

 snmpkit

 v0.6.0

 Table of contents

 	SnmpKit 🚀

 	Contributing to SnmpKit

 	LICENSE

 	MIB Guide - SnmpKit

 	Testing Guide - SnmpKit

 	SnmpKit Unified API Guide

 	SnmpKit v0.2.0 Release Notes

 	SnmpKit v0.3.0 Release Notes

 	SnmpKit v0.3.1 Release Notes

 	SnmpKit v0.3.2 Release Notes

 	SnmpKit v0.3.3 Release Notes

 	SnmpKit v0.3.4 Release Notes

 	SnmpKit v0.3.5 Release Notes

 	SnmpKit v0.4.0 Release Notes

 	SnmpKit Interactive Tour 🚀

 	SnmpKit Examples

 	
 Modules

 	SnmpKit.SnmpLib.ASN1

 	SnmpKit.SnmpLib.Cache

 	SnmpKit.SnmpLib.Config

 	SnmpKit.SnmpLib.Dashboard

 	SnmpKit.SnmpLib.Error

 	SnmpKit.SnmpLib.ErrorHandler

 	SnmpKit.SnmpLib.HostParser

 	SnmpKit.SnmpLib.MIB.AST

 	SnmpKit.SnmpLib.MIB.Compiler

 	SnmpKit.SnmpLib.MIB.Error

 	SnmpKit.SnmpLib.MIB.Logger

 	SnmpKit.SnmpLib.MIB.Parser

 	SnmpKit.SnmpLib.MIB.Preprocessor

 	SnmpKit.SnmpLib.MIB.Registry

 	SnmpKit.SnmpLib.MIB.SnmpTokenizer

 	SnmpKit.SnmpLib.MIB.Utilities

 	SnmpKit.SnmpLib.Manager

 	SnmpKit.SnmpLib.Monitor

 	SnmpKit.SnmpLib.OID

 	SnmpKit.SnmpLib.PDU

 	SnmpKit.SnmpLib.PDU.Builder

 	SnmpKit.SnmpLib.PDU.Constants

 	SnmpKit.SnmpLib.PDU.Decoder

 	SnmpKit.SnmpLib.PDU.Encoder

 	SnmpKit.SnmpLib.PDU.V3Encoder

 	SnmpKit.SnmpLib.Pool

 	SnmpKit.SnmpLib.Security

 	SnmpKit.SnmpLib.Security.Auth

 	SnmpKit.SnmpLib.Security.Keys

 	SnmpKit.SnmpLib.Security.Priv

 	SnmpKit.SnmpLib.Security.USM

 	SnmpKit.SnmpLib.Transport

 	SnmpKit.SnmpLib.Utils

 	SnmpKit.SnmpLib.Walker

 	SnmpKit.SnmpMgr.AdaptiveWalk

 	SnmpKit.SnmpMgr.Bulk

 	SnmpKit.SnmpMgr.CircuitBreaker

 	SnmpKit.SnmpMgr.Config

 	SnmpKit.SnmpMgr.Core

 	SnmpKit.SnmpMgr.Engine

 	SnmpKit.SnmpMgr.EngineV2

 	SnmpKit.SnmpMgr.Errors

 	SnmpKit.SnmpMgr.Format

 	SnmpKit.SnmpMgr.Metrics

 	SnmpKit.SnmpMgr.Multi

 	SnmpKit.SnmpMgr.MultiV2

 	SnmpKit.SnmpMgr.PerformanceBenchmark

 	SnmpKit.SnmpMgr.RequestIdGenerator

 	SnmpKit.SnmpMgr.Router

 	SnmpKit.SnmpMgr.SocketManager

 	SnmpKit.SnmpMgr.Stream

 	SnmpKit.SnmpMgr.Supervisor

 	SnmpKit.SnmpMgr.Table

 	SnmpKit.SnmpMgr.Target

 	SnmpKit.SnmpMgr.Types

 	SnmpKit.SnmpMgr.Walk

 	SnmpKit.SnmpSim.BehaviorConfig

 	SnmpKit.SnmpSim.BulkOperations

 	SnmpKit.SnmpSim.Config

 	SnmpKit.SnmpSim.Core.Server

 	SnmpKit.SnmpSim.CorrelationEngine

 	SnmpKit.SnmpSim.Device.ErrorInjector

 	SnmpKit.SnmpSim.Device.OidHandler

 	SnmpKit.SnmpSim.Device.PduProcessor

 	SnmpKit.SnmpSim.Device.WalkPduProcessor

 	SnmpKit.SnmpSim.DeviceDistribution

 	SnmpKit.SnmpSim.ErrorInjector

 	SnmpKit.SnmpSim.LazyDevicePool

 	SnmpKit.SnmpSim.MIB.BehaviorAnalyzer

 	SnmpKit.SnmpSim.MIB.Compiler

 	SnmpKit.SnmpSim.MIB.SharedProfiles

 	SnmpKit.SnmpSim.MultiDeviceStartup

 	SnmpKit.SnmpSim.OIDTree

 	SnmpKit.SnmpSim.PDUHelper

 	SnmpKit.SnmpSim.Performance.Benchmarks

 	SnmpKit.SnmpSim.Performance.Benchmarks.BenchmarkResult

 	SnmpKit.SnmpSim.Performance.OptimizedDevicePool

 	SnmpKit.SnmpSim.Performance.OptimizedUdpServer

 	SnmpKit.SnmpSim.Performance.PerformanceMonitor

 	SnmpKit.SnmpSim.Performance.ResourceManager

 	SnmpKit.SnmpSim.TestHelpers

 	SnmpKit.SnmpSim.TestHelpers.PerformanceHelper

 	SnmpKit.SnmpSim.TestHelpers.PortAllocator

 	SnmpKit.SnmpSim.TestHelpers.PortHelper

 	SnmpKit.SnmpSim.TestHelpers.ProductionTestHelper

 	SnmpKit.SnmpSim.TestHelpers.StabilityTestHelper

 	SnmpKit.SnmpSim.TestScenarios

 	SnmpKit.SnmpSim.TimePatterns

 	SnmpKit.SnmpSim.ValueSimulator

 	SnmpKit.SnmpSim.WalkParser

 	Core API

 	SnmpKit

 	SnmpKit.MIB

 	SnmpKit.SNMP

 	SnmpKit.Sim

 	SNMP Protocol

 	SnmpKit.SnmpLib

 	SnmpKit.SnmpLib.Types

 	MIB Support

 	SnmpKit.SnmpLib.MIB

 	SnmpKit.SnmpMgr.MIB

 	Device Simulation

 	SnmpKit.SnmpSim.Device

 	SnmpKit.SnmpSim.ProfileLoader

 	Network Management

 	SnmpKit.SnmpMgr

 	SnmpKit.TestSupport

 SnmpKit 🚀

[image: Hex.pm]
[image: Documentation]
[image: License]
A modern, comprehensive SNMP toolkit for Elixir - featuring a unified API, pure Elixir implementation, and powerful device simulation.
SnmpKit is a complete SNMP (Simple Network Management Protocol) solution built from the ground up in pure Elixir. It provides a clean, organized API for SNMP operations, MIB management, and realistic device simulation.
✨ Key Features
	🎯 Unified API - Clean, context-based modules (SnmpKit.SNMP, SnmpKit.MIB, SnmpKit.Sim)
	🧬 Pure Elixir Implementation - No Erlang SNMP dependencies
	📋 Advanced MIB Support - Native parsing, compilation, and object resolution
	🖥️ Realistic Device Simulation - Create SNMP devices for testing and development
	⚡ High Performance - Optimized for large-scale operations and concurrent requests
	🧪 Testing Friendly - Comprehensive test helpers and simulated devices

🚀 Quick Start
Installation
def deps do
 [
 {:snmpkit, "~> 0.3.5"}
]
end
Basic Usage
Basic SNMP operations
{:ok, description} = SnmpKit.SNMP.get("192.168.1.1", "sysDescr.0")
{:ok, system_info} = SnmpKit.SNMP.walk("192.168.1.1", "system")

MIB operations
{:ok, oid} = SnmpKit.MIB.resolve("sysDescr.0")
{:ok, name} = SnmpKit.MIB.reverse_lookup([1, 3, 6, 1, 2, 1, 1, 1, 0])

Device simulation
device_profile = %{
 name: "Test Router",
 objects: %{[1, 3, 6, 1, 2, 1, 1, 1, 0] => "Test Router v1.0"}
}
{:ok, device} = SnmpKit.Sim.start_device(device_profile, port: 1161)
🏗️ Architecture
	SnmpKit.SNMP - Complete SNMP protocol operations
	SnmpKit.MIB - Comprehensive MIB management
	SnmpKit.Sim - Realistic device simulation
	SnmpKit - Direct access for convenience

📚 Documentation
	Complete API Documentation - Full function reference
	Interactive Livebook Tour - Learn by doing
	MIB Guide - Working with MIBs
	Testing Guide - Testing strategies
	Contributing Guide - Development guidelines

🤝 Contributing
We welcome contributions! Please see the Contributing Guide for guidelines.
📄 License
SnmpKit is released under the MIT License.

Ready to simplify your SNMP operations? Get started with SnmpKit today! 🚀

 Contributing to SnmpKit

Thank you for your interest in contributing to SnmpKit! This document provides guidelines and information for contributors.
Table of Contents
	Code of Conduct
	Getting Started
	Development Setup
	Contributing Process
	Code Standards
	Testing Guidelines
	Documentation
	Submitting Changes
	Release Process
	Getting Help

Code of Conduct
This project adheres to a code of conduct that we expect all contributors to follow. Please be respectful, inclusive, and constructive in all interactions.
Our Standards
	Use welcoming and inclusive language
	Be respectful of differing viewpoints and experiences
	Gracefully accept constructive criticism
	Focus on what is best for the community
	Show empathy towards other community members

Getting Started
Prerequisites
	Elixir 1.14+ and OTP 25+
	Git
	A GitHub account
	Basic understanding of SNMP concepts
	Familiarity with Elixir/OTP development

Types of Contributions
We welcome various types of contributions:
	Bug Reports - Help us identify and fix issues
	Feature Requests - Suggest new functionality
	Code Contributions - Bug fixes, new features, improvements
	Documentation - Improve docs, examples, guides
	Testing - Add test cases, improve test coverage
	Performance - Optimization and benchmarking
	Device Profiles - Add support for new device types

Development Setup
Clone the Repository
git clone https://github.com/awksedgreep/snmpkit.git
cd snmpkit

Install Dependencies
mix deps.get

Verify Setup
Run the test suite
mix test

Generate documentation
mix docs

Check code formatting
mix format --check-formatted

Run static analysis
mix credo

Development Tools
We recommend using these tools for development:
	Editor: VS Code with ElixirLS extension
	Formatter: Built-in mix format
	Linter: Credo for code analysis
	Testing: ExUnit with coverage reporting
	Docs: ExDoc for documentation generation

Contributing Process
1. Create an Issue
Before starting work, please create an issue to discuss:
	Bug reports with reproduction steps
	Feature requests with use cases
	Performance improvements with benchmarks
	Documentation improvements

2. Fork and Branch
Fork the repository on GitHub
Clone your fork
git clone https://github.com/yourusername/snmpkit.git
cd snmpkit

Create a feature branch
git checkout -b feature/your-feature-name

3. Make Changes
	Follow our code standards
	Add tests for new functionality
	Update documentation as needed
	Ensure all tests pass

4. Test Your Changes
Run all tests
mix test

Run with coverage
mix test --cover

Run integration tests
mix test --include integration

Run performance tests
mix test --include performance

5. Submit a Pull Request
	Push your branch to your fork
	Create a pull request with a clear description
	Reference any related issues
	Ensure CI passes

Code Standards
Elixir Style Guide
We follow the Elixir Style Guide with these specific preferences:
Formatting
Use mix format - it's configured in .formatter.exs
mix format
Naming Conventions
Modules: PascalCase
defmodule SnmpKit.MIB.Resolver do
end

Functions: snake_case
def resolve_oid(name) do
end

Variables: snake_case
result_set = []

Constants: SCREAMING_SNAKE_CASE
@default_timeout 5_000
Documentation
defmodule SnmpKit.Example do
 @moduledoc """
 Brief module description.

 Longer description with examples if needed.

 ## Examples

 iex> SnmpKit.Example.function()
 {:ok, result}
 """

 @doc """
 Brief function description.

 ## Parameters

 - `param1` - Description of parameter
 - `param2` - Description of parameter

 ## Returns

 - `{:ok, result}` on success
 - `{:error, reason}` on failure

 ## Examples

 iex> SnmpKit.Example.function("test")
 {:ok, "result"}
 """
 @spec function(String.t()) :: {:ok, String.t()} | {:error, atom()}
 def function(param1) do
 {:ok, param1}
 end
end
Error Handling
Use tagged tuples for function returns
def get_value(key) do
 case fetch_value(key) do
 {:ok, value} -> {:ok, value}
 {:error, :not_found} -> {:error, :not_found}
 {:error, reason} -> {:error, reason}
 end
end

Use with statements for complex operations
def complex_operation(data) do
 with {:ok, parsed} <- parse_data(data),
 {:ok, validated} <- validate_data(parsed),
 {:ok, result} <- process_data(validated) do
 {:ok, result}
 else
 {:error, reason} -> {:error, reason}
 end
end
Pattern Matching
Prefer pattern matching over conditionals
def handle_response({:ok, %{status: 200, body: body}}) do
 process_success(body)
end

def handle_response({:ok, %{status: status}}) when status >= 400 do
 {:error, :http_error}
end

def handle_response({:error, reason}) do
 {:error, reason}
end
Code Organization
Module Structure
defmodule SnmpKit.Example do
 @moduledoc "..."

 # Behaviours
 @behaviour SomeBehaviour

 # Use statements
 use GenServer

 # Import statements
 import SomeModule

 # Alias statements
 alias SnmpKit.Other.Module

 # Module attributes
 @default_timeout 5_000

 # Types
 @type example_type :: atom() | String.t()

 # Public API
 def public_function do
 end

 # Private functions
 defp private_function do
 end
end
File Organization
lib/
├── snmpkit.ex # Main module with convenience functions
├── snmpkit/
│ ├── snmp/ # SNMP operations
│ │ ├── client.ex
│ │ ├── engine.ex
│ │ └── formatter.ex
│ ├── mib/ # MIB management
│ │ ├── resolver.ex
│ │ ├── compiler.ex
│ │ └── loader.ex
│ └── sim/ # Device simulation
│ ├── device.ex
│ └── profile_loader.ex
Testing Guidelines
Test Organization
defmodule SnmpKit.ExampleTest do
 use ExUnit.Case, async: true

 alias SnmpKit.Example

 describe "function_name/1" do
 test "handles valid input" do
 assert {:ok, result} = Example.function_name("valid")
 assert result == "expected"
 end

 test "handles invalid input" do
 assert {:error, :invalid} = Example.function_name("invalid")
 end

 test "handles edge cases" do
 assert {:ok, ""} = Example.function_name("")
 assert {:error, :invalid} = Example.function_name(nil)
 end
 end
end
Test Categories
Use tags to categorize tests:
@moduletag :unit # Fast unit tests
@moduletag :integration # Tests with external dependencies
@moduletag :performance # Performance benchmarks
@moduletag :docsis # DOCSIS-specific tests
Test Data
	Use ExUnit setup for test data
	Create realistic test fixtures
	Use property-based testing for complex scenarios

defmodule SnmpKit.PropertyTest do
 use ExUnit.Case
 use PropCheck

 property "OID resolution is consistent" do
 forall oid <- valid_oid() do
 case SnmpKit.MIB.resolve(oid) do
 {:ok, resolved} -> is_list(resolved)
 {:error, _} -> true
 end
 end
 end
end
Coverage Requirements
	Maintain >95% test coverage
	Test both success and error paths
	Include edge cases and boundary conditions
	Test concurrent operations where applicable

Documentation
Code Documentation
	All public modules must have @moduledoc
	All public functions must have @doc
	Include @spec for all public functions
	Provide examples in doctests

Guides and Tutorials
	Update relevant guides when adding features
	Include practical examples
	Explain the "why" not just the "how"
	Keep examples up to date

API Documentation
	Use clear, concise language
	Include parameter descriptions
	Document return values and error conditions
	Provide usage examples

Submitting Changes
Pull Request Guidelines
Title Format
Use conventional commit format:
	feat: add new SNMP operation
	fix: resolve OID resolution bug
	docs: update MIB guide
	test: add performance benchmarks
	refactor: improve error handling

Description Template
Summary
Brief description of changes

Changes
- List of specific changes
- Include any breaking changes

Testing
- How the changes were tested
- New test cases added

Documentation
- Documentation updates made
- Examples added/updated

Related Issues
Fixes #123
Closes #456
Checklist
Before submitting, ensure:
	[] Code follows style guidelines
	[] Tests pass locally
	[] New tests added for new functionality
	[] Documentation updated
	[] No breaking changes (or clearly marked)
	[] Commit messages follow conventional format
	[] Branch is up to date with main

Review Process
	Automated Checks - CI runs tests and checks
	Code Review - Maintainers review code
	Discussion - Address any feedback
	Approval - At least one maintainer approval
	Merge - Squash and merge to main

After Your PR is Merged
	Delete your feature branch
	Update your fork's main branch
	Consider contributing more!

Release Process
Versioning
We follow Semantic Versioning:
	MAJOR - Breaking changes
	MINOR - New features, backward compatible
	PATCH - Bug fixes, backward compatible

Release Workflow
	Update version in mix.exs
	Update CHANGELOG.md
	Create release PR
	Tag release after merge
	Publish to Hex.pm
	Update documentation

Getting Help
Communication Channels
	GitHub Issues - Bug reports, feature requests
	GitHub Discussions - General questions, ideas
	Email - Security issues only

Documentation Resources
	API Documentation
	MIB Guide
	Testing Guide
	Examples

Mentorship
New contributors are welcome! We're happy to help you get started:
	Look for "good first issue" labels
	Ask questions in discussions
	Start with documentation improvements
	Join our community

Recognition
Contributors are recognized in:
	CHANGELOG.md for each release
	README.md contributors section
	GitHub contributors graph
	Special recognition for significant contributions

Thank you for contributing to SnmpKit! Your efforts help make SNMP management better for everyone in the Elixir community.

 LICENSE

MIT License

Copyright (c) 2024 SnmpKit Contributors

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

 MIB Guide - SnmpKit

This guide covers working with Management Information Bases (MIBs) in SnmpKit, including OID resolution, MIB compilation, and custom MIB integration.
Table of Contents
	Overview
	Basic MIB Operations
	OID Resolution
	MIB Compilation
	Standard MIBs
	Custom MIBs
	Tree Navigation
	Advanced Features
	Troubleshooting

Overview
Management Information Bases (MIBs) define the structure of manageable objects in SNMP. SnmpKit provides comprehensive MIB support through the SnmpKit.MIB module, allowing you to:
	Resolve OID names to numeric identifiers
	Perform reverse lookups from OIDs to names
	Compile and load custom MIBs
	Navigate the MIB tree structure
	Query object definitions and metadata

Basic MIB Operations
OID Name Resolution
Convert human-readable names to numeric OIDs:
Simple name resolution
{:ok, oid} = SnmpKit.MIB.resolve("sysDescr.0")
Returns: [1, 3, 6, 1, 2, 1, 1, 1, 0]

Multiple resolutions
names = ["sysDescr.0", "sysUpTime.0", "sysName.0"]
{:ok, oids} = SnmpKit.MIB.resolve_many(names)

Partial name resolution
{:ok, oid} = SnmpKit.MIB.resolve("system.sysDescr.0")
{:ok, oid} = SnmpKit.MIB.resolve("1.3.6.1.2.1.1.1.0")
Reverse OID Lookup
Convert numeric OIDs back to readable names:
Basic reverse lookup
{:ok, name} = SnmpKit.MIB.reverse_lookup([1, 3, 6, 1, 2, 1, 1, 1, 0])
Returns: "sysDescr.0"

Multiple reverse lookups
oids = [[1, 3, 6, 1, 2, 1, 1, 1, 0], [1, 3, 6, 1, 2, 1, 1, 3, 0]]
{:ok, names} = SnmpKit.MIB.reverse_lookup_many(oids)

Get the longest matching name
{:ok, partial_name} = SnmpKit.MIB.reverse_lookup([1, 3, 6, 1, 2, 1, 1, 1, 5])
Returns closest match even if exact OID doesn't exist
OID Resolution
Working with Different OID Formats
SnmpKit supports multiple OID input formats:
String format
{:ok, oid} = SnmpKit.MIB.resolve("sysDescr.0")

Dotted decimal string
{:ok, oid} = SnmpKit.MIB.resolve("1.3.6.1.2.1.1.1.0")

Mixed format
{:ok, oid} = SnmpKit.MIB.resolve("iso.org.dod.internet.mgmt.mib-2.system.sysDescr.0")

List format (already resolved)
{:ok, oid} = SnmpKit.MIB.resolve([1, 3, 6, 1, 2, 1, 1, 1, 0])
Common System OIDs
System group OIDs
system_oids = %{
 "sysDescr.0" => [1, 3, 6, 1, 2, 1, 1, 1, 0],
 "sysObjectID.0" => [1, 3, 6, 1, 2, 1, 1, 2, 0],
 "sysUpTime.0" => [1, 3, 6, 1, 2, 1, 1, 3, 0],
 "sysContact.0" => [1, 3, 6, 1, 2, 1, 1, 4, 0],
 "sysName.0" => [1, 3, 6, 1, 2, 1, 1, 5, 0],
 "sysLocation.0" => [1, 3, 6, 1, 2, 1, 1, 6, 0],
 "sysServices.0" => [1, 3, 6, 1, 2, 1, 1, 7, 0]
}

Verify all resolve correctly
for {name, expected_oid} <- system_oids do
 {:ok, ^expected_oid} = SnmpKit.MIB.resolve(name)
end
MIB Compilation
Loading Standard MIBs
SnmpKit comes with standard MIBs pre-compiled:
Standard MIBs are loaded automatically
{:ok, oid} = SnmpKit.MIB.resolve("sysDescr.0") # Works immediately

Check what MIBs are loaded
{:ok, loaded_mibs} = SnmpKit.MIB.list_loaded()
IO.inspect(loaded_mibs)

Reload standard MIBs if needed
{:ok, _} = SnmpKit.MIB.reload_standard()
Compiling Custom MIBs
High-Level Compilation
For most use cases, use the high-level compilation API:
Compile a single MIB file
{:ok, compiled} = SnmpKit.MIB.compile("path/to/MY-CUSTOM-MIB.mib")
{:ok, _} = SnmpKit.MIB.load(compiled)

Compile multiple MIBs with dependencies
mib_files = [
 "CISCO-SMI.mib",
 "CISCO-TC.mib",
 "CISCO-CABLE-MODEM-MIB.mib"
]

{:ok, compiled_mibs} = SnmpKit.MIB.compile_many(mib_files)
{:ok, _} = SnmpKit.MIB.load_many(compiled_mibs)
Low-Level Compilation
For advanced control over the compilation process:
Use the low-level compiler directly
alias SnmpKit.MibCompiler

Configure compilation options
options = [
 output_dir: "priv/compiled_mibs",
 include_dirs: ["priv/mibs", "/usr/share/snmp/mibs"],
 warnings_as_errors: false,
 verbose: true
]

Compile with options
{:ok, result} = MibCompiler.compile_file("MY-MIB.mib", options)

Handle compilation errors
case MibCompiler.compile_file("BROKEN-MIB.mib", options) do
 {:ok, result} ->
 IO.puts("Compilation successful")
 {:error, {:compilation_failed, errors}} ->
 IO.puts("Compilation failed:")
 for error <- errors, do: IO.puts(" #{error}")
end
Standard MIBs
Commonly Used Standard MIBs
RFC1213-MIB (MIB-II) - Basic system information
{:ok, _} = SnmpKit.MIB.resolve("sysDescr.0")
{:ok, _} = SnmpKit.MIB.resolve("ifTable")
{:ok, _} = SnmpKit.MIB.resolve("ipAddrTable")

IF-MIB - Interface information
{:ok, _} = SnmpKit.MIB.resolve("ifXTable")
{:ok, _} = SnmpKit.MIB.resolve("ifHCInOctets.1")

HOST-RESOURCES-MIB - System resources
{:ok, _} = SnmpKit.MIB.resolve("hrSystemUptime.0")
{:ok, _} = SnmpKit.MIB.resolve("hrMemorySize.0")

SNMPv2-MIB - SNMP statistics
{:ok, _} = SnmpKit.MIB.resolve("snmpInPkts.0")
{:ok, _} = SnmpKit.MIB.resolve("snmpOutPkts.0")
Loading Additional Standard MIBs
Load specific standard MIBs
standard_mibs = [
 "BRIDGE-MIB",
 "ENTITY-MIB",
 "DISMAN-EVENT-MIB",
 "NOTIFICATION-LOG-MIB"
]

for mib <- standard_mibs do
 case SnmpKit.MIB.load_standard(mib) do
 {:ok, _} -> IO.puts("Loaded #{mib}")
 {:error, reason} -> IO.puts("Failed to load #{mib}: #{reason}")
 end
end
Custom MIBs
Enterprise MIBs
Many vendors provide their own MIBs for device-specific objects:
Cisco MIBs
cisco_mibs = [
 "CISCO-SMI.mib",
 "CISCO-TC.mib",
 "CISCO-CABLE-MODEM-MIB.mib",
 "CISCO-DOCS-EXT-MIB.mib"
]

Load Cisco MIBs in dependency order
{:ok, _} = SnmpKit.MIB.compile_and_load_many(cisco_mibs)

Now Cisco-specific OIDs work
{:ok, oid} = SnmpKit.MIB.resolve("cdxCmtsCmStatusValue")
DOCSIS MIBs
For cable modem and CMTS management:
DOCSIS MIBs
docsis_mibs = [
 "DOCS-CABLE-DEVICE-MIB.mib",
 "DOCS-IF-MIB.mib",
 "DOCS-QOS-MIB.mib",
 "DOCS-SUBMGT-MIB.mib"
]

{:ok, _} = SnmpKit.MIB.compile_and_load_many(docsis_mibs)

DOCSIS-specific operations
{:ok, status} = SnmpKit.SNMP.get("10.1.1.100", "docsIfCmStatusValue.1")
{:ok, signal} = SnmpKit.SNMP.get("10.1.1.100", "docsIfSigQSignalNoise.1")
Creating Custom MIB Definitions
Define custom objects programmatically
custom_objects = [
 %{
 name: "myCustomObject",
 oid: [1, 3, 6, 1, 4, 1, 12345, 1, 1, 1],
 syntax: :integer,
 access: :read_only,
 description: "My custom SNMP object"
 }
]

{:ok, _} = SnmpKit.MIB.define_objects(custom_objects)

Now the custom object can be resolved
{:ok, oid} = SnmpKit.MIB.resolve("myCustomObject.0")
Tree Navigation
Exploring the MIB Tree
Get children of a node
{:ok, children} = SnmpKit.MIB.children([1, 3, 6, 1, 2, 1, 1])
Returns list of child OIDs under system group

Get parent of a node
{:ok, parent} = SnmpKit.MIB.parent([1, 3, 6, 1, 2, 1, 1, 1, 0])
Returns: [1, 3, 6, 1, 2, 1, 1, 1]

Get siblings
{:ok, siblings} = SnmpKit.MIB.siblings([1, 3, 6, 1, 2, 1, 1, 1, 0])

Walk the tree from a starting point
{:ok, tree} = SnmpKit.MIB.walk_tree([1, 3, 6, 1, 2, 1, 1])
Querying Object Information
Get detailed object information
{:ok, info} = SnmpKit.MIB.object_info("sysDescr.0")
Returns: %{name: "sysDescr", oid: [...], syntax: :octet_string, ...}

Check if an OID exists
true = SnmpKit.MIB.exists?("sysDescr.0")
false = SnmpKit.MIB.exists?("nonExistentObject.0")

Get object syntax information
{:ok, syntax} = SnmpKit.MIB.get_syntax("sysDescr.0")
Returns: :octet_string

Get access level
{:ok, access} = SnmpKit.MIB.get_access("sysDescr.0")
Returns: :read_only
Advanced Features
MIB Validation
Validate MIB files before compilation
case SnmpKit.MIB.validate("MY-MIB.mib") do
 {:ok, _} -> IO.puts("MIB is valid")
 {:error, {:validation_failed, errors}} ->
 IO.puts("MIB validation failed:")
 for error <- errors, do: IO.puts(" #{error}")
end

Validate loaded MIB consistency
{:ok, report} = SnmpKit.MIB.validate_loaded()
if report.inconsistencies != [] do
 IO.puts "Found inconsistencies:"
 for issue <- report.inconsistencies, do: IO.puts(" #{issue}")
end
MIB Caching and Performance
Enable aggressive caching for better performance
SnmpKit.MIB.configure_cache(
 size: 10_000,
 ttl: :infinity,
 strategy: :lru
)

Preload commonly used OIDs
common_oids = [
 "sysDescr.0", "sysUpTime.0", "sysName.0",
 "ifInOctets", "ifOutOctets", "ifOperStatus"
]

{:ok, _} = SnmpKit.MIB.preload(common_oids)

Get cache statistics
{:ok, stats} = SnmpKit.MIB.cache_stats()
IO.inspect(stats)
Bulk OID Operations
Resolve many OIDs efficiently
oids_to_resolve = [
 "sysDescr.0", "sysUpTime.0", "sysName.0",
 "ifInOctets.1", "ifOutOctets.1", "ifOperStatus.1"
]

{:ok, resolved} = SnmpKit.MIB.resolve_many(oids_to_resolve)

Reverse lookup many OIDs
numeric_oids = [
 [1, 3, 6, 1, 2, 1, 1, 1, 0],
 [1, 3, 6, 1, 2, 1, 1, 3, 0],
 [1, 3, 6, 1, 2, 1, 1, 5, 0]
]

{:ok, names} = SnmpKit.MIB.reverse_lookup_many(numeric_oids)
Troubleshooting
Common Issues
MIB Compilation Failures
Debug compilation issues
case SnmpKit.MIB.compile("problematic.mib", debug: true) do
 {:error, {:compilation_failed, errors}} ->
 IO.puts("Compilation errors:")
 for {line, message} <- errors do
 IO.puts("Line #{line}: #{message}")
 end
 {:error, {:missing_dependencies, deps}} ->
 IO.puts("Missing dependencies: #{Enum.join(deps, ", ")}")
 IO.puts("Load these MIBs first")
end
OID Resolution Problems
Debug OID resolution
case SnmpKit.MIB.resolve("unknownOid.0") do
 {:error, :not_found} ->
 # Try partial matches
 case SnmpKit.MIB.search("unknownOid") do
 {:ok, matches} ->
 IO.puts("Did you mean one of these?")
 for match <- matches, do: IO.puts(" #{match}")
 {:error, :no_matches} ->
 IO.puts("No similar OIDs found")
 end
end
Performance Issues
Profile MIB operations
{time, {:ok, result}} = :timer.tc(fn ->
 SnmpKit.MIB.resolve("complexOid.withManyParts.0")
end)

IO.puts("Resolution took #{time}μs")

Enable verbose logging for debugging
Logger.configure(level: :debug)
SnmpKit.MIB.resolve("sysDescr.0") # Will show detailed logs
Best Practices
	Load MIBs in dependency order - Load base MIBs before dependent ones
	Use preloading - Preload commonly used OIDs for better performance
	Cache aggressively - Enable caching for production deployments
	Validate before loading - Always validate MIBs before compilation
	Handle errors gracefully - Always pattern match on MIB operation results
	Use bulk operations - Resolve multiple OIDs at once when possible

Getting Help
Get help on available MIB functions
h SnmpKit.MIB

List all loaded MIBs
{:ok, mibs} = SnmpKit.MIB.list_loaded()
IO.inspect(mibs)

Get detailed system information
{:ok, info} = SnmpKit.MIB.system_info()
IO.inspect(info)
For more examples and advanced usage, see the API documentation.

 Testing Guide - SnmpKit

This guide covers testing strategies, simulated devices, and best practices for testing SNMP applications with SnmpKit.
Table of Contents
	Overview
	Test Setup
	Unit Testing
	Integration Testing
	Simulated Devices
	Performance Testing
	Test Utilities
	Continuous Integration
	Best Practices

Overview
Testing SNMP applications presents unique challenges:
	External Dependencies - Real SNMP devices may not be available
	Network Conditions - Timeouts, packet loss, and latency variations
	Device State - SNMP values change over time
	Scale Testing - Testing with many devices and large data sets
	Error Conditions - Simulating various failure modes

SnmpKit addresses these challenges through:
	Realistic Device Simulation - Simulated SNMP agents for testing
	Comprehensive Test Helpers - Utilities for common testing patterns
	Async Test Support - Efficient testing of concurrent operations
	Performance Benchmarking - Built-in tools for performance testing

Test Setup
Basic Test Module Setup
defmodule MyApp.SNMPTest do
 use ExUnit.Case, async: true

 alias SnmpKit.{SNMP, MIB, Sim}

 # Test configuration
 @test_community "public"
 @test_timeout 5_000

 setup_all do
 # Start any required services
 {:ok, _} = SNMP.start_engine()
 :ok
 end

 setup do
 # Per-test setup
 %{
 target: "127.0.0.1",
 community: @test_community,
 timeout: @test_timeout
 }
 end
end
Application Test Helper
Create a test helper module for common operations:
defmodule MyApp.TestHelper do
 @moduledoc """
 Common test utilities for SNMP testing.
 """

 def start_test_device(profile \\ :generic_router, opts \\ []) do
 port = Keyword.get(opts, :port, get_free_port())

 {:ok, profile_data} = SnmpKit.SnmpSim.ProfileLoader.load_profile(profile)
 {:ok, device} = SnmpKit.Sim.start_device(profile_data, port: port)

 %{
 device: device,
 target: "127.0.0.1:#{port}",
 port: port
 }
 end

 def get_free_port do
 {:ok, socket} = :gen_tcp.listen(0, [])
 {:ok, port} = :inet.port(socket)
 :gen_tcp.close(socket)
 port
 end

 def wait_for_device(target, timeout \\ 5_000) do
 end_time = System.monotonic_time(:millisecond) + timeout
 wait_for_device_loop(target, end_time)
 end

 defp wait_for_device_loop(target, end_time) do
 if System.monotonic_time(:millisecond) < end_time do
 case SnmpKit.SNMP.get(target, "sysDescr.0", timeout: 1_000) do
 {:ok, _} -> :ok
 {:error, _} ->
 :timer.sleep(100)
 wait_for_device_loop(target, end_time)
 end
 else
 {:error, :timeout}
 end
 end
end
Unit Testing
Testing MIB Operations
defmodule MyApp.MIBTest do
 use ExUnit.Case, async: true

 alias SnmpKit.MIB

 describe "OID resolution" do
 test "resolves standard system OIDs" do
 assert {:ok, [1, 3, 6, 1, 2, 1, 1, 1, 0]} = MIB.resolve("sysDescr.0")
 assert {:ok, [1, 3, 6, 1, 2, 1, 1, 3, 0]} = MIB.resolve("sysUpTime.0")
 assert {:ok, [1, 3, 6, 1, 2, 1, 1, 5, 0]} = MIB.resolve("sysName.0")
 end

 test "handles invalid OID names" do
 assert {:error, :not_found} = MIB.resolve("nonExistentOid.0")
 assert {:error, :invalid_format} = MIB.resolve("")
 end

 test "resolves bulk OIDs efficiently" do
 oids = ["sysDescr.0", "sysUpTime.0", "sysName.0"]

 {time, {:ok, results}} = :timer.tc(fn ->
 MIB.resolve_many(oids)
 end)

 assert length(results) == 3
 assert time < 10_000 # Should be fast (< 10ms)
 end
 end

 describe "reverse lookup" do
 test "converts OIDs back to names" do
 oid = [1, 3, 6, 1, 2, 1, 1, 1, 0]
 assert {:ok, "sysDescr.0"} = MIB.reverse_lookup(oid)
 end

 test "handles partial matches" do
 # OID that doesn't exactly match but has a parent
 oid = [1, 3, 6, 1, 2, 1, 1, 1, 999]
 assert {:ok, name} = MIB.reverse_lookup(oid)
 assert String.contains?(name, "sysDescr")
 end
 end
end
Testing SNMP Operations with Mocks
defmodule MyApp.SNMPMockTest do
 use ExUnit.Case, async: true

 import Mox

 # Define mock in test_helper.exs:
 # Mox.defmock(MyApp.SNMPMock, for: SnmpKit.SNMP.Behaviour)

 setup :verify_on_exit!

 test "handles SNMP timeouts gracefully" do
 MyApp.SNMPMock
 |> expect(:get, fn _target, _oid, _opts ->
 {:error, :timeout}
 end)

 result = MyApp.DeviceMonitor.get_device_status("192.168.1.1")
 assert {:error, :device_unreachable} = result
 end

 test "retries on temporary failures" do
 MyApp.SNMPMock
 |> expect(:get, 2, fn _target, _oid, _opts ->
 {:error, :timeout}
 end)
 |> expect(:get, fn _target, _oid, _opts ->
 {:ok, "Test Device"}
 end)

 result = MyApp.DeviceMonitor.get_device_status("192.168.1.1")
 assert {:ok, %{description: "Test Device"}} = result
 end
end
Integration Testing
Testing with Simulated Devices
defmodule MyApp.IntegrationTest do
 use ExUnit.Case, async: true

 alias MyApp.TestHelper

 describe "device communication" do
 setup do
 device_info = TestHelper.start_test_device(:cable_modem)
 :ok = TestHelper.wait_for_device(device_info.target)
 device_info
 end

 test "can query basic system information", %{target: target} do
 {:ok, description} = SnmpKit.SNMP.get(target, "sysDescr.0")
 assert is_binary(description)
 assert String.length(description) > 0

 {:ok, uptime} = SnmpKit.SNMP.get(target, "sysUpTime.0")
 assert is_integer(uptime)
 assert uptime >= 0
 end

 test "can walk interface table", %{target: target} do
 {:ok, interfaces} = SnmpKit.SNMP.walk(target, "ifTable")
 assert is_list(interfaces)
 assert length(interfaces) > 0

 # Verify interface data structure
 for {oid, value} <- interfaces do
 assert is_list(oid)
 assert length(oid) > 0
 assert value != nil
 end
 end

 test "handles bulk operations", %{target: target} do
 {:ok, results} = SnmpKit.SNMP.bulk_walk(target, "system")
 assert is_list(results)
 assert length(results) > 0
 end
 end

 describe "error handling" do
 setup do
 TestHelper.start_test_device(:unreliable_device)
 end

 test "handles device unreachable", %{target: target} do
 # Stop the device to simulate unreachable condition
 GenServer.stop(device.pid)

 result = SnmpKit.SNMP.get(target, "sysDescr.0", timeout: 1_000)
 assert {:error, :timeout} = result
 end

 test "handles invalid OIDs gracefully", %{target: target} do
 result = SnmpKit.SNMP.get(target, "nonExistent.0")
 assert {:error, :no_such_name} = result
 end
 end
end
Testing with Real Devices
defmodule MyApp.RealDeviceTest do
 use ExUnit.Case

 # Only run these tests when real devices are available
 @moduletag :integration
 @moduletag :real_devices

 @real_device_ip System.get_env("TEST_DEVICE_IP", "192.168.1.1")
 @real_device_community System.get_env("TEST_DEVICE_COMMUNITY", "public")

 setup_all do
 # Skip if no real device configured
 if @real_device_ip == "192.168.1.1" do
 {:skip, "No real device configured"}
 else
 # Verify device is reachable
 case SnmpKit.SNMP.get(@real_device_ip, "sysDescr.0",
 community: @real_device_community, timeout: 5_000) do
 {:ok, _} -> :ok
 {:error, _} -> {:skip, "Real device not reachable"}
 end
 end
 end

 test "can communicate with real device" do
 {:ok, description} = SnmpKit.SNMP.get(@real_device_ip, "sysDescr.0",
 community: @real_device_community)
 assert is_binary(description)
 IO.puts("Real device description: #{description}")
 end
end
Simulated Devices
Creating Custom Device Profiles
defmodule MyApp.CustomDeviceTest do
 use ExUnit.Case, async: true

 test "creates custom device profile" do
 # Define custom device behavior
 custom_profile = %{
 name: "Test Switch",
 description: "Custom test switch for unit testing",
 objects: %{
 [1, 3, 6, 1, 2, 1, 1, 1, 0] => "Test Switch v1.0",
 [1, 3, 6, 1, 2, 1, 1, 3, 0] => 12345, # uptime
 [1, 3, 6, 1, 2, 1, 1, 5, 0] => "test-switch-01",
 # Interface table entries
 [1, 3, 6, 1, 2, 1, 2, 2, 1, 2, 1] => "FastEthernet0/1",
 [1, 3, 6, 1, 2, 1, 2, 2, 1, 2, 2] => "FastEthernet0/2",
 [1, 3, 6, 1, 2, 1, 2, 2, 1, 8, 1] => 1, # ifOperStatus = up
 [1, 3, 6, 1, 2, 1, 2, 2, 1, 8, 2] => 2 # ifOperStatus = down
 }
 }

 {:ok, device} = SnmpKit.Sim.start_device(custom_profile, port: 30001)
 target = "127.0.0.1:30001"

 # Test the custom device
 {:ok, description} = SnmpKit.SNMP.get(target, "sysDescr.0")
 assert description == "Test Switch v1.0"

 {:ok, if_name} = SnmpKit.SNMP.get(target, "ifDescr.1")
 assert if_name == "FastEthernet0/1"

 {:ok, if_status} = SnmpKit.SNMP.get(target, "ifOperStatus.1")
 assert if_status == 1 # up
 end
end
Loading Device Profiles from Files
defmodule MyApp.ProfileTest do
 use ExUnit.Case, async: true

 test "loads device profile from walk file" do
 # Create a test walk file
 walk_data = """
 1.3.6.1.2.1.1.1.0 = STRING: "Test Device"
 1.3.6.1.2.1.1.3.0 = Timeticks: (12345) 0:02:03.45
 1.3.6.1.2.1.1.5.0 = STRING: "test-device"
 """

 walk_file = Path.join(System.tmp_dir(), "test_device.walk")
 File.write!(walk_file, walk_data)

 {:ok, profile} = SnmpKit.SnmpSim.ProfileLoader.load_profile(
 :test_device,
 {:walk_file, walk_file}
)

 {:ok, device} = SnmpKit.Sim.start_device(profile, port: 30002)
 target = "127.0.0.1:30002"

 {:ok, description} = SnmpKit.SNMP.get(target, "sysDescr.0")
 assert description == "Test Device"

 # Clean up
 File.rm!(walk_file)
 end
end
Performance Testing
Benchmarking SNMP Operations
defmodule MyApp.PerformanceTest do
 use ExUnit.Case

 alias MyApp.TestHelper

 @moduletag :performance

 setup_all do
 # Start multiple devices for load testing
 devices = for i <- 1..10 do
 TestHelper.start_test_device(:generic_router, port: 30000 + i)
 end

 %{devices: devices}
 end

 test "measures single GET performance", %{devices: [device | _]} do
 target = device.target

 # Warm up
 for _ <- 1..10 do
 SnmpKit.SNMP.get(target, "sysDescr.0")
 end

 # Measure performance
 {time, results} = :timer.tc(fn ->
 for _ <- 1..100 do
 SnmpKit.SNMP.get(target, "sysDescr.0")
 end
 end)

 avg_time = time / 100
 success_count = Enum.count(results, &match?({:ok, _}, &1))

 IO.puts("Average GET time: #{avg_time/1000}ms")
 IO.puts("Success rate: #{success_count}/100")

 assert avg_time < 50_000 # Should be < 50ms average
 assert success_count == 100 # Should be 100% successful
 end

 test "measures concurrent GET performance", %{devices: devices} do
 targets = Enum.map(devices, & &1.target)

 {time, results} = :timer.tc(fn ->
 targets
 |> Enum.map(fn target ->
 Task.async(fn ->
 for _ <- 1..50 do
 SnmpKit.SNMP.get(target, "sysDescr.0")
 end
 end)
 end)
 |> Enum.map(&Task.await(&1, 10_000))
 end)

 total_requests = length(devices) * 50
 avg_time = time / total_requests

 IO.puts("Concurrent average time: #{avg_time/1000}ms")
 IO.puts("Total requests: #{total_requests}")
 IO.puts("Total time: #{time/1_000_000}s")

 assert avg_time < 100_000 # Should be < 100ms average under load
 end

 test "measures walk performance", %{devices: [device | _]} do
 target = device.target

 {time, {:ok, results}} = :timer.tc(fn ->
 SnmpKit.SNMP.walk(target, "system")
 end)

 objects_per_ms = length(results) / (time / 1000)

 IO.puts("Walk time: #{time/1000}ms")
 IO.puts("Objects retrieved: #{length(results)}")
 IO.puts("Objects per ms: #{objects_per_ms}")

 assert time < 1_000_000 # Should complete in < 1 second
 assert length(results) > 0
 end
end
Memory and Resource Testing
defmodule MyApp.ResourceTest do
 use ExUnit.Case

 test "handles large result sets without memory issues" do
 device = MyApp.TestHelper.start_test_device(:large_table_device)
 target = device.target

 # Monitor memory usage
 initial_memory = :erlang.memory(:total)

 # Perform large walk operation
 {:ok, results} = SnmpKit.SNMP.walk(target, "largeTable")

 peak_memory = :erlang.memory(:total)

 # Force garbage collection
 :erlang.garbage_collect()
 :timer.sleep(100)

 final_memory = :erlang.memory(:total)

 memory_growth = peak_memory - initial_memory
 memory_retained = final_memory - initial_memory

 IO.puts("Results count: #{length(results)}")
 IO.puts("Peak memory growth: #{memory_growth / 1024 / 1024}MB")
 IO.puts("Retained memory: #{memory_retained / 1024 / 1024}MB")

