DSPex Production Strategy: Valley Learnings & AWS Integration

View Source

Date: 2025-10-07 Context: Research on DSPy production patterns, AWS tooling, and strategic direction for DSPex


Executive Summary

After analyzing production DSPy deployments and AWS integration patterns, DSPex is positioned to become the production-grade DSPy runtime for the BEAM ecosystem. The key insight: while DSPy excels at compile-time optimization, it lacks enterprise deployment infrastructure. DSPex + ALTAR + Foundation can fill this gap.

Core Value Proposition:

DSPy (Python): Compile-time optimization & training
       (compilation artifacts)
DSPex (Elixir): Production runtime with BEAM reliability
       (execution)
ALTAR: Tool protocol & distributed execution (GRID)
       (deployment)
Foundation: Multi-agent supervision & orchestration

What's Working in Production: Valley Patterns

1. MLflow Integration is Critical (Production Standard)

Pattern: DSPy programs are deployed via MLflow with full observability

# Production pattern from DSPy docs
import mlflow
import dspy

# 1. Develop & optimize
optimized_program = dspy.MIPROv2(
    prompt_model=gpt4,
    task_model=gpt3_turbo,
    metric=accuracy
).compile(program, trainset=examples)

# 2. Log to MLflow
with mlflow.start_run():
    mlflow.log_param("optimizer", "MIPROv2")
    mlflow.log_metric("accuracy", score)
    mlflow.dspy.log_model(optimized_program, "model")

# 3. Deploy
model_uri = "runs:/<run_id>/model"
loaded_program = mlflow.dspy.load_model(model_uri)

DSPex Opportunity:

  • Elixir doesn't have MLflow client (gap!)
  • Solution: Use Snakepit to bridge to Python MLflow
  • Store compiled DSPy programs as artifacts
  • Load and execute in Elixir runtime

Implementation:

# Load optimized DSPy program from MLflow
{:ok, program} = DSPex.MLflow.load_model(
  model_uri: "models:/QA_Pipeline/production",
  session: snakepit_session
)

# Execute in Elixir with BEAM supervision
{:ok, result} = DSPex.execute(program,
  question: "What is BEAM?",
  context: retrieval_results
)

2. Async + Caching = Production Scale (100k+ req/day)

Pattern: High-throughput deployments use async execution with aggressive caching

# Production async pattern
import asyncio
import hashlib
from functools import lru_cache

class CachedDSPyProgram:
    def __init__(self, program):
        self.program = program
        self.cache = {}

    @lru_cache(maxsize=10000)
    def _cache_key(self, question):
        return hashlib.md5(question.encode()).hexdigest()

    async def forward_async(self, question):
        key = self._cache_key(question)
        if key in self.cache:
            return self.cache[key]

        # Async execution
        result = await asyncio.to_thread(
            self.program.forward,
            question
        )

        self.cache[key] = result
        return result

What they're caching:

  • Expensive LLM calls (obvious)
  • Retrieval results (vector search)
  • Intermediate reasoning steps (ChainOfThought traces)

DSPex Advantage:

  • BEAM has built-in ETS for distributed caching
  • GenServer state for per-session caching
  • Phoenix PubSub for cache invalidation

Implementation:

defmodule DSPex.Cache do
  use GenServer

  # ETS-backed cache with TTL
  def get_or_compute(cache_key, ttl \\ :timer.hours(1), compute_fn) do
    case :ets.lookup(__MODULE__, cache_key) do
      [{^cache_key, value, expires_at}] when expires_at > :os.system_time(:second) ->
        {:ok, value}

      _ ->
        # Cache miss - compute
        {:ok, value} = compute_fn.()

        # Store with TTL
        :ets.insert(__MODULE__, {
          cache_key,
          value,
          :os.system_time(:second) + ttl
        })

