v0.9.1

Snakepit.Error.IndexError exception

 Snakepit.Error.KeyError - Snakepit v0.9.1

Snakepit.Error.KeyError exception

 Snakepit.Error.NotImplementedError - Snakepit v0.9.1

Snakepit.Error.NotImplementedError exception

 Snakepit.Error.OutOfMemory - Snakepit v0.9.1

Snakepit.Error.OutOfMemory exception

Out of memory error for GPU operations.
Contains information about the requested allocation, available memory,
and suggestions for recovery.

 Summary

 Types

 device()

 t()

 Types

 device()

 @type device() ::
 :cpu | :mps | {:cuda, non_neg_integer()} | {:rocm, non_neg_integer()}

 t()

 @type t() :: %Snakepit.Error.OutOfMemory{
 __exception__: true,
 available_bytes: non_neg_integer(),
 device: device(),
 message: String.t(),
 operation: String.t() | nil,
 requested_bytes: non_neg_integer(),
 suggestions: [String.t()]
}

 Snakepit.Error.PermissionError - Snakepit v0.9.1

Snakepit.Error.PermissionError exception

 Snakepit.Error.PythonException - Snakepit v0.9.1

Snakepit.Error.PythonException exception

 Snakepit.Error.RuntimeError - Snakepit v0.9.1

Snakepit.Error.RuntimeError exception

 Snakepit.Error.ShapeMismatch - Snakepit v0.9.1

Snakepit.Error.ShapeMismatch exception

Shape mismatch error for tensor operations.
Contains detailed information about the shape mismatch including
which dimension differs and what the expected vs actual values were.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Snakepit.Error.ShapeMismatch{
 __exception__: true,
 dimension: non_neg_integer() | nil,
 expected: [integer()] | nil,
 expected_dim: integer() | nil,
 got: [integer()] | nil,
 got_dim: integer() | nil,
 message: String.t(),
 operation: String.t() | nil
}

 Snakepit.Error.TypeError - Snakepit v0.9.1

Snakepit.Error.TypeError exception

 Snakepit.Error.ValueError - Snakepit v0.9.1

Snakepit.Error.ValueError exception

 Snakepit.Error.ZeroDivisionError - Snakepit v0.9.1

Snakepit.Error.ZeroDivisionError exception

 Snakepit.PackageError - Snakepit v0.9.1

Snakepit.PackageError exception

Structured error for Python package installation and inspection.

 Summary

 Types

 t()

 type()

 Types

 t()

 @type t() :: %Snakepit.PackageError{
 __exception__: true,
 message: String.t(),
 output: String.t() | nil,
 packages: [String.t()],
 suggestion: String.t() | nil,
 type: type()
}

 type()

 @type type() ::
 :not_installed | :install_failed | :version_mismatch | :invalid_requirement

 mix snakepit.doctor - Snakepit v0.9.1

mix snakepit.doctor

Diagnose the local Python and gRPC tooling required by Snakepit.

 mix snakepit.gen.adapter - Snakepit v0.9.1

mix snakepit.gen.adapter

Generate a Python adapter skeleton under priv/python.

 mix snakepit.python_test - Snakepit v0.9.1

mix snakepit.python_test

Bootstraps the Snakepit Python environment and runs the Python test suite.
Usage:
mix snakepit.python_test
mix snakepit.python_test -- --maxfail=1
Options:
	--no-bootstrap - Skip mix snakepit.setup

 mix snakepit.setup - Snakepit v0.9.1

mix snakepit.setup

Bootstrap the Snakepit development environment.
This task mirrors make bootstrap and prepares both the Elixir and Python
tooling so tests can run without manual steps.

 mix snakepit.status - Snakepit v0.9.1

mix snakepit.status

Report the current status of Snakepit pools and worker queues.

OEBPS/dist/epub-4WIP524F.js