 # Memory should be reasonable
 assert memory_growth < 100 * 1024 * 1024 # < 100MB growth
 assert memory_retained < 10 * 1024 * 1024 # < 10MB retained
 end
end
Test Utilities
Custom ExUnit Assertions
defmodule MyApp.SNMPAssertions do
 @moduledoc """
 Custom assertions for SNMP testing.
 """

 import ExUnit.Assertions

 def assert_snmp_success(result, message \\ nil) do
 case result do
 {:ok, value} -> value
 {:error, reason} ->
 flunk(message || "Expected SNMP success, got error: #{inspect(reason)}")
 end
 end

 def assert_snmp_error(result, expected_error \\ nil, message \\ nil) do
 case result do
 {:error, reason} when expected_error == nil -> reason
 {:error, ^expected_error} -> expected_error
 {:error, reason} when expected_error != nil ->
 flunk(message || "Expected error #{expected_error}, got #{reason}")
 {:ok, value} ->
 flunk(message || "Expected SNMP error, got success: #{inspect(value)}")
 end
 end

 def assert_oid_resolved(oid_name, expected_oid \\ nil) do
 case SnmpKit.MIB.resolve(oid_name) do
 {:ok, ^expected_oid} when expected_oid != nil -> expected_oid
 {:ok, resolved_oid} when expected_oid == nil -> resolved_oid
 {:ok, actual_oid} when expected_oid != nil ->
 flunk("Expected OID #{inspect(expected_oid)}, got #{inspect(actual_oid)}")
 {:error, reason} ->
 flunk("Failed to resolve OID #{oid_name}: #{reason}")
 end
 end

 def assert_device_responsive(target, timeout \\ 5_000) do
 case SnmpKit.SNMP.get(target, "sysDescr.0", timeout: timeout) do
 {:ok, _} -> :ok
 {:error, reason} ->
 flunk("Device #{target} not responsive: #{reason}")
 end
 end
end
Test Data Generators
defmodule MyApp.TestDataGenerator do
 @moduledoc """
 Generates test data for SNMP testing.
 """

 def generate_walk_data(base_oid, count \\ 100) do
 for i <- 1..count do
 oid = base_oid ++ [i]
 value = "Value #{i}"
 {oid, value}
 end
 end

 def generate_interface_table(interface_count \\ 24) do
 for i <- 1..interface_count do
 [
 {[1, 3, 6, 1, 2, 1, 2, 2, 1, 1, i], i}, # ifIndex
 {[1, 3, 6, 1, 2, 1, 2, 2, 1, 2, i], "eth#{i}"}, # ifDescr
 {[1, 3, 6, 1, 2, 1, 2, 2, 1, 3, i], 6}, # ifType (ethernet)
 {[1, 3, 6, 1, 2, 1, 2, 2, 1, 5, i], 1_000_000_000}, # ifSpeed
 {[1, 3, 6, 1, 2, 1, 2, 2, 1, 8, i], Enum.random([1, 2])}, # ifOperStatus
 {[1, 3, 6, 1, 2, 1, 2, 2, 1, 10, i], :rand.uniform(1_000_000_000)}, # ifInOctets
 {[1, 3, 6, 1, 2, 1, 2, 2, 1, 16, i], :rand.uniform(1_000_000_000)} # ifOutOctets
]
 end
 |> List.flatten()
 end

 def generate_device_profile(type \\ :generic) do
 base_objects = %{
 [1, 3, 6, 1, 2, 1, 1, 1, 0] => device_description(type),
 [1, 3, 6, 1, 2, 1, 1, 2, 0] => device_object_id(type),
 [1, 3, 6, 1, 2, 1, 1, 3, 0] => :rand.uniform(1_000_000),
 [1, 3, 6, 1, 2, 1, 1, 4, 0] => "Test Admin",
 [1, 3, 6, 1, 2, 1, 1, 5, 0] => "test-device-#{:rand.uniform(1000)}",
 [1, 3, 6, 1, 2, 1, 1, 6, 0] => "Test Lab"
 }

 interface_objects =
 generate_interface_table()
 |> Enum.into(%{})

 Map.merge(base_objects, interface_objects)
 end

 defp device_description(:router), do: "Test Router v1.0"
 defp device_description(:switch), do: "Test Switch v2.0"
 defp device_description(:cable_modem), do: "Test Cable Modem v3.0"
 defp device_description(_), do: "Generic Test Device v1.0"

 defp device_object_id(:router), do: [1, 3, 6, 1, 4, 1, 9999, 1, 1]
 defp device_object_id(:switch), do: [1, 3, 6, 1, 4, 1, 9999, 1, 2]
 defp device_object_id(:cable_modem), do: [1, 3, 6, 1, 4, 1, 9999, 1, 3]
 defp device_object_id(_), do: [1, 3, 6, 1, 4, 1, 9999, 1, 0]
end
Continuous Integration
GitHub Actions Configuration
.github/workflows/test.yml
name: Test

on:
 push:
 branches: [main, develop]
 pull_request:
 branches: [main]

jobs:
 test:
 runs-on: ubuntu-latest

 strategy:
 matrix:
 elixir: ['1.14', '1.15']
 otp: ['25', '26']

 steps:
 - uses: actions/checkout@v3

 - name: Set up Elixir
 uses: erlef/setup-beam@v1
 with:
 elixir-version: ${{ matrix.elixir }}
 otp-version: ${{ matrix.otp }}

 - name: Restore dependencies cache
 uses: actions/cache@v3
 with:
 path: deps
 key: ${{ runner.os }}-mix-${{ hashFiles('**/mix.lock') }}
 restore-keys: ${{ runner.os }}-mix-

 - name: Install dependencies
 run: mix deps.get

 - name: Run tests
 run: mix test --trace

 - name: Run integration tests
 run: mix test --include integration

 - name: Generate coverage report
 run: mix test --cover

 - name: Upload coverage to Codecov
 uses: codecov/codecov-action@v3
Test Configuration
config/test.exs
import Config

config :snmpkit,
 default_timeout: 1_000, # Faster timeouts for testing
 default_retries: 1

config :snmpkit, :simulation,
 device_profiles_path: "test/fixtures/profiles",
 walk_files_path: "test/fixtures/walks"

Reduce log noise during testing
config :logger, level: :warning

Enable async testing
config :ex_unit,
 capture_log: true,
 async: true
Best Practices
1. Use Appropriate Test Types
	Unit Tests - Test individual functions and modules in isolation
	Integration Tests - Test interaction between components
	System Tests - Test complete workflows with simulated devices
	Performance Tests - Test performance characteristics and limits

2. Design for Testability
Bad: Hard to test, tightly coupled
def monitor_device(ip) do
 case SnmpKit.SNMP.get(ip, "sysDescr.0") do
 {:ok, description} ->
 Logger.info("Device #{ip}: #{description}")
 send_notification(description)
 {:error, reason} ->
 Logger.error("Failed to monitor #{ip}: #{reason}")
 raise "Device monitoring failed"
 end
end

Good: Testable, dependency injection
def monitor_device(ip, snmp_client \\ SnmpKit.SNMP, notifier \\ MyApp.Notifier) do
 case snmp_client.get(ip, "sysDescr.0") do
 {:ok, description} ->
 Logger.info("Device #{ip}: #{description}")
 notifier.send_notification(description)
 {:ok, description}
 {:error, reason} ->
 Logger.error("Failed to monitor #{ip}: #{reason}")
 {:error, reason}
 end
end
3. Use Simulated Devices Extensively
	Create realistic device profiles for different device types
	Test edge cases and error conditions
	Simulate network conditions (latency, packet loss)
	Test with various SNMP versions and configurations

4. Test Error Conditions
test "handles various error conditions" do
 test_cases = [
 {:timeout, "unreachable.device"},
 {:no_such_name, "invalid.oid"},
 {:bad_value, "read_only.oid"},
 {:authorization_error, "wrong.community"}
]

 for {expected_error, scenario} <- test_cases do
 result = perform_test_scenario(scenario)
 assert {:error, ^expected_error} = result
 end
end
5. Use Property-Based Testing
defmodule MyApp.PropertyTest do
 use ExUnit.Case
 use PropCheck

 property "OID resolution is bidirectional" do
 forall oid_name <- valid_oid_name() do
 case SnmpKit.MIB.resolve(oid_name) do
 {:ok, oid} ->
 {:ok, reversed_name} = SnmpKit.MIB.reverse_lookup(oid)
 String.contains?(reversed_name, extract_base_name(oid_name))
 {:error, _} ->
 true # Invalid names are okay
 end
 end
 end

 defp valid_oid_name do
 oneof([
 "sysDescr.0",
 "sysUpTime.0",
 "sysName.0",
 "ifDescr.1",
 "ifInOctets.1"
])
 end
end
6. Monitor Test Performance
	Track test execution times
	Identify slow tests and optimize them
	Use async testing where possible
	Profile memory usage in tests

7. Maintain Test Data
	Keep device profiles up to date
	Version test data files
	Document test scenarios and expected outcomes
	Clean up test resources properly

For more advanced testing techniques and examples, see the API documentation and example tests.

 SnmpKit Unified API Guide

A comprehensive guide to SnmpKit's new unified API design
🎯 Overview
SnmpKit v0.2.0 introduces a unified API that organizes all functionality into logical, context-based modules. This design eliminates naming conflicts, improves discoverability, and provides a cleaner developer experience while maintaining 100% backward compatibility.
🏗️ API Architecture
Context-Based Modules
	Module	Purpose	Functions
	SnmpKit	Preferred concise helpers	get, set, walk, walk_table, get_bulk, bulk_walk, get_bulk_multi, walk_multi
	SnmpKit.SNMP	Full namespaced API	async ops, streaming, pretty formatting, engine/metrics
	SnmpKit.MIB	MIB management	resolve, compile, load, tree navigation
	SnmpKit.Sim	Device simulation	start devices, create populations, testing

Design Benefits
✅ Concise by default - Prefer SnmpKit helpers for common tasks
✅ No Naming Conflicts - Context prevents function name collisions
✅ Improved Discoverability - Related functions grouped logically
✅ Clear Documentation - Module boundaries define responsibilities
✅ Backward Compatibility - Namespaced API remains available
✅ Flexible Usage - Use concise helpers or full namespaced API as needed
📡 SNMP Operations (prefer concise helpers on SnmpKit)
While the namespaced SnmpKit.SNMP API remains available, prefer the concise helpers on SnmpKit for everyday use. They are thin delegates with the same behavior.
Basic Operations
GET operations
{:ok, value} = SnmpKit.get("192.168.1.1", "sysDescr.0")

WALK operations
{:ok, results} = SnmpKit.walk("192.168.1.1", "system")
{:ok, table} = SnmpKit.walk_table("192.168.1.1", "ifTable")

SET operations (to simulation devices)
:ok = SnmpKit.set("127.0.0.1:1161", "sysContact.0", "admin@example.com")
Bulk Operations
Efficient bulk retrieval
{:ok, results} = SnmpKit.get_bulk("192.168.1.1", "interfaces", max_repetitions: 10)

Bulk walk (uses GETBULK for v2c)
{:ok, results} = SnmpKit.bulk_walk("192.168.1.1", "system")

Bang variants (raise on error)
results = SnmpKit.get_bulk!("192.168.1.1", "interfaces", max_repetitions: 10)
results = SnmpKit.bulk_walk!("192.168.1.1", "system")
Multi-Target Operations
Query multiple devices simultaneously
targets_and_oids = [
 {"router1.example.com", "sysDescr.0"},
 {"switch1.example.com", "sysUpTime.0"},
 {"ap1.example.com", "sysLocation.0"}
]

{:ok, results} = SnmpKit.get_multi(targets_and_oids)

Bulk operations across multiple targets
{:ok, results} = SnmpKit.walk_multi([
 {"host1", "interfaces"},
 {"host2", "system"}
])

GETBULK across multiple targets
{:ok, results} = SnmpKit.get_bulk_multi([
 {"switch1", "ifTable"},
 {"switch2", "ifTable"}
], max_repetitions: 20)
Streaming Operations
Memory-efficient streaming for large datasets (bulk semantics enforced)
stream = SnmpKit.SNMP.bulk_walk_stream("192.168.1.1", "interfaces")
results = stream |> Stream.take(1000) |> Enum.to_list()

Table streaming with bulk semantics
table_stream = SnmpKit.SNMP.table_bulk_stream("192.168.1.1", "ifTable")
Async Operations
Non-blocking operations
task = SnmpKit.SNMP.get_async("192.168.1.1", "sysDescr.0")
{:ok, result} = Task.await(task, 5000)

Bulk async operations
task = SnmpKit.SNMP.get_bulk_async("192.168.1.1", "interfaces")
Pretty Formatting
Human-readable output
{:ok, formatted} = SnmpKit.SNMP.get_pretty("192.168.1.1", "sysUpTime.0")
Returns: "12 days, 4:32:10.45"

{:ok, formatted_walk} = SnmpKit.SNMP.walk_pretty("192.168.1.1", "system")
Returns: [{"sysDescr.0", "Linux router"}, {"sysUpTime.0", "12 days, 4:32:10.45"}]

{:ok, formatted_bulk} = SnmpKit.SNMP.bulk_walk_pretty("192.168.1.1", "interfaces")
Advanced Features
Engine management for performance
{:ok, _engine} = SnmpKit.SNMP.start_engine()
{:ok, stats} = SnmpKit.SNMP.get_engine_stats()

Circuit breaker for reliability
{:ok, result} = SnmpKit.SNMP.with_circuit_breaker("unreliable.host", fn ->
 SnmpKit.get("unreliable.host", "sysDescr.0")
end)

Performance analysis
{:ok, analysis} = SnmpKit.SNMP.analyze_table(table_data)
{:ok, benchmark} = SnmpKit.SNMP.benchmark_device("192.168.1.1", "system")

Metrics recording
SnmpKit.SNMP.record_metric(:counter, :requests_total, 1, %{host: "router1"})
📚 MIB Operations (SnmpKit.MIB)
OID Resolution
Name to OID resolution
{:ok, oid} = SnmpKit.MIB.resolve("sysDescr.0")
Returns: [1, 3, 6, 1, 2, 1, 1, 1, 0]

{:ok, oid} = SnmpKit.MIB.resolve("ifInOctets.1")
Returns: [1, 3, 6, 1, 2, 1, 2, 2, 1, 10, 1]

Group resolution
{:ok, oid} = SnmpKit.MIB.resolve("system")
Returns: [1, 3, 6, 1, 2, 1, 1]

Reverse lookup
{:ok, name} = SnmpKit.MIB.reverse_lookup([1, 3, 6, 1, 2, 1, 1, 1, 0])
Returns: "sysDescr.0"
MIB Tree Navigation
Get children of an OID node
{:ok, children} = SnmpKit.MIB.children([1, 3, 6, 1, 2, 1, 1])
Returns: [[1, 3, 6, 1, 2, 1, 1, 1], [1, 3, 6, 1, 2, 1, 1, 2], ...]

Get parent of an OID
{:ok, parent} = SnmpKit.MIB.parent([1, 3, 6, 1, 2, 1, 1, 1, 0])
Returns: [1, 3, 6, 1, 2, 1, 1, 1]

Walk MIB tree
{:ok, tree} = SnmpKit.MIB.walk_tree([1, 3, 6, 1, 2, 1, 1])
MIB Compilation and Loading
High-level compilation (recommended)
{:ok, compiled} = SnmpKit.MIB.compile("MY-ENTERPRISE-MIB.mib")
{:ok, _} = SnmpKit.MIB.load(compiled)

Compile entire directory
{:ok, results} = SnmpKit.MIB.compile_dir("mibs/")

Low-level compilation (advanced)
{:ok, mib} = SnmpKit.MIB.compile_raw("MY-MIB.mib")
{:ok, _} = SnmpKit.MIB.load_compiled("compiled_mib.bin")

Compile multiple files
{:ok, compiled_mibs} = SnmpKit.MIB.compile_all(["mib1.mib", "mib2.mib"])
MIB Parsing and Analysis
Parse MIB file
{:ok, parsed} = SnmpKit.MIB.parse_mib_file("CUSTOM-MIB.mib")

Parse MIB content string
mib_content = File.read!("MY-MIB.mib")
{:ok, parsed} = SnmpKit.MIB.parse_mib_content(mib_content)

Enhanced resolution with custom MIBs
{:ok, oid} = SnmpKit.MIB.resolve_enhanced("customObject.0")

Integrate compilation and parsing
{:ok, integrated} = SnmpKit.MIB.load_and_integrate_mib("ENTERPRISE-MIB.mib")
Standard MIBs
Load built-in standard MIBs
:ok = SnmpKit.MIB.load_standard_mibs()

Start MIB registry (for advanced usage)
{:ok, _pid} = SnmpKit.MIB.start_link()
🧪 Device Simulation (SnmpKit.Sim)
Single Device Simulation
Load a device profile
{:ok, profile} = SnmpKit.SnmpSim.ProfileLoader.load_profile(
 :cable_modem,
 {:walk_file, "priv/walks/cable_modem.walk"}
)

Start simulated device
{:ok, device} = SnmpKit.Sim.start_device(profile, [
 port: 1161,
 community: "public"
])

Device will respond to SNMP queries on localhost:1161
{:ok, description} = SnmpKit.SNMP.get("127.0.0.1:1161", "sysDescr.0")
Population Simulation
Create multiple devices for testing
device_configs = [
 %{type: :cable_modem, port: 30001, community: "public"},
 %{type: :switch, port: 30002, community: "public"},
 %{type: :router, port: 30003, community: "private"}
]

{:ok, devices} = SnmpKit.Sim.start_device_population(device_configs)

Query the simulated devices
{:ok, cm_desc} = SnmpKit.SNMP.get("127.0.0.1:30001", "sysDescr.0")
{:ok, switch_desc} = SnmpKit.SNMP.get("127.0.0.1:30002", "sysDescr.0")
Testing Integration
defmodule MyNetworkTest do
 use ExUnit.Case

 setup do
 # Start simulated devices for each test
 {:ok, cable_modem_profile} = SnmpKit.SnmpSim.ProfileLoader.load_profile(:cable_modem)
 {:ok, router_profile} = SnmpKit.SnmpSim.ProfileLoader.load_profile(:router)

 {:ok, cm} = SnmpKit.Sim.start_device(cable_modem_profile, port: 1161)
 {:ok, router} = SnmpKit.Sim.start_device(router_profile, port: 1162)

 %{
 cable_modem: "127.0.0.1:1161",
 router: "127.0.0.1:1162"
 }
 end

 test "can monitor cable modem", %{cable_modem: cm_target} do
 {:ok, signal_noise} = SnmpKit.SNMP.get(cm_target, "docsIfSigQSignalNoise.1")
 assert is_integer(signal_noise)
 end

 test "can get interface statistics", %{router: router_target} do
 {:ok, interfaces} = SnmpKit.SNMP.get_table(router_target, "ifTable")
 assert length(interfaces) > 0
 end
end
🎯 Direct Access (SnmpKit)
For convenience and backward compatibility, common operations are available directly:
These are equivalent to their SnmpKit.SNMP.* counterparts
{:ok, value} = SnmpKit.get("192.168.1.1", "sysDescr.0")
{:ok, results} = SnmpKit.walk("192.168.1.1", "system")
:ok = SnmpKit.set("127.0.0.1:1161", "sysContact.0", "admin@example.com")

MIB resolution
{:ok, oid} = SnmpKit.resolve("sysDescr.0")
🔄 Migration Guide
From Direct Module Usage
Before (still works)
{:ok, value} = SnmpKit.SnmpMgr.get("host", "oid")
{:ok, oid} = SnmpKit.SnmpMgr.MIB.resolve("name")

After (recommended)
{:ok, value} = SnmpKit.SNMP.get("host", "oid")
{:ok, oid} = SnmpKit.MIB.resolve("name")

Or use direct access
{:ok, value} = SnmpKit.get("host", "oid")
{:ok, oid} = SnmpKit.resolve("name")
Gradual Migration Strategy
	Phase 1: Start using unified API for new code
	Phase 2: Gradually update existing code module by module
	Phase 3: Adopt consistent style across codebase

Import Strategy
Option 1: Import specific modules
alias SnmpKit.{SNMP, MIB, Sim}

{:ok, value} = SNMP.get("host", "oid")
{:ok, oid} = MIB.resolve("name")

Option 2: Use fully qualified names
{:ok, value} = SnmpKit.SNMP.get("host", "oid")
{:ok, oid} = SnmpKit.MIB.resolve("name")

Option 3: Direct access for simple operations
{:ok, value} = SnmpKit.get("host", "oid")
{:ok, oid} = SnmpKit.resolve("name")
📚 Function Reference Quick Guide
Most Common Operations
	Task	Function	Example
	Get single value	SnmpKit.SNMP.get/3	get("host", "sysDescr.0")
	Walk OID tree	SnmpKit.SNMP.walk/3	walk("host", "system")
	Get table	SnmpKit.SNMP.get_table/3	get_table("host", "ifTable")
	Resolve OID name	SnmpKit.MIB.resolve/1	resolve("sysDescr.0")
	Start simulated device	SnmpKit.Sim.start_device/2	start_device(profile, port: 1161)

Performance Operations
	Task	Function	Example
	Bulk retrieval	SnmpKit.SNMP.get_bulk/3	get_bulk("host", "interfaces")
	Multi-target query	SnmpKit.SNMP.get_multi/2	get_multi([{"h1", "oid1"}, {"h2", "oid2"}])
	Streaming walk	SnmpKit.SNMP.walk_stream/3	walk_stream("host", "large_table")
	Adaptive walk	SnmpKit.SNMP.adaptive_walk/3	adaptive_walk("host", "interfaces")

Advanced Operations
	Task	Function	Example
	Circuit breaker	SnmpKit.SNMP.with_circuit_breaker/3	with_circuit_breaker("host", fn -> ... end)
	Engine stats	SnmpKit.SNMP.get_engine_stats/1	get_engine_stats()
	MIB compilation	SnmpKit.MIB.compile/2	compile("MY-MIB.mib")
	Tree navigation	SnmpKit.MIB.children/1	children([1,3,6,1,2,1,1])

🚀 Best Practices
1. Choose the Right API Level
For simple scripts and convenience
{:ok, value} = SnmpKit.get("host", "oid")

For applications with multiple SNMP operations
alias SnmpKit.SNMP
{:ok, value} = SNMP.get("host", "oid")
{:ok, table} = SNMP.get_table("host", "ifTable")

For complex applications
defmodule MyMonitor do
 alias SnmpKit.{SNMP, MIB, Sim}

 def monitor_device(host) do
 with {:ok, description} <- SNMP.get(host, "sysDescr.0"),
 {:ok, interfaces} <- SNMP.get_table(host, "ifTable") do
 %{description: description, interfaces: interfaces}
 end
 end
end
2. Use Appropriate Operations for Scale
For single values
{:ok, value} = SnmpKit.SNMP.get("host", "oid")

For multiple values from same host
{:ok, results} = SnmpKit.SNMP.walk("host", "system")

For multiple hosts
{:ok, results} = SnmpKit.SNMP.get_multi([{"h1", "oid"}, {"h2", "oid"}])

For large datasets
stream = SnmpKit.SNMP.walk_stream("host", "large_table")
3. Handle Errors Gracefully
case SnmpKit.SNMP.get("host", "oid", timeout: 1000) do
 {:ok, value} ->
 process_value(value)
 {:error, :timeout} ->
 log_timeout_error("host")
 {:error, reason} ->
 log_snmp_error("host", reason)
end
4. Use Simulated Devices for Testing
In test setup
setup do
 {:ok, profile} = SnmpKit.SnmpSim.ProfileLoader.load_profile(:generic_device)
 {:ok, _device} = SnmpKit.Sim.start_device(profile, port: 1161)
 %{target: "127.0.0.1:1161"}
end

test "my network function", %{target: target} do
 # Test against simulated device
 result = my_network_function(target)
 assert result.status == :ok
end
🎉 Conclusion
The unified API makes SnmpKit more approachable for new users while maintaining all the power and flexibility for advanced use cases. Choose the approach that best fits your needs:
	Direct access (SnmpKit.*) for simple operations
	Namespaced modules (SnmpKit.SNMP.*) for organized applications
	Mixed approach based on context and preference

All approaches provide the same functionality with 100% backward compatibility.
Happy SNMP monitoring! 🚀

 SnmpKit v0.2.0 Release Notes

A Major Step Forward: Unified API, Zero Warnings, and Enhanced Developer Experience

🎯 Release Highlights
SnmpKit v0.2.0 represents a significant milestone in the evolution of this pure Elixir SNMP toolkit. This release introduces a unified API architecture, achieves a completely warning-free codebase, and provides comprehensive documentation with interactive examples.
🔧 Major Features
	🎯 Unified API Architecture - Clean, context-based modules for improved discoverability
	📡 Enhanced SNMP Operations - Comprehensive protocol support with modern conveniences
	📚 Advanced MIB Management - Powerful compilation, loading, and resolution capabilities
	🧪 Realistic Device Simulation - Self-contained testing environments
	⚡ Performance Optimizations - Streaming, bulk operations, and adaptive algorithms
	📖 Interactive Documentation - Self-contained Livebook with simulated devices

🏗️ Unified API Architecture
New Context-Based Modules
SnmpKit v0.2.0 introduces a clean, organized API structure that eliminates naming conflicts and improves developer experience:
SnmpKit.SNMP - Protocol Operations
Core operations
{:ok, value} = SnmpKit.SNMP.get("192.168.1.1", "sysDescr.0")
{:ok, results} = SnmpKit.SNMP.walk("192.168.1.1", "system")
{:ok, table} = SnmpKit.SNMP.get_table("192.168.1.1", "ifTable")

Bulk and multi-target operations
{:ok, results} = SnmpKit.SNMP.bulk_walk("192.168.1.1", "interfaces")
{:ok, results} = SnmpKit.SNMP.get_multi([
 {"host1", "sysDescr.0"},
 {"host2", "sysUpTime.0"}
])

Advanced features
{:ok, formatted} = SnmpKit.SNMP.get_pretty("192.168.1.1", "sysUpTime.0")
stream = SnmpKit.SNMP.walk_stream("192.168.1.1", "interfaces")
{:ok, stats} = SnmpKit.SNMP.get_engine_stats()
SnmpKit.MIB - MIB Management
OID resolution
{:ok, oid} = SnmpKit.MIB.resolve("sysDescr.0")
{:ok, name} = SnmpKit.MIB.reverse_lookup([1, 3, 6, 1, 2, 1, 1, 1, 0])

MIB compilation and loading
{:ok, compiled} = SnmpKit.MIB.compile("MY-ENTERPRISE-MIB.mib")
{:ok, _} = SnmpKit.MIB.load(compiled)

Tree navigation
{:ok, children} = SnmpKit.MIB.children([1, 3, 6, 1, 2, 1, 1])
{:ok, parent} = SnmpKit.MIB.parent([1, 3, 6, 1, 2, 1, 1, 1, 0])
SnmpKit.Sim - Device Simulation
Load and start simulated devices
{:ok, profile} = SnmpKit.SnmpSim.ProfileLoader.load_profile(
 :cable_modem,
 {:walk_file, "priv/walks/cable_modem.walk"}
)
{:ok, device} = SnmpKit.Sim.start_device(profile, port: 1161)

Create device populations for testing
device_configs = [
 %{type: :cable_modem, port: 30001, community: "public"},
 %{type: :switch, port: 30002, community: "public"}
]
{:ok, devices} = SnmpKit.Sim.start_device_population(device_configs)
SnmpKit - Direct Access
Convenient direct access for common operations
{:ok, value} = SnmpKit.get("192.168.1.1", "sysDescr.0")
{:ok, oid} = SnmpKit.resolve("sysDescr.0")
{:ok, results} = SnmpKit.walk("192.168.1.1", "system")
Benefits of the Unified API
✅ No Naming Conflicts - Context prevents function name collisions
✅ Improved Discoverability - Related functions grouped logically
✅ Clean Documentation - Module boundaries define clear responsibilities
✅ Backward Compatibility - All existing code continues to work unchanged
✅ Flexible Usage - Choose namespaced or direct access as preferred

🧹 Code Quality Achievements
Zero Compiler Warnings
SnmpKit v0.2.0 achieves a completely warning-free codebase through comprehensive cleanup:
Fixed Issues (35+ warnings eliminated):
	✅ Unused Variables (~20 instances) - Prefixed with _ or removed where appropriate
	✅ Unused Module Aliases (5 instances) - Removed redundant imports
	✅ Unused Module Attributes (1 instance) - Cleaned up test configuration
	✅ Try-Catch Ordering (2 instances) - Fixed rescue before catch ordering
	✅ Unreachable Pattern Matches (5 instances) - Leveraged type analysis to remove dead code
	✅ Variable Shadowing (1 instance) - Used pin operator for proper pattern matching
	✅ Module Redefinition (2 instances) - Fixed redundant test module loading
	✅ Range Step Issues (1 instance) - Added explicit step for backwards ranges

Core Issue Resolution
Major Fix: Charlist Parsing Timeout
	Problem: Invalid charlists like [300, 400] caused DNS resolution timeouts
	Solution: Added proper charlist validation with valid_charlist?/1 helper
	Impact: Eliminated test timeouts and improved reliability

Test Quality Improvements
	1,216 tests passing (76 doctests + 1,140 tests)
	Zero test failures
	Maintained 100% backward compatibility
	Enhanced test infrastructure with proper module loading

📚 Enhanced Documentation
Interactive Livebook Tour
The new self-contained Livebook tour (livebooks/snmpkit_tour.livemd) provides:
	Built-in Simulated Devices - No external network dependencies
	Step-by-step Examples - From basic operations to advanced scenarios
	Unified API Demonstrations - Real-world usage patterns
	Performance Comparisons - Best practices with measurable examples
	Error Handling Examples - Robust error scenarios and solutions

Comprehensive Guides
Updated Documentation:
	README.md - Completely rewritten to showcase unified API
	Unified API Guide - Migration strategies and patterns
	Example Scripts - Practical usage demonstrations
	Release Notes - This comprehensive summary

Migration Support
Migration from Previous Versions:
Before (still works)
{:ok, value} = SnmpKit.SnmpMgr.get("host", "oid")
{:ok, oid} = SnmpKit.SnmpMgr.MIB.resolve("name")

After (recommended)
{:ok, value} = SnmpKit.SNMP.get("host", "oid")
{:ok, oid} = SnmpKit.MIB.resolve("name")

Or use direct access
{:ok, value} = SnmpKit.get("host", "oid")
{:ok, oid} = SnmpKit.resolve("name")

⚡ Technical Improvements
Enhanced Error Handling
	Improved Host Parsing - Robust charlist validation prevents timeouts
	Better Type Analysis - Leveraged Elixir's type system to eliminate dead code
	Graceful Degradation - Enhanced error recovery and reporting

Performance Optimizations
	Optimized Function Delegation - Efficient defdelegate implementation
	Reduced Memory Usage - Eliminated redundant module loading
	Improved Test Speed - Streamlined test infrastructure

Development Experience
	Zero Warnings - Clean development environment
	Better IDE Support - Improved code completion and navigation
	Enhanced Testing - More reliable and faster test execution

🛠️ Under the Hood
Implementation Details
Unified API Implementation
	Used defdelegate with multiple arities to handle default arguments
	Resolved naming conflicts through intelligent context separation
	Maintained full backward compatibility through careful module organization

Warning Elimination Strategy
	Systematic Analysis - Identified all warning sources
	Intelligent Fixes - Applied appropriate solutions for each warning type
	Type-Aware Cleanup - Leveraged Elixir's type analysis to remove unreachable code
	Test Preservation - Maintained all existing functionality

Documentation Enhancement
	Self-Contained Examples - Livebook works without external dependencies
	Real-World Scenarios - Practical usage patterns and best practices
	Interactive Learning - Hands-on experience with simulated devices

📊 Project Statistics
Test Coverage
	Total Tests: 1,216 (76 doctests + 1,140 tests)
	Test Results: ✅ 0 failures, 10 excluded, 24 skipped
	Test Duration: ~19 seconds (stable performance)
	Coverage: Comprehensive across all modules and features

Code Quality Metrics
	Compiler Warnings: 0 (down from 35+)
	Code Consistency: 100% following Elixir conventions
	Documentation Coverage: Complete with examples for all public APIs
	Backward Compatibility: 100% maintained

Feature Completeness
	SNMP Operations: ✅ Complete (get, set, walk, bulk, multi-target, async)
	MIB Management: ✅ Complete (compilation, loading, resolution, navigation)
	Device Simulation: ✅ Complete (profiles, populations, realistic behavior)
	Performance Features: ✅ Complete (streaming, benchmarking, analytics)
	Testing Support: ✅ Complete (simulated devices, test helpers, scenarios)

🔮 Looking Forward
Established Foundation
SnmpKit v0.2.0 establishes a solid foundation for future development:
	Clean Architecture - Unified API provides clear extension points
	Zero Technical Debt - Warning-free codebase enables confident development
	Comprehensive Testing - Robust test suite supports fearless refactoring
	Excellent Documentation - Self-documenting examples and guides

Future Possibilities
The clean architecture and warning-free codebase open doors for:
	🔐 SNMPv3 Support - Authentication and encryption capabilities
	🌐 IPv6 Enhancement - Full IPv6 support throughout the library
	📊 Advanced Analytics - Built-in network analysis and reporting tools
	🔌 Plugin System - Custom protocol extensions and integrations
	📱 Management UI - Web-based interface for monitoring and configuration

🙏 Acknowledgments
This release represents a significant collaboration and dedication to quality:
	Community Feedback - Early adopters provided valuable insights
	Testing Collaboration - Comprehensive testing across different environments
	Documentation Focus - Emphasis on developer experience and learning
	Quality Standards - Commitment to zero warnings and comprehensive testing

🚀 Getting Started
Installation
Add SnmpKit v0.2.0 to your project:
def deps do
 [
 {:snmpkit, "~> 0.2.0"}
]
end
Quick Start
Import the unified API
alias SnmpKit.{SNMP, MIB, Sim}

Start with SNMP operations
{:ok, description} = SNMP.get("192.168.1.1", "sysDescr.0")

Explore MIB capabilities
{:ok, oid} = MIB.resolve("sysDescr.0")

Try device simulation
{:ok, profile} = SnmpKit.SnmpSim.ProfileLoader.load_profile(:cable_modem)
{:ok, device} = Sim.start_device(profile, port: 1161)
Next Steps
	Explore the Interactive Tour - Run livebooks/snmpkit_tour.livemd in Livebook
	Read the API Guide - Check out docs/unified-api-guide.md
	Run the Examples - Try the scripts in examples/
	Start Building - Create your own SNMP applications with confidence

SnmpKit v0.2.0: Ready for Production, Built for Developers, Designed for the Future 🎉
For questions, issues, or contributions, visit our GitHub repository.

 SnmpKit v0.3.0 Release Notes

Release Date: 2024-12-19
Version: 0.3.0
Git Tag: v0.3.0
🎯 Major Features
Unified API Architecture
The biggest change in v0.3.0 is the introduction of a unified API architecture that organizes all SnmpKit functionality into logical, discoverable modules:
	SnmpKit.SNMP - Complete SNMP protocol operations
	SnmpKit.MIB - Comprehensive MIB management
	SnmpKit.Sim - Realistic device simulation

This replaces the previous fragmented approach where functions were scattered across multiple modules, making the library much more intuitive and easier to use.
Enhanced Module Organization
SnmpKit.SNMP
All SNMP operations are now organized under a single, comprehensive module:
Basic operations
{:ok, value} = SnmpKit.SNMP.get("192.168.1.1", "sysDescr.0")
{:ok, results} = SnmpKit.SNMP.walk("192.168.1.1", "system")

Bulk operations
{:ok, data} = SnmpKit.SNMP.bulk_walk("192.168.1.1", "interfaces")

Multi-target operations
{:ok, results} = SnmpKit.SNMP.get_multi([
 {"host1", "sysDescr.0"},
 {"host2", "sysUpTime.0"}
])

Pretty formatting
{:ok, formatted} = SnmpKit.SNMP.get_pretty("192.168.1.1", "sysUpTime.0")

Async operations
task = SnmpKit.SNMP.get_async("192.168.1.1", "sysDescr.0")
SnmpKit.MIB
Comprehensive MIB management with both high-level and low-level operations:
OID resolution
{:ok, oid} = SnmpKit.MIB.resolve("sysDescr.0")
{:ok, name} = SnmpKit.MIB.reverse_lookup([1, 3, 6, 1, 2, 1, 1, 1, 0])

High-level MIB compilation
{:ok, compiled} = SnmpKit.MIB.compile("MY-MIB.mib")
{:ok, _} = SnmpKit.MIB.load(compiled)

Low-level MIB operations
{:ok, raw_compiled} = SnmpKit.MIB.compile_raw("MY-MIB.mib")
SnmpKit.Sim
Simplified device simulation interface:
Start individual devices
{:ok, device} = SnmpKit.Sim.start_device(profile, port: 1161)

Create device populations
{:ok, devices} = SnmpKit.Sim.start_device_population(device_configs)
Backward Compatibility
All existing code continues to work! Common operations are still available directly on the main SnmpKit module:
These still work exactly as before
{:ok, value} = SnmpKit.get("192.168.1.1", "sysDescr.0")
{:ok, results} = SnmpKit.walk("192.168.1.1", "system")
{:ok, oid} = SnmpKit.resolve("sysDescr.0")
📚 Documentation Improvements
Updated README
	Complete rewrite showcasing the unified API
	Clear examples for each module
	Migration guide from other libraries
	Enterprise features section
	Performance optimization tips

Interactive Livebook Tour
	Completely rewritten snmpkit_tour.livemd
	Now uses simulated devices for all examples
	No external network dependencies
	Comprehensive coverage of all new API features
	Step-by-step guided experience

New Documentation Files
	docs/unified-api-guide.md - Deep dive into the new API structure
	docs/v0.3.0-release-notes.md - These release notes
	examples/unified_api_demo.exs - Practical usage examples

🔧 Technical Improvements
Code Quality
	Zero compiler warnings - Maintains the clean codebase from v0.2.0
	1,140 tests passing - Comprehensive test coverage
	76 doctests - Extensive documentation examples
	Clean module structure - Logical organization with defdelegate

Performance
	Maintained all performance optimizations from previous versions
	Added streaming operations for large datasets
	Improved memory usage for bulk operations

Developer Experience
	Discoverability - Functions are now easy to find in logical modules
	Consistency - Similar operations follow consistent patterns
	IDE Support - Better autocomplete and documentation in editors

🚀 New Features
Enhanced SNMP Operations
	Streaming operations - walk_stream/3, table_stream/3
	Performance benchmarking - benchmark_device/3
	Circuit breaker pattern - with_circuit_breaker/3
	Engine management - Advanced SNMP engine features

Advanced MIB Features
	Tree navigation - children/1, parent/1, walk_tree/2
	Enhanced resolution - resolve_enhanced/2
	Dual compilation paths - High-level and low-level MIB compilation
	Standard MIB loading - load_standard_mibs/0

Simulation Enhancements
	Simplified device creation - Easier device simulation setup
	Population management - Better handling of device groups
	Profile integration - Seamless integration with existing profiles

📊 Migration Guide
From v0.2.x
No breaking changes! Your existing code will continue to work exactly as before.
Optional migrations for better discoverability:
Old way (still works)
{:ok, value} = SnmpKit.get("host", "oid")

New way (recommended)
{:ok, value} = SnmpKit.SNMP.get("host", "oid")
From Other Libraries
From :snmp (Erlang)
:snmp.sync_get(manager, oid, timeout)
Becomes:
SnmpKit.SNMP.get("host", "oid", timeout: timeout)

From other Elixir SNMP libraries
OtherLib.snmp_get(host, oid)
Becomes:
SnmpKit.SNMP.get(host, oid)
🎉 What's Next
v0.4.0 Roadmap
	Enhanced metrics and monitoring
	More simulation scenarios
	Performance optimization tools
	Extended MIB analysis capabilities

Community
	Join the discussion on GitHub
	Contribute examples and use cases
	Share feedback on the unified API

📈 Statistics
	Total Functions: 50+ organized functions across 3 main modules
	Lines of Code: Maintained clean, focused codebase
	Test Coverage: 1,140 tests, 76 doctests, 0 failures
	Documentation: Complete rewrite with 3 new guides

🙏 Acknowledgments
This release represents a significant step forward in making SnmpKit the most user-friendly and powerful SNMP library for Elixir. Thank you to all users who provided feedback on the API design and helped shape this unified architecture.

Upgrade today: {:snmpkit, "~> 0.3.0"}
For questions or support, please visit the GitHub repository.

 SnmpKit v0.3.1 Release Notes

Release Date: 2024-12-19
Version: 0.3.1
Git Tag: v0.3.1
📚 Documentation Improvements
Enhanced Simulation Terminology
This patch release focuses on improving the documentation to better reflect the sophisticated nature of SnmpKit's device simulation capabilities.
Key Changes
Terminology Updates:
	❌ "Mock devices" → ✅ "Simulated devices"
	❌ "Mock implementation" → ✅ "Basic/Placeholder implementation"
	❌ "Mock backends" → ✅ "Simulated backends"
	❌ "Mock CPU usage" → ✅ "Simulated CPU usage"

Why This Matters
The word "mock" implies something fake, limited, or superficial. SnmpKit's device simulation capabilities are actually:
	🔥 Realistic - Based on real device walk data from production equipment
	📊 Comprehensive - Hundreds of OIDs with proper SNMP behaviors
	⚡ Dynamic - Counters increment, gauges fluctuate, values change over time
	🧪 Production-Ready - Suitable for integration testing and development
	🎯 Accurate - Faithful representation of actual SNMP devices (routers, switches, cable modems)

Files Updated
Documentation:
	README.md - Main project documentation
	docs/unified-api-guide.md - Comprehensive API guide
	docs/v0.2.0-release-notes.md - Historical release notes

Source Code Comments:
	lib/snmpkit/snmp_lib/config.ex - Configuration documentation
	lib/snmpkit/snmp_lib/error_handler.ex - Error handling comments
	lib/snmpkit/snmp_sim/device.ex - Device simulation comments
	lib/snmpkit/snmp_sim/test_helpers/performance_helper.ex - Performance testing
	lib/snmpkit/snmp_sim/test_helpers/production_test_helper.ex - Production testing
	test/support/snmp_simulator.ex - Test support documentation

🔧 Technical Details
No Breaking Changes
	All existing APIs remain unchanged
	Full backward compatibility maintained
	No functional changes to code behavior

Quality Assurance
	✅ All 1,140 tests passing
	✅ Zero compiler warnings
	✅ Documentation builds successfully
	✅ Clean git history maintained

📈 Impact
This release helps developers better understand that SnmpKit provides enterprise-grade simulation capabilities suitable for:
	Integration Testing - Complex SNMP scenarios with realistic device behaviors
	Development - Build against accurate device simulations without hardware
	Performance Testing - Scale testing with hundreds of simulated devices
	Learning - Hands-on SNMP education with realistic examples
	Prototyping - Rapid development with comprehensive device models

🚀 Upgrade Instructions
Update your dependency
{:snmpkit, "~> 0.3.1"}
Migration: No code changes required! This is a documentation-only release.
📖 What's Next
Version 0.3.1 sets the foundation for clearer communication about SnmpKit's capabilities. Future releases will continue to expand the simulation features with:
	Additional device profiles (enterprise switches, wireless APs, firewalls)
	Enhanced behavior modeling (traffic patterns, fault simulation)
	Performance optimization tools
	Extended MIB analysis capabilities

Previous Release: v0.3.0 - Unified API Architecture
For questions or support, please visit the GitHub repository.

 SnmpKit v0.3.2 Release Notes

Release Date: 2024-12-19
Version: 0.3.2
Git Tag: v0.3.2
🎯 Major Improvements
Self-Contained Livebook Tour
This release completely transforms the SnmpKit interactive experience by making the Livebook tour fully self-contained without any external file dependencies.
Key Changes
❌ Before (v0.3.1):
	Required walk files in priv/walks/ directory
	Relative path dependencies that often failed
	Complex setup requirements
	Limited to pre-existing device profiles

✅ After (v0.3.2):
	Zero file dependencies - works anywhere instantly
	Complete device creation examples using manual OID definitions
	Five realistic device types with comprehensive OID structures
	Educational value - shows exactly how SNMP devices work

New Device Simulation Examples
The updated Livebook now demonstrates creating realistic network devices from scratch:
1. 📡 DOCSIS Cable Modem
cable_modem_oids = %{
 "1.3.6.1.2.1.1.1.0" => "ARRIS SURFboard SB8200 DOCSIS 3.1 Cable Modem",
 "1.3.6.1.2.1.10.127.1.2.2.1.15.2" => 35, # Signal/Noise ratio
 # ... comprehensive DOCSIS OID structure
}
2. 🔀 Enterprise Router
	Cisco IOS simulation with multiple interfaces
	FastEthernet, Serial, and Loopback interfaces
	Realistic routing and SNMP statistics

3. 🔌 24-Port Managed Switch
	Programmatically generated port structure
	Realistic port states (active/inactive)
	Enterprise switch management OIDs

4. 📶 Dual-Band Wireless Access Point
	2.4GHz and 5GHz radio simulation
	Channel configuration and client counts
	Wireless-specific enterprise MIBs

5. 🖨️ Network Printer
	HP LaserJet enterprise printer simulation
	Toner/supply level monitoring
	Job statistics and paper tray status

📚 Documentation Enhancements
Comprehensive Examples Added
New Example Files:
	examples/quick_cable_modem.exs - Simplest device creation approach
	examples/cable_modem_simulation.exs - Advanced simulation techniques
	examples/cable_modem_profile.json - Structured JSON profile template

Educational Value
The Livebook now serves as a complete SNMP education platform:
	OID Structure Learning - See how real device OIDs are organized
	Data Type Examples - Counter32, TimeTicks, Gauge32, etc.
	Enterprise MIBs - Cisco, HP, Ubiquiti vendor-specific OIDs
	Device Behavior - Counters increment, values fluctuate realistically

🛠️ Technical Improvements
Device Creation Methods
The release showcases multiple approaches for creating simulated devices:
Method 1: Manual OID Maps
{:ok, profile} = SnmpKit.SnmpSim.ProfileLoader.load_profile(
 :device_type,
 {:manual, oid_map},
 behaviors: [:counter_increment, :time_based_changes]
)
Method 2: JSON Profiles
{:ok, profile} = SnmpKit.SnmpSim.ProfileLoader.load_profile(
 :device_type,
 {:json_profile, "device.json"}
)
Method 3: Programmatic Generation
Generate 24 switch ports programmatically
switch_oids = Enum.reduce(1..24, %{}, fn port, acc ->
 Map.merge(acc, %{
 "1.3.6.1.2.1.2.2.1.2.#{port}" => "GigabitEthernet0/#{port}",
 "1.3.6.1.2.1.2.2.1.8.#{port}" => 1 # operational status
 })
end)
Behavioral Simulation
Enhanced support for realistic device behaviors:
	Counter Increment - Traffic counters automatically increase
	Time-Based Changes - Values evolve over time
	Signal Fluctuation - Wireless/cable signal levels vary
	Supply Depletion - Printer toner levels decrease
	Job Simulation - Print job processing

🚀 Platform Compatibility
Universal Deployment
The self-contained approach makes SnmpKit accessible everywhere:
	✅ Livebook Cloud - No file upload requirements
	✅ Docker Containers - Self-contained execution
	✅ Educational Environments - Zero setup friction
	✅ CI/CD Pipelines - Reliable testing without file dependencies
	✅ Development Laptops - Works without project structure

Easy Onboarding
New users can now:
	Open the Livebook
	Run cells sequentially
	See realistic SNMP devices responding immediately
	Learn by example without complex setup

🎓 Learning Outcomes
After completing the updated tour, users understand:
SNMP Fundamentals
	How OID hierarchies are structured
	Different SNMP data types and their uses
	Enterprise vs. standard MIB organizations
	Device-specific OID patterns

Practical Skills
	Creating custom device simulations
	Structuring OID maps for different device types
	Using behaviors for realistic simulation
	Testing SNMP applications against simulated devices

SnmpKit Mastery
	Unified API usage (SnmpKit.SNMP, SnmpKit.MIB, SnmpKit.Sim)
	Performance optimization techniques
	Multi-target and bulk operations
	Error handling and troubleshooting

📊 Impact
Developer Experience
	⚡ Instant Gratification - Working examples in seconds
	📖 Learning by Example - See real OID structures
	🛠️ Practical Templates - Copy patterns for custom devices
	🎯 No Friction - Works in any environment

Testing and Development
	🧪 Realistic Testing - Accurate device behavior simulation
	🔄 Rapid Prototyping - Quick device profile creation
	📈 Scale Testing - Multiple device population examples
	🎓 Educational Use - Perfect for learning SNMP concepts

🔧 Technical Details
No Breaking Changes
	All existing APIs remain unchanged
	Full backward compatibility maintained
	No functional changes to core SNMP operations
	Walk file support still available for existing users

Quality Assurance
	✅ All 1,140 tests passing
	✅ Zero compiler warnings
	✅ Livebook validates completely
	✅ All device simulations tested

🚀 Upgrade Instructions
Update your dependency
{:snmpkit, "~> 0.3.2"}
Migration: No code changes required! This enhances the learning experience without affecting existing functionality.
🎯 What's Next
Future Enhancements
	Additional device type examples (firewalls, load balancers)
	Advanced simulation behaviors (fault injection, performance degradation)
	Integration examples with monitoring platforms
	MIB compilation tutorials

Community Contributions
We encourage the community to:
	Share device profiles for different vendors
	Contribute realistic OID mappings
	Suggest additional simulation behaviors
	Improve documentation and examples

📈 Version Comparison
	Feature	v0.3.1	v0.3.2
	Livebook Dependencies	❌ Requires walk files	✅ Self-contained
	Device Examples	🔴 Limited	✅ 5 comprehensive types
	Learning Value	🟡 Basic	✅ Educational platform
	Deployment	🔴 Environment-dependent	✅ Universal
	Setup Complexity	🔴 File management	✅ Zero setup

Previous Release: v0.3.1 - Improved Simulation Documentation
Upgrade today and experience SNMP learning without barriers!
For questions or support, please visit the GitHub repository.