        {:ok, value}
    end
  end
end

# Usage in DSPex program
def forward(question, context) do
  cache_key = :crypto.hash(:md5, question) |> Base.encode16()

  DSPex.Cache.get_or_compute(cache_key, fn ->
    # Expensive LLM call
    Gemini.chat(question, context: context)
  end)
end

3. FastAPI Serving is Common (Lightweight Production)

Pattern: Compiled DSPy programs served as REST APIs

# Production serving pattern
from fastapi import FastAPI
from pydantic import BaseModel

app = FastAPI()
program = mlflow.dspy.load_model("models:/QA/prod")

class Query(BaseModel):
    question: str
    context: str

@app.post("/predict")
async def predict(query: Query):
    result = program(question=query.question, context=query.context)
    return {"answer": result.answer}

DSPex Advantage: Arsenal!

  • Your arsenal library auto-generates REST APIs from OTP apps
  • DSPex modules as GenServers → automatic REST endpoints
  • Zero boilerplate for production serving

Implementation:

defmodule QAPipeline do
  use DSPex.Module
  use Arsenal.Resource  # Auto-generates REST API!

  signature "question, context -> answer"

  def forward(question, context) do
    # DSPy logic
  end
end

# Arsenal automatically creates:
# POST /qa_pipeline/forward
#   Body: {"question": "...", "context": "..."}
#   Response: {"answer": "..."}

# Start server
{:ok, _} = Arsenal.start_server(QAPipeline, port: 4000)

4. Pydantic for Structured Outputs (Type Safety at Scale)

Pattern: Production systems use Pydantic for strict output schemas

from pydantic import BaseModel, Field
from typing import List

class Answer(BaseModel):
    answer: str = Field(description="The main answer")
    confidence: float = Field(ge=0.0, le=1.0)
    sources: List[str] = Field(description="Citations")

class QA(dspy.Signature):
    """Answer questions with citations."""
    question = dspy.InputField()
    context = dspy.InputField()
    answer = dspy.OutputField(desc="Structured answer",
                               type=Answer)

# Usage
predictor = dspy.TypedPredictor(QA)
result = predictor(question="...", context="...")
assert isinstance(result.answer, Answer)  # Type-safe!

DSPex has this: exdantic + sinter

  • exdantic: Compile-time schemas (Pydantic equivalent)
  • sinter: Runtime schemas (dynamic validation)

Implementation:

defmodule Answer do
  use Exdantic.Schema

  schema do
    field :answer, :string, required: true
    field :confidence, :float,
      validators: [min: 0.0, max: 1.0]
    field :sources, {:array, :string},
      description: "Citations"
  end
end

defmodule QA do
  use DSPex.Signature

  input :question, :string
  input :context, :string
  output :answer, Answer  # Exdantic schema!
end

# Type-safe execution
{:ok, %Answer{} = result} = DSPex.execute(QA, question, context)

AWS Bedrock Integration: What We Can Learn

Key AWS Pattern: Boto3 + Bedrock Embeddings

import boto3
from dspy import Retrieve

class BedrockRetriever(Retrieve):
    def __init__(self, model="amazon.titan-embed-text-v2:0"):
        self.client = boto3.client('bedrock-runtime')
        self.model = model

    def forward(self, query):
        # Get embedding
        response = self.client.invoke_model(
            modelId=self.model,
            body=json.dumps({"inputText": query})
        )
        embedding = json.loads(response['body'].read())

        # Vector search (Pinecone, Weaviate, etc.)
        results = vector_db.search(embedding, top_k=5)
        return results

DSPex Integration via Snakepit:

# Python worker for AWS Bedrock
# priv/python/aws_bedrock_worker.py
import boto3

class BedrockWorker:
    def embed_text(self, text, model="amazon.titan-embed-text-v2:0"):
        client = boto3.client('bedrock-runtime')
        response = client.invoke_model(
            modelId=model,
            body=json.dumps({"inputText": text})
        )
        return json.loads(response['body'].read())