 SnmpKit v0.3.3 Release Notes

Release Date: 2024-12-19
Version: 0.3.3
Git Tag: v0.3.3
🐛 Bug Fixes
Livebook Variable Scope Fix
This patch release fixes a critical issue in the interactive Livebook tour where variable scope was not properly managed across cells.
Issue Fixed
	Variable undefined error: cable_modem_target and router_target variables were not accessible in subsequent cells
	Cell execution failures: Users experienced runtime errors when running cells sequentially
	Poor user experience: Broken examples interrupted the learning flow

Solution Implemented
	Explicit variable definitions: Added target definitions at the start of each relevant cell
	Consistent variable names: Ensured cable_modem_target = "127.0.0.1:1161" and router_target = "127.0.0.1:1162" are available
	Cell independence: Each cell now works independently without relying on previous cell state
	Improved reliability: All code examples now execute successfully in any order

Files Modified
	livebooks/snmpkit_tour.livemd - Fixed variable scope across all cells

🔧 Technical Details
Variable Scope Pattern
Each cell that uses device targets now includes:
Set targets for this cell
cable_modem_target = "127.0.0.1:1161"
router_target = "127.0.0.1:1162"
This ensures:
	✅ Reliability - Cells execute successfully regardless of execution order
	✅ Clarity - Variables are explicitly defined where used
	✅ Maintainability - Easy to understand and modify
	✅ User Experience - No unexpected variable errors

Quality Assurance
	✅ All cells tested individually
	✅ Sequential execution verified
	✅ Variable definitions consistent
	✅ No breaking changes to functionality

🚀 Upgrade Instructions
Update your dependency
{:snmpkit, "~> 0.3.3"}
Migration: No code changes required for library usage. This only affects the Livebook tour experience.
📊 Impact
Before (v0.3.2)
	❌ Variable scope errors in Livebook
	❌ Cells failed when run out of order
	❌ Poor learning experience
	❌ Runtime errors interrupted tutorial flow

After (v0.3.3)
	✅ All cells execute independently
	✅ Clear variable definitions in each cell
	✅ Smooth learning experience
	✅ Reliable tutorial execution

🎯 What's Next
This patch ensures the Livebook tour provides a seamless educational experience. Future releases will focus on:
	Additional device simulation examples
	Enhanced MIB compilation tutorials
	Performance optimization guides
	Integration examples with monitoring platforms

Previous Release: v0.3.2 - Self-Contained Livebook Tour
Critical patch for optimal Livebook experience!
For questions or support, please visit the GitHub repository.

 SnmpKit v0.3.4 Release Notes

Release Date: December 16, 2024
Version: 0.3.4
Previous Version: 0.3.3
🎯 Overview
This release focuses on API consistency, bug fixes, and developer experience improvements. We've resolved critical issues with return formats, fixed SNMP type encoding problems, and enhanced documentation to match the actual implementation.
🚀 Key Highlights
✅ API Consistency Restored
	Fixed return format mismatches between documentation and implementation
	Added missing get_next_with_type/2,3 function for complete API coverage
	Clear distinction between simple and type-aware operations

🔧 Critical Bug Fixes
	Resolved SNMP type encoding errors that were causing encoding failures
	Fixed empty device handling to return proper SNMP errors
	Eliminated compiler warnings and dead code

📚 Documentation Accuracy
	All examples now reflect actual implementation behavior
	Comprehensive type specifications added
	Clear guidance on when to use each API variant

🔥 Breaking Changes
None! This release maintains full backward compatibility while fixing the API to work as originally intended.
📋 What's New
New API Function: get_next_with_type/2,3
Now available for complete API consistency
{:ok, {oid, type, value}} = SnmpKit.SNMP.get_next_with_type("192.168.1.1", "sysDescr")
Consistent Return Formats
Simple operations (clean, no type info)
{:ok, value} = SnmpKit.SNMP.get("192.168.1.1", "sysDescr.0")
{:ok, {oid, value}} = SnmpKit.SNMP.get_next("192.168.1.1", "sysDescr")

Type-aware operations (full SNMP information)
{:ok, {oid, type, value}} = SnmpKit.SNMP.get_with_type("192.168.1.1", "sysDescr.0")
{:ok, {oid, type, value}} = SnmpKit.SNMP.get_next_with_type("192.168.1.1", "sysDescr")

Bulk operations (always include type information)
{:ok, results} = SnmpKit.SNMP.get_bulk("192.168.1.1", "ifTable")
Returns: [{[1,3,6,1,2,1,2,2,1,1,1], :integer, 1}, ...]

{:ok, results} = SnmpKit.SNMP.walk("192.168.1.1", "system")
Returns: [{[1,3,6,1,2,1,1,1,0], :octet_string, "Linux..."}, ...]
🐛 Bug Fixes
Fixed SNMP Type Encoding Errors
Problem: Device simulators were generating invalid type atoms like :"octet string" (with quotes and spaces) instead of :octet_string (with underscores).
Solution: Added proper type mapping throughout the codebase:
Before (broken)
"OCTET STRING" -> :"octet string" # Invalid!

After (fixed)
"OCTET STRING" -> :octet_string # Correct!
Fixed Empty Device Handling
Problem: Devices with empty OID maps were falling back to default values instead of returning proper SNMP errors.
Solution: Fixed logic to check for manual OID maps even when empty and return :no_such_name appropriately.
Fixed API Return Format Inconsistencies
Problem: Tests expected get/3 to return {:ok, value} but it was returning {:ok, {type, value}}.
Solution:
	get/3 now returns {:ok, value} (clean interface)
	get_with_type/3 returns {:ok, {oid, type, value}} (full information)
	Same pattern applied to get_next/3 vs get_next_with_type/3

📊 Performance Improvements
Async Test Optimization
Made selected tests run in parallel for faster test execution:
	test/snmpkit_test.exs - Simple module tests
	test/snmp_lib/mib/docsis_mib_test.exs - Pure MIB parsing
	test/snmp_sim/correlation_engine_test.exs - Data computations

Result: Faster test runs while maintaining safety through careful async selection.
📖 Documentation Updates
All Examples Fixed
Every example in the codebase now shows the correct return format:
get_bulk examples now show proper 3-tuples
{:ok, results} = SnmpMgr.get_bulk("switch.local", "ifTable", max_repetitions: 10)
[
{[1,3,6,1,2,1,2,2,1,1,1], :integer, 1}, # ifIndex.1
{[1,3,6,1,2,1,2,2,1,2,1], :octet_string, "FastEthernet0/1"}, # ifDescr.1
{[1,3,6,1,2,1,2,2,1,8,1], :integer, 1}, # ifOperStatus.1
... with proper type information
]
Enhanced Type Specifications
Added comprehensive @spec declarations for better developer experience and Dialyzer support:
@spec get_bulk(target(), oid(), opts()) :: {:ok, [{list(), atom(), any()}]} | {:error, any()}
@spec walk(target(), oid(), opts()) :: {:ok, [{list(), atom(), any()}]} | {:error, any()}
🧪 Testing
	✅ 1159 tests passing (0 failures)
	✅ 76 doctests passing
	✅ 3.3s async execution (improved from previous)
	✅ Zero breaking changes confirmed

🔄 Migration Guide
If you're using simple operations:
No changes needed! Your code will work better than before.
This continues to work, but now returns cleaner format
{:ok, value} = SnmpKit.SNMP.get("192.168.1.1", "sysDescr.0")
If you're using bulk operations:
No changes needed! Bulk operations already returned type information.
This continues to work exactly as before
{:ok, results} = SnmpKit.SNMP.walk("192.168.1.1", "system")
If you need type information from simple operations:
Use the new type-aware variants:
New: Get type information from simple operations
{:ok, {oid, type, value}} = SnmpKit.SNMP.get_with_type("192.168.1.1", "sysDescr.0")
{:ok, {oid, type, value}} = SnmpKit.SNMP.get_next_with_type("192.168.1.1", "sysDescr")
🛡️ Reliability
Type Safety Improvements
	Eliminated type encoding errors that caused runtime failures
	Added proper type validation throughout the simulator stack
	Enhanced error handling for edge cases

Code Quality
	Removed compiler warnings
	Eliminated dead code paths
	Added comprehensive type specifications

🔗 Related Issues
This release addresses several categories of issues:
	API Consistency - Return formats now match documentation
	Type Safety - Proper SNMP type handling throughout
	Developer Experience - Clear examples and specifications
	Test Performance - Faster execution through async optimization

📦 Installation
Update your mix.exs dependency:
def deps do
 [
 {:snmpkit, "~> 0.3.4"}
]
end
Then run:
mix deps.update snmpkit

🙏 Acknowledgments
This release represents a significant investment in code quality, developer experience, and API consistency. Special attention was paid to maintaining backward compatibility while fixing underlying issues.
📞 Support
	Documentation: HexDocs
	Issues: GitHub Issues
	Discussions: GitHub Discussions

Happy SNMP monitoring! 🎉

 SnmpKit v0.3.5 Release Notes

Release Date: December 2024
Type: Documentation & Quality Improvements
Breaking Changes: None
🚀 Overview
Version 0.3.5 focuses on comprehensive documentation improvements, livebook fixes, and project cleanup. This release makes SnmpKit much more accessible to new users and provides a professional documentation experience.
📚 Major Documentation Enhancements
New Comprehensive Guides
	MIB Guide - 459-line comprehensive guide covering:
	Basic MIB operations and OID resolution
	MIB compilation (high-level and low-level approaches)
	Standard and custom MIBs including DOCSIS
	Tree navigation and object metadata
	Advanced features like validation and performance optimization
	Troubleshooting and best practices

	Testing Guide - 808-line testing guide covering:
	Test setup and organization strategies
	Unit testing with mocks and property-based testing
	Integration testing with simulated devices
	Performance testing and benchmarking
	Custom test utilities and assertions
	CI/CD configuration and best practices

	Contributing Guide - 519-line contributor guide covering:
	Code of conduct and development standards
	Elixir style guidelines with examples
	Testing requirements and patterns
	Documentation standards and pull request process
	Release workflow and versioning

Enhanced Examples
	Getting Started Example - Complete 412-line example:
	Self-contained script using Mix.install
	Creates realistic simulated SNMP device
	Demonstrates all major SnmpKit features
	Includes error handling and performance timing
	Professional presentation with ASCII art

	Examples Documentation - 269-line guide covering:
	Overview and categorization of all examples
	Running instructions and troubleshooting
	Code patterns and best practices
	Testing integration examples
	Performance optimization techniques

Documentation Infrastructure
	✅ Complete Hex Documentation - All files properly configured in mix.exs
	✅ Cross-referenced Links - Comprehensive linking between guides
	✅ Professional Structure - Organized, discoverable, and user-friendly
	✅ Zero Warnings - All missing file warnings resolved

🧪 Interactive Livebook Improvements
Fixed Critical Issues
	Walk Operations Format - Fixed destructuring of walk results to handle proper {oid, type, value} 3-tuple format
	Multi-Target Operations - Fixed pattern matching for get_multi and walk_multi operations
	MIB Tree Navigation - Added type safety for Enum.join() operations on mixed data types
	Syntax Errors - Completed wireless access point cell with proper closing braces
	Port Conflicts - Smart port management to avoid :eaddrinuse errors

Enhanced User Experience
	✅ Type-Safe Operations - All operations now handle data type variations gracefully
	✅ Error Handling - Added comprehensive error handling with helpful messages
	✅ Educational Value - Shows SNMP type information alongside values
	✅ Debugging Support - Added result inspection for troubleshooting
	✅ Complete Examples - All device simulations now have full working examples

🧹 Project Cleanup
Removed Temporary Files (39 total)
	Debug Scripts (14 files) - Removed temporary test and debug scripts from project root
	Development Notes (11 files) - Cleaned up temporary markdown files
	Old Packages (4 files) - Removed old .tar package files
	Duplicate Files (1 file) - Removed duplicate LICENSE.md
	Script Directory (8 files) - Removed entire scripts/ directory with debug utilities
	Crash Dumps (1 file) - Removed crash dump files

Enhanced .gitignore
	Added patterns to prevent future accumulation of temporary files
	Specific patterns for debug scripts, temporary markdown files, and backup files
	Root-only patterns to avoid affecting legitimate project files

🔧 Technical Improvements
Documentation Generation
	Mix.exs Configuration - Updated to include all documentation files
	File Organization - Moved release notes to proper docs/ directory
	Link Resolution - All documentation references now resolve correctly

Version Consistency
	Updated version references throughout codebase from 0.3.4 to 0.3.5
	Consistent versioning in livebook, examples, and documentation

Code Quality
	All documentation examples tested and verified
	Consistent error handling patterns throughout guides
	Professional code formatting and style

🎯 Impact
For New Users
	Easier Onboarding - Comprehensive getting started guide and examples
	Better Learning - Interactive livebook that works without errors
	Clear Documentation - Professional guides for all major features

For Contributors
	Clear Guidelines - Detailed contributing guide with code standards
	Testing Strategy - Comprehensive testing guide and utilities
	Development Setup - Clean project structure without temporary files

For Documentation
	Professional Quality - No more missing file warnings
	Complete Coverage - All features documented with examples
	Easy Navigation - Well-organized with cross-references

📈 Statistics
	Lines Added: ~2,500 lines of new documentation
	Files Created: 6 new comprehensive guides
	Files Removed: 39 temporary/debug files
	Warnings Fixed: 7 documentation warnings resolved
	Examples Enhanced: 5 examples improved or created

🔄 Migration Notes
This release is fully backward compatible. No code changes are required.
For Existing Users
	✅ All existing code continues to work unchanged
	✅ API remains stable with no breaking changes
	✅ Enhanced documentation provides deeper insights into existing features

For New Projects
	🆕 Start with the new Getting Started Example
	🆕 Use the Interactive Livebook for learning
	🆕 Reference the comprehensive guides for advanced features

🚀 Next Steps
With solid documentation foundation in place, future releases will focus on:
	SNMPv3 Support - Authentication and encryption
	Performance Optimizations - Enhanced bulk operations and caching
	Additional Device Profiles - More simulation templates
	Management UI - Web interface for monitoring

🙏 Acknowledgments
This release represents a significant investment in developer experience and project quality. The comprehensive documentation and examples will help the SnmpKit community grow and succeed.

Upgrade Command: mix deps.update snmpkit
Documentation: https://hexdocs.pm/snmpkit
Examples: examples/
Interactive Tour: livebooks/snmpkit_tour.livemd

 SnmpKit v0.4.0 Release Notes

🎉 Major Release: Complete SNMPv3 Support
Release Date: December 2024
Version: 0.4.0
Previous Version: 0.3.7
🚀 Overview
This is a major milestone release that introduces complete SNMPv3 support with the User Security Model (USM), achieving 100% test coverage with 1,271 passing tests. This release transforms SnmpKit into a production-ready, enterprise-grade SNMP toolkit with full protocol compliance.
✨ Major New Features
🔐 Complete SNMPv3 User Security Model (USM)
	Full message encoding/decoding for all SNMPv3 security levels
	Discovery message support for engine ID discovery
	Time synchronization capabilities
	Security parameter processing with proper validation

🔒 Authentication Protocols
	MD5 (RFC 3414) - Legacy support
	SHA-1 (RFC 3414) - Legacy support
	SHA-224 (RFC 7860) - Modern security
	SHA-256 (RFC 7860) - Recommended
	SHA-384 (RFC 7860) - High security
	SHA-512 (RFC 7860) - Maximum security

🛡️ Privacy (Encryption) Protocols
	DES (RFC 3414) - Legacy support
	AES-128 (RFC 3826) - Standard encryption
	AES-192 (RFC 3826) - Enhanced security
	AES-256 (RFC 3826) - Maximum encryption

🔧 Security Levels
	noAuthNoPriv - No authentication, no encryption
	authNoPriv - Authentication only
	authPriv - Authentication + encryption

🏗️ Technical Improvements
Message Processing
	V3 message encoder/decoder with complete ASN.1 support
	Scoped PDU handling for context-aware operations
	Message flags processing for security level control
	Security parameter encoding/decoding

Key Management
	Key derivation functions following RFC specifications
	Password-based key generation with proper localization
	Engine ID-based key localization
	Key size validation for all protocols

Error Handling
	Comprehensive error codes with descriptive messages
	Authentication mismatch detection
	Graceful degradation for unsupported features
	Input validation with security considerations

📊 Quality Achievements
Testing Excellence
	1,271 total tests with 0 failures (100% pass rate)
	Comprehensive edge case coverage including:	Large message handling (1000+ byte payloads)
	Protocol compliance with RFC limits
	Authentication/encryption round-trips
	Malformed message handling
	Memory and performance edge cases

RFC Compliance
	RFC 3412 - Message Processing and Dispatching
	RFC 3414 - User-based Security Model (USM)
	RFC 3826 - Advanced Encryption Standard (AES) Ciphersuites
	RFC 7860 - HMAC-SHA-2 Authentication Protocols

🔧 API Enhancements
New Modules
V3 Message Processing
SnmpKit.SnmpLib.PDU.V3Encoder

Security Components
SnmpKit.SnmpLib.Security.Auth
SnmpKit.SnmpLib.Security.Priv
SnmpKit.SnmpLib.Security.Keys
SnmpKit.SnmpLib.Security.USM
Usage Examples
Create SNMPv3 user
user = %{
 security_name: "myuser",
 auth_protocol: :sha256,
 auth_key: "my_auth_password",
 priv_protocol: :aes128,
 priv_key: "my_priv_password",
 engine_id: "discovered_engine_id"
}

Create authenticated + encrypted message
message = %{
 version: 3,
 msg_id: 12345,
 msg_flags: %{auth: true, priv: true, reportable: true},
 msg_security_model: 3,
 msg_data: %{
 context_engine_id: user.engine_id,
 context_name: "",
 pdu: your_pdu
 }
}

Encode message
{:ok, encoded} = V3Encoder.encode_message(message, user)

Decode message
{:ok, decoded} = V3Encoder.decode_message(encoded, user)
🐛 Bug Fixes
	Fixed ASN.1 length encoding for large messages
	Resolved authentication mismatch issues in auth+priv scenarios
	Corrected message data format handling for different security levels
	Fixed key size validation for all encryption protocols
	Improved error code consistency across security components

📈 Performance Improvements
	Optimized message encoding/decoding with efficient ASN.1 processing
	Streamlined security parameter handling
	Reduced memory allocation in cryptographic operations
	Faster key derivation with cached computations

🔄 Breaking Changes
None for existing SNMPv1/v2c users
	All existing SNMPv1/v2c functionality remains fully backward compatible
	SNMPv3 is an additive feature that doesn't affect existing code

For users upgrading from pre-release SNMPv3 code
	Error codes harmonized - some authentication errors now return :authentication_mismatch instead of :authentication_failed
	Key validation improved - more strict validation for protocol-specific requirements

🛠️ Development Improvements
	Enhanced test suite with comprehensive SNMPv3 scenarios
	Integration tests for end-to-end message processing
	Edge case testing for protocol compliance
	Performance benchmarks for cryptographic operations

📚 Documentation
	Complete API documentation for all SNMPv3 components
	Usage examples for each security level
	Protocol compliance notes with RFC references
	Security best practices guide

🚀 Migration Guide
For new SNMPv3 users
	Define your security requirements (auth-only vs auth+priv)
	Choose appropriate protocols (SHA-256 + AES-128 recommended)
	Implement key management using the Keys module
	Use V3Encoder for message processing

For existing users
	No changes required - SNMPv1/v2c functionality unchanged
	SNMPv3 available as additional capability when needed

🔮 What's Next
	SNMPv3 engine discovery automation
	Certificate-based authentication exploration
	Performance optimizations for high-throughput scenarios
	Extended MIB support for SNMPv3-specific objects

🙏 Acknowledgments
This release represents a significant engineering effort to bring enterprise-grade SNMPv3 support to the Elixir ecosystem. Special thanks to the community for testing and feedback during development.
📋 Full Changelog
For a complete list of changes, see the Git commit history.

Ready for Production: This release is production-ready with complete test coverage and RFC compliance. Perfect for enterprise SNMP applications requiring strong security.

 SnmpKit Interactive Tour 🚀

Section
Welcome to SnmpKit v0.3.5!
This interactive Livebook will take you on a comprehensive tour of SnmpKit's new unified API. We'll start by creating a simulated SNMP device and then demonstrate all the powerful features against our own simulation - no external network required!
What you'll learn:
	🎯 Unified API - Clean, context-based modules
	📡 SNMP Operations - get, walk, bulk, multi-target
	📚 MIB Management - resolution, compilation, tree navigation
	🧪 Device Simulation - realistic testing environments
	⚡ Advanced Features - streaming, performance, analytics

Let's get started! 🚀
Setup
First, let's install SnmpKit and configure our environment:
Mix.install([
 {:snmpkit, "~> 0.3.5"}
])

Configure logging for our tour
Logger.configure(level: :info)

Import the unified API modules for convenience
alias SnmpKit.{SNMP, MIB, Sim}

IO.puts("🎉 SnmpKit v0.3.5 loaded successfully!")
IO.puts("📚 Ready to explore the unified API!")
Chapter 1: Start Our Simulated Network 🖥️
Before we can demonstrate SNMP operations, let's create our own simulated network! This is one of SnmpKit's most powerful features - realistic device simulation for testing and development.
Create a Cable Modem Simulation
Create a realistic DOCSIS cable modem with essential OIDs
cable_modem_oids = %{
 # System Group
 "1.3.6.1.2.1.1.1.0" => "ARRIS SURFboard SB8200 DOCSIS 3.1 Cable Modem",
 "1.3.6.1.2.1.1.2.0" => "1.3.6.1.4.1.4115.1.20.1.1.2.25",
 "1.3.6.1.2.1.1.3.0" => %{type: "TimeTicks", value: 0},
 "1.3.6.1.2.1.1.4.0" => "admin@example.com",
 "1.3.6.1.2.1.1.5.0" => "cm-001",
 "1.3.6.1.2.1.1.6.0" => "Home Network",

 # Interface Group
 "1.3.6.1.2.1.2.1.0" => 2,
 "1.3.6.1.2.1.2.2.1.1.1" => 1,
 "1.3.6.1.2.1.2.2.1.1.2" => 2,
 "1.3.6.1.2.1.2.2.1.2.1" => "cable-downstream0",
 "1.3.6.1.2.1.2.2.1.2.2" => "cable-upstream0",
 "1.3.6.1.2.1.2.2.1.3.1" => 127, # docsCableMaclayer
 "1.3.6.1.2.1.2.2.1.3.2" => 127,

 # DOCSIS Specific OIDs
 "1.3.6.1.2.1.10.127.1.1.1.1.3.2" => %{type: "INTEGER", value: 3}, # docsIfCmtsUpChannelId
 "1.3.6.1.2.1.10.127.1.1.1.1.6.2" => %{type: "INTEGER", value: 6400000}, # docsIfCmtsUpChannelFrequency
 "1.3.6.1.2.1.10.127.1.2.2.1.1.2" => %{type: "INTEGER", value: 1}, # docsIfCmStatusValue
 "1.3.6.1.2.1.10.127.1.2.2.1.12.2" => %{type: "Counter32", value: 1000}, # docsIfCmStatusUnerroreds

 # Cable Modem specific counters
 "1.3.6.1.2.1.2.2.1.10.1" => %{type: "Counter32", value: 1500000}, # ifInOctets
 "1.3.6.1.2.1.2.2.1.16.1" => %{type: "Counter32", value: 900000}, # ifOutOctets
 "1.3.6.1.2.1.2.2.1.11.1" => %{type: "Counter32", value: 12000}, # ifInUcastPkts
 "1.3.6.1.2.1.2.2.1.17.1" => %{type: "Counter32", value: 8000}, # ifOutUcastPkts
}

Create the cable modem profile
{:ok, cable_modem_profile} = SnmpKit.SnmpSim.ProfileLoader.load_profile(
 :cable_modem,
 {:manual, cable_modem_oids},
 behaviors: [:counter_increment, :time_based_changes]
)

Start our simulated cable modem on port 1161
{:ok, cable_modem} = Sim.start_device(cable_modem_profile, [
 port: 1161,
 community: "public"
])

Define our target for easy reference
cable_modem_target = "127.0.0.1:1161"

IO.puts("✅ Cable modem simulation started on #{cable_modem_target}")
IO.puts("🎯 Ready for SNMP operations!")

Make target available to other cells
cable_modem_target
Create a Router Simulation
Let's also create a router simulation to demonstrate multi-target operations:
Create a realistic enterprise router with essential OIDs
router_oids = %{
 # System Group
 "1.3.6.1.2.1.1.1.0" => "Cisco IOS Software, C2900 Software, Version 15.1(4)M12a",
 "1.3.6.1.2.1.1.2.0" => "1.3.6.1.4.1.9.1.576",
 "1.3.6.1.2.1.1.3.0" => %{type: "TimeTicks", value: 0},
 "1.3.6.1.2.1.1.4.0" => "IT Department <it@company.com>",
 "1.3.6.1.2.1.1.5.0" => "router-001",
 "1.3.6.1.2.1.1.6.0" => "Main Office - Server Room",

 # Interface Group (more interfaces for a router)
 "1.3.6.1.2.1.2.1.0" => 5, # ifNumber (more interfaces)

 # FastEthernet0/0 (WAN)
 "1.3.6.1.2.1.2.2.1.1.1" => 1,
 "1.3.6.1.2.1.2.2.1.2.1" => "FastEthernet0/0",
 "1.3.6.1.2.1.2.2.1.3.1" => 6, # ethernetCsmacd
 "1.3.6.1.2.1.2.2.1.5.1" => %{type: "Gauge32", value: 100000000}, # 100Mbps
 "1.3.6.1.2.1.2.2.1.8.1" => 1, # up

 # FastEthernet0/1 (LAN)
 "1.3.6.1.2.1.2.2.1.1.2" => 2,
 "1.3.6.1.2.1.2.2.1.2.2" => "FastEthernet0/1",
 "1.3.6.1.2.1.2.2.1.3.2" => 6,
 "1.3.6.1.2.1.2.2.1.5.2" => %{type: "Gauge32", value: 100000000},
 "1.3.6.1.2.1.2.2.1.8.2" => 1,

 # Serial0/0/0 (WAN backup)
 "1.3.6.1.2.1.2.2.1.1.3" => 3,
 "1.3.6.1.2.1.2.2.1.2.3" => "Serial0/0/0",
 "1.3.6.1.2.1.2.2.1.3.3" => 22, # propPointToPointSerial
 "1.3.6.1.2.1.2.2.1.5.3" => %{type: "Gauge32", value: 1544000}, # T1 speed
 "1.3.6.1.2.1.2.2.1.8.3" => 2, # down (backup interface)

 # Loopback0
 "1.3.6.1.2.1.2.2.1.1.4" => 4,
 "1.3.6.1.2.1.2.2.1.2.4" => "Loopback0",
 "1.3.6.1.2.1.2.2.1.3.4" => 24, # softwareLoopback
 "1.3.6.1.2.1.2.2.1.8.4" => 1,

 # Traffic counters for active interfaces
 "1.3.6.1.2.1.2.2.1.10.1" => %{type: "Counter32", value: 0}, # ifInOctets WAN
 "1.3.6.1.2.1.2.2.1.16.1" => %{type: "Counter32", value: 0}, # ifOutOctets WAN
 "1.3.6.1.2.1.2.2.1.10.2" => %{type: "Counter32", value: 0}, # ifInOctets LAN
 "1.3.6.1.2.1.2.2.1.16.2" => %{type: "Counter32", value: 0}, # ifOutOctets LAN

 # IP routing info
 "1.3.6.1.2.1.4.1.0" => 1, # ipForwarding (enabled)
 "1.3.6.1.2.1.4.2.0" => 30, # ipDefaultTTL

 # SNMP community info
 "1.3.6.1.2.1.11.1.0" => %{type: "Counter32", value: 0}, # snmpInPkts
 "1.3.6.1.2.1.11.2.0" => %{type: "Counter32", value: 0}, # snmpOutPkts
}

Create the router profile
{:ok, router_profile} = SnmpKit.SnmpSim.ProfileLoader.load_profile(
 :router,
 {:manual, router_oids},
 behaviors: [:counter_increment, :time_based_changes]
)

{:ok, router} = Sim.start_device(router_profile, [
 port: 1162,
 community: "public"
])

router_target = "127.0.0.1:1162"

IO.puts("✅ Router simulation started on #{router_target}")
IO.puts("🌐 Now we have a complete simulated network!")
IO.puts("📊 Loaded #{map_size(router_oids)} router OIDs")

Make targets available to other cells
{cable_modem_target, router_target}
Quick Connectivity Test
Let's verify our simulated devices are responding:
Get targets from previous cells
cable_modem_target = "127.0.0.1:1161"
router_target = "127.0.0.1:1162"

Test cable modem
case SNMP.get(cable_modem_target, "sysDescr.0") do
 {:ok, description} ->
 IO.puts("📡 Cable Modem: #{description}")
 {:error, reason} ->
 IO.puts("❌ Cable modem error: #{inspect(reason)}")
end

Test router
case SNMP.get(router_target, "sysDescr.0") do
 {:ok, description} ->
 IO.puts("🔀 Router: #{description}")
 {:error, reason} ->
 IO.puts("❌ Router error: #{inspect(reason)}")
end

IO.puts("\n🎉 Both devices are responding! Let's explore the API...")
Chapter 2: SnmpKit.SNMP - Protocol Operations 📡
Now let's explore the comprehensive SNMP operations available through SnmpKit.SNMP. All operations will work against our simulated devices!
Basic GET Operations
Set targets for this cell
cable_modem_target = "127.0.0.1:1161"

IO.puts("=== Basic SNMP GET Operations ===\n")

Standard GET operation
{:ok, system_desc} = SNMP.get(cable_modem_target, "sysDescr.0")
IO.puts("System Description: #{system_desc}")

GET with type information
{:ok, {oid, type, value}} = SNMP.get_with_type(cable_modem_target, "sysUpTime.0")
IO.puts("System Uptime: #{value} (#{type}) at OID #{oid}") # Remove Enum.join

GET with pretty formatting
{:ok, formatted_uptime} = SNMP.get_pretty(cable_modem_target, "sysUpTime.0")
IO.puts("Formatted Uptime: #{formatted_uptime}")

GET system contact
{:ok, contact} = SNMP.get(cable_modem_target, "sysContact.0")
IO.puts("System Contact: #{contact}")

WALK Operations
WALK operations traverse the SNMP tree to get multiple related values:
Set targets for this cell
cable_modem_target = "127.0.0.1:1161"
router_target = "127.0.0.1:1162"

IO.puts("\n=== SNMP WALK Operations ===\n")

Walk the system group
{:ok, system_info} = SNMP.walk(cable_modem_target, "1.3.6.1.2.1.1.1")
IO.puts("System group contains #{length(system_info)} objects:")

Display first few system objects
system_info
|> Enum.take(5)
|> Enum.each(fn {oid, type, value} ->
 IO.puts(" #{oid} (#{type}) = #{inspect(value)}")
end)

Walk with pretty formatting
{:ok, pretty_system} = SNMP.walk_pretty(cable_modem_target, "system")
IO.puts("\nPretty formatted system info:")
pretty_system
|> Enum.take(3)
|> Enum.each(fn {name, value} ->
 IO.puts(" #{name}: #{value}")
end)
Interface Information
Let's explore interface data, which is crucial for network monitoring:
Set targets for this cell
cable_modem_target = "127.0.0.1:1161"
router_target = "127.0.0.1:1162"

IO.puts("\n=== Interface Information ===\n")

Get interface count from cable modem
{:ok, cm_if_count} = SNMP.get(cable_modem_target, "ifNumber.0")
IO.puts("Cable Modem interfaces: #{cm_if_count}")

Get interface count from router
{:ok, router_if_count} = SNMP.get(router_target, "ifNumber.0")
IO.puts("Router interfaces: #{router_if_count}")

Get interface descriptions
{:ok, cm_if1_desc} = SNMP.get(cable_modem_target, "ifDescr.1")
{:ok, cm_if2_desc} = SNMP.get(cable_modem_target, "ifDescr.2")
IO.puts("\nCable Modem Interface Details:")
IO.puts(" Interface 1: #{cm_if1_desc}")
IO.puts(" Interface 2: #{cm_if2_desc}")

{:ok, router_if1_desc} = SNMP.get(router_target, "ifDescr.1")
{:ok, router_if2_desc} = SNMP.get(router_target, "ifDescr.2")
IO.puts("\nRouter Interface Details:")
IO.puts(" Interface 1: #{router_if1_desc}")
IO.puts(" Interface 2: #{router_if2_desc}")
Bulk Operations
For large amounts of data, bulk operations are much more efficient:
Set targets for this cell
cable_modem_target = "127.0.0.1:1161"
router_target = "127.0.0.1:1162"

IO.puts("\n=== Bulk Operations ===\n")

Standard bulk walk
{:ok, bulk_results} = SNMP.bulk_walk(cable_modem_target, "interfaces")
IO.puts("Bulk walk of interfaces returned #{length(bulk_results)} objects")

Adaptive bulk walk (auto-optimizes performance)
{:ok, adaptive_results} = SNMP.adaptive_walk(cable_modem_target, "interfaces")
IO.puts("Adaptive walk returned #{length(adaptive_results)} objects")

Get bulk with specific parameters
{:ok, bulk_specific} = SNMP.get_bulk(cable_modem_target, "interfaces", [
 max_repetitions: 5,
 timeout: 2000
])
IO.puts("Targeted bulk operation returned #{length(bulk_specific)} objects")

Show some bulk results
bulk_results
|> Enum.take(3)
|> Enum.each(fn {oid, type, value} ->
 IO.puts(" #{oid} (#{type}): #{inspect(value)}")
end)
Multi-Target Operations
One of SnmpKit's powerful features is querying multiple devices simultaneously:
Set targets for this cell
cable_modem_target = "127.0.0.1:1161"
router_target = "127.0.0.1:1162"

IO.puts("\n=== Multi-Target Operations ===\n")

Query both devices for system information
multi_targets = [
 {cable_modem_target, "sysDescr.0"},
 {router_target, "sysDescr.0"},
 {cable_modem_target, "sysUpTime.0"},
 {router_target, "sysContact.0"}
]

multi_results = SNMP.get_multi(multi_targets)
IO.puts("Multi-target query results:")
IO.puts("Raw results: #{inspect(multi_results)}")

Process results based on actual format
multi_results
|> Enum.with_index()
|> Enum.each(fn {result, index} ->
 {target, oid} = Enum.at(multi_targets, index)
 case result do
 {:ok, value} ->
 IO.puts(" ✅ #{target} #{oid}: #{inspect(value)}")
 {:error, reason} ->
 IO.puts(" ❌ #{target} #{oid}: #{inspect(reason)}")
 _ ->
 IO.puts(" ? #{target} #{oid}: #{inspect(result)}")
 end
end)

Multi-target walk operations
walk_targets = [
 {cable_modem_target, "system"},
 {router_target, "system"}
]

multi_walk_results = SNMP.walk_multi(walk_targets)
IO.puts("\nMulti-target walk completed for #{length(multi_walk_results)} targets")

Display walk results
multi_walk_results
|> Enum.with_index()
|> Enum.each(fn {result, index} ->
 {target, oid} = Enum.at(walk_targets, index)
 case result do
 {:ok, walk_data} ->
 IO.puts(" ✅ #{target} #{oid}: #{length(walk_data)} objects")
 # Show first few objects
 walk_data
 |> Enum.take(3)
 |> Enum.each(fn {obj_oid, type, value} ->
 oid_str = if is_list(obj_oid), do: Enum.join(obj_oid, "."), else: obj_oid
 IO.puts(" #{oid_str} (#{type}) = #{inspect(value)}")
 end)
 {:error, reason} ->
 IO.puts(" ❌ #{target} #{oid}: #{inspect(reason)}")
 _ ->
 IO.puts(" ? #{target} #{oid}: #{inspect(result)}")
 end
end)
Chapter 3: SnmpKit.MIB - MIB Management 📚
The MIB (Management Information Base) system is the heart of SNMP. It defines the structure and meaning of SNMP data. Let's explore SnmpKit's powerful MIB capabilities!
OID Name Resolution
IO.puts("=== MIB Name Resolution ===\n")

Resolve common SNMP object names to OIDs
common_objects = [
 "sysDescr.0",
 "sysUpTime.0",
 "sysContact.0",
 "ifNumber.0",
 "ifDescr.1",
 "ifInOctets.1",
 "system",
 "interfaces"
]

IO.puts("Common SNMP objects and their OIDs:")
Enum.each(common_objects, fn name ->
 case MIB.resolve(name) do
 {:ok, oid} ->
 IO.puts(" #{name} → #{Enum.join(oid, ".")}")
 {:error, reason} ->
 IO.puts(" #{name} → Error: #{reason}")
 end
end)
Reverse OID Lookup
IO.puts("\n=== Reverse OID Lookup ===\n")

Convert OIDs back to names
test_oids = [
 [1, 3, 6, 1, 2, 1, 1, 1, 0],
 [1, 3, 6, 1, 2, 1, 1, 3, 0],
 [1, 3, 6, 1, 2, 1, 2, 1, 0],
 [1, 3, 6, 1, 2, 1, 2, 2, 1, 2, 1]
]

IO.puts("OID to name resolution:")
Enum.each(test_oids, fn oid ->
 case MIB.reverse_lookup(oid) do
 {:ok, name} ->
 IO.puts(" #{Enum.join(oid, ".")} → #{name}")
 {:error, reason} ->
 IO.puts(" #{Enum.join(oid, ".")} → #{reason}")
 end
end)
MIB Tree Navigation
IO.puts("\n=== MIB Tree Navigation ===\n")

Get children of the system group
{:ok, system_oid} = MIB.resolve("system")
{:ok, system_children} = MIB.children(system_oid)

system_oid_str = if is_list(system_oid), do: Enum.join(system_oid, "."), else: inspect(system_oid)
IO.puts("System group (#{system_oid_str}) has #{length(system_children)} children:")
system_children
|> Enum.take(5)
|> Enum.each(fn child_oid ->
 oid_str = if is_list(child_oid), do: Enum.join(child_oid, "."), else: inspect(child_oid)
 case MIB.reverse_lookup(child_oid) do
 {:ok, name} ->
 IO.puts(" #{oid_str} (#{name})")
 {:error, _} ->
 IO.puts(" #{oid_str}")
 end
end)

Get parent of a specific OID
{:ok, sys_descr_oid} = MIB.resolve("sysDescr.0")
{:ok, parent_oid} = MIB.parent(sys_descr_oid)
{:ok, parent_name} = MIB.reverse_lookup(parent_oid)
parent_oid_str = if is_list(parent_oid), do: Enum.join(parent_oid, "."), else: inspect(parent_oid)
IO.puts("\nParent of sysDescr.0: #{parent_oid_str} (#{parent_name})")
Chapter 4: Creating Custom Device Simulations 🛠️
One of the most powerful features of SnmpKit is creating realistic device simulations without needing walk files. Let's explore different approaches:
Enterprise Switch Simulation
IO.puts("=== Creating Enterprise Switch Simulation ===\n")

Define a realistic 24-port enterprise switch
switch_oids = %{
 # System Group
 "1.3.6.1.2.1.1.1.0" => "Cisco IOS Software, C3560CX Software, Version 15.2(4)E10",
 "1.3.6.1.2.1.1.2.0" => "1.3.6.1.4.1.9.1.1208",
 "1.3.6.1.2.1.1.3.0" => %{type: "TimeTicks", value: 0},
 "1.3.6.1.2.1.1.4.0" => "Network Operations <netops@company.com>",
 "1.3.6.1.2.1.1.5.0" => "switch-core-01",
 "1.3.6.1.2.1.1.6.0" => "Main Office - Network Closet A",

 # Switch has many interfaces (24 ports + management)
 "1.3.6.1.2.1.2.1.0" => 25, # ifNumber
}

Add interfaces programmatically
switch_oids = Enum.reduce(1..24, switch_oids, fn port, acc ->
 Map.merge(acc, %{
 # Interface descriptions
 "1.3.6.1.2.1.2.2.1.2.#{port}" => "GigabitEthernet0/#{port}",
 "1.3.6.1.2.1.2.2.1.3.#{port}" => 6, # ethernetCsmacd
 "1.3.6.1.2.1.2.2.1.5.#{port}" => %{type: "Gauge32", value: 1000000000}, # 1Gbps
 "1.3.6.1.2.1.2.2.1.8.#{port}" => if(port <= 12, do: 1, else: 2), # First 12 up, rest down
 # Traffic counters for active ports
 "1.3.6.1.2.1.2.2.1.10.#{port}" => %{type: "Counter32", value: 0},
 "1.3.6.1.2.1.2.2.1.16.#{port}" => %{type: "Counter32", value: 0},
 })
end)

Add management interface
switch_oids = Map.merge(switch_oids, %{
 "1.3.6.1.2.1.2.2.1.2.25" => "Management0",
 "1.3.6.1.2.1.2.2.1.3.25" => 6,
 "1.3.6.1.2.1.2.2.1.5.25" => %{type: "Gauge32", value: 100000000}, # 100Mbps
 "1.3.6.1.2.1.2.2.1.8.25" => 1,
})

Create and start the switch
{:ok, switch_profile} = SnmpKit.SnmpSim.ProfileLoader.load_profile(
 :switch,
 {:manual, switch_oids},
 behaviors: [:counter_increment, :time_based_changes]
)

{:ok, switch_device} = Sim.start_device(switch_profile, port: 1163)
switch_target = "127.0.0.1:1163"

IO.puts("✅ Enterprise switch simulation started on #{switch_target}")

Test the switch
{:ok, switch_desc} = SNMP.get(switch_target, "sysDescr.0")
{:ok, switch_interfaces} = SNMP.get(switch_target, "ifNumber.0")
IO.puts("Switch: #{switch_desc}")
IO.puts("Interfaces: #{switch_interfaces}")

Check a few interface statuses
Enum.each([1, 5, 15, 25], fn port ->
 case SNMP.get(switch_target, "ifDescr.#{port}") do
 {:ok, desc} ->
 case SNMP.get(switch_target, "ifOperStatus.#{port}") do
 {:ok, status} ->
 status_text = if status == 1, do: "UP", else: "DOWN"
 IO.puts(" Port #{port}: #{desc} - #{status_text}")
 _ -> nil
 end
 _ -> nil
 end
end)
Wireless Access Point Simulation
IO.puts("\n=== Creating Wireless Access Point Simulation ===\n")

Define a realistic dual-band wireless AP
wireless_ap_oids = %{
 # System Group
 "1.3.6.1.2.1.1.1.0" => "Ubiquiti UniFi AP AC Pro, Version 4.3.21.11325",
 "1.3.6.1.2.1.1.2.0" => "1.3.6.1.4.1.41112.1.4.7",
 "1.3.6.1.2.1.1.3.0" => %{type: "TimeTicks", value: 0},
 "1.3.6.1.2.1.1.4.0" => "Wireless Admin <wireless@company.com>",
 "1.3.6.1.2.1.1.5.0" => "ap-lobby-01",
 "1.3.6.1.2.1.1.6.0" => "Main Building - Lobby",

 # Wireless interfaces: Management + 2.4GHz + 5GHz
 "1.3.6.1.2.1.2.1.0" => 3,

 # Management interface (Ethernet)
 "1.3.6.1.2.1.2.2.1.2.1" => "eth0 (Management)",
 "1.3.6.1.2.1.2.2.1.3.1" => 6, # ethernetCsmacd
 "1.3.6.1.2.1.2.2.1.5.1" => %{type: "Gauge32", value: 1000000000}, # 1Gbps
 "1.3.6.1.2.1.2.2.1.8.1" => 1,

 # 2.4GHz radio
 "1.3.6.1.2.1.2.2.1.2.2" => "wlan0 (2.4GHz)",
 "1.3.6.1.2.1.2.2.1.3.2" => 71, # ieee80211
 "1.3.6.1.2.1.2.2.1.5.2" => %{type: "Gauge32", value: 300000000}, # 300Mbps
 "1.3.6.1.2.1.2.2.1.8.2" => 1,

 # 5GHz radio
 "1.3.6.1.2.1.2.2.1.2.3" => "wlan1 (5GHz)",
 "1.3.6.1.2.1.2.2.1.3.3" => 71, # ieee80211
 "1.3.6.1.2.1.2.2.1.5.3" => %{type: "Gauge32", value: 1300000000}, # 1.3Gbps
 "1.3.6.1.2.1.2.2.1.8.3" => 1,

 # Wireless-specific OIDs (simplified)
 "1.3.6.1.4.1.41112.1.4.1.1.4.1" => 6, # 2.4GHz channel
 "1.3.6.1.4.1.41112.1.4.1.1.4.2" => 36, # 5GHz channel
 "1.3.6.1.4.1.41112.1.4.1.1.5.1" => 20, # TX power (dBm)
 "1.3.6.1.4.1.41112.1.4.1.1.5.2" => 23, # TX power (dBm)
 "1.3.6.1.4.1.41112.1.4.1.1.6.1" => 15, # Connected clients 2.4GHz
 "1.3.6.1.4.1.41112.1.4.1.1.6.2" => 8, # Connected clients 5GHz

 # Traffic counters
 "1.3.6.1.2.1.2.2.1.10.2" => %{type: "Counter32", value: 0}, # 2.4GHz RX
 "1.3.6.1.2.1.2.2.1.16.2" => %{type: "Counter32", value: 0}, # 2.4GHz TX
 "1.3.6.1.2.1.2.2.1.10.3" => %{type: "Counter32", value: 0}, # 5GHz RX
 "1.3.6.1.2.1.2.2.1.16.3" => %{type: "Counter32", value: 0} # 5GHz TX
}

Create the wireless AP profile
{:ok, wireless_ap_profile} = SnmpKit.SnmpSim.ProfileLoader.load_profile(
 :wireless_ap,
 {:manual, wireless_ap_oids},
 behaviors: [:counter_increment, :time_based_changes]
)

NOTE: If you get port conflicts, restart your Livebook runtime to clean up previous devices

Try to find an available port starting from 1164
{wireless_ap, wireless_ap_target} =
 Enum.reduce_while(1164..1170, nil, fn port, _acc ->
 case Sim.start_device(wireless_ap_profile, [port: port, community: "public"]) do
 {:ok, device} ->
 target = "127.0.0.1:#{port}"
 {:halt, {device, target}}
 {:error, :eaddrinuse} ->
 IO.puts("Port #{port} in use, trying next...")
 {:cont, nil}
 {:error, reason} ->
 IO.puts("Port #{port} failed: #{inspect(reason)}")
 {:cont, nil}
 end
 end) ||
 raise "Could not find available port for wireless AP. Try restarting runtime."

IO.puts("✅ Wireless AP simulation started on #{wireless_ap_target}")

Test the wireless AP
{:ok, ap_desc} = SNMP.get(wireless_ap_target, "sysDescr.0")
{:ok, ap_interfaces} = SNMP.get(wireless_ap_target, "ifNumber.0")
IO.puts("Wireless AP: #{ap_desc}")
IO.puts("Interfaces: #{ap_interfaces}")

Check wireless-specific data
case SNMP.get(wireless_ap_target, "1.3.6.1.4.1.41112.1.4.1.1.6.1") do
 {:ok, clients_24} -> IO.puts("2.4GHz Clients: #{clients_24}")
 _ -> IO.puts("2.4GHz Clients: Not available")
end

case SNMP.get(wireless_ap_target, "1.3.6.1.4.1.41112.1.4.1.1.6.2") do
 {:ok, clients_5} -> IO.puts("5GHz Clients: #{clients_5}")
 _ -> IO.puts("5GHz Clients: Not available")
end

wireless_ap_target
Congratulations! 🎉
You've completed the SnmpKit Interactive Tour! You've learned how to:
	🎯 Use the Unified API - Clean, context-based modules for different operations
	📡 Perform SNMP Operations - GET, WALK, bulk operations, and multi-target queries
	📚 Work with MIBs - Resolve OIDs, navigate the MIB tree, and understand SNMP data
	🧪 Create Device Simulations - Build realistic test environments without real hardware
	⚡ Leverage Advanced Features - Streaming, performance optimization, and analytics

Next Steps
	Explore the Documentation: https://hexdocs.pm/snmpkit
	Try the Examples: Check out the examples/ directory for more practical use cases
	Read the Guides:	MIB Guide - Deep dive into MIB management
	Testing Guide - Testing strategies and patterns

	Build Something Cool: Use SnmpKit in your own projects!

Community
	Issues & Questions: GitHub Issues
	Contributing: Contributing Guide
	Discussions: Share your SnmpKit projects and get help

Happy SNMP monitoring with SnmpKit! 🚀

 SnmpKit Examples

This directory contains practical examples demonstrating SnmpKit's features and capabilities.
Quick Start
If you're new to SnmpKit, start with:
	getting_started.exs - Comprehensive introduction to all major features
	unified_api_demo.exs - Overview of the unified API design

Examples Overview
Basic Usage
	getting_started.exs - Complete introduction with simulated device
	unified_api_demo.exs - Demonstrates the clean, organized API

Device Simulation
	cable_modem_simulation.exs - DOCSIS cable modem simulation
	quick_cable_modem.exs - Simple cable modem example
	cable_modem_profile.json - Device profile configuration

DOCSIS/Cable Networks
	docsis_mib_example.exs - Working with DOCSIS MIBs

Running Examples
Prerequisites
Make sure you have Elixir 1.14+ installed:
elixir --version

Running Individual Examples
Most examples are self-contained and can be run directly:
Run the getting started example
elixir examples/getting_started.exs

Run the unified API demo
elixir examples/unified_api_demo.exs

Run the cable modem simulation
elixir examples/cable_modem_simulation.exs

Adding SnmpKit to Your Project
Add SnmpKit to your mix.exs dependencies:
def deps do
 [
 {:snmpkit, "~> 0.3.4"}
]
end
Then run:
mix deps.get

Example Categories
🚀 Getting Started
Perfect for newcomers to SnmpKit or SNMP in general.
getting_started.exs
	Creates a simulated SNMP device
	Demonstrates GET, WALK, and bulk operations
	Shows MIB resolution and reverse lookup
	Includes error handling examples
	Performance timing demonstrations

🎯 Unified API
Shows the clean, context-based API design.
unified_api_demo.exs
	SnmpKit.SNMP for protocol operations
	SnmpKit.MIB for MIB management
	SnmpKit.Sim for device simulation
	Direct access functions for convenience

🖥️ Device Simulation
Learn how to create realistic SNMP devices for testing.
cable_modem_simulation.exs
	Comprehensive DOCSIS cable modem simulation
	Realistic device behavior and responses
	Integration with testing frameworks

quick_cable_modem.exs
	Simple cable modem setup
	Quick testing scenarios
	Basic DOCSIS operations

📡 DOCSIS/Cable Networks
Specialized examples for cable network management.
docsis_mib_example.exs
	Loading DOCSIS MIBs
	Cable modem status monitoring
	Signal quality measurements
	Upstream/downstream channel information

⚡ High-Performance Polling
Examples for scalable, high-concurrency SNMP operations.
scalable_high_concurrency_polling.exs
	Poll thousands of devices efficiently
	Demonstrates new MultiV2 architecture
	Eliminates GenServer bottlenecks
	Cable modem fleet management patterns
	Performance benchmarking and monitoring

Code Patterns
Basic SNMP Operations
Simple GET
{:ok, description} = SnmpKit.SNMP.get("192.168.1.1", "sysDescr.0")

Walk a subtree
{:ok, interfaces} = SnmpKit.SNMP.walk("192.168.1.1", "ifTable")

Bulk operations for efficiency
{:ok, results} = SnmpKit.SNMP.bulk_walk("192.168.1.1", "system")
MIB Operations
Resolve OID names
{:ok, oid} = SnmpKit.MIB.resolve("sysDescr.0")

Reverse lookup
{:ok, name} = SnmpKit.MIB.reverse_lookup([1, 3, 6, 1, 2, 1, 1, 1, 0])

Tree navigation
{:ok, children} = SnmpKit.MIB.children([1, 3, 6, 1, 2, 1, 1])
Device Simulation
Create device profile
profile = %{
 name: "Test Device",
 objects: %{
 [1, 3, 6, 1, 2, 1, 1, 1, 0] => "Test Device Description"
 }
}

Start simulated device
{:ok, device} = SnmpKit.Sim.start_device(profile, port: 1161)
Testing Integration
Many examples show how to integrate SnmpKit with testing frameworks:
defmodule MyAppTest do
 use ExUnit.Case

 setup do
 # Start simulated device for testing
 {:ok, profile} = load_device_profile(:router)
 {:ok, device} = SnmpKit.Sim.start_device(profile, port: 30161)

 %{target: "127.0.0.1:30161", device: device}
 end

 test "can query device", %{target: target} do
 {:ok, description} = SnmpKit.SNMP.get(target, "sysDescr.0")
 assert String.contains?(description, "Router")
 end
end
Performance Examples
Several examples include performance measurements and optimization techniques:
Measure operation timing
{time, {:ok, results}} = :timer.tc(fn ->
 SnmpKit.SNMP.walk("192.168.1.1", "interfaces")
end)

IO.puts("Walk completed in #{time/1000}ms")

Concurrent operations
tasks = for target <- targets do
 Task.async(fn -> SnmpKit.SNMP.get(target, "sysDescr.0") end)
end

results = Task.await_many(tasks, 10_000)
Error Handling Patterns
Examples demonstrate robust error handling:
case SnmpKit.SNMP.get(target, oid) do
 {:ok, value} ->
 process_value(value)
 {:error, :timeout} ->
 Logger.warn("Device #{target} timeout")
 {:error, :device_unreachable}
 {:error, :no_such_name} ->
 Logger.warn("OID #{oid} not found on #{target}")
 {:error, :oid_not_found}
 {:error, reason} ->
 Logger.error("SNMP error: #{inspect(reason)}")
 {:error, reason}
end
Advanced Features
Streaming Large Results
Stream large walks to avoid memory issues
SnmpKit.SNMP.walk_stream("192.168.1.1", "largeTable")
|> Stream.take(1000)
|> Enum.each(&process_entry/1)
Circuit Breakers
Automatic failure handling
{:ok, result} = SnmpKit.SNMP.with_circuit_breaker("unreliable.host", fn ->
 SnmpKit.SNMP.get("unreliable.host", "sysDescr.0")
end)
Custom Device Profiles
Load device behavior from files
{:ok, profile} = SnmpKit.SnmpSim.ProfileLoader.load_profile(
 :custom_device,
 {:walk_file, "priv/walks/device.walk"}
)
Getting Help
	Documentation: https://hexdocs.pm/snmpkit
	Interactive Tour: ../livebooks/snmpkit_tour.livemd
	Guides: ../docs/
	Issues: GitHub Issues

Contributing Examples
We welcome contributions of new examples! Please:
	Follow the existing code style
	Include comprehensive comments
	Add error handling
	Test your example before submitting
	Update this README if adding new categories

See ../CONTRIBUTING.md for detailed guidelines.

Happy SNMP monitoring with SnmpKit! 🚀

SnmpKit.SnmpLib.ASN1

Comprehensive ASN.1 BER (Basic Encoding Rules) encoding and decoding utilities.
Provides low-level ASN.1 operations that are used by the PDU module and can be
used for other ASN.1 encoding/decoding needs. This module offers improved
performance and better error handling compared to basic implementations.
Features
	Complete BER encoding/decoding support
	Optimized length handling for large values
	Comprehensive error reporting
	Support for constructed and primitive types
	Memory-efficient implementations
	Validation and constraint checking
	RFC-compliant OID multibyte encoding (values ≥ 128)

ASN.1 Types Supported
	INTEGER: Signed integers with arbitrary precision
	OCTET STRING: Binary data of any length
	NULL: Null value representation
	OBJECT IDENTIFIER: Hierarchical object identifiers with multibyte subidentifiers
	SEQUENCE: Constructed type for complex structures
	Custom Tags: Application-specific and context-specific tags

Important: OID Encoding
OID subidentifiers use 7-bit encoding where values ≥ 128 require multibyte encoding:
	Values 0-127: Single byte
	Values 128+: Multibyte with continuation bits
	Example: 200 → [0x81, 0x48] (not single byte 0xC8)

Examples
Integer encoding/decoding
iex> {:ok, encoded} = SnmpKit.SnmpLib.ASN1.encode_integer(42)
iex> {:ok, {value, <<>>}} = SnmpKit.SnmpLib.ASN1.decode_integer(encoded)
iex> value
42

OCTET STRING encoding/decoding
iex> {:ok, encoded} = SnmpKit.SnmpLib.ASN1.encode_octet_string("Hello")
iex> {:ok, {value, <<>>}} = SnmpKit.SnmpLib.ASN1.decode_octet_string(encoded)
iex> value
"Hello"

OID encoding/decoding with multibyte values
iex> {:ok, encoded} = SnmpKit.SnmpLib.ASN1.encode_oid([1, 3, 6, 1, 4, 1, 200])
iex> {:ok, {oid, <<>>}} = SnmpKit.SnmpLib.ASN1.decode_oid(encoded)
iex> oid
[1, 3, 6, 1, 4, 1, 200]

Length encoding for large values
iex> encoded_length = SnmpKit.SnmpLib.ASN1.encode_length(1000)
iex> {:ok, {length, <<>>}} = SnmpKit.SnmpLib.ASN1.decode_length(encoded_length)
iex> length
1000

NULL encoding
iex> {:ok, encoded} = SnmpKit.SnmpLib.ASN1.encode_null()
iex> {:ok, {value, <<>>}} = SnmpKit.SnmpLib.ASN1.decode_null(encoded)
iex> value
:null

 Summary

 Types

 content()

 length()

 oid()

 tag()

 tlv()

 Functions

 calculate_ber_length(arg1)

 Calculates the total length of a BER-encoded structure.

 decode_integer(arg1)

 Decodes an ASN.1 INTEGER value.

 decode_length(arg1)

 Decodes an ASN.1 length field.

 decode_null(arg1)

 Decodes an ASN.1 NULL value.

 decode_octet_string(arg1)

 Decodes an ASN.1 OCTET STRING value.

 decode_oid(arg1)

 Decodes an ASN.1 OBJECT IDENTIFIER value.

 decode_sequence(arg1)

 Decodes an ASN.1 SEQUENCE value.

 decode_tlv(arg1)

 Decodes a generic TLV structure.

 encode_custom_tlv(tag, content)

 Encodes a custom TLV (Tag-Length-Value) structure.

 encode_integer(value)

 Encodes an ASN.1 INTEGER value using BER (Basic Encoding Rules).

 encode_length(length)

 Encodes an ASN.1 length field.

 encode_null()

 Encodes an ASN.1 NULL value.

 encode_octet_string(value)

 Encodes an ASN.1 OCTET STRING value.

 encode_oid(oid_list)

 Encodes an ASN.1 OBJECT IDENTIFIER (OID) value using BER encoding.

 encode_sequence(content)

 Encodes an ASN.1 SEQUENCE with the given content.

 parse_tag(tag_byte)

 Parses an ASN.1 tag byte.

 validate_ber_structure(data)

 Validates the structure of BER-encoded data.

 Types

 content()

 @type content() :: binary()

 length()

 @type length() :: non_neg_integer()

 oid()

 @type oid() :: [non_neg_integer()]

 tag()

 @type tag() :: non_neg_integer()

 tlv()

 @type tlv() :: {tag(), length(), content()}

 Functions

 calculate_ber_length(arg1)

 @spec calculate_ber_length(binary()) :: {:ok, non_neg_integer()} | {:error, atom()}

Calculates the total length of a BER-encoded structure.
Parameters
	data: BER-encoded binary data

Returns
	{:ok, total_length} on success
	{:error, reason} on failure

Examples
{:ok, 10} = SnmpKit.SnmpLib.ASN1.calculate_ber_length(ber_data)

 decode_integer(arg1)

 @spec decode_integer(binary()) :: {:ok, {integer(), binary()}} | {:error, atom()}

Decodes an ASN.1 INTEGER value.
Parameters
	data: Binary data starting with an INTEGER TLV

Returns
	{:ok, {value, remaining_data}} on success
	{:error, reason} on failure

Examples
{:ok, {42, remaining}} = SnmpKit.SnmpLib.ASN1.decode_integer(<<2, 1, 42, 99, 100>>)
Returns {42, <<99, 100>>}

 decode_length(arg1)

 @spec decode_length(binary()) :: {:ok, {length(), binary()}} | {:error, atom()}

Decodes an ASN.1 length field.
Parameters
	data: Binary data starting with a length field

Returns
	{:ok, {length, remaining_data}} on success
	{:error, reason} on failure

Examples
{:ok, {42, remaining}} = SnmpKit.SnmpLib.ASN1.decode_length(<<42, 1, 2, 3>>)
{:ok, {300, remaining}} = SnmpKit.SnmpLib.ASN1.decode_length(<<0x82, 1, 44, 1, 2, 3>>)

 decode_null(arg1)

 @spec decode_null(binary()) :: {:ok, {:null, binary()}} | {:error, atom()}

Decodes an ASN.1 NULL value.
Examples
{:ok, {:null, remaining}} = SnmpKit.SnmpLib.ASN1.decode_null(<<5, 0, 1, 2, 3>>)
Returns {:null, <<1, 2, 3>>}

 decode_octet_string(arg1)

 @spec decode_octet_string(binary()) :: {:ok, {binary(), binary()}} | {:error, atom()}

Decodes an ASN.1 OCTET STRING value.
Examples
{:ok, {"Hello", remaining}} = SnmpKit.SnmpLib.ASN1.decode_octet_string(encoded_data)

 decode_oid(arg1)

 @spec decode_oid(binary()) :: {:ok, {oid(), binary()}} | {:error, atom()}

Decodes an ASN.1 OBJECT IDENTIFIER value.
Examples
{:ok, {[1, 3, 6, 1], remaining}} = SnmpKit.SnmpLib.ASN1.decode_oid(encoded_data)

 decode_sequence(arg1)

 @spec decode_sequence(binary()) :: {:ok, {binary(), binary()}} | {:error, atom()}

Decodes an ASN.1 SEQUENCE value.
Returns the content of the sequence without further parsing.
Examples
{:ok, {sequence_content, remaining}} = SnmpKit.SnmpLib.ASN1.decode_sequence(encoded_data)

 decode_tlv(arg1)

 @spec decode_tlv(binary()) :: {:ok, {tag(), binary(), binary()}} | {:error, atom()}

Decodes a generic TLV structure.
Parameters
	data: Binary data starting with a TLV

Returns
	{:ok, {tag, content, remaining}} on success
	{:error, reason} on failure

Examples
{:ok, {tag, content, remaining}} = SnmpKit.SnmpLib.ASN1.decode_tlv(binary_data)

 encode_custom_tlv(tag, content)

 @spec encode_custom_tlv(tag(), binary()) :: {:ok, binary()}

Encodes a custom TLV (Tag-Length-Value) structure.
Parameters
	tag: ASN.1 tag value
	content: Binary content

Examples
{:ok, tlv} = SnmpKit.SnmpLib.ASN1.encode_custom_tlv(0xA0, <<"custom_content">>)

 encode_integer(value)

 @spec encode_integer(integer()) :: {:ok, binary()}

Encodes an ASN.1 INTEGER value using BER (Basic Encoding Rules).
Supports arbitrary precision integers using two's complement representation.
The encoded result includes the ASN.1 tag (0x02), length, and content bytes.
Parameters
	value: Integer value to encode (any size)

Returns
	{:ok, encoded_bytes} on success
	{:error, reason} on failure

Examples
Positive integers
iex> {:ok, encoded} = SnmpKit.SnmpLib.ASN1.encode_integer(42)
iex> encoded
<<2, 1, 42>>

Negative integers (two's complement)
iex> {:ok, encoded} = SnmpKit.SnmpLib.ASN1.encode_integer(-1)
iex> encoded
<<2, 1, 255>>

Zero
iex> {:ok, encoded} = SnmpKit.SnmpLib.ASN1.encode_integer(0)
iex> encoded
<<2, 1, 0>>

Large integers
iex> {:ok, encoded} = SnmpKit.SnmpLib.ASN1.encode_integer(32767)
iex> byte_size(encoded) > 3
true

 encode_length(length)

 @spec encode_length(length()) :: binary()

Encodes an ASN.1 length field.
Supports both short form (< 128) and long form encoding.
Parameters
	length: Length value to encode

Returns
	Binary representation of the length

Examples
<<42>> = SnmpKit.SnmpLib.ASN1.encode_length(42)
<<0x81, 200>> = SnmpKit.SnmpLib.ASN1.encode_length(200)
<<0x82, 1, 44>> = SnmpKit.SnmpLib.ASN1.encode_length(300)

 encode_null()

 @spec encode_null() :: {:ok, binary()}

Encodes an ASN.1 NULL value.
Examples
{:ok, <<5, 0>>} = SnmpKit.SnmpLib.ASN1.encode_null()

 encode_octet_string(value)

 @spec encode_octet_string(binary()) :: {:ok, binary()}

Encodes an ASN.1 OCTET STRING value.
Parameters
	value: Binary data to encode

Examples
{:ok, encoded} = SnmpKit.SnmpLib.ASN1.encode_octet_string("Hello")
{:ok, encoded} = SnmpKit.SnmpLib.ASN1.encode_octet_string(<<1, 2, 3, 4>>)

 encode_oid(oid_list)

 @spec encode_oid(oid()) :: {:ok, binary()} | {:error, atom()}

Encodes an ASN.1 OBJECT IDENTIFIER (OID) value using BER encoding.
OIDs are hierarchical identifiers where each component is encoded using
7-bit subidentifiers. Values ≥ 128 require multibyte encoding with
continuation bits, which is correctly handled by this implementation.
Parameters
	oid_list: List of non-negative integers representing the OID (minimum 2 components)

Returns
	{:ok, encoded_bytes} on success
	{:error, reason} on failure (invalid OID format)

Encoding Rules
	First two components are combined: first * 40 + second
	Remaining components use 7-bit encoding with continuation bits
	Values 0-127: single byte
	Values 128+: multibyte with high bit indicating continuation

Examples
Standard SNMP OID (sysDescr.0)
iex> {:ok, encoded} = SnmpKit.SnmpLib.ASN1.encode_oid([1, 3, 6, 1, 2, 1, 1, 1, 0])
iex> {:ok, {decoded, <<>>}} = SnmpKit.SnmpLib.ASN1.decode_oid(encoded)
iex> decoded
[1, 3, 6, 1, 2, 1, 1, 1, 0]

OID with multibyte values (≥ 128)
iex> {:ok, encoded} = SnmpKit.SnmpLib.ASN1.encode_oid([1, 3, 6, 1, 4, 1, 200])
iex> {:ok, {decoded, <<>>}} = SnmpKit.SnmpLib.ASN1.decode_oid(encoded)
iex> decoded
[1, 3, 6, 1, 4, 1, 200]

Invalid OIDs
iex> SnmpKit.SnmpLib.ASN1.encode_oid([])
{:error, :invalid_oid}

iex> SnmpKit.SnmpLib.ASN1.encode_oid([1])
{:ok, <<6, 1, 1>>}

 encode_sequence(content)

 @spec encode_sequence(binary()) :: {:ok, binary()}

Encodes an ASN.1 SEQUENCE with the given content.
Parameters
	content: Pre-encoded content for the sequence

Examples
content = encode_integer_content(42) <> encode_octet_string_content("test")
{:ok, sequence} = SnmpKit.SnmpLib.ASN1.encode_sequence(content)

 parse_tag(tag_byte)

 @spec parse_tag(tag()) :: map()

Parses an ASN.1 tag byte.
Returns information about the tag including class, constructed bit, and tag number.
Parameters
	tag_byte: Single byte representing the tag

Returns
	Map with tag information

Examples
info = SnmpKit.SnmpLib.ASN1.parse_tag(0x30)
Returns %{class: :universal, constructed: true, tag_number: 16}

 validate_ber_structure(data)

 @spec validate_ber_structure(binary()) :: :ok | {:error, atom()}

Validates the structure of BER-encoded data.
Performs basic validation without full decoding.
Parameters
	data: BER-encoded binary data

Returns
	:ok if structure is valid
	{:error, reason} if structure is invalid

Examples
:ok = SnmpKit.SnmpLib.ASN1.validate_ber_structure(valid_ber_data)
{:error, :invalid_length} = SnmpKit.SnmpLib.ASN1.validate_ber_structure(malformed_data)

SnmpKit.SnmpLib.Cache

Intelligent caching system for SNMP operations with adaptive strategies.
This module provides sophisticated caching capabilities designed to optimize
SNMP polling performance in high-throughput environments. Based on patterns
proven in the DDumb project for managing thousands of concurrent device polls.
Features
	Multi-Level Caching: L1 (in-memory), L2 (ETS), L3 (persistent storage)
	Adaptive TTL: Dynamic cache expiration based on data volatility
	Smart Invalidation: Automatic cache invalidation based on data patterns
	Compression: Efficient storage of large SNMP responses
	Hot/Cold Data Management: Automatic promotion of frequently accessed data
	Cache Warming: Proactive loading of expected data

Caching Strategies
Time-Based Caching
Standard TTL-based caching for static or slowly changing data.
Volatility-Based Caching
Dynamic TTL adjustment based on observed change frequency.
Dependency-Based Caching
Cache invalidation based on related data changes.
Predictive Caching
Pre-loading data based on access patterns and time of day.
Performance Benefits
	50-80% reduction in redundant SNMP queries
	Improved response times for frequently accessed data
	Reduced network load on monitored devices
	Better scalability for large device inventories

Usage Patterns
Cache SNMP response data
SnmpKit.SnmpLib.Cache.put("device_123:sysDescr", response_data, ttl: 300_000)

Retrieve cached data
case SnmpKit.SnmpLib.Cache.get("device_123:sysDescr") do
 {:ok, data} -> data
 :miss -> perform_snmp_query()
end

Cache with adaptive TTL
SnmpKit.SnmpLib.Cache.put_adaptive("device_123:ifTable", interface_data,
 base_ttl: 60_000,
 volatility: :medium
)

Warm cache for predictable access
SnmpKit.SnmpLib.Cache.warm_cache("device_123", [:sysDescr, :sysUpTime, :ifTable])

Invalidate related caches
SnmpKit.SnmpLib.Cache.invalidate_pattern("device_123:*")
Cache Key Patterns
	device_id:oid - Single OID values
	device_id:table:index - Table row data
	device_id:walk:base_oid - Walk results
	device_id:bulk:oids - Bulk query results
	global:topology - Cross-device topology data

 Summary

 Types

 cache_key()

 cache_opts()

 cache_stats()

 cache_strategy()

 cache_ttl()

 cache_value()

 volatility()

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 clear()

 Clears all cached data.

 delete(key)

 Removes a specific key from the cache.

 get(key)

 Retrieves a value from the cache.

 get_stats()

 Gets comprehensive cache performance statistics.

 invalidate_by_tag(tag)

 Invalidates cache entries by tag.

 invalidate_pattern(pattern)

 Invalidates multiple cache entries matching a pattern.

 put(key, value, opts \\ [])

 Stores a value in the cache with specified options.

 put_adaptive(key, value, base_ttl, volatility)

 Stores a value with adaptive TTL based on observed volatility.

 start_link(opts \\ [])

 Starts the cache manager with specified configuration.

 warm_cache(device_id, oids, opts \\ [])

 Pre-loads cache with expected data to improve response times.

 Types

 cache_key()

 @type cache_key() :: binary()

 cache_opts()

 @type cache_opts() :: [
 ttl: cache_ttl(),
 strategy: cache_strategy(),
 volatility: volatility(),
 compress: boolean(),
 dependencies: [cache_key()],
 tags: [atom()]
]

 cache_stats()

 @type cache_stats() :: %{
 total_entries: non_neg_integer(),
 hit_rate: float(),
 miss_rate: float(),
 eviction_count: non_neg_integer(),
 memory_usage_mb: float(),
 compression_ratio: float()
}

 cache_strategy()

 @type cache_strategy() ::
 :time_based | :volatility_based | :dependency_based | :predictive

 cache_ttl()

 @type cache_ttl() :: pos_integer()

 cache_value()

 @type cache_value() :: any()

 volatility()

 @type volatility() :: :low | :medium | :high | :extreme

 Functions

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 clear()

 @spec clear() :: :ok

Clears all cached data.
Examples
:ok = SnmpKit.SnmpLib.Cache.clear()

 delete(key)

 @spec delete(cache_key()) :: :ok

Removes a specific key from the cache.
Examples
:ok = SnmpKit.SnmpLib.Cache.delete("device_1:sysDescr")

 get(key)

 @spec get(cache_key()) :: {:ok, cache_value()} | :miss

Retrieves a value from the cache.
Returns
	{:ok, value}: Cache hit with the stored value
	:miss: Cache miss, value not found or expired

Examples
case SnmpKit.SnmpLib.Cache.get("device_1:sysDescr") do
 {:ok, description} ->
 Logger.debug("Cache hit for system description")
 description
 :miss ->
 Logger.debug("Cache miss, performing SNMP query")
 perform_snmp_get(device, [1,3,6,1,2,1,1,1,0])
end

 get_stats()

 @spec get_stats() :: cache_stats()

Gets comprehensive cache performance statistics.
Returns
Statistics including hit rates, memory usage, and performance metrics.
Examples
cache_stats = SnmpKit.SnmpLib.Cache.get_stats()
IO.puts "Cache hit rate: " <> Float.to_string(Float.round(cache_stats.hit_rate * 100, 2)) <> "%"
IO.puts "Memory usage: " <> Float.to_string(Float.round(cache_stats.memory_usage_mb, 2)) <> " MB"

 invalidate_by_tag(tag)

 @spec invalidate_by_tag(atom()) :: :ok

Invalidates cache entries by tag.
Examples
SnmpKit.SnmpLib.Cache.invalidate_by_tag(:routing_data)

 invalidate_pattern(pattern)

 @spec invalidate_pattern(binary()) :: :ok

Invalidates multiple cache entries matching a pattern.
Supports wildcards (*) for pattern matching.
Examples
Invalidate all data for a device
SnmpKit.SnmpLib.Cache.invalidate_pattern("device_1:*")

Invalidate all interface data
SnmpKit.SnmpLib.Cache.invalidate_pattern("*:ifTable")

Invalidate by tag
SnmpKit.SnmpLib.Cache.invalidate_by_tag(:interface_data)

 put(key, value, opts \\ [])

 @spec put(cache_key(), cache_value(), cache_opts()) :: :ok

Stores a value in the cache with specified options.
Parameters
	key: Unique cache key
	value: Data to cache
	opts: Caching options

Options
	ttl: Time-to-live in milliseconds (default: 300,000)
	strategy: Caching strategy (default: :time_based)
	volatility: Data change frequency (default: :medium)
	compress: Force compression for this entry (default: auto)
	dependencies: Keys that invalidate this entry when changed
	tags: Metadata tags for grouping and invalidation

Examples
Simple time-based caching
:ok = SnmpKit.SnmpLib.Cache.put("device_1:sysDescr", "Cisco Router", ttl: 600_000)

Adaptive caching based on volatility
:ok = SnmpKit.SnmpLib.Cache.put("device_1:ifTable", interface_data,
 strategy: :volatility_based,
 volatility: :high,
 tags: [:interface_data]
)

Dependency-based caching
:ok = SnmpKit.SnmpLib.Cache.put("device_1:route_summary", summary_data,
 dependencies: ["device_1:routeTable", "device_1:arpTable"]
)

 put_adaptive(key, value, base_ttl, volatility)

 @spec put_adaptive(cache_key(), cache_value(), cache_ttl(), volatility()) :: :ok

Stores a value with adaptive TTL based on observed volatility.
The cache automatically adjusts TTL based on how frequently the data changes.
Parameters
	key: Cache key
	value: Data to cache
	base_ttl: Starting TTL value
	volatility: Expected change frequency

Examples
Interface counters change frequently
SnmpKit.SnmpLib.Cache.put_adaptive("device_1:ifInOctets", counter_data,
 base_ttl: 30_000,
 volatility: :high
)

System description rarely changes
SnmpKit.SnmpLib.Cache.put_adaptive("device_1:sysDescr", description,
 base_ttl: 3_600_000,
 volatility: :low
)

 start_link(opts \\ [])

 @spec start_link(keyword()) :: {:ok, pid()} | {:error, any()}

Starts the cache manager with specified configuration.
Options
	max_size: Maximum number of cache entries (default: 100,000)
	cleanup_interval: Cleanup frequency in milliseconds (default: 60,000)
	compression_enabled: Enable compression for large values (default: true)
	adaptive_ttl_enabled: Enable adaptive TTL based on volatility (default: true)
	predictive_enabled: Enable predictive caching (default: false)

Examples
Start with defaults
{:ok, _pid} = SnmpKit.SnmpLib.Cache.start_link()

Start with custom configuration
{:ok, _pid} = SnmpKit.SnmpLib.Cache.start_link(
 max_size: 50_000,
 compression_enabled: true,
 predictive_enabled: true
)

 warm_cache(device_id, oids, opts \\ [])

 @spec warm_cache(binary(), [binary()] | :auto, keyword()) :: :ok

Pre-loads cache with expected data to improve response times.
Parameters
	device_id: Target device identifier
	oids: List of OIDs to pre-load
	strategy: Warming strategy (:immediate, :scheduled, :predictive)

Examples
Immediate cache warming
SnmpKit.SnmpLib.Cache.warm_cache("device_1",
 ["1.3.6.1.2.1.1.1.0", "1.3.6.1.2.1.1.3.0"],
 strategy: :immediate
)

Predictive warming based on historical access
SnmpKit.SnmpLib.Cache.warm_cache("device_1", :auto,
 strategy: :predictive
)

SnmpKit.SnmpLib.Config

Configuration management system for production SNMP deployments.
This module provides a flexible, environment-aware configuration system designed
for real-world SNMP management applications. Based on patterns proven in large-scale
deployments like the DDumb project managing 1000+ devices.
Features
	Environment-Aware: Automatic detection of dev/test/prod environments
	Layered Configuration: Application, environment, and runtime overrides
	Dynamic Updates: Hot-reload configuration without service restart
	Validation: Schema validation for all configuration values
	Secrets Management: Secure handling of sensitive configuration data
	Multi-Tenant Support: Per-deployment configuration isolation

Configuration Sources (in order of precedence)
	Runtime environment variables
	Configuration files (config/*.exs)
	Application defaults
	Module defaults

Usage Patterns
Get configuration for a specific component
pool_config = SnmpKit.SnmpLib.Config.get(:pool, :default_settings)

Get configuration with fallback
timeout = SnmpKit.SnmpLib.Config.get(:snmp, :timeout, 5000)

Update configuration at runtime
SnmpKit.SnmpLib.Config.put(:pool, :max_size, 50)

Load configuration from file
SnmpKit.SnmpLib.Config.load_from_file("/etc/snmp_lib/production.exs")

Validate current configuration
{:ok, _} = SnmpKit.SnmpLib.Config.validate()
Environment Detection
The configuration system automatically detects the current environment:
	:dev - Development with verbose logging and relaxed timeouts
	:test - Testing with simulated backends and fast timeouts
	:prod - Production with optimized settings and monitoring
	:staging - Pre-production environment for integration testing

Configuration Schema
All configuration follows a validated schema to prevent runtime errors:
%{
 snmp: %{
 default_version: :v2c,
 default_timeout: 5_000,
 default_retries: 3,
 default_community: "public"
 },
 pool: %{
 default_size: 10,
 max_overflow: 5,
 strategy: :fifo,
 health_check_interval: 30_000
 },
 monitoring: %{
 metrics_enabled: true,
 prometheus_port: 9090,
 dashboard_enabled: true,
 alert_thresholds: %{...}
 }
}

 Summary

 Types

 config_key()

 config_section()

 config_value()

 environment()

 Functions

 all()

 Gets all configuration as a nested map.

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 environment()

 Gets the current environment.

 get(section, key, default \\ nil)

 Gets a configuration value by key path with optional default.

 load_from_file(file_path)

 Loads configuration from a file and merges with current config.

 merge_opts(opts)

 Merges user-provided options with default SNMP configuration values.

 put(section, key, value)

 Sets a configuration value at runtime.

 reload()

 Reloads configuration from environment and files.

 start_link(opts \\ [])

 Starts the configuration manager with initial configuration.

 validate()

 Validates the current configuration against the schema.

 watch(section, callback)

 Registers a callback function to be called when configuration changes.

 Types

 config_key()

 @type config_key() :: atom() | [atom()]

 config_section()

 @type config_section() :: atom()

 config_value()

 @type config_value() :: any()

 environment()

 @type environment() :: :dev | :test | :prod | :staging

 Functions

 all()

 @spec all() :: map()

Gets all configuration as a nested map.
Examples
config = SnmpKit.SnmpLib.Config.all()
IO.inspect(config.snmp.default_timeout)

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 environment()

 @spec environment() :: environment()

Gets the current environment.
Examples
env = SnmpKit.SnmpLib.Config.environment() # :prod

 get(section, key, default \\ nil)

 @spec get(config_section(), config_key(), config_value()) :: config_value()

Gets a configuration value by key path with optional default.
Parameters
	section: Configuration section (:snmp, :pool, :monitoring, etc.)
	key: Specific configuration key or nested key path
	default: Value to return if key is not found

Examples
Get a simple value
timeout = SnmpKit.SnmpLib.Config.get(:snmp, :default_timeout)

Get nested value
threshold = SnmpKit.SnmpLib.Config.get(:monitoring, [:alert_thresholds, :error_rate])

Get with default
community = SnmpKit.SnmpLib.Config.get(:snmp, :community, "public")

 load_from_file(file_path)

 @spec load_from_file(binary()) :: :ok | {:error, any()}

Loads configuration from a file and merges with current config.
Examples
:ok = SnmpKit.SnmpLib.Config.load_from_file("/etc/snmp_lib/production.exs")

 merge_opts(opts)

 @spec merge_opts(keyword()) :: keyword()

Merges user-provided options with default SNMP configuration values.
This function provides the default SNMP configuration options that are commonly
used across SNMP operations, then merges them with user-provided options. User
options take precedence over defaults.
Default Values
	community: "public"
	timeout: 5000 (milliseconds)
	retries: 3
	port: 161
	version: :v2c
	mib_paths: []

Parameters
	opts: Keyword list of user-provided options that override defaults

Returns
Keyword list with defaults merged with user options, where user options take precedence.
Examples
iex> SnmpKit.SnmpLib.Config.merge_opts([])
[community: "public", timeout: 5000, retries: 3, port: 161, version: :v2c, mib_paths: []]

iex> result = SnmpKit.SnmpLib.Config.merge_opts([timeout: 10000])
iex> result[:community]
"public"
iex> result[:timeout]
10000
iex> result[:retries]
3

iex> result = SnmpKit.SnmpLib.Config.merge_opts([community: "private", port: 162])
iex> result[:community]
"private"
iex> result[:port]
162
iex> result[:timeout]
5000

 put(section, key, value)

 @spec put(config_section(), config_key(), config_value()) :: :ok | {:error, any()}

Sets a configuration value at runtime.
Changes are applied immediately and optionally persisted.
Examples
:ok = SnmpKit.SnmpLib.Config.put(:pool, :default_size, 20)
:ok = SnmpKit.SnmpLib.Config.put(:monitoring, [:alert_thresholds, :error_rate], 0.10)

 reload()

 @spec reload() :: :ok | {:error, any()}

Reloads configuration from environment and files.
Examples
:ok = SnmpKit.SnmpLib.Config.reload()

 start_link(opts \\ [])

 @spec start_link(keyword()) :: {:ok, pid()} | {:error, any()}

Starts the configuration manager with initial configuration.
Options
	config_file: Path to configuration file to load on startup
	environment: Override automatic environment detection
	validate_on_start: Validate configuration on startup (default: true)

Examples
{:ok, _pid} = SnmpKit.SnmpLib.Config.start_link()
{:ok, _pid} = SnmpKit.SnmpLib.Config.start_link(config_file: "/etc/snmp_lib/prod.exs")

 validate()

 @spec validate() :: {:ok, map()} | {:error, [any()]}

Validates the current configuration against the schema.
Returns
	{:ok, config}: Configuration is valid
	{:error, errors}: List of validation errors

Examples
case SnmpKit.SnmpLib.Config.validate() do
 {:ok, _config} -> Logger.info("Configuration is valid")
 {:error, validation_errors} -> Logger.error("Configuration errors: " <> inspect(validation_errors))
end

 watch(section, callback)

 @spec watch(config_section(), function()) :: :ok

Registers a callback function to be called when configuration changes.
Examples
SnmpKit.SnmpLib.Config.watch(:pool, fn old_config, new_config ->
 Logger.info("Pool configuration changed")
 SnmpKit.SnmpLib.Pool.reload_config(new_config)
end)

SnmpKit.SnmpLib.Dashboard

Real-time monitoring dashboard and metrics aggregation for SNMP operations.
This module provides a comprehensive monitoring and visualization system for
production SNMP deployments. Based on patterns proven in large-scale monitoring
systems managing thousands of network devices.
Features
	Real-Time Metrics: Live updates of performance and health metrics
	Historical Analytics: Trend analysis and capacity planning data
	Alert Management: Configurable thresholds and notification routing
	Performance Insights: Detailed breakdown of operation performance
	Device Health: Per-device status monitoring and diagnostics
	Resource Utilization: Pool, memory, and system resource tracking

Metrics Categories
Performance Metrics
	Request/response times (min, max, average, percentiles)
	Throughput (operations per second)
	Error rates and failure classifications
	Connection pool utilization

Health Metrics
	Device availability and reachability
	Circuit breaker states
	Retry counts and backoff status
	Resource exhaustion indicators

System Metrics
	Memory usage and garbage collection
	Process counts and supervision tree health
	Network socket utilization
	Queue depths and processing delays

Dashboard Views
Overview Dashboard
Global health and performance summary with key indicators.
Device Dashboard
Per-device detailed metrics and troubleshooting information.
Pool Dashboard
Connection pool health, utilization, and performance metrics.
Alerts Dashboard
Active alerts, acknowledgments, and escalation status.
Usage Patterns
Start the dashboard server
{:ok, _pid} = SnmpKit.SnmpLib.Dashboard.start_link(port: 4000)

Record custom metrics
SnmpKit.SnmpLib.Dashboard.record_metric(:custom_operation, %{
 duration: 150,
 device: "192.168.1.1",
 status: :success
})

Create custom alert
SnmpKit.SnmpLib.Dashboard.create_alert(:high_error_rate, %{
 device: "192.168.1.100",
 error_rate: 0.15,
 threshold: 0.10
})

Export metrics for external systems
prometheus_data = SnmpKit.SnmpLib.Dashboard.export_prometheus()
Integration with External Systems
	Prometheus: Native metrics export in Prometheus format
	Grafana: Pre-built dashboards and alerting rules
	PagerDuty: Alert escalation and incident management
	Slack/Teams: Notification integration for team alerting

 Summary

 Types

 alert_level()

 dashboard_opts()

 metric_name()

 metric_tags()

 metric_value()

 Functions

 acknowledge_alert(alert_name, identifier)

 Acknowledges an alert to stop notifications.

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 create_alert(alert_name, level, details \\ %{})

 Creates an alert for monitoring and notification systems.

 export_prometheus()

 Exports metrics in Prometheus format for external monitoring.

 get_active_alerts(filters \\ [])

 Gets all active alerts with optional filtering.

 get_device_metrics(device_id)

 Gets detailed metrics for a specific device.

 get_metrics_summary()

 Gets current performance metrics summary.

 get_timeseries(metric_name, duration \\ 3_600_000, tags \\ %{})

 Gets historical time series data for a metric.

 record_metric(metric_name, value, tags \\ %{})

 Records a metric data point for monitoring and visualization.

 start_link(opts \\ [])

 Starts the dashboard server with monitoring and web interface.

 Types

 alert_level()

 @type alert_level() :: :info | :warning | :critical

 dashboard_opts()

 @type dashboard_opts() :: [
 port: pos_integer(),
 update_interval: pos_integer(),
 retention_days: pos_integer(),
 prometheus_enabled: boolean(),
 grafana_integration: boolean()
]

 metric_name()

 @type metric_name() :: atom()

 metric_tags()

 @type metric_tags() :: map()

 metric_value()

 @type metric_value() :: number()

 Functions

 acknowledge_alert(alert_name, identifier)

 @spec acknowledge_alert(atom(), any()) :: :ok

Acknowledges an alert to stop notifications.
Examples
:ok = SnmpKit.SnmpLib.Dashboard.acknowledge_alert(:device_unreachable, "192.168.1.1")

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 create_alert(alert_name, level, details \\ %{})

 @spec create_alert(atom(), alert_level(), map()) :: :ok

Creates an alert for monitoring and notification systems.
Parameters
	alert_name: Unique identifier for the alert type
	level: Alert severity level (:info, :warning, :critical)
	details: Alert metadata and context information

Examples
Create device unreachable alert
SnmpKit.SnmpLib.Dashboard.create_alert(:device_unreachable, :critical, %{
 device: "192.168.1.1",
 last_seen: DateTime.utc_now(),
 consecutive_failures: 5
})

Create performance degradation warning
SnmpKit.SnmpLib.Dashboard.create_alert(:slow_response, :warning, %{
 device: "192.168.1.1",
 avg_response_time: 5000,
 threshold: 2000
})

 export_prometheus()

 @spec export_prometheus() :: binary()

Exports metrics in Prometheus format for external monitoring.
Examples
prometheus_data = SnmpKit.SnmpLib.Dashboard.export_prometheus()
File.write!("/tmp/snmp_metrics.prom", prometheus_data)

 get_active_alerts(filters \\ [])

 @spec get_active_alerts(keyword()) :: [map()]

Gets all active alerts with optional filtering.
Examples
all_alerts = SnmpKit.SnmpLib.Dashboard.get_active_alerts()
critical_alerts = SnmpKit.SnmpLib.Dashboard.get_active_alerts(level: :critical)

 get_device_metrics(device_id)

 @spec get_device_metrics(binary()) :: map()

Gets detailed metrics for a specific device.
Examples
device_metrics = SnmpKit.SnmpLib.Dashboard.get_device_metrics("192.168.1.1")
IO.inspect device_metrics.response_times

 get_metrics_summary()

 @spec get_metrics_summary() :: map()

Gets current performance metrics summary.
Returns
A map containing aggregated metrics:
	total_operations: Total SNMP operations performed
	success_rate: Percentage of successful operations
	avg_response_time: Average response time in milliseconds
	active_devices: Number of devices being monitored
	pool_utilization: Connection pool usage percentage
	error_rates: Breakdown of error types and frequencies

Examples
metrics = SnmpKit.SnmpLib.Dashboard.get_metrics_summary()
IO.puts "Success rate: " <> Float.to_string(metrics.success_rate * 100) <> "%"

 get_timeseries(metric_name, duration \\ 3_600_000, tags \\ %{})

 @spec get_timeseries(metric_name(), pos_integer(), map()) :: [map()]

Gets historical time series data for a metric.
Parameters
	metric_name: Name of the metric to retrieve
	duration: Time window in milliseconds (default: 1 hour)
	tags: Optional tag filters

Examples
Get last hour of response times
timeseries = SnmpKit.SnmpLib.Dashboard.get_timeseries(:snmp_response_time)

Get last 24 hours for specific device
device_data = SnmpKit.SnmpLib.Dashboard.get_timeseries(
 :snmp_response_time,
 24 * 60 * 60 * 1000,
 %{device: "192.168.1.1"}
)

 record_metric(metric_name, value, tags \\ %{})

 @spec record_metric(metric_name(), metric_value(), metric_tags()) :: :ok

Records a metric data point for monitoring and visualization.
Parameters
	metric_name: Unique identifier for the metric type
	value: Numeric value for the metric
	tags: Optional metadata for filtering and grouping

Examples
Record response time metric
SnmpKit.SnmpLib.Dashboard.record_metric(:snmp_response_time, 125, %{
 device: "192.168.1.1",
 operation: "get",
 community: "public"
})

Record error count
SnmpKit.SnmpLib.Dashboard.record_metric(:snmp_errors, 1, %{
 device: "192.168.1.1",
 error_type: "timeout"
})

Record pool utilization
SnmpKit.SnmpLib.Dashboard.record_metric(:pool_utilization, 0.75, %{
 pool_name: "main_pool"
})

 start_link(opts \\ [])

 @spec start_link(dashboard_opts()) :: {:ok, pid()} | {:error, any()}

Starts the dashboard server with monitoring and web interface.
Options
	port: Web dashboard port (default: 4000)
	update_interval: Metrics update frequency in milliseconds (default: 5000)
	retention_days: How long to keep historical data (default: 7)
	prometheus_enabled: Enable Prometheus metrics endpoint (default: false)
	grafana_integration: Enable Grafana dashboard integration (default: false)

Examples
Start with defaults
{:ok, _pid} = SnmpKit.SnmpLib.Dashboard.start_link()

Start with custom configuration
{:ok, _pid} = SnmpKit.SnmpLib.Dashboard.start_link(
 port: 8080,
 prometheus_enabled: true,
 retention_days: 14
)

SnmpKit.SnmpLib.Error

Standard SNMP error handling and error code utilities.
Provides standardized error codes, error handling utilities, and error response
generation for SNMP operations. This module centralizes all SNMP-specific error
handling to ensure consistent error reporting across the library.
SNMP Error Codes
Standard SNMP error status values as defined in RFC 1157 and RFC 3416:
	no_error (0) - No error occurred
	too_big (1) - Response message would be too large
	no_such_name (2) - Requested OID does not exist
	bad_value (3) - Invalid value for SET operation
	read_only (4) - Attempted to set read-only variable
	gen_err (5) - General error

Usage Examples
Basic Error Handling
Check if an error is retriable
if SnmpKit.SnmpLib.Error.retriable_error?(error_code) do
 retry_operation()
end

Format error for logging
error_msg = SnmpKit.SnmpLib.Error.format_error(3, 2, varbinds)
Logger.error(error_msg)
Error Response Generation
Create error response for invalid request
{:ok, error_response} = SnmpKit.SnmpLib.Error.create_error_response(
 request_pdu,
 :no_such_name,
 error_index
)

 Summary

 Types

 error_index()

 error_status()

 varbind()

 varbinds()

 Functions

 all_error_atoms()

 Returns a list of all standard SNMP error atoms.

 all_error_codes()

 Returns a list of all standard SNMP error codes.

 bad_value()

 Returns the numeric code for 'bad value' error status.

 create_error_response(request_pdu, error_status, error_index)

 Creates an SNMP error response PDU.

 error_atom(code)

 Converts error status code to atom representation.

 error_code(name)

 Converts error atom or name to numeric code.

 error_name(arg1)

 Returns the human-readable name for an error status code.

 error_severity(error_status)

 Categorizes error by severity level.

 format_error(error_status, error_index, varbinds \\ [])

 Formats an SNMP error for human-readable display.

 gen_err()

 Returns the numeric code for 'general error' status.

 no_error()

 Returns the numeric code for 'no error' status.

 no_such_name()

 Returns the numeric code for 'no such name' error status.

 read_only()

 Returns the numeric code for 'read only' error status.

 retriable_error?(error_status)

 Determines if an error status indicates a retriable condition.

 too_big()

 Returns the numeric code for 'too big' error status.

 valid_error_status?(status)

 Validates an error status code.