# Elixir wrapper
defmodule DSPex.AWS.Bedrock do
  use Altar.Tool

  @doc "Generate embeddings using AWS Bedrock"
  def embed_text(text, model \\ "amazon.titan-embed-text-v2:0") do
    Snakepit.execute(
      "bedrock_worker",
      "embed_text",
      %{text: text, model: model}
    )
  end
end

# Use in DSPex pipeline
defmodule RAGPipeline do
  use DSPex.Module

  def forward(question) do
    # 1. Embed query via AWS Bedrock (Python)
    {:ok, embedding} = DSPex.AWS.Bedrock.embed_text(question)

    # 2. Vector search (Elixir - pgvector or Python - Pinecone)
    {:ok, context} = VectorDB.search(embedding, top_k: 5)

    # 3. Generate answer (Elixir - Gemini)
    Gemini.chat(question, context: context)
  end
end

AWS Lambda Deployment (Serverless DSPy)

Challenge: Lambda execution role vs IAM credentials

  • GitHub issue #8470: DSPy can't use Lambda's IAM role directly
  • Current workaround: Pass credentials explicitly

DSPex Solution: Leverage BEAM clustering

  • Deploy DSPex cluster on ECS/Fargate (not Lambda)
  • Use IAM roles naturally (no credential passing)
  • libcluster for auto-discovery
  • GRID (future) for distributed tool execution

Architecture:

ECS Service (DSPex nodes)
   libcluster (auto-discovery)
   DSPex.Supervisor (per-node)
   Snakepit.Pool (Python workers with boto3)
   ALTAR.GRID (distributed tools)
       Node 1: AWS Bedrock tools
       Node 2: Vector DB tools
       Node 3: LLM generation tools

Load Balancer
  
API Gateway  ECS Service

Benefits:

  • No cold start (pre-warmed GenServers)
  • Session affinity (sticky routing to same node)
  • Distributed caching (ETS across nodes)
  • Natural IAM integration

Production Best Practices: What Valley Learned

1. 95%+ Reliability is Non-Negotiable

Problem: LLMs hallucinate, fail, timeout Solution: Guardrails + Fallbacks + Retries

defmodule DSPex.Reliability do
  use DSPex.Module

  # Circuit breaker for LLM failures
  defmodule SafePredict do
    use DSPex.Predict
    use Fuse, name: __MODULE__, opts: {{:standard, 2, 10_000}, {:reset, 30_000}}

    def forward(question) do
      case Fuse.ask(__MODULE__, :sync) do
        :ok ->
          # Circuit closed - proceed
          case super(question) do
            {:ok, result} = success -> success
            {:error, _} = error ->
              Fuse.melt(__MODULE__)  # Open circuit
              error
          end

        :blown ->
          # Circuit open - use fallback
          {:ok, "Service temporarily unavailable. Please try again."}
      end
    end
  end
end

ALTAR + Foundation Integration:

# Foundation already has circuit breakers!
defmodule DSPexAgent do
  use Foundation.Agent

  # Automatic circuit breaker via Foundation
  @impl true
  def handle_task({:predict, question}) do
    # Foundation wraps this in fuse + hammer (rate limiting)
    DSPex.execute(QAPipeline, question: question)
  end
end

2. Feedback Loops Drive Improvement

Pattern: Production systems collect failure cases for retraining

defmodule DSPex.Feedback do
  @moduledoc """
  Collect feedback for continuous improvement.
  """

  def log_prediction(program, inputs, output, metadata \\ %{}) do
    # Store in time-series DB (InfluxDB, TimescaleDB)
    Telemetry.execute(
      [:dspex, :prediction],
      %{latency_ms: metadata.latency},
      %{
        program: program.__module__,
        inputs: inputs,
        output: output,
        user_feedback: nil,  # Will be filled later
        timestamp: DateTime.utc_now()
      }
    )
  end

  def mark_as_failure(prediction_id, reason) do
    # Add to retraining dataset
    DSPex.Training.add_negative_example(prediction_id, reason)