 Types

 error_index()

 @type error_index() :: non_neg_integer()

 error_status()

 @type error_status() ::
 :no_error
 | :too_big
 | :no_such_name
 | :bad_value
 | :read_only
 | :gen_err
 | non_neg_integer()

 varbind()

 @type varbind() :: {list(), any()}

 varbinds()

 @type varbinds() :: [varbind()]

 Functions

 all_error_atoms()

 @spec all_error_atoms() :: [
 :no_error
 | :too_big
 | :no_such_name
 | :bad_value
 | :read_only
 | :gen_err
 | :no_access
 | :wrong_type
 | :wrong_length
 | :wrong_encoding
 | :wrong_value
 | :no_creation
 | :inconsistent_value
 | :resource_unavailable
 | :commit_failed
 | :undo_failed
 | :authorization_error
 | :not_writable
 | :inconsistent_name
]

Returns a list of all standard SNMP error atoms.
Examples
iex> atoms = SnmpKit.SnmpLib.Error.all_error_atoms()
iex> :no_error in atoms
true
iex> :gen_err in atoms
true

 all_error_codes()

 @spec all_error_codes() :: [non_neg_integer()]

Returns a list of all standard SNMP error codes.
Examples
iex> codes = SnmpKit.SnmpLib.Error.all_error_codes()
iex> 0 in codes
true
iex> 5 in codes
true

 bad_value()

 @spec bad_value() :: 3

Returns the numeric code for 'bad value' error status.
The value provided in a SET operation is invalid for the variable.
Examples
iex> SnmpKit.SnmpLib.Error.bad_value()
3

 create_error_response(request_pdu, error_status, error_index)

 @spec create_error_response(map(), error_status(), error_index()) ::
 {:ok, map()} | {:error, atom()}

Creates an SNMP error response PDU.
Generates a properly formatted error response based on the original request
and the error condition that occurred.
Parameters
	request_pdu: Original request PDU
	error_status: Error status code or atom
	error_index: Index of the varbind that caused the error (1-based)

Returns
	{:ok, error_pdu}: Successfully created error response
	{:error, reason}: Failed to create error response

Examples
request = %{type: :get_request, request_id: 123, varbinds: [...]}
{:ok, error_response} = SnmpKit.SnmpLib.Error.create_error_response(
 request,
 :no_such_name,
 1
)

 error_atom(code)

 @spec error_atom(error_status()) :: atom()

Converts error status code to atom representation.
Examples
iex> SnmpKit.SnmpLib.Error.error_atom(2)
:no_such_name

iex> SnmpKit.SnmpLib.Error.error_atom(999)
:unknown_error

 error_code(name)

 @spec error_code(atom() | String.t()) :: non_neg_integer()

Converts error atom or name to numeric code.
Examples
iex> SnmpKit.SnmpLib.Error.error_code(:no_such_name)
2

iex> SnmpKit.SnmpLib.Error.error_code("bad_value")
3

 error_name(arg1)

 @spec error_name(error_status()) :: String.t()

Returns the human-readable name for an error status code.
Parameters
	code: Numeric error status code or atom

Returns
	String name of the error status
	"unknown_error" for unrecognized codes

Examples
iex> SnmpKit.SnmpLib.Error.error_name(0)
"no_error"

iex> SnmpKit.SnmpLib.Error.error_name(:too_big)
"too_big"

iex> SnmpKit.SnmpLib.Error.error_name(999)
"unknown_error"

 error_severity(error_status)

 @spec error_severity(error_status()) :: :info | :warning | :error

Categorizes error by severity level.
Returns
	:info - No error
	:warning - Retriable errors
	:error - Non-retriable errors

Examples
iex> SnmpKit.SnmpLib.Error.error_severity(:no_error)
:info

iex> SnmpKit.SnmpLib.Error.error_severity(:too_big)
:warning

iex> SnmpKit.SnmpLib.Error.error_severity(:no_such_name)
:error

 format_error(error_status, error_index, varbinds \\ [])

 @spec format_error(error_status(), error_index(), varbinds()) :: String.t()

Formats an SNMP error for human-readable display.
Parameters
	error_status: Error status code (integer or atom)
	error_index: Index of the varbind that caused the error (1-based)
	varbinds: List of varbinds from the request (optional)

Returns
Formatted error string suitable for logging or display.
Examples
iex> SnmpKit.SnmpLib.Error.format_error(2, 1, [])
"SNMP Error: no_such_name (2) at index 1"

iex> varbinds = [{[1,3,6,1,2,1,1,1,0], "test"}]
iex> SnmpKit.SnmpLib.Error.format_error(:bad_value, 1, varbinds)
"SNMP Error: bad_value (3) at index 1 - OID: 1.3.6.1.2.1.1.1.0"

 gen_err()

 @spec gen_err() :: 5

Returns the numeric code for 'general error' status.
A general error occurred that doesn't fit other categories.
Examples
iex> SnmpKit.SnmpLib.Error.gen_err()
5

 no_error()

 @spec no_error() :: 0

Returns the numeric code for 'no error' status.
Examples
iex> SnmpKit.SnmpLib.Error.no_error()
0

 no_such_name()

 @spec no_such_name() :: 2

Returns the numeric code for 'no such name' error status.
The requested OID does not exist on the agent.
Examples
iex> SnmpKit.SnmpLib.Error.no_such_name()
2

 read_only()

 @spec read_only() :: 4

Returns the numeric code for 'read only' error status.
Attempted to set a read-only variable.
Examples
iex> SnmpKit.SnmpLib.Error.read_only()
4

 retriable_error?(error_status)

 @spec retriable_error?(error_status()) :: boolean()

Determines if an error status indicates a retriable condition.
Some SNMP errors are temporary and operations can be retried, while others
indicate permanent failures.
Retriable Errors
	too_big - Can retry with smaller request
	gen_err - General error, may be temporary
	resource_unavailable - Temporary resource constraint

Non-Retriable Errors
	no_such_name - OID doesn't exist
	bad_value - Invalid value provided
	read_only - Attempted to write read-only variable
	no_access - Access denied
	Most SNMPv2c specific errors

Examples
iex> SnmpKit.SnmpLib.Error.retriable_error?(:too_big)
true

iex> SnmpKit.SnmpLib.Error.retriable_error?(:no_such_name)
false

 too_big()

 @spec too_big() :: 1

Returns the numeric code for 'too big' error status.
The response message would be too large to fit in a single SNMP message.
Examples
iex> SnmpKit.SnmpLib.Error.too_big()
1

 valid_error_status?(status)

 @spec valid_error_status?(any()) :: boolean()

Validates an error status code.
Examples
iex> SnmpKit.SnmpLib.Error.valid_error_status?(2)
true

iex> SnmpKit.SnmpLib.Error.valid_error_status?(:no_such_name)
true

iex> SnmpKit.SnmpLib.Error.valid_error_status?(999)
false

SnmpKit.SnmpLib.ErrorHandler

Intelligent error handling with retry logic, circuit breakers, and adaptive recovery.
This module provides sophisticated error handling capabilities designed to improve
reliability and performance in production SNMP environments. Based on patterns
proven in high-scale network monitoring systems handling thousands of devices.
Features
	Exponential Backoff: Intelligent retry timing to avoid overwhelming failing devices
	Circuit Breakers: Automatic failure detection and recovery for unhealthy devices
	Error Classification: Smart categorization of errors for appropriate handling
	Adaptive Timeouts: Dynamic timeout adjustment based on device performance
	Quarantine Management: Temporary isolation of problematic devices
	Recovery Strategies: Multiple approaches for bringing devices back online

Error Classification
Transient Errors (Retryable)
	Network timeouts
	Temporary device overload
	UDP packet loss
	DNS resolution delays

Permanent Errors (Non-retryable)
	Authentication failures
	Unsupported SNMP versions
	Invalid OIDs
	Device configuration errors

Degraded Performance
	Slow response times
	Partial failures
	High error rates
	Resource exhaustion

Circuit Breaker States
Closed (Normal Operation)
Device is healthy, all operations proceed normally.
Open (Failing)
Device has exceeded failure threshold, operations are blocked.
Half-Open (Testing)
Limited operations allowed to test device recovery.
Usage Examples
Basic retry with exponential backoff
result = SnmpKit.SnmpLib.ErrorHandler.with_retry(fn ->
 SnmpKit.SnmpLib.Manager.get("192.168.1.1", [1,3,6,1,2,1,1,1,0])
end, max_attempts: 3)

Circuit breaker for device management
{:ok, breaker} = SnmpKit.SnmpLib.ErrorHandler.start_circuit_breaker("192.168.1.1")

result = SnmpKit.SnmpLib.ErrorHandler.call_through_breaker(breaker, fn ->
 SnmpKit.SnmpLib.Manager.get_bulk("192.168.1.1", [1,3,6,1,2,1,2,2])
end)

Adaptive timeout based on device history
timeout = SnmpKit.SnmpLib.ErrorHandler.adaptive_timeout("192.168.1.1", base_timeout: 5000)

 Summary

 Types

 circuit_breaker_opts()

 circuit_state()

 device_id()

 device_stats()

 error_class()

 retry_opts()

 retry_strategy()

 Functions

 adaptive_timeout(device_id, opts \\ [])

 Calculates an adaptive timeout based on device performance history.

 call_through_breaker(breaker_pid, fun, timeout \\ 5000)

 Executes a function through a circuit breaker.

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 classify_error(error)

 Classifies an error to determine appropriate handling strategy.

 get_device_stats(device_id)

 Gets comprehensive error statistics for a device.

 quarantine_device(device_id, duration_ms)

 Puts a device into quarantine for a specified duration.

 quarantined?(device_id)

 Checks if a device is currently quarantined.

 start_circuit_breaker(device_id, opts \\ [])

 Starts a circuit breaker for a specific device.

 with_retry(fun, opts \\ [])

 Executes a function with intelligent retry logic and exponential backoff.

 Types

 circuit_breaker_opts()

 @type circuit_breaker_opts() :: [
 failure_threshold: pos_integer(),
 recovery_timeout: pos_integer(),
 half_open_max_calls: pos_integer(),
 timeout_threshold: pos_integer(),
 slow_call_threshold: pos_integer()
]

 circuit_state()

 @type circuit_state() :: :closed | :open | :half_open

 device_id()

 @type device_id() :: binary()

 device_stats()

 @type device_stats() :: %{
 device_id: device_id(),
 success_count: non_neg_integer(),
 failure_count: non_neg_integer(),
 avg_response_time: float(),
 last_success: integer() | nil,
 last_failure: integer() | nil,
 circuit_state: circuit_state(),
 quarantine_until: integer() | nil
}

 error_class()

 @type error_class() :: :transient | :permanent | :degraded | :unknown

 retry_opts()

 @type retry_opts() :: [
 max_attempts: pos_integer(),
 strategy: retry_strategy(),
 base_delay: pos_integer(),
 max_delay: pos_integer(),
 jitter_factor: float(),
 retry_condition: function()
]

 retry_strategy()

 @type retry_strategy() :: :exponential | :linear | :fixed

 Functions

 adaptive_timeout(device_id, opts \\ [])

 @spec adaptive_timeout(
 device_id(),
 keyword()
) :: pos_integer()

Calculates an adaptive timeout based on device performance history.
Dynamically adjusts timeouts based on historical response times,
device health, and current network conditions.
Parameters
	device_id: Device identifier
	opts: Timeout calculation options

Options
	base_timeout: Minimum timeout value (default: 5000ms)
	max_timeout: Maximum timeout value (default: 60000ms)
	percentile: Response time percentile to use (default: 95)
	safety_factor: Multiplier for calculated timeout (default: 2.0)

Returns
Calculated timeout in milliseconds
Examples
Basic adaptive timeout
timeout = SnmpKit.SnmpLib.ErrorHandler.adaptive_timeout("192.168.1.1")

Custom timeout parameters
timeout = SnmpKit.SnmpLib.ErrorHandler.adaptive_timeout("slow.device.local",
 base_timeout: 10_000,
 max_timeout: 120_000,
 percentile: 99,
 safety_factor: 3.0
)

 call_through_breaker(breaker_pid, fun, timeout \\ 5000)

 @spec call_through_breaker(pid(), function(), pos_integer()) ::
 {:ok, any()} | {:error, any()}

Executes a function through a circuit breaker.
The circuit breaker monitors the operation and may block future calls
if the device is experiencing failures.
Parameters
	breaker_pid: PID of the circuit breaker process
	fun: Function to execute
	timeout: Maximum execution time (optional)

Returns
	{:ok, result}: Operation succeeded
	{:error, reason}: Operation failed
	{:error, :circuit_open}: Circuit breaker is open (device unhealthy)

Examples
result = SnmpKit.SnmpLib.ErrorHandler.call_through_breaker(breaker, fn ->
 SnmpKit.SnmpLib.Manager.get("192.168.1.1", [1,3,6,1,2,1,1,1,0])
end)

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 classify_error(error)

 @spec classify_error(any()) :: error_class()

Classifies an error to determine appropriate handling strategy.
Parameters
	error: The error to classify

Returns
	:transient: Error is likely temporary, retry recommended
	:permanent: Error is permanent, retry not recommended
	:degraded: Performance issue, may benefit from backoff
	:unknown: Unable to classify, use conservative approach

Examples
:transient = SnmpKit.SnmpLib.ErrorHandler.classify_error(:timeout)
:permanent = SnmpKit.SnmpLib.ErrorHandler.classify_error(:authentication_failed)
:degraded = SnmpKit.SnmpLib.ErrorHandler.classify_error(:slow_response)

 get_device_stats(device_id)

 @spec get_device_stats(device_id()) :: {:ok, device_stats()} | {:error, :not_found}

Gets comprehensive error statistics for a device.
Examples
{:ok, stats} = SnmpKit.SnmpLib.ErrorHandler.get_device_stats("192.168.1.1")
IO.inspect(stats.failure_count)

 quarantine_device(device_id, duration_ms)

 @spec quarantine_device(device_id(), pos_integer()) :: :ok

Puts a device into quarantine for a specified duration.
Quarantined devices have operations blocked to allow recovery.
Examples
:ok = SnmpKit.SnmpLib.ErrorHandler.quarantine_device("192.168.1.1", 300_000) # 5 minutes

 quarantined?(device_id)

 @spec quarantined?(device_id()) :: boolean()

Checks if a device is currently quarantined.
Examples
false = SnmpKit.SnmpLib.ErrorHandler.quarantined?("192.168.1.1")

 start_circuit_breaker(device_id, opts \\ [])

 @spec start_circuit_breaker(device_id(), circuit_breaker_opts()) ::
 {:ok, pid()} | {:error, any()}

Starts a circuit breaker for a specific device.
Circuit breakers automatically detect failing devices and prevent
cascading failures by temporarily blocking operations.
Parameters
	device_id: Unique identifier for the device
	opts: Circuit breaker configuration options

Returns
	{:ok, pid}: Circuit breaker started successfully
	{:error, reason}: Failed to start circuit breaker

Examples
{:ok, breaker} = SnmpKit.SnmpLib.ErrorHandler.start_circuit_breaker("192.168.1.1")

{:ok, breaker} = SnmpKit.SnmpLib.ErrorHandler.start_circuit_breaker("core-switch-01",
 failure_threshold: 10,
 recovery_timeout: 120_000
)

 with_retry(fun, opts \\ [])

 @spec with_retry(function(), retry_opts()) :: {:ok, any()} | {:error, any()}

Executes a function with intelligent retry logic and exponential backoff.
Automatically retries transient failures while avoiding permanent errors.
Uses exponential backoff with jitter to prevent thundering herd problems.
Parameters
	fun: Function to execute (should return {:ok, result} or {:error, reason})
	opts: Retry configuration options

Options
	max_attempts: Maximum retry attempts (default: 3)
	strategy: Backoff strategy (:exponential, :linear, :fixed)
	base_delay: Initial delay in milliseconds (default: 1000)
	max_delay: Maximum delay between retries (default: 30000)
	jitter_factor: Random variation factor (default: 0.1)
	retry_condition: Custom function to determine if error is retryable

Returns
	{:ok, result}: Operation succeeded (possibly after retries)
	{:error, reason}: Operation failed after all attempts
	{:error, {:max_retries_exceeded, last_error}}: All retries exhausted

Examples
Basic retry with defaults
result = SnmpKit.SnmpLib.ErrorHandler.with_retry(fn ->
 SnmpKit.SnmpLib.Manager.get("192.168.1.1", [1,3,6,1,2,1,1,1,0])
end)

Custom retry configuration
result = SnmpKit.SnmpLib.ErrorHandler.with_retry(fn ->
 SnmpKit.SnmpLib.Manager.get_bulk("slow.device.local", [1,3,6,1,2,1,2,2])
end,
max_attempts: 5,
base_delay: 2000,
max_delay: 60000,
strategy: :exponential
)

SnmpKit.SnmpLib.HostParser

Comprehensive host and port parsing for all possible input formats.
This module handles parsing of host and port information from any conceivable
input format and returns exactly what gen_udp needs: an IP tuple and integer port.
Supported Input Formats
IPv4
	Tuples: {192, 168, 1, 1}, {{192, 168, 1, 1}, 161}
	Strings: "192.168.1.1", "192.168.1.1:161"
	Charlists: '192.168.1.1', '192.168.1.1:161'
	Hostnames: "router.local", "router.local:161"

IPv6
	Tuples: {0x2001, 0xdb8, 0, 0, 0, 0, 0, 1}, {{0x2001, 0xdb8, 0, 0, 0, 0, 0, 1}, 161}
	Strings: "2001:db8::1", "[2001:db8::1]:161"
	Charlists: '2001:db8::1', '[2001:db8::1]:161'
	Compressed: "::1", "[::1]:161"

Mixed Formats
	Maps: %{host: "192.168.1.1", port: 161}
	Keyword lists: [host: "192.168.1.1", port: 161]

Returns
{:ok, {ip_tuple, port}} where:
	ip_tuple is a 4-tuple for IPv4 or 8-tuple for IPv6
	port is an integer between 1-65535

{:error, reason} for invalid input

 Summary

 Types

 ip4_tuple()

 ip6_tuple()

 ip_tuple()

 parse_result()

 port_number()

 Functions

 format(arg)

 Format an IP tuple and port back to string representation.

 parse(input, default_port \\ 161)

 Parse host and port from any input format.

 parse_ip(input)

 Parse and return only the IP tuple, using default port.

 parse_port(input)

 Parse and return only the port, using 161 as default.

 valid?(input)

 Quick validation function to check if input can be parsed.

 Types

 ip4_tuple()

 @type ip4_tuple() :: {0..255, 0..255, 0..255, 0..255}

 ip6_tuple()

 @type ip6_tuple() ::
 {0..65535, 0..65535, 0..65535, 0..65535, 0..65535, 0..65535, 0..65535,
 0..65535}

 ip_tuple()

 @type ip_tuple() :: ip4_tuple() | ip6_tuple()

 parse_result()

 @type parse_result() :: {:ok, {ip_tuple(), port_number()}} | {:error, atom()}

 port_number()

 @type port_number() :: 1..65535

 Functions

 format(arg)

 @spec format({ip_tuple(), port_number()}) :: String.t()

Format an IP tuple and port back to string representation.
Examples
iex> SnmpKit.SnmpLib.HostParser.format({{192, 168, 1, 1}, 161})
"192.168.1.1:161"

iex> SnmpKit.SnmpLib.HostParser.format({{0, 0, 0, 0, 0, 0, 0, 1}, 161})
"[::1]:161"

 parse(input, default_port \\ 161)

Parse host and port from any input format.
Examples
IPv4 tuples
iex> SnmpKit.SnmpLib.HostParser.parse({192, 168, 1, 1})
{:ok, {{192, 168, 1, 1}, 161}}

iex> SnmpKit.SnmpLib.HostParser.parse({{192, 168, 1, 1}, 8161})
{:ok, {{192, 168, 1, 1}, 8161}}

IPv4 strings
iex> SnmpKit.SnmpLib.HostParser.parse("192.168.1.1")
{:ok, {{192, 168, 1, 1}, 161}}

iex> SnmpKit.SnmpLib.HostParser.parse("192.168.1.1:8161")
{:ok, {{192, 168, 1, 1}, 8161}}

IPv4 charlists
iex> SnmpKit.SnmpLib.HostParser.parse('192.168.1.1')
{:ok, {{192, 168, 1, 1}, 161}}

iex> SnmpKit.SnmpLib.HostParser.parse('192.168.1.1:8161')
{:ok, {{192, 168, 1, 1}, 8161}}

IPv6 strings
iex> SnmpKit.SnmpLib.HostParser.parse("::1")
{:ok, {{0, 0, 0, 0, 0, 0, 0, 1}, 161}}

iex> SnmpKit.SnmpLib.HostParser.parse("[::1]:8161")
{:ok, {{0, 0, 0, 0, 0, 0, 0, 1}, 8161}}

Error cases
iex> SnmpKit.SnmpLib.HostParser.parse("invalid")
{:error, :invalid_host}

iex> SnmpKit.SnmpLib.HostParser.parse("192.168.1.1:99999")
{:error, :invalid_port}

 parse_ip(input)

 @spec parse_ip(any()) :: {:ok, ip_tuple()} | {:error, atom()}

Parse and return only the IP tuple, using default port.
Examples
iex> SnmpKit.SnmpLib.HostParser.parse_ip("192.168.1.1")
{:ok, {192, 168, 1, 1}}

 parse_port(input)

 @spec parse_port(any()) :: {:ok, port_number()} | {:error, atom()}

Parse and return only the port, using 161 as default.
Examples
iex> SnmpKit.SnmpLib.HostParser.parse_port("192.168.1.1:8161")
{:ok, 8161}

iex> SnmpKit.SnmpLib.HostParser.parse_port("192.168.1.1")
{:ok, 161}

 valid?(input)

 @spec valid?(any()) :: boolean()

Quick validation function to check if input can be parsed.
Examples
iex> SnmpKit.SnmpLib.HostParser.valid?("192.168.1.1")
true

iex> SnmpKit.SnmpLib.HostParser.valid?("invalid")
false

SnmpKit.SnmpLib.MIB.AST

Abstract Syntax Tree definitions for MIB compilation.
Faithfully ported from Erlang OTP snmpc_mib_gram.yrl and related structures.
Provides the complete AST representation needed for SNMP MIB compilation.

 Summary

 Types

 access_level()

 agent_capabilities()

 capability_module()

 choice_element()

 compliance_module()

 compliance_object()

 constraint()

 constraints()

 constructed_syntax()

 default_value()

 definition()

 import()

 index_element()

 index_spec()

 line_number()

 metadata()

 mib()

 module_compliance()

 module_identity()

 named_bit()

 named_syntax()

 named_value()

 notification_group()

 notification_type()

 object_group()

 object_identifier_assignment()

 object_identity()

 object_type()

 object_variation()

 oid()

 oid_element()

 oid_tree()

 primitive_syntax()

 range_constraint()

 range_spec()

 revision()

 sequence_element()

 size_constraint()

 size_range()

 status()

 syntax()

 tag()

 textual_convention()

 trap_type()

 Functions

 build_oid_tree(definitions)

 Build an OID tree from definitions for fast lookups.

 determine_snmp_version(definitions)

 Determine SNMP version based on MIB content.

 new_import(symbols, from_module, line)

 Create a new import statement.

 new_mib(name, opts \\ [])

 Create a new MIB AST node.

 new_object_identity(name, opts)

 Create a new object identity definition.

 new_object_type(name, opts)

 Create a new object type definition.

 pretty_print(other)

 Pretty print AST node for debugging.

 validate_node(node)

 Validate AST node structure.

 Types

 access_level()

 @type access_level() ::
 :not_accessible
 | :accessible_for_notify
 | :read_only
 | :read_write
 | :read_create
 | :write_only

 agent_capabilities()

 @type agent_capabilities() :: %{
 __type__: :agent_capabilities,
 name: binary(),
 product_release: binary(),
 status: status(),
 description: binary(),
 reference: binary() | nil,
 modules: [capability_module()],
 oid: oid(),
 line: line_number()
}

 capability_module()

 @type capability_module() :: %{
 module_name: binary(),
 includes: [binary()],
 variations: [object_variation()]
}

 choice_element()

 @type choice_element() :: %{name: binary(), syntax: syntax()}

 compliance_module()

 @type compliance_module() :: %{
 module_name: binary(),
 mandatory_groups: [binary()],
 compliance_objects: [compliance_object()]
}

 compliance_object()

 @type compliance_object() :: %{
 object: binary(),
 syntax: syntax() | nil,
 write_syntax: syntax() | nil,
 access: access_level() | nil,
 description: binary() | nil
}

 constraint()

 @type constraint() ::
 {:size, size_constraint()}
 | {:range, range_constraint()}
 | {:named_values, [named_value()]}
 | {:contained_subtype, syntax()}

 constraints()

 @type constraints() :: [constraint()]

 constructed_syntax()

 @type constructed_syntax() ::
 {:sequence, [sequence_element()]}
 | {:sequence_of, syntax()}
 | {:choice, [choice_element()]}
 | {:bit_string, [named_bit()]}

 default_value()

 @type default_value() ::
 nil
 | integer()
 | binary()
 | atom()
 | [default_value()]
 | {:named_value, binary()}
 | {:bit_string, [binary()]}

 definition()

 @type definition() ::
 object_type()
 | object_identity()
 | object_group()
 | notification_type()
 | notification_group()
 | module_identity()
 | module_compliance()
 | agent_capabilities()
 | textual_convention()
 | trap_type()
 | object_identifier_assignment()

 import()

 @type import() :: %{
 __type__: :import,
 symbols: [binary()],
 from_module: binary(),
 line: line_number()
}

 index_element()

 @type index_element() :: binary() | {:implied, binary()}

 index_spec()

 @type index_spec() :: {:index, [index_element()]} | {:implied, [index_element()]}

 line_number()

 @type line_number() :: integer()

 metadata()

 @type metadata() :: %{
 compile_time: DateTime.t(),
 compiler_version: binary(),
 source_file: Path.t(),
 snmp_version: :v1 | :v2c,
 dependencies: [binary()],
 warnings: [binary()],
 line_count: integer()
}

 mib()

 @type mib() :: %{
 __type__: :mib,
 name: binary(),
 last_updated: binary() | nil,
 organization: binary() | nil,
 contact_info: binary() | nil,
 description: binary() | nil,
 revision_history: [revision()],
 imports: [import()],
 definitions: [definition()],
 oid_tree: oid_tree(),
 metadata: metadata()
}

 module_compliance()

 @type module_compliance() :: %{
 __type__: :module_compliance,
 name: binary(),
 status: status(),
 description: binary(),
 reference: binary() | nil,
 modules: [compliance_module()],
 oid: oid(),
 line: line_number()
}

 module_identity()

 @type module_identity() :: %{
 __type__: :module_identity,
 name: binary(),
 last_updated: binary(),
 organization: binary(),
 contact_info: binary(),
 description: binary(),
 revision_history: [revision()],
 oid: oid(),
 line: line_number()
}

 named_bit()

 @type named_bit() :: %{name: binary(), bit_number: integer()}

 named_syntax()

 @type named_syntax() ::
 {:named_type, binary()}
 | {:application_type, tag(), syntax()}
 | {:context_type, tag(), syntax()}

 named_value()

 @type named_value() :: %{name: binary(), value: integer()}

 notification_group()

 @type notification_group() :: %{
 __type__: :notification_group,
 name: binary(),
 notifications: [binary()],
 status: status(),
 description: binary(),
 reference: binary() | nil,
 oid: oid(),
 line: line_number()
}

 notification_type()

 @type notification_type() :: %{
 __type__: :notification_type,
 name: binary(),
 objects: [binary()],
 status: status(),
 description: binary(),
 reference: binary() | nil,
 oid: oid(),
 line: line_number()
}

 object_group()

 @type object_group() :: %{
 __type__: :object_group,
 name: binary(),
 objects: [binary()],
 status: status(),
 description: binary(),
 reference: binary() | nil,
 oid: oid(),
 line: line_number()
}

 object_identifier_assignment()

 @type object_identifier_assignment() :: %{
 __type__: :object_identifier_assignment,
 name: binary(),
 oid: oid(),
 line: line_number()
}

 object_identity()

 @type object_identity() :: %{
 __type__: :object_identity,
 name: binary(),
 status: status(),
 description: binary(),
 reference: binary() | nil,
 oid: oid(),
 line: line_number()
}

 object_type()

 @type object_type() :: %{
 __type__: :object_type,
 name: binary(),
 syntax: syntax(),
 units: binary() | nil,
 max_access: access_level(),
 status: status(),
 description: binary(),
 reference: binary() | nil,
 index: index_spec() | nil,
 augments: binary() | nil,
 defval: default_value() | nil,
 oid: oid(),
 line: line_number()
}

 object_variation()

 @type object_variation() :: %{
 object: binary(),
 syntax: syntax() | nil,
 write_syntax: syntax() | nil,
 access: access_level() | nil,
 creation: boolean(),
 defval: default_value() | nil,
 description: binary()
}

 oid()

 @type oid() :: [integer()] | [oid_element()]

 oid_element()

 @type oid_element() :: integer() | {binary(), integer()}

 oid_tree()

 @type oid_tree() :: :ets.tid() | map()

 primitive_syntax()

 @type primitive_syntax() ::
 :integer
 | :octet_string
 | :object_identifier
 | :null
 | :real
 | {:integer, constraints()}
 | {:octet_string, constraints()}
 | {:object_identifier, constraints()}

 range_constraint()

 @type range_constraint() :: {integer(), integer()} | [range_spec()]

 range_spec()

 @type range_spec() :: integer() | {integer(), integer()}

 revision()

 @type revision() :: %{
 __type__: :revision,
 date: binary(),
 description: binary(),
 line: line_number()
}

 sequence_element()

 @type sequence_element() :: %{
 name: binary(),
 syntax: syntax(),
 optional: boolean(),
 default: default_value() | nil
}

 size_constraint()

 @type size_constraint() :: integer() | {integer(), integer()} | [size_range()]

 size_range()

 @type size_range() :: integer() | {integer(), integer()}

 status()

 @type status() :: :current | :deprecated | :obsolete | :mandatory

 syntax()

 @type syntax() :: primitive_syntax() | constructed_syntax() | named_syntax()

 tag()

 @type tag() :: integer()

 textual_convention()

 @type textual_convention() :: %{
 __type__: :textual_convention,
 name: binary(),
 display_hint: binary() | nil,
 status: status(),
 description: binary(),
 reference: binary() | nil,
 syntax: syntax(),
 line: line_number()
}

 trap_type()

 @type trap_type() :: %{
 __type__: :trap_type,
 name: binary(),
 enterprise: oid(),
 variables: [binary()],
 description: binary() | nil,
 reference: binary() | nil,
 trap_number: integer(),
 line: line_number()
}

 Functions

 build_oid_tree(definitions)

 @spec build_oid_tree([definition()]) :: :ets.tid()

Build an OID tree from definitions for fast lookups.

 determine_snmp_version(definitions)

 @spec determine_snmp_version([definition()]) :: :v1 | :v2c

Determine SNMP version based on MIB content.
Per Erlang implementation: presence of MODULE-IDENTITY indicates SNMPv2.

 new_import(symbols, from_module, line)

 @spec new_import([binary()], binary(), line_number()) :: import()

Create a new import statement.

 new_mib(name, opts \\ [])

 @spec new_mib(
 binary(),
 keyword()
) :: mib()

Create a new MIB AST node.

 new_object_identity(name, opts)

 @spec new_object_identity(
 binary(),
 keyword()
) :: object_identity()

Create a new object identity definition.

 new_object_type(name, opts)

 @spec new_object_type(
 binary(),
 keyword()
) :: object_type()

Create a new object type definition.

 pretty_print(other)

 @spec pretty_print(term()) :: binary()

Pretty print AST node for debugging.

 validate_node(node)

 @spec validate_node(term()) :: {:ok, term()} | {:error, binary()}

Validate AST node structure.

SnmpKit.SnmpLib.MIB.Compiler

Main MIB compiler that orchestrates the entire compilation process.
This module provides the main interface for compiling MIB files from source
to executable format. It coordinates between the lexer, parser, semantic
analyzer, and code generator to produce optimized compiled MIBs.
Compilation Process
	Lexical Analysis - Tokenize MIB source
	Parsing - Build Abstract Syntax Tree (AST)
	Semantic Analysis - Validate and resolve symbols
	Code Generation - Generate optimized runtime format
	Persistence - Save compiled MIB for loading

Usage
Compile a single MIB file
{:ok, compiled} = SnmpKit.SnmpLib.MIB.Compiler.compile("MY-MIB.mib")

Compile with options
{:ok, compiled} = SnmpKit.SnmpLib.MIB.Compiler.compile("MY-MIB.mib",
 output_dir: "/tmp/mibs",
 format: :binary,
 optimize: true
)

Compile multiple MIBs
{:ok, results} = SnmpKit.SnmpLib.MIB.Compiler.compile_all([
 "SNMPv2-SMI.mib",
 "MY-MIB.mib"
])

 Summary

 Types

 compile_opts()

 compile_result()

 compiled_mib()

 Functions

 compile(mib_path, opts \\ [])

 Compile a MIB file from filesystem path.

 compile_all(mib_files, opts \\ [])

 Compile multiple MIB files in dependency order.

 compile_string(mib_content, opts \\ [])

 Compile a MIB from string content.

 load_compiled(compiled_path)

 Load a previously compiled MIB.

 Types

 compile_opts()

 @type compile_opts() :: [
 output_dir: Path.t(),
 format: :erlang | :binary | :json,
 optimize: boolean(),
 validate: boolean(),
 include_paths: [Path.t()],
 warnings_as_errors: boolean()
]

 compile_result()

 @type compile_result() ::
 {:ok, compiled_mib()}
 | {:error, [SnmpKit.SnmpLib.MIB.Error.t()]}
 | {:warning, compiled_mib(), [SnmpKit.SnmpLib.MIB.Error.t()]}

 compiled_mib()

 @type compiled_mib() :: %{
 name: binary(),
 version: binary(),
 format: atom(),
 path: Path.t(),
 metadata: map(),
 oid_tree: SnmpKit.SnmpLib.MIB.AST.oid_tree(),
 symbols: map(),
 dependencies: [binary()]
}

 Functions

 compile(mib_path, opts \\ [])

 @spec compile(Path.t(), compile_opts()) :: compile_result()

Compile a MIB file from filesystem path.
Examples
iex> SnmpKit.SnmpLib.MIB.Compiler.compile("test/fixtures/TEST-MIB.mib")
{:ok, %{name: "TEST-MIB", ...}}

iex> SnmpKit.SnmpLib.MIB.Compiler.compile("missing.mib")
{:error, [%SnmpKit.SnmpLib.MIB.Error{type: :file_not_found}]}

 compile_all(mib_files, opts \\ [])

 @spec compile_all([Path.t()], compile_opts()) ::
 {:ok, [compiled_mib()]}
 | {:error, [{Path.t(), [SnmpKit.SnmpLib.MIB.Error.t()]}]}

Compile multiple MIB files in dependency order.
Examples
iex> SnmpKit.SnmpLib.MIB.Compiler.compile_all(["SNMPv2-SMI.mib", "MY-MIB.mib"])
{:ok, [%{name: "SNMPv2-SMI"}, %{name: "MY-MIB"}]}

 compile_string(mib_content, opts \\ [])

 @spec compile_string(binary(), compile_opts()) :: compile_result()

Compile a MIB from string content.
This delegates to the Parser module which implements the full compilation
pipeline using YACC-based parsing.
Examples
iex> SnmpKit.SnmpLib.MIB.Compiler.compile_string(mib_content)
{:ok, %{name: "TEST-MIB", ...}}

 load_compiled(compiled_path)

 @spec load_compiled(Path.t()) :: {:ok, compiled_mib()} | {:error, term()}

Load a previously compiled MIB.
Examples
iex> SnmpKit.SnmpLib.MIB.Compiler.load_compiled("priv/mibs/TEST-MIB.mib")
{:ok, %{name: "TEST-MIB", ...}}

SnmpKit.SnmpLib.MIB.Error

Enhanced error handling with recovery and detailed diagnostics.
Provides structured error reporting with context, suggestions, and
precise location information for MIB compilation errors.

 Summary

 Types

 error_type()

 t()

 Functions

 format(error, opts \\ [])

 Format an error for display with optional color coding.

 new(type, opts \\ [])

 Create a new error with detailed context and suggestions.

 Types

 error_type()

 @type error_type() ::
 :syntax_error
 | :semantic_error
 | :import_error
 | :type_error
 | :constraint_error
 | :duplicate_definition
 | :file_not_found
 | :unterminated_string
 | :unexpected_token
 | :unexpected_eof
 | :invalid_number
 | :invalid_identifier

 t()

 @type t() :: %SnmpKit.SnmpLib.MIB.Error{
 column: integer() | nil,
 context: map(),
 line: integer() | nil,
 message: binary(),
 suggestions: [binary()],
 type: error_type()
}

 Functions

 format(error, opts \\ [])

 @spec format(
 t(),
 keyword()
) :: binary()

Format an error for display with optional color coding.
Examples
iex> error = SnmpKit.SnmpLib.MIB.Error.new(:syntax_error, line: 42, column: 10)
iex> SnmpKit.SnmpLib.MIB.Error.format(error)
"Error at line 42, column 10: Syntax error"

 new(type, opts \\ [])

 @spec new(
 error_type(),
 keyword()
) :: t()

Create a new error with detailed context and suggestions.
Examples
iex> SnmpKit.SnmpLib.MIB.Error.new(:unexpected_token,
...> expected: :max_access,
...> actual: :access,
...> line: 42,
...> column: 10
...>)
%SnmpKit.SnmpLib.MIB.Error{
 type: :unexpected_token,
 message: "Expected max_access, but found access",
 suggestions: ["Did you mean 'MAX-ACCESS' instead of 'ACCESS'?"]
}

SnmpKit.SnmpLib.MIB.Logger

Structured logging for MIB compilation with proper log levels.
Provides detailed logging throughout the compilation process with
structured metadata for debugging and monitoring.

 Summary

 Functions

 log_batch_compilation_error(success_count, error_count)

 Log batch compilation with errors.

 log_batch_compilation_start(file_count)

 Log start of batch compilation.

 log_batch_compilation_success(success_count)

 Log successful batch compilation.

 log_batch_progress(completed, total)

 Log batch compilation progress.

 log_codegen(mib_name, objects_count, functions_generated)

 Log code generation progress and results.

 log_compilation_complete(mib_name, result)

 Log compilation completion with results.

 log_compilation_error(mib_name, errors)

 Log compilation errors.

 log_compilation_failed(file_path, errors)

 Log compilation failure with error details.

 log_compilation_start(file_path, opts)

 Log the start of MIB compilation with context.

 log_compilation_success(mib_name, output_path)

 Log successful MIB compilation.

 log_compilation_warning(mib_name, output_path, warnings)

 Log compilation with warnings.

 log_dependency_order(mib_order)

 Log dependency resolution order.

 log_import_resolution(mib_name, imported_mibs)

 Log import resolution with dependency information.

 log_imports_resolved(mib_name, resolved_count, total_count)

 Log successful import resolution.

 log_parse_progress(phase, count)

 Log parsing progress with token/object counts.

 log_performance(phase, metrics)

 Log performance metrics.

 log_tokenization(mib_name, tokens_count, lines_processed)

 Log tokenization statistics.

 log_vendor_quirk(mib_name, vendor, quirk_description)

 Log vendor-specific quirk handling.

 log_warning(message, context \\ %{})

 Log warning with context.

 Functions

 log_batch_compilation_error(success_count, error_count)

 @spec log_batch_compilation_error(integer(), integer()) :: :ok

Log batch compilation with errors.

 log_batch_compilation_start(file_count)

 @spec log_batch_compilation_start(integer()) :: :ok

Log start of batch compilation.

 log_batch_compilation_success(success_count)

 @spec log_batch_compilation_success(integer()) :: :ok

Log successful batch compilation.

 log_batch_progress(completed, total)

 @spec log_batch_progress(integer(), integer()) :: :ok

Log batch compilation progress.

 log_codegen(mib_name, objects_count, functions_generated)

 @spec log_codegen(binary(), integer(), integer()) :: :ok

Log code generation progress and results.

 log_compilation_complete(mib_name, result)

 @spec log_compilation_complete(binary(), map()) :: :ok

Log compilation completion with results.

 log_compilation_error(mib_name, errors)

 @spec log_compilation_error(binary(), [term()]) :: :ok

Log compilation errors.

 log_compilation_failed(file_path, errors)

 @spec log_compilation_failed(Path.t(), [term()]) :: :ok

Log compilation failure with error details.

 log_compilation_start(file_path, opts)

 @spec log_compilation_start(
 Path.t(),
 keyword()
) :: :ok

Log the start of MIB compilation with context.

 log_compilation_success(mib_name, output_path)

 @spec log_compilation_success(binary(), Path.t()) :: :ok

Log successful MIB compilation.

 log_compilation_warning(mib_name, output_path, warnings)

 @spec log_compilation_warning(binary(), Path.t(), [term()]) :: :ok

Log compilation with warnings.

 log_dependency_order(mib_order)

 @spec log_dependency_order([binary()]) :: :ok

Log dependency resolution order.

 log_import_resolution(mib_name, imported_mibs)

 @spec log_import_resolution(binary(), [binary()]) :: :ok

Log import resolution with dependency information.

 log_imports_resolved(mib_name, resolved_count, total_count)

 @spec log_imports_resolved(binary(), integer(), integer()) :: :ok

Log successful import resolution.

 log_parse_progress(phase, count)

 @spec log_parse_progress(binary(), integer()) :: :ok

Log parsing progress with token/object counts.

 log_performance(phase, metrics)

 @spec log_performance(
 binary(),
 keyword()
) :: :ok

Log performance metrics.

 log_tokenization(mib_name, tokens_count, lines_processed)

 @spec log_tokenization(binary(), integer(), integer()) :: :ok

Log tokenization statistics.

 log_vendor_quirk(mib_name, vendor, quirk_description)

 @spec log_vendor_quirk(binary(), binary(), binary()) :: :ok

Log vendor-specific quirk handling.

 log_warning(message, context \\ %{})

 @spec log_warning(binary(), map()) :: :ok

Log warning with context.

SnmpKit.SnmpLib.MIB.Parser

Pure native SNMP MIB parser using custom Elixir grammar.
This module provides complete native parsing of SNMP MIB files with 100%
compatibility. All MIBs are parsed natively ensuring complete data integrity.

 Summary

 Functions

 init_parser()

 Initialize the parser by compiling the grammar file.
This creates a proper yacc-generated parser for native MIB parsing.

 mibdirs(directories)

 Parse all MIB files in a list of directories using pure native parsing.

 parse(mib_content)

 Parse a MIB file using pure native grammar parsing.
This is the production MIB parser with 100% native compatibility.

 parse_tokens(tokens)

 Parse pre-tokenized MIB tokens using native grammar parsing.
This function takes tokens directly without tokenizing.

 tokenize(mib_content)

 Tokenize MIB content using the native SNMP tokenizer.

 Functions

 init_parser()

Initialize the parser by compiling the grammar file.
This creates a proper yacc-generated parser for native MIB parsing.

 mibdirs(directories)

Parse all MIB files in a list of directories using pure native parsing.
Returns a map with directory paths as keys and results as values.
Each result contains successful compilations and failures.
Examples
Parse MIBs in multiple directories
dirs = [
 "/path/to/mibs/working",
 "/path/to/mibs/docsis"
]
results = SnmpKit.SnmpLib.MIB.Parser.mibdirs(dirs)

Access results by directory
working_results = results["/path/to/mibs/working"]
IO.puts("Success: #{length(working_results.success)}/#{working_results.total}")

Get all successful MIBs across directories
all_mibs = Enum.flat_map(results, fn {_dir, result} -> result.success end)

 parse(mib_content)

Parse a MIB file using pure native grammar parsing.
This is the production MIB parser with 100% native compatibility.

 parse_tokens(tokens)

Parse pre-tokenized MIB tokens using native grammar parsing.
This function takes tokens directly without tokenizing.

 tokenize(mib_content)

Tokenize MIB content using the native SNMP tokenizer.
Uses the SnmpKit.SnmpLib.MIB.SnmpTokenizer module for complete MIB tokenization.

SnmpKit.SnmpLib.MIB.Preprocessor

Preprocessor for MIB files to handle problematic constructs before parsing.
This module addresses issues with very large TEXTUAL-CONVENTION enumerations
that cause parser state corruption in certain edge cases.

 Summary

 Functions

 analyze_enumerations(content)

 Get statistics about enumeration complexity in a MIB file.

 has_problematic_constructs?(content)

 Check if a MIB file contains problematic constructs.

 normalize_whitespace(content)

 Normalize excessive whitespace that might cause tokenizer issues.

 preprocess(content)

 Preprocess MIB content to handle problematic constructs.

 simplify_large_enumerations(content)

 Simplify very large TEXTUAL-CONVENTION enumerations that cause parser issues.

 Functions

 analyze_enumerations(content)

Get statistics about enumeration complexity in a MIB file.

 has_problematic_constructs?(content)

Check if a MIB file contains problematic constructs.

 normalize_whitespace(content)

Normalize excessive whitespace that might cause tokenizer issues.

 preprocess(content)

Preprocess MIB content to handle problematic constructs.

 simplify_large_enumerations(content)

Simplify very large TEXTUAL-CONVENTION enumerations that cause parser issues.
This replaces complex enumerations with simplified versions that preserve
the essential structure while avoiding parser state corruption.

SnmpKit.SnmpLib.MIB.Registry

Standard SNMP MIB registry with name/OID resolution functions.
Provides the standard SNMP MIB objects and core resolution functionality
that can be used by any SNMP application (managers, simulators, etc.).

 Summary

 Functions

 children(parent_oid)

 Find direct children of a parent OID.

 resolve_name(name)

 Resolve a MIB name to an OID list.
Handles instance notation like "sysDescr.0".

 reverse_lookup(oid)

 Reverse lookup an OID to get the MIB name.
Handles partial matches and instances.

 standard_mibs()

 Get the standard MIB registry map.

 standard_mibs_reverse()

 Get the reverse lookup map (OID -> name).

 walk_tree(root_oid)

 Walk the MIB tree from a root OID.

 Functions

 children(parent_oid)

Find direct children of a parent OID.
Examples
iex> SnmpKit.SnmpLib.MIB.Registry.children([1, 3, 6, 1, 2, 1, 1])
{:ok, ["sysContact", "sysDescr", "sysLocation", "sysName", "sysObjectID", "sysServices", "sysUpTime"]}

 resolve_name(name)

Resolve a MIB name to an OID list.
Handles instance notation like "sysDescr.0".
Examples
iex> SnmpKit.SnmpLib.MIB.Registry.resolve_name("sysDescr.0")
{:ok, [1, 3, 6, 1, 2, 1, 1, 1, 0]}

iex> SnmpKit.SnmpLib.MIB.Registry.resolve_name("sysDescr")
{:ok, [1, 3, 6, 1, 2, 1, 1, 1]}

iex> SnmpKit.SnmpLib.MIB.Registry.resolve_name("unknownName")
{:error, :not_found}

 reverse_lookup(oid)

Reverse lookup an OID to get the MIB name.
Handles partial matches and instances.
Examples
iex> SnmpKit.SnmpLib.MIB.Registry.reverse_lookup([1, 3, 6, 1, 2, 1, 1, 1, 0])
{:ok, "sysDescr.0"}

iex> SnmpKit.SnmpLib.MIB.Registry.reverse_lookup([1, 3, 6, 1, 2, 1, 1, 1])
{:ok, "sysDescr"}

 standard_mibs()

Get the standard MIB registry map.

 standard_mibs_reverse()

Get the reverse lookup map (OID -> name).

 walk_tree(root_oid)

Walk the MIB tree from a root OID.
Examples
iex> SnmpKit.SnmpLib.MIB.Registry.walk_tree([1, 3, 6, 1, 2, 1, 1])
{:ok, [{"sysDescr", [1, 3, 6, 1, 2, 1, 1, 1]}, {"sysObjectID", [1, 3, 6, 1, 2, 1, 1, 2]}, ...]}

SnmpKit.SnmpLib.MIB.SnmpTokenizer

True 1:1 Elixir port of Erlang SNMP tokenizer (snmpc_tok.erl).
This is a direct translation of the official Erlang SNMP tokenizer
from OTP lib/snmp/src/compile/snmpc_tok.erl
Original copyright: Ericsson AB 1996-2025 (Apache License 2.0)

 Summary

 Types

 state()

 token()

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 format_error(error)

 Format error message.
Equivalent to snmpc_tok:format_error/1

 get_all_tokens(pid)

 Get all remaining tokens.
Equivalent to snmpc_tok:get_all_tokens/1

 get_token(pid)

 Get next token from tokenizer.
Equivalent to snmpc_tok:get_token/1

 null_get_line()

 Null get_line function.
Equivalent to snmpc_tok:null_get_line/0

 start_link(chars, get_line_pid)

 Start tokenizer gen_server.
Equivalent to snmpc_tok:start_link/2

 stop(pid)

 Stop tokenizer.
Equivalent to snmpc_tok:stop/1

 test()

 Test function.
Equivalent to snmpc_tok:test/0

 tokenize(chars, get_line_fun)

 Tokenize a string directly.
Equivalent to snmpc_tok:tokenize/2

 Types

 state()

 @type state() :: %SnmpKit.SnmpLib.MIB.SnmpTokenizer{
 chars: charlist(),
 get_line_fun: function() | nil,
 line: pos_integer()
}

 token()

 @type token() :: {atom(), any(), pos_integer()}

 Functions

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 format_error(error)

 @spec format_error(term()) :: charlist()

Format error message.
Equivalent to snmpc_tok:format_error/1

 get_all_tokens(pid)

 @spec get_all_tokens(pid()) :: {:ok, [token()]} | {:error, term()}

Get all remaining tokens.
Equivalent to snmpc_tok:get_all_tokens/1

 get_token(pid)

 @spec get_token(pid()) :: {:ok, token()} | {:error, term()}

Get next token from tokenizer.
Equivalent to snmpc_tok:get_token/1

 null_get_line()

 @spec null_get_line() :: :eof

Null get_line function.
Equivalent to snmpc_tok:null_get_line/0

 start_link(chars, get_line_pid)

 @spec start_link(
 charlist(),
 pid()
) :: {:ok, pid()} | {:error, term()}

Start tokenizer gen_server.
Equivalent to snmpc_tok:start_link/2

 stop(pid)

 @spec stop(pid()) :: :ok

Stop tokenizer.
Equivalent to snmpc_tok:stop/1

 test()

Test function.
Equivalent to snmpc_tok:test/0

 tokenize(chars, get_line_fun)

 @spec tokenize(
 charlist(),
 function()
) :: {:ok, [token()]} | {:error, term()}

Tokenize a string directly.
Equivalent to snmpc_tok:tokenize/2

SnmpKit.SnmpLib.MIB.Utilities

Direct port of Erlang snmpc_lib.erl utility functions to Elixir.
This is a 1:1 port of the utility functions from the official Erlang SNMP compiler
from OTP lib/snmp/src/compile/snmpc_lib.erl
Original copyright: Ericsson AB 1996-2025 (Apache License 2.0)

 Summary

 Types

 oid()

 oid_status()

 verbosity()

 Functions

 allow_size_rfc1902(type)

 Check if size constraint is allowed for given type (RFC 1902 compliance).
Port of allow_size_rfc1902/1 from snmpc_lib.erl

 check_sub_ids(oid, min_value, max_value)

 Validate sub-identifier ranges.
Port of check_sub_ids/3 from snmpc_lib.erl

 compilation_error(message)

 Terminate compilation with error.
Port of error/2 and error/3 from snmpc_lib.erl

 compilation_error(format, args)

 key1search(key, list)

 Safe key lookup in list of tuples/maps.
Port of key1search/2 and key1search/3 from snmpc_lib.erl

 key1search(key, list, default)

 lookup(key, list)

 Generic lookup function with multiple criteria.
Port of lookup/2 from snmpc_lib.erl

 make_asn1_type(type_def)

 Validate and transform ASN.1 type definition.
Port of make_ASN1type/1 from snmpc_lib.erl

 print_error(message, verbosity)

 Print error message with formatting.
Port of print_error/2 and print_error/3 from snmpc_lib.erl

 print_error(format, args, verbosity)

 printable?(current_verbosity, required_verbosity)

 Determine if message should be printed based on verbosity.
Port of printable/2 from snmpc_lib.erl

 register_oid(name, oid, status, oid_table)

 Register an OID entry in the OID table.
Port of register_oid/4 from snmpc_lib.erl

 resolve_oids(oid_table)

 Resolve symbolic OID references to numeric OIDs.
Port of resolve_oids/1 from snmpc_lib.erl

 set_dir(filename, directory)

 Set directory path helper.
Port of set_dir/2 from snmpc_lib.erl

 test_kibbles(bit_definitions, verbosity)

 Validate bit definitions for BITS syntax.
Port of test_kibbles/2 from snmpc_lib.erl

 tr_oid(name, oid_table)

 Translate symbolic name to numeric OID.
Port of tr_oid/2 from snmpc_lib.erl

 update_me_oids(mib_entries, oid_table, verbosity)

 Update MIB entries with resolved OIDs.
Port of update_me_oids/3 from snmpc_lib.erl

 vprint(current_verbosity, required_verbosity, module, function, format, args)

 Configurable verbose printing.
Port of vprint/6 from snmpc_lib.erl

 vvalidate(verbosity)

 Validate verbosity level.
Port of vvalidate/1 from snmpc_lib.erl

 Types

 oid()

 @type oid() :: [integer()]

 oid_status()

 @type oid_status() :: :resolved | :unresolved

 verbosity()

 @type verbosity() :: :silent | :warning | :info | :debug

 Functions

 allow_size_rfc1902(type)

 @spec allow_size_rfc1902(atom()) :: boolean()

Check if size constraint is allowed for given type (RFC 1902 compliance).
Port of allow_size_rfc1902/1 from snmpc_lib.erl

 check_sub_ids(oid, min_value, max_value)

 @spec check_sub_ids(oid(), integer(), integer()) :: :ok | {:error, binary()}

Validate sub-identifier ranges.
Port of check_sub_ids/3 from snmpc_lib.erl

 compilation_error(message)

 @spec compilation_error(binary()) :: no_return()

Terminate compilation with error.
Port of error/2 and error/3 from snmpc_lib.erl

 compilation_error(format, args)

 @spec compilation_error(binary(), term()) :: no_return()

 key1search(key, list)

 @spec key1search(term(), [tuple()]) :: {:value, term()} | false

Safe key lookup in list of tuples/maps.
Port of key1search/2 and key1search/3 from snmpc_lib.erl

 key1search(key, list, default)

 @spec key1search(term(), [tuple()], term()) :: term()

 lookup(key, list)

 @spec lookup(term(), [term()]) :: {:ok, term()} | {:error, :not_found}

Generic lookup function with multiple criteria.
Port of lookup/2 from snmpc_lib.erl

 make_asn1_type(type_def)

 @spec make_asn1_type(term()) :: {:ok, map()} | {:error, binary()}

Validate and transform ASN.1 type definition.
Port of make_ASN1type/1 from snmpc_lib.erl

 print_error(message, verbosity)

 @spec print_error(binary(), verbosity()) :: :ok

Print error message with formatting.
Port of print_error/2 and print_error/3 from snmpc_lib.erl

 print_error(format, args, verbosity)

 @spec print_error(binary(), term(), verbosity()) :: :ok

 printable?(current_verbosity, required_verbosity)

 @spec printable?(verbosity(), verbosity()) :: boolean()

Determine if message should be printed based on verbosity.
Port of printable/2 from snmpc_lib.erl

 register_oid(name, oid, status, oid_table)

 @spec register_oid(binary(), oid(), atom(), map()) :: map()

Register an OID entry in the OID table.
Port of register_oid/4 from snmpc_lib.erl

 resolve_oids(oid_table)

 @spec resolve_oids(map()) :: {:ok, map()} | {:error, [binary()]}

Resolve symbolic OID references to numeric OIDs.
Port of resolve_oids/1 from snmpc_lib.erl

 set_dir(filename, directory)

 @spec set_dir(binary(), binary()) :: binary()

Set directory path helper.
Port of set_dir/2 from snmpc_lib.erl

 test_kibbles(bit_definitions, verbosity)

 @spec test_kibbles([map()], verbosity()) :: :ok | {:error, binary()}

Validate bit definitions for BITS syntax.
Port of test_kibbles/2 from snmpc_lib.erl

 tr_oid(name, oid_table)

 @spec tr_oid(binary(), map()) :: {:ok, oid()} | {:error, :not_found}

Translate symbolic name to numeric OID.
Port of tr_oid/2 from snmpc_lib.erl

 update_me_oids(mib_entries, oid_table, verbosity)

 @spec update_me_oids([map()], map(), verbosity()) :: [map()]

Update MIB entries with resolved OIDs.
Port of update_me_oids/3 from snmpc_lib.erl

 vprint(current_verbosity, required_verbosity, module, function, format, args)

 @spec vprint(verbosity(), verbosity(), binary(), binary(), binary(), [term()]) :: :ok

Configurable verbose printing.
Port of vprint/6 from snmpc_lib.erl

 vvalidate(verbosity)

 @spec vvalidate(term()) :: {:ok, verbosity()} | {:error, binary()}

Validate verbosity level.
Port of vvalidate/1 from snmpc_lib.erl

SnmpKit.SnmpLib.Manager

High-level SNMP management operations providing a simplified interface for common SNMP tasks.
This module builds on the core SnmpLib functionality to provide production-ready SNMP
management capabilities including GET, GETBULK, SET operations with intelligent error
handling, connection reuse, and performance optimizations.
Features
	Simple API: High-level functions for common SNMP operations
	Connection Reuse: Efficient socket management for multiple operations
	Error Handling: Comprehensive error handling with meaningful messages
	Performance: Optimized for bulk operations and large-scale polling
	Timeout Management: Configurable timeouts with sensible defaults
	Community Support: Support for different community strings per device

Quick Start
Simple GET operation
{:ok, {type, value}} = SnmpKit.SnmpLib.Manager.get("192.168.1.1", [1, 3, 6, 1, 2, 1, 1, 1, 0])

GET with custom community and timeout
{:ok, {type, value}} = SnmpKit.SnmpLib.Manager.get("192.168.1.1", "1.3.6.1.2.1.1.1.0",
 community: "private", timeout: 10_000)

Bulk operations for efficiency
{:ok, results} = SnmpKit.SnmpLib.Manager.get_bulk("192.168.1.1", [1, 3, 6, 1, 2, 1, 2, 2],
 max_repetitions: 20)

SET operation
{:ok, :success} = SnmpKit.SnmpLib.Manager.set("192.168.1.1", [1, 3, 6, 1, 2, 1, 1, 5, 0],
 {:string, "New System Name"})
Configuration Options
	community: SNMP community string (default: "public")
	version: SNMP version (:v1, :v2c) (default: :v2c)
	timeout: Operation timeout in milliseconds (default: 5000)
	retries: Number of retry attempts (default: 3)
	port: SNMP port (default: 161)
	local_port: Local source port (default: 0 for random)

 Summary

 Types

 bulk_opts()

 bulk_result()

 community()

 host()

 manager_opts()

 oid()

 operation_result()

 snmp_value()

 varbind()

 version()

 Functions

 get(host, oid, opts \\ [])

 Performs an SNMP GET operation to retrieve a single value.

 get_bulk(host, base_oid, opts \\ [])

 Performs an SNMP GETBULK operation for efficient bulk data retrieval.

 get_multi(host, oids, opts \\ [])

 Performs multiple GET operations efficiently with connection reuse.

 get_next(host, oid, opts \\ [])

 Performs an SNMP GETNEXT operation to retrieve the next value in the MIB tree.

 interpret_error(error, arg2, version)

 Interprets SNMP errors with enhanced semantics for common cases.

 ping(host, opts \\ [])

 Checks if a host is reachable via SNMP by performing a basic GET operation.

 set(host, oid, arg, opts \\ [])

 Performs an SNMP SET operation to modify a value on the target device.

 Types

 bulk_opts()

 @type bulk_opts() :: [
 community: community(),
 version: version(),
 timeout: pos_integer(),
 retries: non_neg_integer(),
 port: pos_integer(),
 local_port: non_neg_integer(),
 max_repetitions: pos_integer(),
 non_repeaters: non_neg_integer()
]

 bulk_result()

 @type bulk_result() :: {:ok, [varbind()]} | {:error, atom() | {atom(), any()}}

 community()

 @type community() :: binary()

 host()

 @type host() :: binary() | :inet.ip_address()

 manager_opts()

 @type manager_opts() :: [
 community: community(),
 version: version(),
 timeout: pos_integer(),
 retries: non_neg_integer(),
 port: pos_integer(),
 local_port: non_neg_integer()
]

 oid()

 @type oid() :: [non_neg_integer()] | binary()

 operation_result()

 @type operation_result() :: {:ok, snmp_value()} | {:error, atom() | {atom(), any()}}

 snmp_value()

 @type snmp_value() :: any()

 varbind()

 @type varbind() :: {oid(), snmp_value()}

 version()

 @type version() :: :v1 | :v2c

 Functions

 get(host, oid, opts \\ [])

 @spec get(host(), oid(), manager_opts()) ::
 {:ok, {atom(), any()}}
 | {:error, atom() | {:network_error, atom()} | {:socket_error, atom()}}

Performs an SNMP GET operation to retrieve a single value.
Parameters
	host: Target device IP address or hostname
	oid: Object identifier as list or string (e.g., [1,3,6,1,2,1,1,1,0] or "1.3.6.1.2.1.1.1.0")
	opts: Configuration options (see module docs for available options)

Returns
	{:ok, {type, value}}: Successfully retrieved the value with its SNMP type
	{:error, reason}: Operation failed with reason

Examples
Basic GET operation (would succeed with real device)
SnmpKit.SnmpLib.Manager.get("192.168.1.1", [1, 3, 6, 1, 2, 1, 1, 1, 0])
{:ok, {:octet_string, "Cisco IOS Software"}}

GET with custom community and timeout (would succeed with real device)
SnmpKit.SnmpLib.Manager.get("192.168.1.1", "1.3.6.1.2.1.1.1.0", community: "private", timeout: 10_000)
{:ok, {:octet_string, "Private System Description"}}

Test that function exists and handles invalid input properly
iex> match?({:error, _}, SnmpKit.SnmpLib.Manager.get("invalid.host", [1, 3, 6, 1, 2, 1, 1, 3, 0], timeout: 100))
true

 get_bulk(host, base_oid, opts \\ [])

 @spec get_bulk(host(), oid(), bulk_opts()) :: bulk_result()

Performs an SNMP GETBULK operation for efficient bulk data retrieval.
GETBULK is more efficient than multiple GET operations when retrieving
multiple consecutive values, especially for table walking operations.
Parameters
	host: Target device IP address or hostname
	base_oid: Base OID to start the bulk operation
	opts: Configuration options including bulk-specific options

Bulk-Specific Options
	max_repetitions: Maximum number of repetitions (default: 10)
	non_repeaters: Number of non-repeating variables (default: 0)

Returns
	{:ok, varbinds}: List of {oid, type, value} tuples
	{:error, reason}: Operation failed with reason

Examples
Test that get_bulk function exists and handles invalid input properly
iex> match?({:error, _}, SnmpKit.SnmpLib.Manager.get_bulk("invalid.host", [1, 3, 6, 1, 2, 1, 2, 2], timeout: 100))
true

High-repetition bulk for large tables
SnmpKit.SnmpLib.Manager.get_bulk("192.168.1.1", "1.3.6.1.2.1.2.2", max_repetitions: 50)
{:ok, [...]} Returns up to 50 interface entries

 get_multi(host, oids, opts \\ [])

 @spec get_multi(host(), [oid()], manager_opts()) ::
 {:ok, [{oid(), atom(), any() | {:error, any()}}]} | {:error, any()}

Performs multiple GET operations efficiently with connection reuse.
More efficient than individual get/3 calls when retrieving multiple values
from the same device by reusing the same socket connection.
Parameters
	host: Target device IP address or hostname
	oids: List of OIDs to retrieve
	opts: Configuration options

Returns
	{:ok, results}: List of {oid, type, value} or {oid, {:error, reason}} tuples
	{:error, reason}: Connection or overall operation failed

Examples
Test that get_multi function exists and handles invalid input properly
iex> oids = ["1.3.6.1.2.1.1.1.0", "1.3.6.1.2.1.1.3.0", "1.3.6.1.2.1.1.5.0"]
iex> match?({:error, _}, SnmpKit.SnmpLib.Manager.get_multi("invalid.host", oids, timeout: 100))
true

 get_next(host, oid, opts \\ [])

 @spec get_next(host(), oid(), manager_opts()) ::
 {:ok, {oid(), atom(), any()}} | {:error, atom() | {atom(), any()}}

Performs an SNMP GETNEXT operation to retrieve the next value in the MIB tree.
GETNEXT is used to traverse the MIB tree by retrieving the next available
object after the specified OID. This is essential for MIB walking operations
and discovering available objects on SNMP devices.
Parameters
	host: Target device IP address or hostname
	oid: Object identifier to get the next value after
	opts: Configuration options

Implementation Details
	SNMP v1: Uses proper GETNEXT PDU for compatibility
	SNMP v2c+: Uses optimized GETBULK with max_repetitions=1

Returns
	{:ok, {next_oid, type, value}}: Next OID and its value as a tuple
	{:error, reason}: Operation failed with reason

Examples
Get next OID after system description
{:ok, {next_oid, type, value}} = SnmpKit.SnmpLib.Manager.get_next("192.168.1.1", "1.3.6.1.2.1.1.1.0")

SNMP v1 compatibility
{:ok, {next_oid, type, value}} = SnmpKit.SnmpLib.Manager.get_next("192.168.1.1", "1.3.6.1.2.1.1.1.0", version: :v1)

With custom community
{:ok, {next_oid, type, value}} = SnmpKit.SnmpLib.Manager.get_next("192.168.1.1", "1.3.6.1.2.1.1.1.0",
 community: "private", timeout: 10_000)

 interpret_error(error, arg2, version)

 @spec interpret_error(atom(), atom(), atom()) :: atom()

Interprets SNMP errors with enhanced semantics for common cases.
Provides more specific error interpretation when generic errors like :gen_err
are returned by devices that should return more specific SNMP error codes.
Parameters
	error: The original error returned by SNMP operations
	operation: The SNMP operation type (:get, :set, :get_bulk)
	version: SNMP version (:v1, :v2c, :v3)

Returns
More specific error atom when possible, otherwise the original error.
Examples
Interpret genErr for GET operations
iex> SnmpKit.SnmpLib.Manager.interpret_error(:gen_err, :get, :v2c)
:no_such_object

iex> SnmpKit.SnmpLib.Manager.interpret_error(:gen_err, :get, :v1)
:no_such_name

iex> SnmpKit.SnmpLib.Manager.interpret_error(:too_big, :get, :v2c)
:too_big

 ping(host, opts \\ [])

 @spec ping(host(), manager_opts()) :: {:ok, :reachable} | {:error, any()}

Checks if a host is reachable via SNMP by performing a basic GET operation.
Useful for device discovery and health checking. Attempts to retrieve
sysUpTime (1.3.6.1.2.1.1.3.0) which should be available on all SNMP devices.
Parameters
	host: Target device IP address or hostname
	opts: Configuration options (typically just community and timeout)

Returns
	{:ok, :reachable}: Device responded to SNMP request
	{:error, reason}: Device not reachable or SNMP not available

Examples
Test that ping function exists and handles invalid input properly
iex> match?({:error, _}, SnmpKit.SnmpLib.Manager.ping("invalid.host", timeout: 100))
true

 set(host, oid, arg, opts \\ [])

 @spec set(host(), oid(), {atom(), any()}, manager_opts()) ::
 {:ok, :success} | {:error, any()}

Performs an SNMP SET operation to modify a value on the target device.
Parameters
	host: Target device IP address or hostname
	oid: Object identifier to modify
	value: New value as {type, data} tuple (e.g., {:string, "new name"})
	opts: Configuration options

Supported Value Types
	{:string, binary()}: OCTET STRING
	{:integer, integer()}: INTEGER
	{:counter32, non_neg_integer()}: Counter32
	{:gauge32, non_neg_integer()}: Gauge32
	{:timeticks, non_neg_integer()}: TimeTicks
	{:ip_address, binary()}: IpAddress (4 bytes)

Returns
	{:ok, :success}: SET operation completed successfully
	{:error, reason}: Operation failed with reason

Examples
Test that SET function exists and handles invalid input properly
iex> match?({:error, _}, SnmpKit.SnmpLib.Manager.set("invalid.host", [1, 3, 6, 1, 2, 1, 1, 5, 0], {:string, "test"}, timeout: 100))
true

SnmpKit.SnmpLib.Monitor

Performance monitoring and metrics collection for SNMP operations.
This module provides comprehensive monitoring capabilities for SNMP applications,
including real-time metrics, performance analytics, and health monitoring.
Based on monitoring patterns proven in large-scale network management systems.
Features
	Real-time Metrics: Live performance data collection and analysis
	Historical Analytics: Trend analysis and capacity planning data
	Health Monitoring: Automatic detection of performance degradation
	Alerting: Configurable thresholds and notification system
	Device Profiling: Per-device performance characteristics
	Operation Tracking: Detailed metrics for all SNMP operation types

Metric Categories
Operation Metrics
	Request/response times
	Success/failure rates
	Throughput measurements
	Error classifications

Device Metrics
	Per-device response characteristics
	Availability percentages
	Performance trends
	Health scores

System Metrics
	Connection pool utilization
	Memory usage patterns
	Resource consumption
	Concurrent operation counts

Usage Examples
Start monitoring system
{:ok, _pid} = SnmpKit.SnmpLib.Monitor.start_link()

Record SNMP operation
SnmpKit.SnmpLib.Monitor.record_operation(
 device: "192.168.1.1",
 operation: :get,
 duration: 245,
 result: :success
)

Get real-time stats
stats = SnmpKit.SnmpLib.Monitor.get_stats("192.168.1.1")
IO.puts("Average response time: " <> to_string(stats.avg_response_time) <> "ms")

Set up alerting
SnmpKit.SnmpLib.Monitor.set_alert_threshold("192.168.1.1", :response_time, 5000)

 Summary

 Types

 alert_threshold()

 device_id()

 device_stats()

 metric_type()

 operation_metric()

 operation_result()

 operation_type()

 system_stats()

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 export_data(format, timeframe \\ :last_hour)

 Exports monitoring data for external analysis.

 get_active_alerts()

 Gets currently active alerts.

 get_device_stats(device_id, timeframe \\ :all_time)

 Gets comprehensive statistics for a specific device.

 get_operation_metrics(operation, timeframe \\ :last_hour)

 Gets performance metrics for a specific operation type.

 get_system_stats()

 Gets system-wide statistics and performance metrics.

 health_check()

 Forces a health check of all monitored devices.

 record_operation(metric)

 Records an SNMP operation for monitoring and analysis.

 remove_alert_threshold(device_id, metric)

 Removes an alert threshold.

 set_alert_threshold(device_id, metric, threshold, opts \\ [])

 Sets an alert threshold for automated monitoring.

 start_link(opts \\ [])

 Starts the monitoring system.

 Types

 alert_threshold()

 @type alert_threshold() :: %{
 device_id: device_id(),
 metric: metric_type(),
 threshold: number(),
 condition: :above | :below,
 duration: pos_integer(),
 callback: function() | nil
}

 device_id()

 @type device_id() :: binary()

 device_stats()

 @type device_stats() :: %{
 device_id: device_id(),
 total_operations: non_neg_integer(),
 successful_operations: non_neg_integer(),
 failed_operations: non_neg_integer(),
 avg_response_time: float(),
 p95_response_time: float(),
 p99_response_time: float(),
 error_rate: float(),
 availability: float(),
 health_score: float(),
 last_seen: integer(),
 trend: :improving | :stable | :degrading
}

 metric_type()

 @type metric_type() :: :response_time | :error_rate | :throughput | :availability

 operation_metric()

 @type operation_metric() :: %{
 device: device_id(),
 operation: operation_type(),
 timestamp: integer(),
 duration: non_neg_integer(),
 result: operation_result(),
 error_type: atom() | nil,
 bytes_sent: non_neg_integer() | nil,
 bytes_received: non_neg_integer() | nil
}

 operation_result()

 @type operation_result() :: :success | :error | :timeout | :partial

 operation_type()

 @type operation_type() :: :get | :get_next | :get_bulk | :set | :walk

 system_stats()

 @type system_stats() :: %{
 total_devices: non_neg_integer(),
 active_devices: non_neg_integer(),
 total_operations: non_neg_integer(),
 operations_per_second: float(),
 average_response_time: float(),
 global_error_rate: float(),
 memory_usage: non_neg_integer(),
 uptime: non_neg_integer()
}

 Functions

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 export_data(format, timeframe \\ :last_hour)

 @spec export_data(atom(), atom()) :: binary()

Exports monitoring data for external analysis.
Parameters
	format: Export format (:json, :csv, :prometheus)
	timeframe: Time range for export

JSON Export
JSON export uses Elixir's built-in JSON module (requires Elixir 1.18+).
Examples
data = SnmpKit.SnmpLib.Monitor.export_data(:json, :last_hour)
case data do
 "JSON export unavailable" <> _ -> IO.puts("JSON not available")
 json -> File.write!("snmp_metrics.json", json)
end

 get_active_alerts()

 @spec get_active_alerts() :: [map()]

Gets currently active alerts.
Examples
alerts = SnmpKit.SnmpLib.Monitor.get_active_alerts()
Enum.each(alerts, fn alert ->
 IO.puts("Alert: " <> alert.device_id <> " " <> to_string(alert.metric) <> " " <> to_string(alert.current_value))
end)

 get_device_stats(device_id, timeframe \\ :all_time)

 @spec get_device_stats(device_id(), atom()) :: device_stats() | {:error, :not_found}

Gets comprehensive statistics for a specific device.
Parameters
	device_id: Device identifier
	timeframe: Optional timeframe (:last_hour, :last_day, :all_time)

Returns
Device statistics map or {:error, :not_found} if device has no recorded operations.
Examples
Get current device stats
stats = SnmpKit.SnmpLib.Monitor.get_device_stats("192.168.1.1")
IO.puts("Error rate: " <> to_string(stats.error_rate) <> "%")

Get stats for specific timeframe
stats = SnmpKit.SnmpLib.Monitor.get_device_stats("192.168.1.1", :last_hour)

 get_operation_metrics(operation, timeframe \\ :last_hour)

 @spec get_operation_metrics(operation_type(), atom()) :: map()

Gets performance metrics for a specific operation type.
Parameters
	operation: SNMP operation type
	timeframe: Optional timeframe for analysis

Examples
metrics = SnmpKit.SnmpLib.Monitor.get_operation_metrics(:get_bulk)
IO.puts("Average GETBULK time: " <> to_string(metrics.avg_duration) <> "ms")

 get_system_stats()

 @spec get_system_stats() :: system_stats()

Gets system-wide statistics and performance metrics.
Returns
Comprehensive system statistics including global performance metrics,
device counts, and resource utilization.
Examples
stats = SnmpKit.SnmpLib.Monitor.get_system_stats()
IO.puts("Total devices monitored: " <> to_string(stats.total_devices))
IO.puts("Operations per second: " <> to_string(stats.operations_per_second))

 health_check()

 @spec health_check() :: :ok

Forces a health check of all monitored devices.
Useful for immediate assessment of system health.
Examples
:ok = SnmpKit.SnmpLib.Monitor.health_check()

 record_operation(metric)

 @spec record_operation(map()) :: :ok

Records an SNMP operation for monitoring and analysis.
This is the primary interface for feeding operation data into the monitoring system.
Should be called after every SNMP operation for comprehensive monitoring.
Parameters
	metric: Operation metric map with required fields

Required Fields
	device: Target device identifier
	operation: Type of SNMP operation
	duration: Operation duration in milliseconds
	result: Operation result status

Optional Fields
	error_type: Specific error classification (if result is :error)
	bytes_sent: Number of bytes sent
	bytes_received: Number of bytes received
	timestamp: Override timestamp (defaults to current time)

Examples
Basic operation recording
SnmpKit.SnmpLib.Monitor.record_operation(%{
 device: "192.168.1.1",
 operation: :get,
 duration: 245,
 result: :success
})

Detailed operation recording
SnmpKit.SnmpLib.Monitor.record_operation(%{
 device: "192.168.1.1",
 operation: :get_bulk,
 duration: 1250,
 result: :error,
 error_type: :timeout,
 bytes_sent: 64,
 bytes_received: 0
})

 remove_alert_threshold(device_id, metric)

 @spec remove_alert_threshold(device_id(), metric_type()) :: :ok

Removes an alert threshold.
Examples
:ok = SnmpKit.SnmpLib.Monitor.remove_alert_threshold("192.168.1.1", :response_time)

 set_alert_threshold(device_id, metric, threshold, opts \\ [])

 @spec set_alert_threshold(device_id(), metric_type(), number(), keyword()) :: :ok

Sets an alert threshold for automated monitoring.
Alerts fire when the specified metric exceeds the threshold for the given duration.
Parameters
	device_id: Device to monitor (use ":global" for system-wide alerts)
	metric: Metric type to monitor
	threshold: Threshold value
	opts: Alert configuration options

Options
	condition: :above or :below (default: :above)
	duration: How long threshold must be exceeded (default: 60000ms)
	callback: Function to call when alert fires

Examples
Alert on high response times
SnmpKit.SnmpLib.Monitor.set_alert_threshold("192.168.1.1", :response_time, 5000)

Alert on low availability with custom callback
SnmpKit.SnmpLib.Monitor.set_alert_threshold("core-router", :availability, 95.0,
 condition: :below,
 duration: 300_000,
 callback: &MyApp.Alerts.device_down/1
)

 start_link(opts \\ [])

 @spec start_link(keyword()) :: {:ok, pid()} | {:error, any()}

Starts the monitoring system.
Options
	retention_period: How long to keep historical data (default: 1 hour)
	bucket_size: Time bucket size for aggregation (default: 1 minute)
	cleanup_interval: How often to clean old data (default: 5 minutes)
	health_check_interval: How often to check device health (default: 1 minute)

Examples
{:ok, pid} = SnmpKit.SnmpLib.Monitor.start_link()

{:ok, pid} = SnmpKit.SnmpLib.Monitor.start_link(
 retention_period: 7200_000, # 2 hours
 bucket_size: 30_000 # 30 second buckets
)

SnmpKit.SnmpLib.OID

Comprehensive OID (Object Identifier) manipulation utilities for SNMP operations.
Provides string/list conversions, tree operations, table utilities, and validation
functions needed by both SNMP managers and simulators.
Features
	String/list format conversions with validation
	Support for both OID formats: "1.3.6.1.2.1.1" and ".1.3.6.1.2.1.1"
	OID tree operations (parent/child relationships)
	SNMP table index parsing and construction
	OID comparison and sorting
	Enterprise OID utilities
	Performance-optimized operations

OID Format Support
SnmpKit supports both common OID string formats:
	Traditional format: "1.3.6.1.2.1.1.1.0" (Elixir/Erlang style)
	Standard format: ".1.3.6.1.2.1.1.1.0" (RFC standard with leading dot)

Both formats parse to identical internal representations and can be used
interchangeably throughout the library.
Examples
Basic conversions - both formats supported
{:ok, oid_list} = SnmpKit.SnmpLib.OID.string_to_list("1.3.6.1.2.1.1.1.0")
{:ok, same_list} = SnmpKit.SnmpLib.OID.string_to_list(".1.3.6.1.2.1.1.1.0")
{:ok, oid_string} = SnmpKit.SnmpLib.OID.list_to_string([1, 3, 6, 1, 2, 1, 1, 1, 0])

Tree operations
true = SnmpKit.SnmpLib.OID.is_child_of?([1, 3, 6, 1, 2, 1, 1, 1, 0], [1, 3, 6, 1, 2, 1])
{:ok, parent} = SnmpKit.SnmpLib.OID.get_parent([1, 3, 6, 1, 2, 1, 1, 1, 0])

Comparison
:lt = SnmpKit.SnmpLib.OID.compare([1, 3, 6, 1], [1, 3, 6, 2])

Table operations
{:ok, index} = SnmpKit.SnmpLib.OID.extract_table_index([1, 3, 6, 1, 2, 1, 2, 2, 1, 1], [1, 3, 6, 1, 2, 1, 2, 2, 1, 1, 1])

 Summary

 Types

 index()

 oid()

 oid_string()

 table_oid()

 Functions

 build_table_index(values, syntax_list)

 Builds a table index from parsed components according to syntax.

 build_table_instance(table_oid, index)

 Builds a table instance OID from table OID and index.

 compare(oid1, oid2)

 Compares two OIDs lexicographically.

 enterprises()

 experimental()

 extract_table_index(table_oid, instance_oid)

 Extracts table index from an instance OID given the table column OID.

 get_children(parent_oid, oid_set)

 Gets the immediate children prefix for an OID in a given set.

 get_enterprise_number(oid)

 Gets the enterprise number from an enterprise OID.

 get_next_oid(current_oid, oid_set)

 Gets the next OID in lexicographic order from a given set.

 get_parent(oid)

 Gets the parent OID by removing the last component.

 is_child_of?(child_oid, parent_oid)

 Checks if one OID is a child of another.

 is_enterprise?(oid)

 is_experimental?(oid)

 is_mib_2?(oid)

 Checks if an OID is under a specific standard tree.

 is_parent_of?(parent_oid, child_oid)

 Checks if one OID is a parent of another.

 is_private?(oid)

 list_to_string(oid_list)

 Converts an OID list to a dot-separated string.

 mib_2()

 Returns standard SNMP OID prefixes.

 normalize(oid)

 Normalizes an OID to a consistent format.

 parse_table_index(index, syntax_list)

 Parses a table index according to index syntax definition.

 private()

 sort(oid_list)

 Sorts a list of OIDs in lexicographic order.

 standard_prefix(arg1)

 Get standard SNMP OID prefixes.

 string_to_list(oid_string)

 Converts an OID string to a list of integers.

 valid_oid?(oid)

 Validates an OID list for correctness.

 Types

 index()

 @type index() :: [non_neg_integer()]

 oid()

 @type oid() :: [non_neg_integer()]

 oid_string()

 @type oid_string() :: String.t()

 table_oid()

 @type table_oid() :: oid()

 Functions

 build_table_index(values, syntax_list)

 @spec build_table_index(term(), term()) :: {:ok, index()} | {:error, atom()}

Builds a table index from parsed components according to syntax.
Examples
{:ok, [42]} = SnmpKit.SnmpLib.OID.build_table_index(42, :integer)
{:ok, [4, 116, 101, 115, 116]} = SnmpKit.SnmpLib.OID.build_table_index("test", {:variable_string})

 build_table_instance(table_oid, index)

 @spec build_table_instance(table_oid(), index()) :: {:ok, oid()} | {:error, atom()}

Builds a table instance OID from table OID and index.
Parameters
	table_oid: Base table column OID
	index: Table index as list of integers

Returns
	{:ok, instance_oid} if successful
	{:error, reason} if construction fails

Examples
table_oid = [1, 3, 6, 1, 2, 1, 2, 2, 1, 1]
index = [1]
{:ok, [1, 3, 6, 1, 2, 1, 2, 2, 1, 1, 1]} = SnmpKit.SnmpLib.OID.build_table_instance(table_oid, index)

 compare(oid1, oid2)

 @spec compare(oid(), oid()) :: :lt | :eq | :gt

Compares two OIDs lexicographically.
Returns
	:lt if oid1 < oid2
	:eq if oid1 == oid2
	:gt if oid1 > oid2

Examples
:lt = SnmpKit.SnmpLib.OID.compare([1, 3, 6, 1], [1, 3, 6, 2])
:eq = SnmpKit.SnmpLib.OID.compare([1, 3, 6, 1], [1, 3, 6, 1])
:gt = SnmpKit.SnmpLib.OID.compare([1, 3, 6, 2], [1, 3, 6, 1])

 enterprises()

 @spec enterprises() :: oid()

 experimental()

 @spec experimental() :: oid()

 extract_table_index(table_oid, instance_oid)

 @spec extract_table_index(table_oid(), oid()) :: {:ok, index()} | {:error, atom()}

Extracts table index from an instance OID given the table column OID.
Parameters
	table_oid: Base table column OID
	instance_oid: Full instance OID including index

Returns
	{:ok, index} if successful
	{:error, reason} if extraction fails

Examples
table_oid = [1, 3, 6, 1, 2, 1, 2, 2, 1, 1]
instance_oid = [1, 3, 6, 1, 2, 1, 2, 2, 1, 1, 1]
{:ok, [1]} = SnmpKit.SnmpLib.OID.extract_table_index(table_oid, instance_oid)

 get_children(parent_oid, oid_set)

 @spec get_children(oid(), [oid()]) :: [oid()]

Gets the immediate children prefix for an OID in a given set.
Parameters
	parent_oid: The parent OID
	oid_set: Set of OIDs to search

Returns
	List of immediate child OIDs

Examples
children = SnmpKit.SnmpLib.OID.get_children([1, 3, 6, 1], [[1, 3, 6, 1, 2], [1, 3, 6, 1, 4], [1, 3, 6, 1, 2, 1]])
Returns [[1, 3, 6, 1, 2], [1, 3, 6, 1, 4]]

 get_enterprise_number(oid)

 @spec get_enterprise_number(oid()) :: {:ok, non_neg_integer()} | {:error, atom()}

Gets the enterprise number from an enterprise OID.
Examples
{:ok, 9} = SnmpKit.SnmpLib.OID.get_enterprise_number([1, 3, 6, 1, 4, 1, 9, 1, 1])
{:error, :not_enterprise_oid} = SnmpKit.SnmpLib.OID.get_enterprise_number([1, 3, 6, 1, 2, 1])

 get_next_oid(current_oid, oid_set)

 @spec get_next_oid(oid(), [oid()]) :: {:ok, oid()} | {:error, atom()}

Gets the next OID in lexicographic order from a given set.
Parameters
	current_oid: The current OID
	oid_set: Set of OIDs to search (must be sorted)

Returns
	{:ok, next_oid} if found
	{:error, :end_of_mib} if no next OID exists

Examples
oid_set = [[1, 3, 6, 1, 2, 1, 1, 1, 0], [1, 3, 6, 1, 2, 1, 1, 2, 0], [1, 3, 6, 1, 2, 1, 1, 3, 0]]
{:ok, [1, 3, 6, 1, 2, 1, 1, 2, 0]} = SnmpKit.SnmpLib.OID.get_next_oid([1, 3, 6, 1, 2, 1, 1, 1, 0], oid_set)

 get_parent(oid)

 @spec get_parent(oid()) :: {:ok, oid()} | {:error, atom()}

Gets the parent OID by removing the last component.
Examples
{:ok, [1, 3, 6, 1, 2, 1, 1, 1]} = SnmpKit.SnmpLib.OID.get_parent([1, 3, 6, 1, 2, 1, 1, 1, 0])
{:error, :root_oid} = SnmpKit.SnmpLib.OID.get_parent([])
{:error, :root_oid} = SnmpKit.SnmpLib.OID.get_parent([1])

 is_child_of?(child_oid, parent_oid)

 @spec is_child_of?(oid(), oid()) :: boolean()

Checks if one OID is a child of another.
Parameters
	child_oid: Potential child OID
	parent_oid: Potential parent OID

Returns
	true if child_oid is a child of parent_oid
	false otherwise

Examples
true = SnmpKit.SnmpLib.OID.is_child_of?([1, 3, 6, 1, 2, 1, 1, 1, 0], [1, 3, 6, 1, 2, 1])
false = SnmpKit.SnmpLib.OID.is_child_of?([1, 3, 6, 1], [1, 3, 6, 1, 2, 1])
false = SnmpKit.SnmpLib.OID.is_child_of?([1, 3, 6, 2], [1, 3, 6, 1])

 is_enterprise?(oid)

 @spec is_enterprise?(oid()) :: boolean()

 is_experimental?(oid)

 @spec is_experimental?(oid()) :: boolean()

 is_mib_2?(oid)

 @spec is_mib_2?(oid()) :: boolean()

Checks if an OID is under a specific standard tree.
Examples
true = SnmpKit.SnmpLib.OID.is_mib_2?([1, 3, 6, 1, 2, 1, 1, 1, 0])
true = SnmpKit.SnmpLib.OID.is_enterprise?([1, 3, 6, 1, 4, 1, 9, 1, 1])

 is_parent_of?(parent_oid, child_oid)

 @spec is_parent_of?(oid(), oid()) :: boolean()

Checks if one OID is a parent of another.

 is_private?(oid)

 @spec is_private?(oid()) :: boolean()

 list_to_string(oid_list)

 @spec list_to_string(oid()) :: {:ok, oid_string()} | {:error, atom()}

Converts an OID list to a dot-separated string.
Parameters
	oid_list: List of non-negative integers

Returns
	{:ok, oid_string} on success
	{:error, reason} on failure

Examples
{:ok, "1.3.6.1.2.1.1.1.0"} = SnmpKit.SnmpLib.OID.list_to_string([1, 3, 6, 1, 2, 1, 1, 1, 0])
{:error, :invalid_oid_list} = SnmpKit.SnmpLib.OID.list_to_string([1, 3, -1, 4])
{:error, :empty_oid} = SnmpKit.SnmpLib.OID.list_to_string([])

 mib_2()

 @spec mib_2() :: oid()

Returns standard SNMP OID prefixes.

 normalize(oid)

 @spec normalize(oid() | oid_string()) :: {:ok, oid()} | {:error, atom()}

Normalizes an OID to a consistent format.
Accepts either string or list format and returns a list.
Examples
{:ok, [1, 3, 6, 1]} = SnmpKit.SnmpLib.OID.normalize("1.3.6.1")
{:ok, [1, 3, 6, 1]} = SnmpKit.SnmpLib.OID.normalize([1, 3, 6, 1])

 parse_table_index(index, syntax_list)

 @spec parse_table_index(index(), term()) :: {:ok, term()} | {:error, atom()}

Parses a table index according to index syntax definition.
Parameters
	index: Raw index from OID
	syntax: Index syntax specification

Returns
	{:ok, parsed_index} if successful
	{:error, reason} if parsing fails

Index Syntax Examples
	:integer - Single integer index
	{:string, length} - Fixed-length string
	{:variable_string} - Length-prefixed string
	[:integer, :integer] - Multiple integer indices

Examples
{:ok, 42} = SnmpKit.SnmpLib.OID.parse_table_index([42], :integer)
{:ok, "test"} = SnmpKit.SnmpLib.OID.parse_table_index([4, 116, 101, 115, 116], {:variable_string})

 private()

 @spec private() :: oid()

 sort(oid_list)

 @spec sort([oid()]) :: [oid()]

Sorts a list of OIDs in lexicographic order.
Examples
sorted = SnmpKit.SnmpLib.OID.sort([[1, 3, 6, 2], [1, 3, 6, 1, 2], [1, 3, 6, 1]])
Returns [[1, 3, 6, 1], [1, 3, 6, 1, 2], [1, 3, 6, 2]]

 standard_prefix(arg1)

 @spec standard_prefix(atom()) :: oid() | nil

Get standard SNMP OID prefixes.
Examples
iex> SnmpKit.SnmpLib.OID.standard_prefix(:internet)
[1, 3, 6, 1]

iex> SnmpKit.SnmpLib.OID.standard_prefix(:mgmt)
[1, 3, 6, 1, 2]

 string_to_list(oid_string)

 @spec string_to_list(oid_string()) :: {:ok, oid()} | {:error, atom()}

Converts an OID string to a list of integers.
Parses a dot-separated OID string into a list of non-negative integers.
Validates each component and ensures the OID format is correct.
Parameters
	oid_string: Dot-separated OID string (e.g., "1.3.6.1.2.1.1.1.0" or ".1.3.6.1.2.1.1.1.0")

Returns
	{:ok, oid_list} on success
	{:error, reason} on failure

Examples
Standard SNMP OIDs
iex> SnmpKit.SnmpLib.OID.string_to_list("1.3.6.1.2.1.1.1.0")
{:ok, [1, 3, 6, 1, 2, 1, 1, 1, 0]}

OIDs with leading dot (standard format)
iex> SnmpKit.SnmpLib.OID.string_to_list(".1.3.6.1.2.1.1.1.0")
{:ok, [1, 3, 6, 1, 2, 1, 1, 1, 0]}

Short OIDs
iex> SnmpKit.SnmpLib.OID.string_to_list("1.3.6")
{:ok, [1, 3, 6]}

Short OIDs with leading dot
iex> SnmpKit.SnmpLib.OID.string_to_list(".1.3.6")
{:ok, [1, 3, 6]}

Error cases
iex> SnmpKit.SnmpLib.OID.string_to_list("")
{:error, :empty_oid}

iex> SnmpKit.SnmpLib.OID.string_to_list("1.3.6.1.a.2")
{:error, :invalid_oid_string}

iex> SnmpKit.SnmpLib.OID.string_to_list("1.3.6.1.2.-1")
{:error, :invalid_oid_string}

 valid_oid?(oid)

 @spec valid_oid?(oid()) :: :ok | {:error, atom()}

Validates an OID list for correctness.
Returns
	:ok if valid
	{:error, reason} if invalid

Examples
:ok = SnmpKit.SnmpLib.OID.valid_oid?([1, 3, 6, 1, 2, 1, 1, 1, 0])
{:error, :empty_oid} = SnmpKit.SnmpLib.OID.valid_oid?([])
{:error, :invalid_component} = SnmpKit.SnmpLib.OID.valid_oid?([1, 3, -1, 4])

SnmpKit.SnmpLib.PDU

SNMP PDU (Protocol Data Unit) encoding and decoding with RFC compliance.
Provides comprehensive SNMP PDU functionality combining the best features from
multiple SNMP implementations. Supports SNMPv1 and SNMPv2c protocols with
high-performance encoding/decoding, robust error handling, and full RFC compliance.
API Documentation
PDU Structure
All PDU functions in this library use a consistent map structure with these fields:
%{
 type: :get_request | :get_next_request | :get_response | :set_request | :get_bulk_request,
 request_id: non_neg_integer(),
 error_status: 0..5,
 error_index: non_neg_integer(),
 varbinds: [varbind()],
 # GETBULK only:
 non_repeaters: non_neg_integer(), # Optional, GETBULK requests only
 max_repetitions: non_neg_integer() # Optional, GETBULK requests only
}
IMPORTANT: Always use the :type field (not :pdu_type) with atom values.
Variable Bindings Format
Variable bindings (varbinds) support two formats:
	2-tuple format: {oid, value} - Used for responses and simple cases
	3-tuple format: {oid, type, value} - Used for requests with explicit type info

Request varbinds (3-tuple with type information)
[{[1, 3, 6, 1, 2, 1, 1, 1, 0], :null, :null}]

Response varbinds (2-tuple format)
[{[1, 3, 6, 1, 2, 1, 1, 1, 0], "Linux server"}]

Response varbinds (3-tuple format also supported)
[{[1, 3, 6, 1, 2, 1, 1, 1, 0], :octet_string, "Linux server"}]
Message Structure
SNMP messages have this structure:
%{
 version: 0 | 1, # 0 = SNMPv1, 1 = SNMPv2c
 community: binary(), # Community string
 pdu: pdu() # PDU map as described above
}
Examples
Building PDUs
GET request for system description
pdu = SnmpKit.SnmpLib.PDU.build_get_request([1, 3, 6, 1, 2, 1, 1, 1, 0], 123)

GETBULK request for interface table
pdu = SnmpKit.SnmpLib.PDU.build_get_bulk_request([1, 3, 6, 1, 2, 1, 2, 2, 1], 124, 0, 10)

SET request
pdu = SnmpKit.SnmpLib.PDU.build_set_request([1, 3, 6, 1, 2, 1, 1, 5, 0], {:octet_string, "New Name"}, 125)
Building Messages
Complete SNMP message
{:ok, message} = SnmpKit.SnmpLib.PDU.build_message(pdu, "public", :v2c)

Encode to binary
{:ok, packet} = SnmpKit.SnmpLib.PDU.encode_message(message)

Decode from binary
{:ok, decoded_message} = SnmpKit.SnmpLib.PDU.decode_message(packet)
Error Responses
Create error response
error_pdu = SnmpKit.SnmpLib.PDU.create_error_response(original_pdu, :no_such_name, 1)

 Summary

 Types

 error_status()

 message()

 oid()

 pdu()

 snmp_type()

 snmp_value()

 varbind()

 Functions

 build_get_bulk_request(oid_list, request_id, non_repeaters \\ 0, max_repetitions \\ 10)

 Builds a GETBULK request PDU (SNMPv2c only).

 build_get_next_request(oid_or_oids, request_id)

 Builds a GETNEXT request PDU.

 build_get_request(oid, request_id)

 Builds a GET request PDU.

 build_get_request_multi(varbinds, request_id)

 Builds a GET request PDU with multiple varbinds.

 build_message(pdu, community, version \\ :v1)

 Builds an SNMP message with version, community, and PDU.

 build_response(request_id, error_status, error_index, varbinds \\ [])

 Builds a response PDU.

 build_set_request(oid_list, type_value, request_id)

 Builds a SET request PDU.

 create_error_response(request_pdu, error_status)

 Creates an error response PDU.

 create_error_response(request_pdu, error_status, error_index)

 Creates an error response PDU.

 decode(data)

 Alias for decode_message/1.

 decode_message(data)

 Decodes an SNMP message from binary format.

 decode_snmp_packet(data)

 Legacy alias for decode/1.

 encode(message)

 Alias for encode_message/1.

 encode_message(message)

 Encodes an SNMP message to binary format.

 encode_snmp_packet(message)

 Legacy alias for encode/1.

 error_status_to_atom(code)

 Converts an error status code to its atom representation.

 error_status_to_code(status)

 Converts an error status atom to its numeric code.

 normalize_oid(oid)

 Normalizes an OID to a list of integers.

 normalize_type(type)

 Normalizes an SNMP type atom.

 validate(pdu)

 Validates a PDU structure.

 validate_community(encoded_message, expected_community)

 Validates a community string.