    # Trigger recompilation if threshold exceeded
    if failure_rate() > 0.10 do
      DSPex.Recompile.schedule(prediction_id.program)
    end
  end
end

AITrace Integration (from ECOSYSTEM_ARCHITECTURE.md):

# AITrace aggregates telemetry across DSPex, Foundation, Gemini
defmodule AITrace.DSPex do
  use AITrace.Collector

  # Subscribe to DSPex telemetry
  attach_many([
    [:dspex, :prediction],
    [:dspex, :compilation],
    [:dspex, :cache, :hit],
    [:dspex, :cache, :miss]
  ])

  # Dashboard shows:
  # - Prediction accuracy over time
  # - Cache hit rates
  # - Compilation frequency
  # - Token usage trends
end

3. Modular Optimization is Key

Pattern: Don't recompile the entire program - optimize modules independently

# Production optimization pattern
class RAGPipeline(dspy.Module):
    def __init__(self):
        self.retrieve = dspy.Retrieve(k=5)
        self.generate = dspy.ChainOfThought("context, question -> answer")

    def forward(self, question):
        context = self.retrieve(question)
        answer = self.generate(context=context, question=question)
        return answer

# Optimize ONLY the generator (retrieval stays fixed)
optimizer = dspy.MIPROv2()
optimized_generate = optimizer.compile(
    program.generate,  # Just this module!
    trainset=examples
)
program.generate = optimized_generate  # Hot-swap

DSPex Implementation:

defmodule RAGPipeline do
  use DSPex.Module

  # Modules can be optimized independently
  module :retrieve, DSPex.Retrieve, k: 5
  module :generate, DSPex.ChainOfThought,
    signature: "context, question -> answer",
    optimizable: true  # Mark for optimization

  def forward(question) do
    context = retrieve(question)
    generate(context: context, question: question)
  end
end

# Optimize specific module
{:ok, optimized} = DSPex.Optimize.compile(
  RAGPipeline,
  optimize_modules: [:generate],  # Only this!
  trainset: examples,
  metric: &accuracy/1
)

# Hot-swap in production
DSPex.Module.update(RAGPipeline, :generate, optimized)

4. Model Switching Without Code Changes

Pattern: Swap models via config (not code)

# Don't do this (hardcoded):
lm = dspy.OpenAI(model="gpt-4")

# Do this (configurable):
model_config = os.getenv("DSPY_MODEL", "gpt-3.5-turbo")
lm = dspy.OpenAI(model=model_config)
dspy.settings.configure(lm=lm)

DSPex + ALTAR Solution:

# config/runtime.exs
config :dspex, :default_lm,
  provider: :gemini,
  model: System.get_env("DSPY_MODEL", "gemini-2.0-flash")

# Or use ALTAR variables (session-specific)
defmodule QAPipeline do
  use DSPex.Module
  use DSPex.VariableAware  # Sync with session variables

  # Automatically bound to session variable "model"
  @variable_bindings %{
    model: "current_model",
    temperature: "generation_temperature"
  }

  def forward(question) do
    # Uses session's current model (hot-swappable!)
    Gemini.chat(question,
      model: get_variable("current_model"),
      temperature: get_variable("generation_temperature")
    )
  end
end

Strategic Recommendations for DSPex

Phase 1: Production Foundations (Next 4 Weeks)

1. MLflow Bridge via Snakepit

# Load compiled DSPy programs from MLflow
defmodule DSPex.MLflow do
  def load_model(model_uri, session) do
    # Use Python MLflow via Snakepit
    Snakepit.execute(session, "mlflow", "load_model", %{
      model_uri: model_uri,
      return_format: "pickle"  # Serialized DSPy program
    })
  end

  def log_model(program, artifact_path, session) do
    Snakepit.execute(session, "mlflow", "log_model", %{
      model: program,
      artifact_path: artifact_path,
      registered_model_name: program.__module__
    })
  end
end