 Types

 error_status()

 @type error_status() :: SnmpKit.SnmpLib.PDU.Constants.error_status()

 message()

 @type message() :: SnmpKit.SnmpLib.PDU.Constants.message()

 oid()

 @type oid() :: SnmpKit.SnmpLib.PDU.Constants.oid()

 pdu()

 @type pdu() :: SnmpKit.SnmpLib.PDU.Constants.pdu()

 snmp_type()

 @type snmp_type() :: SnmpKit.SnmpLib.PDU.Constants.snmp_type()

 snmp_value()

 @type snmp_value() :: SnmpKit.SnmpLib.PDU.Constants.snmp_value()

 varbind()

 @type varbind() :: SnmpKit.SnmpLib.PDU.Constants.varbind()

 Functions

 build_get_bulk_request(oid_list, request_id, non_repeaters \\ 0, max_repetitions \\ 10)

 @spec build_get_bulk_request(
 oid(),
 non_neg_integer(),
 non_neg_integer(),
 non_neg_integer()
) :: pdu()

Builds a GETBULK request PDU (SNMPv2c only).
Parameters
	oid_list: Single OID list or list of OID lists to request
	request_id: Unique request identifier
	non_repeaters: Number of non-repeating variables (default: 0)
	max_repetitions: Maximum repetitions for repeating variables (default: 10)

Examples
iex> pdu = SnmpKit.SnmpLib.PDU.build_get_bulk_request([1, 3, 6, 1, 2, 1, 2, 2], 123, 0, 10)
iex> pdu.type
:get_bulk_request

 build_get_next_request(oid_or_oids, request_id)

 @spec build_get_next_request(oid() | [oid()], non_neg_integer()) :: pdu()

Builds a GETNEXT request PDU.
Parameters
	oid_or_oids: Single OID list or list of OID lists to request
	request_id: Unique request identifier

Examples
iex> pdu = SnmpKit.SnmpLib.PDU.build_get_next_request([1, 3, 6, 1, 2, 1, 1], 123)
iex> pdu.type
:get_next_request

 build_get_request(oid, request_id)

 @spec build_get_request(oid(), non_neg_integer()) :: pdu()

Builds a GET request PDU.
Parameters
	oid: Single OID as list of integers
	request_id: Unique request identifier

Examples
iex> pdu = SnmpKit.SnmpLib.PDU.build_get_request([1, 3, 6, 1, 2, 1, 1, 1, 0], 123)
iex> pdu.type
:get_request

 build_get_request_multi(varbinds, request_id)

 @spec build_get_request_multi([varbind()], non_neg_integer()) :: pdu()

Builds a GET request PDU with multiple varbinds.
Parameters
	varbinds: List of variable bindings in format {oid, type, value}
	request_id: Unique request identifier

Examples
iex> varbinds = [{[1, 3, 6, 1, 2, 1, 1, 1, 0], :null, :null}]
iex> pdu = SnmpKit.SnmpLib.PDU.build_get_request_multi(varbinds, 123)
iex> pdu.type
:get_request

 build_message(pdu, community, version \\ :v1)

 @spec build_message(pdu(), binary(), SnmpKit.SnmpLib.PDU.Constants.snmp_version()) ::
 message()

Builds an SNMP message with version, community, and PDU.
Parameters
	pdu: PDU structure to include in the message
	community: Community string for authentication
	version: SNMP version

Examples
iex> pdu = SnmpKit.SnmpLib.PDU.build_get_request([1, 3, 6, 1, 2, 1, 1, 1, 0], 123)
iex> message = SnmpKit.SnmpLib.PDU.build_message(pdu, "public", :v2c)
iex> message.version
1

 build_response(request_id, error_status, error_index, varbinds \\ [])

 @spec build_response(non_neg_integer(), error_status(), non_neg_integer(), [varbind()]) ::
 pdu()

Builds a response PDU.
Parameters
	request_pdu: Original request PDU to respond to
	varbinds: List of variable bindings for the response
	error_status: Error status code (default: 0 for no error)
	error_index: Error index (default: 0)

Examples
iex> varbinds = [{[1, 3, 6, 1, 2, 1, 1, 1, 0], :octet_string, "Linux server"}]
iex> pdu = SnmpKit.SnmpLib.PDU.build_response(123, 0, 0, varbinds)
iex> pdu.type
:get_response

 build_set_request(oid_list, type_value, request_id)

 @spec build_set_request(oid(), {atom(), any()}, non_neg_integer()) :: pdu()

Builds a SET request PDU.
Parameters
	oid_list: Single OID as list of integers
	type_value: Tuple of {type, value} for the SET operation
	request_id: Unique request identifier

Examples
iex> pdu = SnmpKit.SnmpLib.PDU.build_set_request([1, 3, 6, 1, 2, 1, 1, 5, 0], {:octet_string, "Test"}, 123)
iex> pdu.type
:set_request

 create_error_response(request_pdu, error_status)

 @spec create_error_response(pdu(), error_status() | atom()) :: pdu()

Creates an error response PDU.
Parameters
	request_pdu: Original request PDU
	error_status: Error status atom or code

Examples
iex> request_pdu = %{type: :get_request, request_id: 123, error_status: 0, error_index: 0, varbinds: []}
iex> error_pdu = SnmpKit.SnmpLib.PDU.create_error_response(request_pdu, :no_such_name)
iex> error_pdu.error_status
2

 create_error_response(request_pdu, error_status, error_index)

 @spec create_error_response(pdu(), error_status() | atom(), non_neg_integer()) ::
 pdu()

Creates an error response PDU.
Parameters
	request_pdu: Original request PDU
	error_status: Error status atom or code
	error_index: Index of the variable that caused the error

Examples
iex> request_pdu = %{type: :get_request, request_id: 123, error_status: 0, error_index: 0, varbinds: []}
iex> error_pdu = SnmpKit.SnmpLib.PDU.create_error_response(request_pdu, :no_such_name, 1)
iex> error_pdu.error_status
2

 decode(data)

 @spec decode(binary()) :: {:ok, message()} | {:error, atom()}

Alias for decode_message/1.

 decode_message(data)

 @spec decode_message(binary()) :: {:ok, message()} | {:error, atom()}

Decodes an SNMP message from binary format.
Examples
iex> {:ok, binary} = SnmpKit.SnmpLib.PDU.encode_message(%{version: 1, community: "public", pdu: %{type: :get_request, request_id: 123, error_status: 0, error_index: 0, varbinds: []}})
iex> {:ok, _message} = SnmpKit.SnmpLib.PDU.decode_message(binary)

 decode_snmp_packet(data)

 @spec decode_snmp_packet(binary()) :: {:ok, message()} | {:error, atom()}

Legacy alias for decode/1.

 encode(message)

 @spec encode(message()) :: {:ok, binary()} | {:error, atom()}

Alias for encode_message/1.

 encode_message(message)

 @spec encode_message(message()) :: {:ok, binary()} | {:error, atom()}

Encodes an SNMP message to binary format.
Examples
iex> message = %{version: 1, community: "public", pdu: %{type: :get_request, request_id: 123, error_status: 0, error_index: 0, varbinds: []}}
iex> {:ok, _binary} = SnmpKit.SnmpLib.PDU.encode_message(message)

 encode_snmp_packet(message)

 @spec encode_snmp_packet(message()) :: {:ok, binary()} | {:error, atom()}

Legacy alias for encode/1.

 error_status_to_atom(code)

 @spec error_status_to_atom(non_neg_integer()) :: atom()

Converts an error status code to its atom representation.
Examples
iex> SnmpKit.SnmpLib.PDU.error_status_to_atom(2)
:no_such_name

 error_status_to_code(status)

 @spec error_status_to_code(atom()) :: non_neg_integer()

Converts an error status atom to its numeric code.
Examples
iex> SnmpKit.SnmpLib.PDU.error_status_to_code(:no_such_name)
2

 normalize_oid(oid)

 @spec normalize_oid(oid() | binary()) :: oid()

Normalizes an OID to a list of integers.
Examples
iex> SnmpKit.SnmpLib.PDU.normalize_oid([1, 3, 6, 1, 2, 1, 1, 1, 0])
[1, 3, 6, 1, 2, 1, 1, 1, 0]

 normalize_type(type)

 @spec normalize_type(atom()) :: snmp_type()

Normalizes an SNMP type atom.
Examples
iex> SnmpKit.SnmpLib.PDU.normalize_type(:string)
:octet_string

 validate(pdu)

 @spec validate(pdu()) :: {:ok, pdu()} | {:error, atom()}

Validates a PDU structure.
Examples
iex> pdu = %{type: :get_request, request_id: 123, error_status: 0, error_index: 0, varbinds: []}
iex> {:ok, ^pdu} = SnmpKit.SnmpLib.PDU.validate(pdu)

 validate_community(encoded_message, expected_community)

 @spec validate_community(binary(), binary()) :: :ok | {:error, atom()}

Validates a community string.
Parameters
	encoded_message: Encoded SNMP message
	expected_community: Expected community string

Examples
iex> :ok = SnmpKit.SnmpLib.PDU.validate_community(encoded_msg, "public")

SnmpKit.SnmpLib.PDU.Builder

High-level PDU and message building functions for SNMP operations.
This module provides functions to build various types of SNMP PDUs and messages,
including GET, GETNEXT, SET, GETBULK requests, and responses.

 Summary

 Types

 error_status()

 message()

 oid()

 pdu()

 pdu_type()

 snmp_value()

 snmp_version()

 varbind()

 Functions

 build_get_bulk_request(oid_list, request_id, non_repeaters \\ 0, max_repetitions \\ 10)

 Builds a GETBULK request PDU for SNMPv2c.

 build_get_next_request(oid_list, request_id)

 Builds a GETNEXT request PDU.

 build_get_request(oid_list, request_id)

 Builds a GET request PDU.

 build_get_request_multi(varbinds, request_id)

 Builds a GET request PDU with multiple varbinds.

 build_message(pdu, community, version \\ :v1)

 Builds an SNMP message structure.

 build_response(request_id, error_status, error_index, varbinds \\ [])

 Builds a response PDU.

 build_set_request(oid_list, arg, request_id)

 Builds a SET request PDU.

 create_error_response(request_pdu, error_status, error_index \\ 0)

 Creates an error response PDU from a request PDU.

 validate(pdu)

 Validates a PDU structure.

 validate_community(encoded_message, expected_community)

 Validates a community string against an encoded SNMP message.

 Types

 error_status()

 @type error_status() :: SnmpKit.SnmpLib.PDU.Constants.error_status()

 message()

 @type message() :: SnmpKit.SnmpLib.PDU.Constants.message()

 oid()

 @type oid() :: SnmpKit.SnmpLib.PDU.Constants.oid()

 pdu()

 @type pdu() :: SnmpKit.SnmpLib.PDU.Constants.pdu()

 pdu_type()

 @type pdu_type() :: SnmpKit.SnmpLib.PDU.Constants.pdu_type()

 snmp_value()

 @type snmp_value() :: SnmpKit.SnmpLib.PDU.Constants.snmp_value()

 snmp_version()

 @type snmp_version() :: SnmpKit.SnmpLib.PDU.Constants.snmp_version()

 varbind()

 @type varbind() :: SnmpKit.SnmpLib.PDU.Constants.varbind()

 Functions

 build_get_bulk_request(oid_list, request_id, non_repeaters \\ 0, max_repetitions \\ 10)

 @spec build_get_bulk_request(
 oid(),
 non_neg_integer(),
 non_neg_integer(),
 non_neg_integer()
) :: pdu()

Builds a GETBULK request PDU for SNMPv2c.
Parameters
	oid_list: Starting OID
	request_id: Request identifier
	non_repeaters: Number of non-repeating variables (default: 0)
	max_repetitions: Maximum repetitions (default: 10)

 build_get_next_request(oid_list, request_id)

 @spec build_get_next_request(oid(), non_neg_integer()) :: pdu()

Builds a GETNEXT request PDU.

 build_get_request(oid_list, request_id)

 @spec build_get_request(oid(), non_neg_integer()) :: pdu()

Builds a GET request PDU.

 build_get_request_multi(varbinds, request_id)

 @spec build_get_request_multi([varbind()], non_neg_integer()) :: pdu()

Builds a GET request PDU with multiple varbinds.

 build_message(pdu, community, version \\ :v1)

 @spec build_message(pdu(), binary(), snmp_version()) :: message()

Builds an SNMP message structure.
Parameters
	pdu: The PDU to include in the message
	community: Community string
	version: SNMP version (:v1, :v2c, etc.)

 build_response(request_id, error_status, error_index, varbinds \\ [])

 @spec build_response(non_neg_integer(), error_status(), non_neg_integer(), [varbind()]) ::
 pdu()

Builds a response PDU.

 build_set_request(oid_list, arg, request_id)

 @spec build_set_request(oid(), {atom(), any()}, non_neg_integer()) :: pdu()

Builds a SET request PDU.

 create_error_response(request_pdu, error_status, error_index \\ 0)

 @spec create_error_response(pdu(), error_status(), non_neg_integer()) :: pdu()

Creates an error response PDU from a request PDU.
Examples
error_pdu = SnmpKit.SnmpLib.PDU.Builder.create_error_response(request_pdu, 2, 1)

 validate(pdu)

 @spec validate(pdu()) :: {:ok, pdu()} | {:error, atom()}

Validates a PDU structure.

 validate_community(encoded_message, expected_community)

 @spec validate_community(binary(), binary()) :: :ok | {:error, atom()}

Validates a community string against an encoded SNMP message.

SnmpKit.SnmpLib.PDU.Constants

Constants and type definitions for SNMP PDU operations.
This module contains all ASN.1 tags, error codes, type definitions,
and utility functions used throughout the SNMP PDU system.

 Summary

 Types

 base_pdu()

 bulk_pdu()

 error_status()

 message()

 msg_flags()

 oid()

 pdu()

 pdu_type()

 scoped_pdu()

 snmp_type()

 snmp_value()

 snmp_version()

 v1v2c_message()

 v3_message()

 varbind()

 Functions

 bad_value()

 counter32()

 counter64()

 data_type_to_tag(atom)

 decode_msg_flags(arg)

 Decodes SNMPv3 message flags from binary format.

 default_max_message_size()

 default_msg_flags(atom)

 Creates default SNMPv3 message flags for a security level.

 encode_msg_flags(map)

 Encodes SNMPv3 message flags to binary format.

 end_of_mib_view()

 error_status_to_atom(code)

 Converts an error status code to its atom representation.

 error_status_to_code(code)

 Converts an error status atom to its numeric code.

 gauge32()

 gen_err()

 get_request()

 get_response()

 getbulk_request()

 getnext_request()

 integer()

 ip_address()

 no_error()

 no_such_instance()

 no_such_name()

 no_such_object()

 normalize_oid(oid)

 normalize_type(type)

 Normalizes an SNMP type atom.

 normalize_version(v)

 null()

 object_identifier()

 octet_string()

 opaque_type()

 pdu_type_to_tag(atom)

 read_only()

 set_request()

 tag_to_data_type(arg1)

 tag_to_pdu_type(arg1)

 timeticks()

 too_big()

 usm_security_model()

 Types

 base_pdu()

 @type base_pdu() :: %{
 type: pdu_type(),
 request_id: non_neg_integer(),
 error_status: error_status(),
 error_index: non_neg_integer(),
 varbinds: [varbind()]
}

 bulk_pdu()

 @type bulk_pdu() :: %{
 type: :get_bulk_request,
 request_id: non_neg_integer(),
 error_status: error_status(),
 error_index: non_neg_integer(),
 varbinds: [varbind()],
 non_repeaters: non_neg_integer(),
 max_repetitions: non_neg_integer()
}

 error_status()

 @type error_status() :: 0..5

 message()

 @type message() :: v1v2c_message() | v3_message()

 msg_flags()

 @type msg_flags() :: %{auth: boolean(), priv: boolean(), reportable: boolean()}

 oid()

 @type oid() :: [non_neg_integer()] | binary()

 pdu()

 @type pdu() :: base_pdu() | bulk_pdu()

 pdu_type()

 @type pdu_type() ::
 :get_request
 | :get_next_request
 | :get_response
 | :set_request
 | :get_bulk_request

 scoped_pdu()

 @type scoped_pdu() :: %{
 context_engine_id: binary(),
 context_name: binary(),
 pdu: pdu()
}

 snmp_type()

 @type snmp_type() ::
 :integer
 | :octet_string
 | :null
 | :object_identifier
 | :counter32
 | :gauge32
 | :timeticks
 | :counter64
 | :ip_address
 | :opaque_type
 | :no_such_object
 | :no_such_instance
 | :end_of_mib_view

 snmp_value()

 @type snmp_value() :: any()

 snmp_version()

 @type snmp_version() :: :v1 | :v2c | :v2 | :v3 | 0 | 1 | 3

 v1v2c_message()

 @type v1v2c_message() :: %{
 version: snmp_version() | non_neg_integer(),
 community: binary(),
 pdu: pdu()
}

 v3_message()

 @type v3_message() :: %{
 version: 3,
 msg_id: non_neg_integer(),
 msg_max_size: non_neg_integer(),
 msg_flags: binary(),
 msg_security_model: non_neg_integer(),
 msg_security_parameters: binary(),
 msg_data: scoped_pdu()
}

 varbind()

 @type varbind() :: {oid(), atom(), snmp_value()}

 Functions

 bad_value()

 counter32()

 counter64()

 data_type_to_tag(atom)

 decode_msg_flags(arg)

 @spec decode_msg_flags(binary()) :: msg_flags()

Decodes SNMPv3 message flags from binary format.

 default_max_message_size()

 default_msg_flags(atom)

 @spec default_msg_flags(atom()) :: msg_flags()

Creates default SNMPv3 message flags for a security level.

 encode_msg_flags(map)

 @spec encode_msg_flags(msg_flags()) :: binary()

Encodes SNMPv3 message flags to binary format.

 end_of_mib_view()

 error_status_to_atom(code)

 @spec error_status_to_atom(non_neg_integer()) :: atom()

Converts an error status code to its atom representation.

 error_status_to_code(code)

 @spec error_status_to_code(atom()) :: non_neg_integer()

Converts an error status atom to its numeric code.

 gauge32()

 gen_err()

 get_request()

 get_response()

 getbulk_request()

 getnext_request()

 integer()

 ip_address()

 no_error()

 no_such_instance()

 no_such_name()

 no_such_object()

 normalize_oid(oid)

 normalize_type(type)

 @spec normalize_type(atom()) :: snmp_type()

Normalizes an SNMP type atom.

 normalize_version(v)

 null()

 object_identifier()

 octet_string()

 opaque_type()

 pdu_type_to_tag(atom)

 read_only()

 set_request()

 tag_to_data_type(arg1)

 tag_to_pdu_type(arg1)

 timeticks()

 too_big()

 usm_security_model()

SnmpKit.SnmpLib.PDU.Decoder

ASN.1 BER decoding functions for SNMP PDUs and messages.
This module handles the conversion of binary ASN.1 BER format to Elixir data structures
for SNMP protocol communication.

 Summary

 Types

 message()

 pdu()

 Functions

 decode(data)

 Decodes an SNMP message from binary format (alias for decode_message/1).

 decode_message(data)

 Decodes an SNMP message from binary format.

 decode_message(data, user)

 Decodes an SNMP message with security user (SNMPv3).

 decode_pdu(data)

 Decodes a PDU from binary format.

 decode_snmp_packet(data)

 Alias for decode/1.

 Types

 message()

 @type message() :: SnmpKit.SnmpLib.PDU.Constants.message()

 pdu()

 @type pdu() :: SnmpKit.SnmpLib.PDU.Constants.pdu()

 Functions

 decode(data)

 @spec decode(binary()) :: {:ok, message()} | {:error, atom()}

Decodes an SNMP message from binary format (alias for decode_message/1).

 decode_message(data)

 @spec decode_message(binary()) :: {:ok, message()} | {:error, atom()}

Decodes an SNMP message from binary format.

 decode_message(data, user)

 @spec decode_message(binary(), map() | nil) :: {:ok, message()} | {:error, atom()}

Decodes an SNMP message with security user (SNMPv3).

 decode_pdu(data)

 @spec decode_pdu(binary()) :: {:ok, pdu()} | {:error, atom()}

Decodes a PDU from binary format.

 decode_snmp_packet(data)

 @spec decode_snmp_packet(binary()) :: {:ok, message()} | {:error, atom()}

Alias for decode/1.

SnmpKit.SnmpLib.PDU.Encoder

ASN.1 BER encoding functions for SNMP PDUs and messages.
This module handles the conversion of Elixir data structures to binary ASN.1 BER format
for SNMP protocol communication.

 Summary

 Types

 message()

 pdu()

 Functions

 encode(message)

 Encodes an SNMP message to binary format (alias for encode_message/1).

 encode_message(message)

 Encodes an SNMP message to binary format.

 encode_message(message, user)

 Encodes an SNMP message with security user (SNMPv3).

 encode_pdu(pdu)

 Encodes a PDU to binary format.

 encode_snmp_packet(message)

 Alias for encode/1.

 Types

 message()

 @type message() :: SnmpKit.SnmpLib.PDU.Constants.message()

 pdu()

 @type pdu() :: SnmpKit.SnmpLib.PDU.Constants.pdu()

 Functions

 encode(message)

 @spec encode(message()) :: {:ok, binary()} | {:error, atom()}

Encodes an SNMP message to binary format (alias for encode_message/1).

 encode_message(message)

 @spec encode_message(message()) :: {:ok, binary()} | {:error, atom()}

Encodes an SNMP message to binary format.

 encode_message(message, user)

 @spec encode_message(message(), map() | nil) :: {:ok, binary()} | {:error, atom()}

Encodes an SNMP message with security user (SNMPv3).

 encode_pdu(pdu)

 @spec encode_pdu(pdu()) :: {:ok, binary()} | {:error, atom()}

Encodes a PDU to binary format.

 encode_snmp_packet(message)

 @spec encode_snmp_packet(message()) :: {:ok, binary()} | {:error, atom()}

Alias for encode/1.

SnmpKit.SnmpLib.PDU.V3Encoder

SNMPv3 message encoding and decoding with User Security Model (USM) support.
This module implements the SNMPv3 message format as specified in RFC 3412 and RFC 3414,
providing authentication and privacy protection for SNMP communications.
SNMPv3 Message Structure
SNMPv3 messages have a complex hierarchical structure:
SNMPv3Message ::= SEQUENCE {
 msgVersion INTEGER (0..2147483647),
 msgGlobalData HeaderData,
 msgSecurityParameters OCTET STRING,
 msgData ScopedPduData
}

HeaderData ::= SEQUENCE {
 msgID INTEGER (0..2147483647),
 msgMaxSize INTEGER (484..2147483647),
 msgFlags OCTET STRING (SIZE(1)),
 msgSecurityModel INTEGER (1..2147483647)
}

ScopedPduData ::= CHOICE {
 plaintext ScopedPDU,
 encryptedPDU OCTET STRING
}

ScopedPDU ::= SEQUENCE {
 contextEngineID OCTET STRING,
 contextName OCTET STRING,
 data ANY
}
Security Processing
The module integrates with the security subsystem to provide:
	Message authentication using HMAC algorithms
	Message encryption using AES/DES algorithms
	Time synchronization and engine discovery
	Replay attack protection

Usage Examples
Encoding a SNMPv3 Message
Create security user
user = %{
 security_name: "testuser",
 auth_protocol: :sha256,
 priv_protocol: :aes128,
 auth_key: derived_auth_key,
 priv_key: derived_priv_key,
 engine_id: "local_engine"
}

Create SNMPv3 message
message = %{
 version: 3,
 msg_id: 12345,
 msg_max_size: 65507,
 msg_flags: %{auth: true, priv: true, reportable: true},
 msg_security_model: 3,
 msg_security_parameters: "", # Will be generated
 msg_data: %{
 context_engine_id: "target_engine",
 context_name: "",
 pdu: pdu
 }
}

Encode with security
{:ok, encoded} = SnmpKit.SnmpLib.PDU.V3Encoder.encode_message(message, user)
Decoding a SNMPv3 Message
{:ok, decoded} = SnmpKit.SnmpLib.PDU.V3Encoder.decode_message(binary_data, user)
Security Notes
	Authentication is required for privacy (encryption)
	Engine discovery must be performed before authenticated communication
	Time synchronization is required to prevent replay attacks
	Message IDs should be unique to prevent duplicate processing

 Summary

 Types

 scoped_pdu()

 security_params()

 security_user()

 v3_message()

 Functions

 create_discovery_message(msg_id \\ :rand.uniform(2_147_483_647))

 Creates a discovery message for engine ID discovery.

 decode_message(data, user \\ nil)

 Decodes a SNMPv3 message with security processing.

 encode_message(message, user \\ nil)

 Encodes a SNMPv3 message with security processing.

 Types

 scoped_pdu()

 @type scoped_pdu() :: SnmpKit.SnmpLib.PDU.Constants.scoped_pdu()

 security_params()

 @type security_params() :: SnmpKit.SnmpLib.Security.security_params()

 security_user()

 @type security_user() :: SnmpKit.SnmpLib.Security.security_user()

 v3_message()

 @type v3_message() :: SnmpKit.SnmpLib.PDU.Constants.v3_message()

 Functions

 create_discovery_message(msg_id \\ :rand.uniform(2_147_483_647))

 @spec create_discovery_message(non_neg_integer()) :: v3_message()

Creates a discovery message for engine ID discovery.

 decode_message(data, user \\ nil)

 @spec decode_message(binary(), security_user() | nil) ::
 {:ok, v3_message()} | {:error, atom()}

Decodes a SNMPv3 message with security processing.
Parameters
	data - Binary SNMPv3 message data
	user - Security user configuration (optional for discovery messages)

Returns
	{:ok, message} on success
	{:error, reason} on failure

 encode_message(message, user \\ nil)

 @spec encode_message(v3_message(), security_user() | nil) ::
 {:ok, binary()} | {:error, atom()}

Encodes a SNMPv3 message with security processing.
Parameters
	message - SNMPv3 message structure
	user - Security user configuration (optional for discovery messages)

Returns
	{:ok, binary()} on success
	{:error, reason} on failure

Examples
{:ok, encoded} = encode_message(snmpv3_message, security_user)
{:ok, discovery_msg} = encode_message(discovery_message, nil)

SnmpKit.SnmpLib.Pool

Connection pooling and session management for high-performance SNMP operations.
This module provides sophisticated connection pooling capabilities designed for
applications that need to manage many concurrent SNMP operations efficiently.
Based on patterns proven in the DDumb project for handling 100+ concurrent device polls.
Features
	Connection Pooling: Efficient reuse of UDP sockets across operations
	Session Management: Per-device session tracking with state management
	Load Balancing: Intelligent distribution of operations across pool workers
	Health Monitoring: Automatic detection and handling of unhealthy connections
	Performance Metrics: Built-in monitoring and performance tracking
	Graceful Degradation: Circuit breaker patterns for failing devices

Pool Strategies
FIFO Pool (Default)
Best for general-purpose SNMP operations with mixed device types.
Round-Robin Pool
Optimal for polling multiple devices with similar characteristics.
Device-Affinity Pool
Routes operations for the same device to the same worker for session consistency.
Usage Patterns
Start a pool for network monitoring
{:ok, pool_pid} = SnmpKit.SnmpLib.Pool.start_pool(:network_monitor,
 strategy: :device_affinity,
 size: 20,
 max_overflow: 10
)

Perform operations through the pool
SnmpKit.SnmpLib.Pool.with_connection(:network_monitor, "192.168.1.1", fn conn ->
 SnmpKit.SnmpLib.Manager.get_multi(conn.socket, "192.168.1.1", oids, conn.opts)
end)

Get pool statistics
stats = SnmpKit.SnmpLib.Pool.get_stats(:network_monitor)
IO.inspect(stats.active_connections)
Performance Benefits
	60-80% reduction in socket creation overhead
	Improved throughput for high-frequency polling
	Lower memory usage through connection reuse
	Better resource utilization with intelligent load balancing

 Summary

 Types

 connection()

 pool_name()

 pool_opts()

 pool_stats()

 pool_strategy()

 Functions

 checkin_connection(pool_name, connection)

 Returns a connection to the pool after manual checkout.

 checkout_connection(pool_name, device, opts \\ [])

 Checks out a connection from the pool for manual management.

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 cleanup_unhealthy(pool_name)

 Removes unhealthy connections from the pool and replaces them.

 get_stats(pool_name)

 Gets comprehensive statistics about the pool's performance and health.

 health_check(pool_name)

 Forces a health check on all connections in the pool.

 start_pool(pool_name, opts \\ [])

 Starts a new connection pool with the specified configuration.

 stop_pool(pool_name, timeout \\ 5000)

 Stops a connection pool and cleans up all resources.

 with_connection(pool_name, device, fun, opts \\ [])

 Executes a function with a pooled connection, handling checkout/checkin automatically.

 Types

 connection()

 @type connection() :: %{
 socket: :gen_udp.socket(),
 pid: pid(),
 device: binary() | nil,
 last_used: integer(),
 health_status: :healthy | :degraded | :unhealthy,
 operation_count: non_neg_integer(),
 error_count: non_neg_integer()
}

 pool_name()

 @type pool_name() :: atom()

 pool_opts()

 @type pool_opts() :: [
 strategy: pool_strategy(),
 size: pos_integer(),
 max_overflow: non_neg_integer(),
 checkout_timeout: pos_integer(),
 max_idle_time: pos_integer(),
 health_check_interval: pos_integer(),
 worker_opts: keyword()
]

 pool_stats()

 @type pool_stats() :: %{
 name: pool_name(),
 strategy: pool_strategy(),
 size: pos_integer(),
 active_connections: non_neg_integer(),
 idle_connections: non_neg_integer(),
 overflow_connections: non_neg_integer(),
 total_checkouts: non_neg_integer(),
 total_checkins: non_neg_integer(),
 health_status: map(),
 average_response_time: float()
}

 pool_strategy()

 @type pool_strategy() :: :fifo | :round_robin | :device_affinity

 Functions

 checkin_connection(pool_name, connection)

 @spec checkin_connection(pool_name(), connection()) :: :ok

Returns a connection to the pool after manual checkout.
Examples
:ok = SnmpKit.SnmpLib.Pool.checkin_connection(:snmp_pool, connection)

 checkout_connection(pool_name, device, opts \\ [])

 @spec checkout_connection(pool_name(), binary(), keyword()) ::
 {:ok, connection()} | {:error, any()}

Checks out a connection from the pool for manual management.
Use this when you need more control over connection lifecycle.
You must call checkin_connection/2 when done.
Examples
{:ok, conn} = SnmpKit.SnmpLib.Pool.checkout_connection(:snmp_pool, "192.168.1.1")
... perform operations with conn
:ok = SnmpKit.SnmpLib.Pool.checkin_connection(:snmp_pool, conn)

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 cleanup_unhealthy(pool_name)

 @spec cleanup_unhealthy(pool_name()) :: :ok

Removes unhealthy connections from the pool and replaces them.
Examples
:ok = SnmpKit.SnmpLib.Pool.cleanup_unhealthy(:snmp_pool)

 get_stats(pool_name)

 @spec get_stats(pool_name()) :: pool_stats()

Gets comprehensive statistics about the pool's performance and health.
Returns
A map containing:
	Connection counts (active, idle, overflow)
	Operation statistics (checkouts, checkins, response times)
	Health status for connections
	Performance metrics

Examples
stats = SnmpKit.SnmpLib.Pool.get_stats(:snmp_pool)
IO.puts("Active connections: " <> to_string(stats.active_connections))
IO.puts("Average response time: " <> to_string(stats.average_response_time) <> "ms")

 health_check(pool_name)

 @spec health_check(pool_name()) :: :ok

Forces a health check on all connections in the pool.
Useful for proactive monitoring and debugging connection issues.
Examples
:ok = SnmpKit.SnmpLib.Pool.health_check(:snmp_pool)

 start_pool(pool_name, opts \\ [])

 @spec start_pool(pool_name(), pool_opts()) :: {:ok, pid()} | {:error, any()}

Starts a new connection pool with the specified configuration.
Parameters
	pool_name: Unique atom identifier for the pool
	opts: Pool configuration options

Options
	strategy: Pool strategy (:fifo, :round_robin, :device_affinity)
	size: Base number of connections in the pool (default: 10)
	max_overflow: Maximum overflow connections allowed (default: 5)
	checkout_timeout: Maximum time to wait for connection (default: 5000ms)
	max_idle_time: Maximum idle time before connection cleanup (default: 300000ms)
	health_check_interval: Interval for health checks (default: 30000ms)
	worker_opts: Options passed to individual workers

Returns
	{:ok, pid}: Pool started successfully
	{:error, reason}: Failed to start pool

Examples
Basic pool for general SNMP operations
{:ok, _pid} = SnmpKit.SnmpLib.Pool.start_pool(:snmp_pool)

High-performance pool for device monitoring
{:ok, _pid} = SnmpKit.SnmpLib.Pool.start_pool(:monitor_pool,
 strategy: :device_affinity,
 size: 25,
 max_overflow: 15,
 health_check_interval: 60_000
)

 stop_pool(pool_name, timeout \\ 5000)

 @spec stop_pool(pool_name(), pos_integer()) :: :ok

Stops a connection pool and cleans up all resources.
Parameters
	pool_name: Name of the pool to stop
	timeout: Maximum time to wait for graceful shutdown (default: 5000ms)

Examples
:ok = SnmpKit.SnmpLib.Pool.stop_pool(:snmp_pool)
:ok = SnmpKit.SnmpLib.Pool.stop_pool(:monitor_pool, 10_000)

 with_connection(pool_name, device, fun, opts \\ [])

 @spec with_connection(pool_name(), binary(), function(), keyword()) :: any()

Executes a function with a pooled connection, handling checkout/checkin automatically.
This is the primary interface for using pooled connections. The function
automatically handles connection lifecycle and error recovery.
Parameters
	pool_name: Name of the pool to use
	device: Target device (used for device-affinity strategy)
	fun: Function to execute with the connection
	opts: Additional options for the operation

Returns
The result of executing the function, or {:error, reason} if connection
checkout fails or the function raises an exception.
Examples
Perform multiple operations with connection reuse
result = SnmpKit.SnmpLib.Pool.with_connection(:snmp_pool, "192.168.1.1", fn conn ->
 {:ok, sys_desc} = SnmpKit.SnmpLib.Manager.get_with_socket(conn.socket, "192.168.1.1",
 [1,3,6,1,2,1,1,1,0], conn.opts)
 {:ok, sys_name} = SnmpKit.SnmpLib.Manager.get_with_socket(conn.socket, "192.168.1.1",
 [1,3,6,1,2,1,1,5,0], conn.opts)
 {:sys_desc, sys_desc, :sys_name, sys_name}
end)

SnmpKit.SnmpLib.Security

SNMPv3 Security Framework - Phase 5.1A Implementation
Provides comprehensive SNMPv3 User Security Model (USM) implementation including
authentication and privacy protocols for secure SNMP communications.
Features
	User Security Model (USM) with complete RFC 3414 compliance
	Authentication Protocols: MD5, SHA-1, SHA-256, SHA-384, SHA-512
	Privacy Protocols: DES, AES-128, AES-192, AES-256
	Key Derivation: Password-based and localized key generation
	Security Parameters: Boot counter, time synchronization, message validation
	Error Handling: Comprehensive security error classification and recovery

Architecture
The security framework is built on a modular architecture:
	SnmpKit.SnmpLib.Security.USM - User Security Model implementation
	SnmpKit.SnmpLib.Security.Auth - Authentication protocol handlers
	SnmpKit.SnmpLib.Security.Priv - Privacy protocol handlers
	SnmpKit.SnmpLib.Security.Keys - Key derivation and management

Usage Examples
Basic SNMPv3 Authentication
Create authenticated user
{:ok, user} = SnmpKit.SnmpLib.Security.create_user("admin",
 auth_protocol: :sha256,
 auth_password: "secure_password",
 engine_id: "engine123"
)

Authenticate message
{:ok, auth_params} = SnmpKit.SnmpLib.Security.authenticate_message(user, message)
Privacy (Encryption) Support
Create user with privacy
{:ok, user} = SnmpKit.SnmpLib.Security.create_user("secure_admin",
 auth_protocol: :sha256,
 auth_password: "auth_password",
 priv_protocol: :aes256,
 priv_password: "priv_password"
)

Encrypt message
{:ok, encrypted} = SnmpKit.SnmpLib.Security.encrypt_message(user, message)
Engine ID Management
Generate engine ID
engine_id = SnmpKit.SnmpLib.Security.generate_engine_id("192.168.1.1")

Discover remote engine
{:ok, remote_engine} = SnmpKit.SnmpLib.Security.discover_engine("10.0.0.1")
Security Considerations
	All key material is stored securely in memory
	Authentication and privacy keys are derived using RFC-compliant algorithms
	Time-based authentication prevents replay attacks
	Boot counter management ensures message freshness
	Comprehensive input validation prevents security bypasses

 Summary

 Types

 auth_protocol()

 engine_id()

 priv_protocol()

 security_level()

 security_name()

 security_params()

 security_user()

 user_config()

 Functions

 authenticate_message(user, message)

 Authenticates an SNMP message using the user's authentication protocol.

 build_security_params(user, auth_params \\ <<>>, priv_params \\ <<>>)

 Builds security parameters for inclusion in SNMPv3 messages.

 create_user(security_name, config)

 Creates a new SNMPv3 security user with specified authentication and privacy settings.

 decrypt_message(user, ciphertext, priv_params)

 Decrypts message data using the user's privacy protocol.

 discover_engine(host, opts \\ [])

 Discovers the engine ID of a remote SNMP agent.

 encrypt_message(user, plaintext)

 Encrypts message data using the user's privacy protocol.

 generate_engine_id(identifier)

 Generates a unique engine ID for an SNMP entity.

 get_security_level(user)

 Determines the security level for a message based on user configuration.

 info()

 Returns comprehensive information about security capabilities and status.

 update_engine_time(user, engine_boots, engine_time)

 Updates engine time and boot counter for time synchronization.

 update_user(user, new_config)

 Updates security user credentials and regenerates keys.

 validate_security_params(user, params)

 Validates security parameters from received messages.

 validate_user(user, auth_password, priv_password \\ "")

 Validates user credentials against stored authentication data.

 verify_authentication(user, message, auth_params)

 Verifies message authentication using provided authentication parameters.

 Types

 auth_protocol()

 @type auth_protocol() :: :none | :md5 | :sha1 | :sha256 | :sha384 | :sha512

 engine_id()

 @type engine_id() :: binary()

 priv_protocol()

 @type priv_protocol() :: :none | :des | :aes128 | :aes192 | :aes256

 security_level()

 @type security_level() :: :no_auth_no_priv | :auth_no_priv | :auth_priv

 security_name()

 @type security_name() :: binary()

 security_params()

 @type security_params() :: %{
 authoritative_engine_id: engine_id(),
 authoritative_engine_boots: non_neg_integer(),
 authoritative_engine_time: non_neg_integer(),
 user_name: security_name(),
 authentication_parameters: binary(),
 privacy_parameters: binary()
}

 security_user()

 @type security_user() :: %{
 security_name: security_name(),
 auth_protocol: auth_protocol(),
 priv_protocol: priv_protocol(),
 auth_key: binary(),
 priv_key: binary(),
 engine_id: engine_id(),
 engine_boots: non_neg_integer(),
 engine_time: non_neg_integer()
}

 user_config()

 @type user_config() :: [
 auth_protocol: auth_protocol(),
 auth_password: binary(),
 priv_protocol: priv_protocol(),
 priv_password: binary(),
 engine_id: engine_id()
]

 Functions

 authenticate_message(user, message)

 @spec authenticate_message(security_user(), binary()) ::
 {:ok, binary()} | {:error, atom()}

Authenticates an SNMP message using the user's authentication protocol.
Returns authentication parameters that should be included in the message.

 build_security_params(user, auth_params \\ <<>>, priv_params \\ <<>>)

 @spec build_security_params(security_user(), binary(), binary()) :: security_params()

Builds security parameters for inclusion in SNMPv3 messages.

 create_user(security_name, config)

 @spec create_user(security_name(), user_config()) ::
 {:ok, security_user()} | {:error, atom()}

Creates a new SNMPv3 security user with specified authentication and privacy settings.
Parameters
	security_name: Unique identifier for the user
	config: User configuration including protocols and passwords

Returns
	{:ok, user}: Successfully created security user
	{:error, reason}: Creation failed

Examples
Authentication only user
{:ok, user} = SnmpKit.SnmpLib.Security.create_user("monitor_user",
 auth_protocol: :sha256,
 auth_password: "monitoring_secret",
 engine_id: "local_engine"
)

Full authentication and privacy user
{:ok, admin} = SnmpKit.SnmpLib.Security.create_user("admin_user",
 auth_protocol: :sha512,
 auth_password: "admin_auth_pass",
 priv_protocol: :aes256,
 priv_password: "admin_priv_pass",
 engine_id: "management_engine"
)

 decrypt_message(user, ciphertext, priv_params)

 @spec decrypt_message(security_user(), binary(), binary()) ::
 {:ok, binary()} | {:error, atom()}

Decrypts message data using the user's privacy protocol.

 discover_engine(host, opts \\ [])

 @spec discover_engine(
 binary(),
 keyword()
) :: {:ok, engine_id()} | {:error, atom()}

Discovers the engine ID of a remote SNMP agent.
This is typically done during the first communication with a remote agent
to establish security context.

 encrypt_message(user, plaintext)

 @spec encrypt_message(security_user(), binary()) ::
 {:ok, {binary(), binary()}} | {:error, atom()}

Encrypts message data using the user's privacy protocol.

 generate_engine_id(identifier)

 @spec generate_engine_id(binary()) :: engine_id()

Generates a unique engine ID for an SNMP entity.
Engine IDs are used to uniquely identify SNMP engines and are required
for SNMPv3 security operations.

 get_security_level(user)

 @spec get_security_level(security_user()) :: security_level()

Determines the security level for a message based on user configuration.
Security Levels
	:no_auth_no_priv - No authentication, no privacy
	:auth_no_priv - Authentication only
	:auth_priv - Authentication and privacy

 info()

 @spec info() :: map()

Returns comprehensive information about security capabilities and status.

 update_engine_time(user, engine_boots, engine_time)

 @spec update_engine_time(security_user(), non_neg_integer(), non_neg_integer()) ::
 security_user()

Updates engine time and boot counter for time synchronization.

 update_user(user, new_config)

 @spec update_user(security_user(), user_config()) ::
 {:ok, security_user()} | {:error, atom()}

Updates security user credentials and regenerates keys.

 validate_security_params(user, params)

 @spec validate_security_params(security_user(), security_params()) ::
 :ok | {:error, atom()}

Validates security parameters from received messages.

 validate_user(user, auth_password, priv_password \\ "")

 @spec validate_user(security_user(), binary(), binary()) :: :ok | {:error, atom()}

Validates user credentials against stored authentication data.

 verify_authentication(user, message, auth_params)

 @spec verify_authentication(security_user(), binary(), binary()) ::
 :ok | {:error, atom()}

Verifies message authentication using provided authentication parameters.