Why this matters:

  • Interop with Python DSPy ecosystem
  • Production deployment pattern
  • Version control for compiled programs

2. Arsenal Integration for REST APIs

# Auto-generate REST endpoints from DSPex modules
defmodule DSPex.Server do
  use Arsenal.Application

  # Automatically creates:
  # POST /modules/:module_name/execute
  # GET /modules/:module_name/schema
  # POST /modules/:module_name/optimize

  def start(_type, _args) do
    children = [
      # Discover all DSPex modules
      {Arsenal.Discovery, [namespace: DSPex.Module]},
      # Start REST server
      {Arsenal.Server, [port: 4000]}
    ]

    Supervisor.start_link(children, strategy: :one_for_one)
  end
end

Why this matters:

  • Zero-boilerplate production serving
  • Matches FastAPI pattern from Python world
  • Uses existing tooling (arsenal already built!)

3. Production Caching Layer

defmodule DSPex.Cache do
  @moduledoc """
  Multi-tier caching for DSPex programs.

  Tiers:
  1. Process state (GenServer)
  2. ETS (node-local)
  3. Redis (distributed) - optional
  """

  def get_or_compute(cache_key, opts \\ [], compute_fn) do
    tier = opts[:tier] || :ets
    ttl = opts[:ttl] || :timer.hours(1)

    case tier do
      :process ->
        # GenServer state (fastest, session-scoped)
        GenServer.call(__MODULE__, {:get_or_compute, cache_key, compute_fn})

      :ets ->
        # ETS (fast, node-scoped)
        ets_get_or_compute(cache_key, ttl, compute_fn)

      :redis ->
        # Redis (slower, cluster-scoped)
        redis_get_or_compute(cache_key, ttl, compute_fn)
    end
  end

  # Invalidation hooks
  def invalidate(cache_key, tier \\ :all) do
    Phoenix.PubSub.broadcast(
      DSPex.PubSub,
      "cache:invalidate",
      {:invalidate, cache_key, tier}
    )
  end
end

Why this matters:

  • Production pattern from valley research
  • BEAM advantages (ETS, distributed state)
  • Cost savings (avoid redundant LLM calls)

4. Circuit Breakers + Foundation Integration

# Make DSPex modules Foundation-aware
defmodule DSPex.Module do
  defmacro __using__(_opts) do
    quote do
      use GenServer  # DSPex modules as processes

      # Optional Foundation integration
      def as_foundation_agent do
        defmodule __MODULE__.Agent do
          use Foundation.Agent

          @impl true
          def handle_task({:execute, inputs}) do
            # Automatic circuit breaker + rate limiting
            unquote(__MODULE__).execute(inputs)
          end
        end
      end
    end
  end
end

# Usage
QAPipeline.as_foundation_agent()
{:ok, agent} = Foundation.start_agent(QAPipeline.Agent)

# Calls are now supervised + circuit-broken + rate-limited!
Foundation.Agent.execute(agent, {:execute, %{question: "..."}})

Why this matters:

  • 95%+ reliability requirement
  • Reuses Foundation infrastructure (fuse, hammer)
  • Seamless integration (one function call)

Phase 2: Advanced Features (Weeks 5-8)

5. AWS Bedrock Integration

# AWS toolkit for DSPex
defmodule DSPex.AWS do
  # Bedrock embeddings
  defmodule Bedrock do
    use Altar.Tool

    def embed(text, opts \\ []) do
      model = opts[:model] || "amazon.titan-embed-text-v2:0"

      Snakepit.execute("bedrock", "embed_text", %{
        text: text,
        model: model
      })
    end
  end

  # SageMaker inference
  defmodule SageMaker do
    use Altar.Tool

    def invoke_endpoint(endpoint, data) do
      Snakepit.execute("sagemaker", "invoke", %{
        endpoint_name: endpoint,
        body: data
      })
    end
  end
end

# Use in pipeline
defmodule AWSRAGPipeline do
  use DSPex.Module

  def forward(question) do
    # Embed via Bedrock
    {:ok, embedding} = DSPex.AWS.Bedrock.embed(question)

    # Search vectors
    {:ok, context} = VectorDB.search(embedding)

    # Generate on SageMaker (fine-tuned Llama)
    DSPex.AWS.SageMaker.invoke_endpoint(
      "llama-qa-endpoint",
      %{question: question, context: context}
    )
  end
end

6. Observability Dashboard (AITrace)

# Phoenix LiveView dashboard for DSPex
defmodule DSPex.Live.Dashboard do
  use Phoenix.LiveView

  def render(assigns) do
    ~H"""
    <div class="dspex-dashboard">
      <!-- Real-time metrics -->
      <div class="metrics">
        <.metric name="Predictions/sec" value={@predictions_per_sec} />
        <.metric name="Cache Hit Rate" value={@cache_hit_rate} />
        <.metric name="Avg Latency" value={@avg_latency_ms} />
        <.metric name="Error Rate" value={@error_rate} />
      </div>

      <!-- Active programs -->
      <div class="programs">
        <%= for program <- @active_programs do %>
          <.program_card program={program} />
        <% end %>
      </div>

      <!-- Trace viewer -->
      <div class="traces">
        <.live_component
          module={TraceViewer}
          traces={@recent_traces}
        />
      </div>
    </div>
    """
  end

  def mount(_params, _session, socket) do
    # Subscribe to telemetry
    :telemetry.attach_many(
      "dspex-dashboard",
      [
        [:dspex, :prediction],
        [:dspex, :cache, :hit],
        [:dspex, :error]
      ],
      &handle_telemetry/4,
      nil
    )

    {:ok, assign(socket, load_metrics())}
  end
end

Phase 3: GRID Integration (Weeks 9-12)

7. Distributed Tool Execution

# ALTAR GRID for distributed DSPex
defmodule DSPex.GRID do
  @moduledoc """
  Execute DSPex tools across cluster.

  Pattern:
  - Tools registered on different nodes (specialization)
  - Work routed to nodes with required tools
  - Automatic failover if node goes down
  """

  def execute_tool(tool_name, inputs, opts \\ []) do
    case find_nodes_with_tool(tool_name) do
      [] ->
        {:error, :tool_not_found}

      nodes ->
        # Pick node (round-robin, least-loaded, etc.)
        node = select_node(nodes, opts[:strategy] || :round_robin)

        # Execute remotely
        :rpc.call(node, Altar, :execute, [tool_name, inputs])
    end
  end

  defp find_nodes_with_tool(tool_name) do
    # Query tool registry across cluster
    :pg.get_members(DSPex.ToolRegistry, tool_name)
  end
end

# Tool specialization
# Node 1: GPU-heavy tools
Node.spawn(:"dspex@gpu1", fn ->
  Altar.register_tool(ImageEmbedding)
  Altar.register_tool(VideoAnalysis)
end)

# Node 2: AWS tools
Node.spawn(:"dspex@aws", fn ->
  Altar.register_tool(DSPex.AWS.Bedrock)
  Altar.register_tool(DSPex.AWS.SageMaker)
end)

# Node 3: Vector DB tools
Node.spawn(:"dspex@vector", fn ->
  Altar.register_tool(VectorDB.Search)
  Altar.register_tool(VectorDB.Insert)
end)

# Usage (location-transparent)
{:ok, embedding} = DSPex.GRID.execute_tool(
  ImageEmbedding,  # Automatically routes to GPU node
  %{image: image_data}
)

Why this is badass:

  • Distributed by default (BEAM clustering)
  • Tool specialization (GPU vs CPU vs AWS)
  • Automatic failover (OTP supervision)
  • No other DSPy runtime has this!

Unique Value Propositions

What DSPex Offers That Python DSPy Can't

FeaturePython DSPyDSPex (Elixir)
RuntimeSingle-threaded, GIL-limitedMassively concurrent (BEAM)
StateRequires Redis/externalBuilt-in ETS, GenServer state
DeploymentFastAPI + Docker + orchestratorSingle BEAM release, libcluster
ObservabilityCustom logging + tracingBuilt-in Telemetry + LiveView
Tool ExecutionSynchronous onlyAsync + distributed (GRID)
Hot Code ReloadRequires restartBEAM hot code swapping
Circuit BreakersManual (need library)Built-in (fuse + Foundation)
Session AffinityComplex load balancer configGenServer natural affinity
Zero-Downtime DeploysBlue/green with downtimeBEAM appup/relup

The "Golden Path" for DSPex Production

# 1. Define program (Elixir)
defmodule QAPipeline do
  use DSPex.Module

  signature "question -> answer"

  def forward(question) do
    context = retrieve(question)
    generate(question, context)
  end
end

# 2. Optimize (Python DSPy via Snakepit)
{:ok, optimized} = DSPex.Optimize.compile(
  QAPipeline,
  trainset: examples,
  optimizer: :mipro_v2  # Uses Python DSPy
)

# 3. Deploy (Elixir runtime)
{:ok, _} = DSPex.Supervisor.start_program(
  optimized,
  name: :qa_production,
  cache: true,
  circuit_breaker: true
)

# 4. Serve (Arsenal auto-API)
# POST /qa_production/execute
#   → {"question": "What is BEAM?"}
#   ← {"answer": "...", "confidence": 0.95}

# 5. Observe (AITrace dashboard)
# http://localhost:4000/aitrace/dspex/qa_production
#   → Real-time metrics, traces, errors

# 6. Scale (libcluster)
# Add nodes → automatic distribution via GRID

Lines of code: ~30 (vs 200+ for equivalent Python + FastAPI + Redis + monitoring)


Next Actions (Prioritized)

This Week

  1. ✅ Document strategy (this doc)
  2. Add Arsenal integration to DSPex (auto REST APIs)
  3. Prototype MLflow bridge via Snakepit

Next Sprint (2 weeks)

  1. Production caching (ETS + optional Redis)
  2. Foundation integration (circuit breaker + rate limiting)
  3. Simple AWS Bedrock example (embeddings via Snakepit)

Next Month

  1. AITrace dashboard for DSPex (LiveView)
  2. Write showcase example: Full RAG pipeline with:
    • AWS Bedrock embeddings
    • pgvector search
    • Gemini generation
    • Arsenal API
    • Foundation supervision
    • AITrace observability

Q1 2025

  1. GRID implementation (distributed tools)
  2. ElixirConf submission (May 2025)
  3. Blog post: "DSPex: Production DSPy on BEAM"

Conclusion

DSPex isn't competing with DSPy - it's completing it.

Python DSPy:  Research  Development  Optimization
              
DSPex:        Production  Scale  Distribution

The valley has validated the patterns:

  • MLflow for deployment
  • Async + caching for scale
  • FastAPI for serving
  • Pydantic for type safety
  • AWS for infrastructure

DSPex can do all of this better because BEAM:

  • Async by default (not bolted on)
  • Distributed by default (not bolted on)
  • Observable by default (Telemetry)
  • Reliable by default (OTP)

The ecosystem is ready:

  • ALTAR: Tool protocol (LATER → GRID path)
  • Snakepit: Python bridge (DSPy interop)
  • Arsenal: Auto REST APIs (FastAPI equivalent)
  • Foundation: Agent supervision (production reliability)
  • Gemini_ex: LLM client (provider integration)

The missing piece: Execution focus. Build the integrations, ship the showcase, prove the value.

With Claude 5.0 in January, we can have a production-ready DSPex by ElixirConf (May 2025). 🚀