SnmpKit.SnmpLib.Security.Auth

Authentication protocols for SNMPv3 User Security Model.
Implements HMAC-based authentication protocols as specified in RFC 3414 and RFC 7860,
providing message integrity and authentication for SNMPv3 communications.
Supported Protocols
	HMAC-MD5 (RFC 3414) - 16-byte digest, legacy support
	HMAC-SHA-1 (RFC 3414) - 20-byte digest, legacy support
	HMAC-SHA-224 (RFC 7860) - 28-byte digest
	HMAC-SHA-256 (RFC 7860) - 32-byte digest, recommended
	HMAC-SHA-384 (RFC 7860) - 48-byte digest
	HMAC-SHA-512 (RFC 7860) - 64-byte digest, highest security

Security Considerations
	MD5 and SHA-1 are deprecated for new implementations
	SHA-256 or higher is recommended for production use
	Authentication keys must be properly derived using key derivation functions
	Truncated MACs maintain security properties when properly implemented

Protocol Selection Guidelines
	SHA-256: Recommended for most deployments (good security/performance balance)
	SHA-512: High security environments with adequate processing power
	SHA-384: Alternative to SHA-512 with smaller digest size
	MD5/SHA-1: Legacy compatibility only, not recommended for new deployments

Usage Examples
Message Authentication
Authenticate outgoing message
auth_key = derived_authentication_key
message = snmp_message_data
{:ok, auth_params} = SnmpKit.SnmpLib.Security.Auth.authenticate(:sha256, auth_key, message)

Verify incoming message
:ok = SnmpKit.SnmpLib.Security.Auth.verify(:sha256, auth_key, message, auth_params)
Protocol Capabilities
Get protocol information
info = SnmpKit.SnmpLib.Security.Auth.protocol_info(:sha256)
Returns: %{digest_size: 32, truncated_size: 12, secure: true, ...}

List all supported protocols
protocols = SnmpKit.SnmpLib.Security.Auth.supported_protocols()

 Summary

 Types

 auth_key()

 auth_params()

 auth_protocol()

 message_data()

 Functions

 authenticate(protocol, auth_key, message)

 Authenticates a message using the specified protocol and key.

 authenticate_batch(protocol, auth_key, messages)

 Authenticates multiple messages using the same protocol and key.

 benchmark_protocol(protocol, auth_key, test_message, iterations \\ 1000)

 Measures authentication performance for a given protocol.

 protocol_info(protocol)

 Returns information about a specific authentication protocol.

 secure_protocol?(protocol)

 Checks if a protocol is considered cryptographically secure.

 secure_protocols()

 Returns list of cryptographically secure protocols (excludes deprecated ones).

 supported_protocols()

 Returns list of all supported authentication protocols.

 validate_key(protocol, key)

 Validates that an authentication key is appropriate for the specified protocol.

 verify(protocol, auth_key, message, provided_params)

 Verifies message authentication using provided authentication parameters.

 verify_batch(protocol, auth_key, messages, auth_params_list)

 Verifies authentication for multiple messages in batch.

 Types

 auth_key()

 @type auth_key() :: binary()

 auth_params()

 @type auth_params() :: binary()

 auth_protocol()

 @type auth_protocol() :: :none | :md5 | :sha1 | :sha224 | :sha256 | :sha384 | :sha512

 message_data()

 @type message_data() :: binary()

 Functions

 authenticate(protocol, auth_key, message)

 @spec authenticate(auth_protocol(), auth_key(), message_data()) ::
 {:ok, auth_params()} | {:error, atom()}

Authenticates a message using the specified protocol and key.
Generates authentication parameters (truncated HMAC) for inclusion
in the SNMPv3 message security parameters.
Parameters
	protocol: Authentication protocol to use
	auth_key: Localized authentication key (derived from password)
	message: Complete message data to authenticate

Returns
	{:ok, auth_params}: Authentication parameters for message
	{:error, reason}: Authentication failed

Examples
SHA-256 authentication (recommended)
{:ok, auth_params} = SnmpKit.SnmpLib.Security.Auth.authenticate(:sha256, auth_key, message)

Legacy MD5 authentication
{:ok, auth_params} = SnmpKit.SnmpLib.Security.Auth.authenticate(:md5, auth_key, message)

 authenticate_batch(protocol, auth_key, messages)

 @spec authenticate_batch(auth_protocol(), auth_key(), [message_data()]) ::
 {:ok, [auth_params()]} | {:error, atom()}

Authenticates multiple messages using the same protocol and key.
More efficient than individual authentication calls when processing
multiple messages with the same authentication configuration.
Examples
messages = [msg1, msg2, msg3]
{:ok, auth_params_list} = SnmpKit.SnmpLib.Security.Auth.authenticate_batch(:sha256, auth_key, messages)

 benchmark_protocol(protocol, auth_key, test_message, iterations \\ 1000)

 @spec benchmark_protocol(auth_protocol(), auth_key(), message_data(), pos_integer()) ::
 map()

Measures authentication performance for a given protocol.
Useful for performance tuning and protocol selection in high-throughput environments.
Examples
stats = SnmpKit.SnmpLib.Security.Auth.benchmark_protocol(:sha256, test_key, test_message, 1000)
Returns timing and throughput statistics

 protocol_info(protocol)

 @spec protocol_info(auth_protocol()) :: map() | nil

Returns information about a specific authentication protocol.
Examples
iex> SnmpKit.SnmpLib.Security.Auth.protocol_info(:sha256)
%{algorithm: :sha256, digest_size: 32, truncated_size: 16, secure: true, rfc: "RFC 7860"}

iex> SnmpKit.SnmpLib.Security.Auth.protocol_info(:md5)
%{algorithm: :md5, digest_size: 16, truncated_size: 12, secure: false, rfc: "RFC 3414"}

 secure_protocol?(protocol)

 @spec secure_protocol?(auth_protocol()) :: boolean()

Checks if a protocol is considered cryptographically secure.
Examples
iex> SnmpKit.SnmpLib.Security.Auth.secure_protocol?(:sha256)
true

iex> SnmpKit.SnmpLib.Security.Auth.secure_protocol?(:md5)
false

 secure_protocols()

 @spec secure_protocols() :: [auth_protocol()]

Returns list of cryptographically secure protocols (excludes deprecated ones).
Examples
iex> SnmpKit.SnmpLib.Security.Auth.secure_protocols()
[:sha224, :sha256, :sha384, :sha512]

 supported_protocols()

 @spec supported_protocols() :: [auth_protocol()]

Returns list of all supported authentication protocols.
Examples
iex> SnmpKit.SnmpLib.Security.Auth.supported_protocols()
[:none, :md5, :sha1, :sha224, :sha256, :sha384, :sha512]

 validate_key(protocol, key)

 @spec validate_key(auth_protocol(), auth_key()) :: :ok | {:error, atom()}

Validates that an authentication key is appropriate for the specified protocol.
Checks key length requirements and provides warnings for weak protocols.
Examples
:ok = SnmpKit.SnmpLib.Security.Auth.validate_key(:sha256, auth_key)
{:error, :key_too_short} = SnmpKit.SnmpLib.Security.Auth.validate_key(:sha512, short_key)

 verify(protocol, auth_key, message, provided_params)

 @spec verify(auth_protocol(), auth_key(), message_data(), auth_params()) ::
 :ok | {:error, atom()}

Verifies message authentication using provided authentication parameters.
Recomputes the expected authentication parameters and compares them
with the provided parameters using constant-time comparison.
Parameters
	protocol: Authentication protocol used
	auth_key: Localized authentication key
	message: Message data that was authenticated
	provided_params: Authentication parameters from received message

Returns
	:ok: Authentication verification successful
	{:error, reason}: Verification failed

Examples
Verify SHA-256 authentication
:ok = SnmpKit.SnmpLib.Security.Auth.verify(:sha256, auth_key, message, auth_params)

Failed verification
{:error, :authentication_mismatch} = SnmpKit.SnmpLib.Security.Auth.verify(:md5, wrong_key, message, auth_params)

 verify_batch(protocol, auth_key, messages, auth_params_list)

 @spec verify_batch(auth_protocol(), auth_key(), [message_data()], [auth_params()]) ::
 [
 :ok | {:error, atom()}
]

Verifies authentication for multiple messages in batch.
Examples
results = SnmpKit.SnmpLib.Security.Auth.verify_batch(:sha256, auth_key, messages, auth_params_list)
Returns: [:ok, :ok, {:error, :authentication_mismatch}]

SnmpKit.SnmpLib.Security.Keys

Key derivation and management for SNMPv3 User Security Model.
Implements RFC 3414 compliant key derivation functions for converting
user passwords into cryptographic keys suitable for authentication
and privacy operations.
Key Derivation Process
SNMPv3 uses a two-step key derivation process:
	Password Localization: Transform user password into a localized key
using the authoritative engine ID
	Key Expansion: Derive authentication and privacy keys from the
localized key based on protocol requirements

Security Properties
	Keys are derived deterministically from passwords and engine IDs
	Different engine IDs produce different keys for the same password
	Key derivation uses cryptographic hash functions for security
	Derived keys cannot be used to recover original passwords
	Each protocol type (auth/priv) uses different key derivation parameters

Supported Algorithms
Authentication Key Derivation
	MD5: RFC 3414 compliant (deprecated)
	SHA-1: RFC 3414 compliant (deprecated)
	SHA-224: RFC 7860 compliant
	SHA-256: RFC 7860 compliant (recommended)
	SHA-384: RFC 7860 compliant
	SHA-512: RFC 7860 compliant

Privacy Key Derivation
	DES: 8-byte keys from authentication keys
	AES-128: 16-byte keys with salt mixing
	AES-192: 24-byte keys with salt mixing
	AES-256: 32-byte keys with salt mixing

Usage Examples
Authentication Key Derivation
Derive SHA-256 authentication key
engine_id = <<0x80, 0x00, 0x1f, 0x88, 0x80, 0x01, 0x02, 0x03, 0x04>>
password = "authentication_password"

{:ok, auth_key} = SnmpKit.SnmpLib.Security.Keys.derive_auth_key(:sha256, password, engine_id)
Privacy Key Derivation
Derive AES-256 privacy key
{:ok, priv_key} = SnmpKit.SnmpLib.Security.Keys.derive_priv_key(:aes256, password, engine_id)

Or derive from existing authentication key
{:ok, priv_key} = SnmpKit.SnmpLib.Security.Keys.derive_priv_key_from_auth(:aes256, auth_key, engine_id)
Key Validation
Validate key strength
:ok = SnmpKit.SnmpLib.Security.Keys.validate_password_strength(password)
{:error, :too_short} = SnmpKit.SnmpLib.Security.Keys.validate_password_strength("weak")

 Summary

 Types

 auth_protocol()

 derived_key()

 engine_id()

 password()

 priv_protocol()

 salt()

 Functions

 derive_auth_key(protocol, password, engine_id)

 Derives authentication key from password and engine ID.

 derive_auth_keys_multi(protocols, password, engine_id)

 Derives multiple authentication keys for different protocols from the same password.

 derive_priv_key(protocol, password, engine_id)

 Derives privacy key from password and engine ID.

 derive_priv_key_from_auth(protocol, auth_key, engine_id)

 Derives privacy key from an existing authentication key.

 export_key(key, protocol, engine_id)

 Exports derived key in a secure format for storage or transmission.

 generate_secure_password(length \\ 16)

 Generates a cryptographically secure random password.

 secure_compare(key1, key2)

 Securely compares two derived keys to prevent timing attacks.

 secure_wipe(key)

 Securely wipes sensitive key material from memory.

 validate_imported_key(key, metadata)

 Validates imported key against expected parameters.

 validate_password_strength(password)

 Validates password strength according to SNMPv3 security guidelines.

 Types

 auth_protocol()

 @type auth_protocol() :: :md5 | :sha1 | :sha224 | :sha256 | :sha384 | :sha512

 derived_key()

 @type derived_key() :: binary()

 engine_id()

 @type engine_id() :: binary()

 password()

 @type password() :: binary()

 priv_protocol()

 @type priv_protocol() :: :des | :aes128 | :aes192 | :aes256

 salt()

 @type salt() :: binary()

 Functions

 derive_auth_key(protocol, password, engine_id)

 @spec derive_auth_key(auth_protocol(), password(), engine_id()) ::
 {:ok, derived_key()} | {:error, atom()}

Derives authentication key from password and engine ID.
Implements RFC 3414 key localization algorithm for authentication protocols.
The derived key is specific to the combination of password, protocol, and engine ID.
Parameters
	protocol: Authentication protocol (:md5, :sha1, :sha256, etc.)
	password: User password (minimum 8 characters recommended)
	engine_id: Authoritative engine ID (5-32 bytes)

Returns
	{:ok, key}: Successfully derived authentication key
	{:error, reason}: Key derivation failed

Examples
SHA-256 authentication key (recommended)
{:ok, key} = SnmpKit.SnmpLib.Security.Keys.derive_auth_key(
 :sha256, "my_secure_password", engine_id
)

Legacy MD5 key derivation
{:ok, key} = SnmpKit.SnmpLib.Security.Keys.derive_auth_key(
 :md5, "legacy_password", engine_id
)

 derive_auth_keys_multi(protocols, password, engine_id)

 @spec derive_auth_keys_multi([auth_protocol()], password(), engine_id()) ::
 {:ok, %{required(auth_protocol()) => derived_key()}} | {:error, atom()}

Derives multiple authentication keys for different protocols from the same password.
Useful when supporting multiple authentication protocols simultaneously.
Examples
protocols = [:sha256, :sha384, :sha512]
{:ok, keys} = SnmpKit.SnmpLib.Security.Keys.derive_auth_keys_multi(protocols, password, engine_id)
Returns: %{sha256: key1, sha384: key2, sha512: key3}

 derive_priv_key(protocol, password, engine_id)

 @spec derive_priv_key(priv_protocol(), password(), engine_id()) ::
 {:ok, derived_key()} | {:error, atom()}

Derives privacy key from password and engine ID.
Privacy keys are derived using a combination of authentication key derivation
and protocol-specific key expansion techniques.
Parameters
	protocol: Privacy protocol (:des, :aes128, :aes192, :aes256)
	password: User password for privacy
	engine_id: Authoritative engine ID

Returns
	{:ok, key}: Successfully derived privacy key
	{:error, reason}: Key derivation failed

Examples
AES-256 privacy key (recommended)
{:ok, key} = SnmpKit.SnmpLib.Security.Keys.derive_priv_key(
 :aes256, "privacy_password", engine_id
)

DES privacy key (legacy)
{:ok, key} = SnmpKit.SnmpLib.Security.Keys.derive_priv_key(
 :des, "legacy_privacy_password", engine_id
)

 derive_priv_key_from_auth(protocol, auth_key, engine_id)

 @spec derive_priv_key_from_auth(priv_protocol(), derived_key(), engine_id()) ::
 {:ok, derived_key()} | {:error, atom()}

Derives privacy key from an existing authentication key.
More efficient when both authentication and privacy keys are needed,
as it avoids repeating the expensive key localization process.
Examples
First derive authentication key
{:ok, auth_key} = derive_auth_key(:sha256, password, engine_id)

Then derive privacy key from auth key
{:ok, priv_key} = SnmpKit.SnmpLib.Security.Keys.derive_priv_key_from_auth(
 :aes256, auth_key, engine_id
)

 export_key(key, protocol, engine_id)

 @spec export_key(derived_key(), auth_protocol() | priv_protocol(), engine_id()) ::
 map()

Exports derived key in a secure format for storage or transmission.
The exported format includes metadata for proper key reconstruction
while maintaining security properties.

 generate_secure_password(length \\ 16)

 @spec generate_secure_password(pos_integer()) :: password()

Generates a cryptographically secure random password.
Examples
password = SnmpKit.SnmpLib.Security.Keys.generate_secure_password(16)
Returns: "K7mN9pQ2rT8vW3xZ" (example)

 secure_compare(key1, key2)

 @spec secure_compare(derived_key(), derived_key()) :: boolean()

Securely compares two derived keys to prevent timing attacks.
Examples
true = SnmpKit.SnmpLib.Security.Keys.secure_compare(key1, key1)
false = SnmpKit.SnmpLib.Security.Keys.secure_compare(key1, key2)

 secure_wipe(key)

 @spec secure_wipe(derived_key()) :: :ok

Securely wipes sensitive key material from memory.
Note: This provides best-effort memory clearing but cannot guarantee
complete removal due to Erlang VM memory management.

 validate_imported_key(key, metadata)

 @spec validate_imported_key(derived_key(), map()) :: :ok | {:error, atom()}

Validates imported key against expected parameters.

 validate_password_strength(password)

 @spec validate_password_strength(password()) ::
 :ok | {:error, atom()} | {:warning, atom()}

Validates password strength according to SNMPv3 security guidelines.
Requirements
	Minimum 8 characters (RFC recommendation)
	Should contain mix of character types for security
	Should not be based on dictionary words

Examples
:ok = SnmpKit.SnmpLib.Security.Keys.validate_password_strength("strong_password_123")
{:error, :too_short} = SnmpKit.SnmpLib.Security.Keys.validate_password_strength("weak")
{:warning, :weak_complexity} = SnmpKit.SnmpLib.Security.Keys.validate_password_strength("password")

SnmpKit.SnmpLib.Security.Priv

Privacy (encryption) protocols for SNMPv3 User Security Model.
Implements encryption protocols as specified in RFC 3414 and RFC 3826,
providing message confidentiality for SNMPv3 communications.
Supported Protocols
	DES-CBC (RFC 3414) - 56-bit key, legacy support
	AES-128 (RFC 3826) - 128-bit key, good security
	AES-192 (RFC 3826) - 192-bit key, enhanced security
	AES-256 (RFC 3826) - 256-bit key, maximum security

Security Considerations
	DES is deprecated and should only be used for legacy compatibility
	AES-128 provides adequate security for most applications
	AES-256 is recommended for high-security environments
	All encryption uses CBC mode with random initialization vectors
	Privacy requires authentication (cannot use privacy without authentication)

Protocol Selection Guidelines
	AES-256: Recommended for high-security environments
	AES-128: Good balance of security and performance for most deployments
	DES: Legacy compatibility only, not recommended for new deployments

Technical Details
Key Derivation
Privacy keys are derived from privacy passwords using the same engine ID
and algorithm as authentication keys, but with different key usage.
Initialization Vectors
Each encryption operation uses a unique initialization vector (IV) to ensure
that identical plaintexts produce different ciphertexts.
Padding
Block ciphers use PKCS#7 padding to handle messages that don't align
with block boundaries.
Usage Examples
Message Encryption
Encrypt message with AES-256
priv_key = derived_privacy_key
auth_key = derived_authentication_key # Required for IV generation
plaintext = "confidential SNMP data"

{:ok, {ciphertext, priv_params}} = SnmpKit.SnmpLib.Security.Priv.encrypt(
 :aes256, priv_key, auth_key, plaintext
)

Decrypt message
{:ok, decrypted} = SnmpKit.SnmpLib.Security.Priv.decrypt(
 :aes256, priv_key, auth_key, ciphertext, priv_params
)
Protocol Information
Get encryption protocol details
info = SnmpKit.SnmpLib.Security.Priv.protocol_info(:aes256)
Returns: %{algorithm: :aes_256_cbc, key_size: 32, block_size: 16, ...}

 Summary

 Types

 auth_key()

 ciphertext()

 initialization_vector()

 plaintext()

 priv_key()

 priv_params()

 priv_protocol()

 Functions

 benchmark_protocol(protocol, priv_key, auth_key, test_plaintext, iterations \\ 1000)

 Measures encryption/decryption performance for a given protocol.

 decrypt(protocol, priv_key, auth_key, ciphertext, priv_params)

 Decrypts ciphertext using the specified privacy protocol.

 decrypt_batch(protocol, priv_key, auth_key, encrypted_list)

 Decrypts multiple ciphertexts in batch.

 encrypt(protocol, priv_key, auth_key, plaintext)

 Encrypts plaintext using the specified privacy protocol.

 encrypt_batch(protocol, priv_key, auth_key, plaintexts)

 Encrypts multiple plaintexts using the same protocol and key.

 protocol_info(protocol)

 Returns information about a specific privacy protocol.

 secure_protocol?(protocol)

 Checks if a protocol is considered cryptographically secure.

 secure_protocols()

 Returns list of cryptographically secure protocols (excludes deprecated ones).

 supported_protocols()

 Returns list of all supported privacy protocols.

 validate_key(protocol, key)

 Validates that a privacy key is appropriate for the specified protocol.

 Types

 auth_key()

 @type auth_key() :: binary()

 ciphertext()

 @type ciphertext() :: binary()

 initialization_vector()

 @type initialization_vector() :: binary()

 plaintext()

 @type plaintext() :: binary()

 priv_key()

 @type priv_key() :: binary()

 priv_params()

 @type priv_params() :: binary()

 priv_protocol()

 @type priv_protocol() :: :none | :des | :aes128 | :aes192 | :aes256

 Functions

 benchmark_protocol(protocol, priv_key, auth_key, test_plaintext, iterations \\ 1000)

 @spec benchmark_protocol(
 priv_protocol(),
 priv_key(),
 auth_key(),
 plaintext(),
 pos_integer()
) :: map()

Measures encryption/decryption performance for a given protocol.

 decrypt(protocol, priv_key, auth_key, ciphertext, priv_params)

 @spec decrypt(priv_protocol(), priv_key(), auth_key(), ciphertext(), priv_params()) ::
 {:ok, plaintext()} | {:error, atom()}

Decrypts ciphertext using the specified privacy protocol.
Parameters
	protocol: Privacy protocol used for encryption
	priv_key: Privacy key (same as used for encryption)
	auth_key: Authentication key (used for IV validation)
	ciphertext: Encrypted data
	priv_params: Privacy parameters from encryption (contains IV)

Returns
	{:ok, plaintext}: Decryption successful
	{:error, reason}: Decryption failed

Examples
AES-256 decryption
{:ok, plaintext} = SnmpKit.SnmpLib.Security.Priv.decrypt(
 :aes256, priv_key, auth_key, ciphertext, priv_params
)

Handle decryption errors
case SnmpKit.SnmpLib.Security.Priv.decrypt(:des, priv_key, auth_key, ciphertext, priv_params) do
 {:ok, plaintext} -> process_plaintext(plaintext)
 {:error, :decryption_failed} -> handle_corruption()
 {:error, :invalid_padding} -> handle_padding_error()
end

 decrypt_batch(protocol, priv_key, auth_key, encrypted_list)

 @spec decrypt_batch(priv_protocol(), priv_key(), auth_key(), [
 {ciphertext(), priv_params()}
]) :: [
 :ok | {:error, atom()}
]

Decrypts multiple ciphertexts in batch.

 encrypt(protocol, priv_key, auth_key, plaintext)

 @spec encrypt(priv_protocol(), priv_key(), auth_key(), plaintext()) ::
 {:ok, {ciphertext(), priv_params()}} | {:error, atom()}

Encrypts plaintext using the specified privacy protocol.
Parameters
	protocol: Privacy protocol to use (:des, :aes128, :aes192, :aes256)
	priv_key: Privacy key (must be correct length for protocol)
	auth_key: Authentication key (used for IV generation in some protocols)
	plaintext: Data to encrypt

Returns
	{:ok, {ciphertext, priv_params}}: Encryption successful
	{:error, reason}: Encryption failed

Examples
AES-256 encryption (recommended)
{:ok, {ciphertext, priv_params}} = SnmpKit.SnmpLib.Security.Priv.encrypt(
 :aes256, priv_key, auth_key, "secret data"
)

DES encryption (legacy)
{:ok, {ciphertext, priv_params}} = SnmpKit.SnmpLib.Security.Priv.encrypt(
 :des, priv_key, auth_key, "legacy data"
)

 encrypt_batch(protocol, priv_key, auth_key, plaintexts)

 @spec encrypt_batch(priv_protocol(), priv_key(), auth_key(), [plaintext()]) ::
 {:ok, [{ciphertext(), priv_params()}]} | {:error, atom()}

Encrypts multiple plaintexts using the same protocol and key.
Each plaintext gets a unique IV, ensuring security even for identical plaintexts.
Examples
plaintexts = ["data1", "data2", "data3"]
{:ok, encrypted_list} = SnmpKit.SnmpLib.Security.Priv.encrypt_batch(:aes256, priv_key, auth_key, plaintexts)
Returns list of {ciphertext, priv_params} tuples

 protocol_info(protocol)

 @spec protocol_info(priv_protocol()) :: map() | nil

Returns information about a specific privacy protocol.
Examples
iex> SnmpKit.SnmpLib.Security.Priv.protocol_info(:aes256)
%{algorithm: :aes_256_cbc, key_size: 32, block_size: 16, iv_size: 16, secure: true, rfc: "RFC 3826"}

iex> SnmpKit.SnmpLib.Security.Priv.protocol_info(:des)
%{algorithm: :des_cbc, key_size: 8, block_size: 8, iv_size: 8, secure: false, rfc: "RFC 3414"}

 secure_protocol?(protocol)

 @spec secure_protocol?(priv_protocol()) :: boolean()

Checks if a protocol is considered cryptographically secure.

 secure_protocols()

 @spec secure_protocols() :: [priv_protocol()]

Returns list of cryptographically secure protocols (excludes deprecated ones).

 supported_protocols()

 @spec supported_protocols() :: [priv_protocol()]

Returns list of all supported privacy protocols.

 validate_key(protocol, key)

 @spec validate_key(priv_protocol(), priv_key()) :: :ok | {:error, atom()}

Validates that a privacy key is appropriate for the specified protocol.
Examples
:ok = SnmpKit.SnmpLib.Security.Priv.validate_key(:aes256, key_32_bytes)
{:error, :key_wrong_size} = SnmpKit.SnmpLib.Security.Priv.validate_key(:aes128, key_32_bytes)

SnmpKit.SnmpLib.Security.USM

User Security Model (USM) implementation for SNMPv3 - RFC 3414 compliant.
The User Security Model provides the foundation for SNMPv3 security by implementing:
	User-based authentication with multiple protocols
	Privacy (encryption) for message confidentiality
	Time synchronization to prevent replay attacks
	Engine discovery for secure agent communication
	Security parameter validation and error handling

RFC 3414 Compliance
This implementation fully complies with RFC 3414 "User-based Security Model (USM)
for version 3 of the Simple Network Management Protocol (SNMPv3)" including:
	Message authentication using HMAC-MD5 and HMAC-SHA
	Privacy using DES and AES encryption
	Key derivation using password localization
	Time window validation for message freshness
	Engine ID discovery and management

Architecture
The USM coordinates with other security modules:
SnmpKit.SnmpLib.Security.USM
├── Auth protocols (MD5, SHA variants)
├── Priv protocols (DES, AES variants)
├── Key derivation and management
└── Engine and time management
Usage Examples
Engine Discovery
Discover remote engine for secure communication
{:ok, engine_id} = SnmpKit.SnmpLib.Security.USM.discover_engine("192.168.1.1")

Time synchronization
{:ok, {boots, time}} = SnmpKit.SnmpLib.Security.USM.synchronize_time("192.168.1.1", engine_id)
Message Processing
Process outgoing secure message
{:ok, secure_message} = SnmpKit.SnmpLib.Security.USM.process_outgoing_message(
 user, message, security_level
)

Process incoming secure message
{:ok, {plain_message, user}} = SnmpKit.SnmpLib.Security.USM.process_incoming_message(
 secure_message, user_database
)
Security Considerations
	Engine boot counters must be persistent across restarts
	Time synchronization is critical for security
	Failed authentication attempts should be logged
	Key material should never be logged or persisted in plain text

 Summary

 Types

 engine_boots()

 engine_id()

 engine_time()

 message_flags()

 security_level()

 security_name()

 security_parameters()

 user_entry()

 Functions

 discover_engine(host, opts \\ [])

 Discovers the engine ID of a remote SNMP agent.

 generate_error_report(error_type, context)

 Generates security error reports for invalid messages.

 get_engine_time(boot_timestamp)

 Calculates current engine time since boot.

 increment_engine_boots(current_boots)

 Updates engine boot counter, handling rollover at maximum value.

 process_incoming_message(secure_message, user_database)

 Processes an incoming SNMP message with USM security.

 process_outgoing_message(user, message, security_level)

 Processes an outgoing SNMP message with USM security.

 synchronize_time(host, engine_id, opts \\ [])

 Synchronizes time with a remote SNMP agent.

 validate_time_window(local_boots, local_time, remote_boots, remote_time)

 Validates time-based security parameters to prevent replay attacks.

 Types

 engine_boots()

 @type engine_boots() :: non_neg_integer()

 engine_id()

 @type engine_id() :: binary()

 engine_time()

 @type engine_time() :: non_neg_integer()

 message_flags()

 @type message_flags() :: %{
 auth_flag: boolean(),
 priv_flag: boolean(),
 reportable_flag: boolean()
}

 security_level()

 @type security_level() :: :no_auth_no_priv | :auth_no_priv | :auth_priv

 security_name()

 @type security_name() :: binary()

 security_parameters()

 @type security_parameters() :: %{
 authoritative_engine_id: engine_id(),
 authoritative_engine_boots: engine_boots(),
 authoritative_engine_time: engine_time(),
 user_name: security_name(),
 authentication_parameters: binary(),
 privacy_parameters: binary()
}

 user_entry()

 @type user_entry() :: %{
 security_name: security_name(),
 auth_protocol: atom(),
 priv_protocol: atom(),
 auth_key: binary(),
 priv_key: binary(),
 engine_id: engine_id()
}

 Functions

 discover_engine(host, opts \\ [])

 @spec discover_engine(
 binary(),
 keyword()
) :: {:ok, engine_id()} | {:error, atom()}

Discovers the engine ID of a remote SNMP agent.
Engine discovery is the first step in establishing secure communication
with a remote SNMPv3 agent. This function sends a discovery request and
retrieves the agent's authoritative engine ID.
Parameters
	host: Target agent IP address or hostname
	opts: Discovery options including port, timeout, and community

Returns
	{:ok, engine_id}: Successfully discovered engine ID
	{:error, reason}: Discovery failed

Examples
{:ok, engine_id} = SnmpKit.SnmpLib.Security.USM.discover_engine("192.168.1.1")
{:ok, engine_id} = SnmpKit.SnmpLib.Security.USM.discover_engine("10.0.0.1", port: 1161, timeout: 5000)

 generate_error_report(error_type, context)

 @spec generate_error_report(atom(), map()) :: {:ok, binary()} | {:error, atom()}

Generates security error reports for invalid messages.
USM error reports are sent back to the originator to indicate
security violations or configuration issues.

 get_engine_time(boot_timestamp)

 @spec get_engine_time(non_neg_integer()) :: engine_time()

Calculates current engine time since boot.

 increment_engine_boots(current_boots)

 @spec increment_engine_boots(engine_boots()) :: engine_boots()

Updates engine boot counter, handling rollover at maximum value.

 process_incoming_message(secure_message, user_database)

 @spec process_incoming_message(binary(), map()) ::
 {:ok, {binary(), user_entry()}} | {:error, atom()}

Processes an incoming SNMP message with USM security.
This function validates and decrypts an incoming secure message, returning
the plain message content and validated user information.

 process_outgoing_message(user, message, security_level)

 @spec process_outgoing_message(user_entry(), binary(), security_level()) ::
 {:ok, binary()} | {:error, atom()}

Processes an outgoing SNMP message with USM security.
This function applies authentication and/or privacy protection to an outgoing
message based on the user's security level configuration.

 synchronize_time(host, engine_id, opts \\ [])

 @spec synchronize_time(binary(), engine_id(), keyword()) ::
 {:ok, {engine_boots(), engine_time()}} | {:error, atom()}

Synchronizes time with a remote SNMP agent.
Time synchronization is required for authenticated communication to prevent
replay attacks. This function retrieves the agent's current boot counter
and engine time.

 validate_time_window(local_boots, local_time, remote_boots, remote_time)

 @spec validate_time_window(
 engine_boots(),
 engine_time(),
 engine_boots(),
 engine_time()
) ::
 :ok | {:error, atom()}

Validates time-based security parameters to prevent replay attacks.
Per RFC 3414, messages are considered fresh if:
	Engine boots match (within 1)
	Engine time is within 150 seconds

SnmpKit.SnmpLib.Transport

UDP transport layer for SNMP communications.
Provides socket management, connection utilities, and network operations
for both SNMP managers and agents/simulators.
Features
	UDP socket creation and management
	Address resolution and validation
	Connection pooling and reuse
	Timeout handling
	Error recovery
	Performance optimizations

Examples
Create and use a socket
{:ok, socket} = SnmpKit.SnmpLib.Transport.create_socket("0.0.0.0", 161)
{:ok, data} = SnmpKit.SnmpLib.Transport.receive_packet(socket, 5000)
:ok = SnmpKit.SnmpLib.Transport.send_packet(socket, "192.168.1.100", 161, packet_data)
:ok = SnmpKit.SnmpLib.Transport.close_socket(socket)

Address utilities
{:ok, {192, 168, 1, 100}} = SnmpKit.SnmpLib.Transport.resolve_address("192.168.1.100")
true = SnmpKit.SnmpLib.Transport.validate_port(161)

 Summary

 Types

 address()

 packet_data()

 port_number()

 socket()

 socket_options()

 Functions

 close_socket(socket)

 Closes a UDP socket.

 create_client_socket(options \\ [])

 Creates a client socket for outgoing SNMP requests.

 create_server_socket(port, bind_address \\ "0.0.0.0")

 Creates a server socket for incoming SNMP requests.

 create_socket(bind_address, port, options \\ [])

 Creates a UDP socket bound to the specified address and port.

 format_endpoint(address, port)

 Formats an endpoint (address and port) as a string.

 get_socket_address(socket)

 Gets the local address and port of a socket.

 get_socket_stats(socket)

 Gets socket statistics and information.

 is_snmp_port?(port)

 Checks if a port number is a standard SNMP port.

 max_snmp_payload_size()

 Calculates network MTU considerations for SNMP packets.

 receive_packet(socket, timeout \\ 5000)

 receive_packet_filtered(socket, filter_fn, timeout, per_recv_timeout \\ 1000)

 Receives a packet with a custom filter function.

 resolve_address(address)

 Resolves an address to an IP tuple.

 send_and_receive_packet(dest_address, dest_port, data, timeout \\ 5000)

 Receives a packet from the socket with optional timeout.

 send_packet(socket, dest_address, dest_port, data)

 Sends a packet to the specified destination.

 send_request(dest_address, dest_port, request_data, timeout \\ 5000)

 Sends a request packet and waits for a response.

 snmp_agent_port()

 Returns standard SNMP port numbers.

 snmp_trap_port()

 test_connectivity(dest_address, dest_port, timeout \\ 3000)

 Tests connectivity to a destination by sending a test packet.

 valid_packet_size?(size)

 Validates if a packet size is suitable for SNMP transmission.

 validate_port(port)

 Validates a port number.

 Types

 address()

 @type address() :: :inet.socket_address() | :inet.hostname() | binary()

 packet_data()

 @type packet_data() :: binary()

 port_number()

 @type port_number() :: :inet.port_number()

 socket()

 @type socket() :: :gen_udp.socket()

 socket_options()

 @type socket_options() :: [:gen_udp.option()]

 Functions

 close_socket(socket)

 @spec close_socket(socket()) :: :ok

Closes a UDP socket.
Examples
:ok = SnmpKit.SnmpLib.Transport.close_socket(socket)

 create_client_socket(options \\ [])

 @spec create_client_socket(socket_options()) :: {:ok, socket()} | {:error, atom()}

Creates a client socket for outgoing SNMP requests.
Uses an ephemeral port and optimizes settings for client use.
Examples
{:ok, socket} = SnmpKit.SnmpLib.Transport.create_client_socket()
{:ok, socket} = SnmpKit.SnmpLib.Transport.create_client_socket([{:recbuf, 65536}])

 create_server_socket(port, bind_address \\ "0.0.0.0")

 @spec create_server_socket(port_number(), binary()) ::
 {:ok, socket()} | {:error, atom()}

Creates a server socket for incoming SNMP requests.
Optimizes settings for server use with proper buffer sizes.
Examples
{:ok, socket} = SnmpKit.SnmpLib.Transport.create_server_socket(161)
{:ok, socket} = SnmpKit.SnmpLib.Transport.create_server_socket(161, "192.168.1.10")

 create_socket(bind_address, port, options \\ [])

 @spec create_socket(
 binary() | :inet.socket_address(),
 port_number(),
 socket_options()
) ::
 {:ok, socket()} | {:error, atom()}

Creates a UDP socket bound to the specified address and port.
Parameters
	bind_address: Address to bind to (use "0.0.0.0" for all interfaces)
	port: Port number to bind to
	options: Additional socket options (optional)

Returns
	{:ok, socket} on success
	{:error, reason} on failure

Examples
{:ok, socket} = SnmpKit.SnmpLib.Transport.create_socket("0.0.0.0", 161)
{:ok, client_socket} = SnmpKit.SnmpLib.Transport.create_socket("0.0.0.0", 0, [{:active, true}])

 format_endpoint(address, port)

 @spec format_endpoint(address(), port_number()) :: binary()

Formats an endpoint (address and port) as a string.
Examples
"192.168.1.100:161" = SnmpKit.SnmpLib.Transport.format_endpoint({192, 168, 1, 100}, 161)
"localhost:162" = SnmpKit.SnmpLib.Transport.format_endpoint("localhost", 162)

 get_socket_address(socket)

 @spec get_socket_address(socket()) ::
 {:ok, {:inet.socket_address(), port_number()}} | {:error, atom()}

Gets the local address and port of a socket.
Examples
{:ok, {{127, 0, 0, 1}, 12345}} = SnmpKit.SnmpLib.Transport.get_socket_address(socket)

 get_socket_stats(socket)

 @spec get_socket_stats(socket()) :: {:ok, map()} | {:error, atom()}

Gets socket statistics and information.
Examples
{:ok, stats} = SnmpKit.SnmpLib.Transport.get_socket_stats(socket)
stats contains buffer sizes, packet counts, etc.

 is_snmp_port?(port)

 @spec is_snmp_port?(port_number()) :: boolean()

Checks if a port number is a standard SNMP port.
Examples
true = SnmpKit.SnmpLib.Transport.is_snmp_port?(161)
true = SnmpKit.SnmpLib.Transport.is_snmp_port?(162)
false = SnmpKit.SnmpLib.Transport.is_snmp_port?(80)

 max_snmp_payload_size()

 @spec max_snmp_payload_size() :: non_neg_integer()

Calculates network MTU considerations for SNMP packets.
Returns recommended maximum payload size to avoid fragmentation.
Examples
1472 = SnmpKit.SnmpLib.Transport.max_snmp_payload_size() # Ethernet MTU - headers

 receive_packet(socket, timeout \\ 5000)

 @spec receive_packet(socket(), non_neg_integer()) ::
 {:ok, {packet_data(), :inet.socket_address(), port_number()}}
 | {:error, atom()}

 receive_packet_filtered(socket, filter_fn, timeout, per_recv_timeout \\ 1000)

 @spec receive_packet_filtered(
 socket(),
 function(),
 non_neg_integer(),
 non_neg_integer()
) ::
 {:ok, {packet_data(), :inet.socket_address(), port_number()}}
 | {:error, atom()}

Receives a packet with a custom filter function.
Continues receiving until a packet matches the filter or timeout occurs.
Parameters
	socket: UDP socket to receive from
	filter_fn: Function that returns true for desired packets
	timeout: Total timeout in milliseconds
	per_recv_timeout: Timeout per receive attempt (default: 1000ms)

Examples
Wait for packet from specific address
filter_fn = fn {_data, from_addr, _from_port} -> from_addr == {192, 168, 1, 100} end
{:ok, {data, addr, port}} = SnmpKit.SnmpLib.Transport.receive_packet_filtered(socket, filter_fn, 5000)

 resolve_address(address)

 @spec resolve_address(address()) :: {:ok, :inet.socket_address()} | {:error, atom()}

Resolves an address to an IP tuple.
Accepts:
	IP address strings (e.g., "192.168.1.1")
	Hostnames (e.g., "localhost")
	IP tuples (e.g., {192, 168, 1, 1})

Examples
iex> SnmpKit.SnmpLib.Transport.resolve_address("192.168.1.1")
{:ok, {192, 168, 1, 1}}

iex> SnmpKit.SnmpLib.Transport.resolve_address({192, 168, 1, 1})
{:ok, {192, 168, 1, 1}}

 send_and_receive_packet(dest_address, dest_port, data, timeout \\ 5000)

 @spec send_and_receive_packet(
 :inet.socket_address(),
 port_number(),
 packet_data(),
 non_neg_integer()
) ::
 {:ok, {packet_data(), :inet.socket_address(), port_number()}}
 | {:error, atom()}

Receives a packet from the socket with optional timeout.
Parameters
	socket: UDP socket to receive from
	timeout: Timeout in milliseconds (default: 5000)

Returns
	{:ok, {data, from_address, from_port}} on success
	{:error, reason} on failure or timeout

Examples
{:ok, {data, from_ip, from_port}} = SnmpKit.SnmpLib.Transport.receive_packet(socket)
{:ok, {data, from_ip, from_port}} = SnmpKit.SnmpLib.Transport.receive_packet(socket, 10000)

 send_packet(socket, dest_address, dest_port, data)

 @spec send_packet(socket(), address(), port_number(), packet_data()) ::
 :ok | {:error, atom()}

Sends a packet to the specified destination.
Parameters
	socket: UDP socket to send from
	dest_address: Destination IP address or hostname
	dest_port: Destination port number
	data: Binary data to send

Returns
	:ok on success
	{:error, reason} on failure

Examples
:ok = SnmpKit.SnmpLib.Transport.send_packet(socket, "192.168.1.100", 161, packet_data)
:ok = SnmpKit.SnmpLib.Transport.send_packet(socket, {192, 168, 1, 100}, 161, packet_data)

 send_request(dest_address, dest_port, request_data, timeout \\ 5000)

 @spec send_request(address(), port_number(), packet_data(), non_neg_integer()) ::
 {:ok, packet_data()} | {:error, atom()}

Sends a request packet and waits for a response.
This creates a temporary socket, sends a packet, waits for the response,
and returns the response data. Useful for SNMPv3 discovery and security operations.
Parameters
	dest_address: Destination IP address or hostname
	dest_port: Destination port number
	request_data: Binary request data to send
	timeout: Timeout in milliseconds (default: 5000)

Returns
	{:ok, response_data} if request succeeds and response received
	{:error, reason} if request fails or times out

Examples
{:ok, response} = SnmpKit.SnmpLib.Transport.send_request("192.168.1.100", 161, request_packet, 5000)
{:error, :timeout} = SnmpKit.SnmpLib.Transport.send_request("10.0.0.1", 161, request_packet, 1000)

 snmp_agent_port()

 @spec snmp_agent_port() :: port_number()

Returns standard SNMP port numbers.

 snmp_trap_port()

 @spec snmp_trap_port() :: port_number()

 test_connectivity(dest_address, dest_port, timeout \\ 3000)

 @spec test_connectivity(address(), port_number(), non_neg_integer()) ::
 :ok | {:error, atom()}

Tests connectivity to a destination by sending a test packet.
This creates a temporary socket, sends a small packet, and waits for any response
to verify network connectivity.
Parameters
	dest_address: Destination IP address or hostname
	dest_port: Destination port number
	timeout: Timeout in milliseconds (default: 3000)

Returns
	:ok if connectivity is confirmed
	{:error, reason} if connectivity fails

Examples
:ok = SnmpKit.SnmpLib.Transport.test_connectivity("192.168.1.100", 161)
{:error, :timeout} = SnmpKit.SnmpLib.Transport.test_connectivity("10.0.0.1", 161, 1000)

 valid_packet_size?(size)

 @spec valid_packet_size?(non_neg_integer()) :: boolean()

Validates if a packet size is suitable for SNMP transmission.
Examples
true = SnmpKit.SnmpLib.Transport.valid_packet_size?(500)
false = SnmpKit.SnmpLib.Transport.valid_packet_size?(2000)

 validate_port(port)

 @spec validate_port(term()) :: boolean()

Validates a port number.
Examples
true = SnmpKit.SnmpLib.Transport.validate_port(161)
true = SnmpKit.SnmpLib.Transport.validate_port(65535)
true = SnmpKit.SnmpLib.Transport.validate_port(0)
false = SnmpKit.SnmpLib.Transport.validate_port(65536)

SnmpKit.SnmpLib.Utils

Common utilities for SNMP operations including pretty printing, data formatting,
timing utilities, and validation functions.
This module provides helpful utilities for debugging, logging, monitoring, and
general SNMP data manipulation that are commonly needed across SNMP applications.
Pretty Printing
Format SNMP data structures for human-readable display in logs, CLI tools,
and debugging output.
Data Formatting
Convert between different representations of SNMP data, format numeric values,
and handle common data transformations.
Timing Utilities
Measure and format timing information for SNMP operations, useful for
performance monitoring and debugging.
Validation
Common validation functions for SNMP-related data.
Usage Examples
Pretty Printing
Format PDU for logging
pdu = %{type: :get_request, request_id: 123, varbinds: [...]}
Logger.info(SnmpKit.SnmpLib.Utils.pretty_print_pdu(pdu))

Format individual values
value = {:counter32, 12345}
IO.puts(SnmpKit.SnmpLib.Utils.pretty_print_value(value))
Data Formatting
Format large numbers with separators
SnmpKit.SnmpLib.Utils.format_bytes(1048576)
=> "1.0 MB"

Format hex strings for MAC addresses
SnmpKit.SnmpLib.Utils.format_hex(<<0x00, 0x1B, 0x21, 0x3C, 0x92, 0xEB>>)
=> "00:1B:21:3C:92:EB"
Timing
Time an operation
{result, time_us} = SnmpKit.SnmpLib.Utils.measure_request_time(fn ->
 SnmpKit.SnmpLib.PDU.encode_message(pdu)
end)

formatted_time = SnmpKit.SnmpLib.Utils.format_response_time(time_us)

 Summary

 Types

 oid()

 pdu()

 snmp_value()

 varbind()

 varbinds()

 Functions

 format_bytes(bytes)

 Formats byte counts in human-readable units.

 format_hex(data, separator \\ ":")

 Formats binary data as hexadecimal string.

 format_number(number)

 Formats large numbers with thousand separators.

 format_rate(value, unit)

 Formats rates with units.

 format_response_time(microseconds)

 Formats response time in human-readable units.

 measure_request_time(fun)

 Measures the execution time of a function in microseconds.

 parse_target(target)

 Parses SNMP target specifications into standardized format.

 pretty_print_oid(oid)

 Pretty prints an OID for display.

 pretty_print_pdu(pdu)

 Pretty prints an SNMP PDU for human-readable display.

 pretty_print_value(value)

 Pretty prints an SNMP value for display.

 pretty_print_varbinds(varbinds)

 Pretty prints a list of varbinds for display.

 sanitize_community(community)

 Sanitizes a community string for safe logging.

 truncate_string(string, max_length)

 Truncates a string to maximum length with ellipsis.

 valid_community_string?(community)

 Validates an SNMP community string.

 valid_snmp_version?(version)

 Validates an SNMP version number.

 Types

 oid()

 @type oid() :: [non_neg_integer()]

 pdu()

 @type pdu() :: map()

 snmp_value()

 @type snmp_value() :: any()

 varbind()

 @type varbind() :: {oid(), snmp_value()}

 varbinds()

 @type varbinds() :: [varbind()]

 Functions

 format_bytes(bytes)

 @spec format_bytes(non_neg_integer()) :: String.t()

Formats byte counts in human-readable units.
Examples
iex> SnmpKit.SnmpLib.Utils.format_bytes(1024)
"1.0 KB"

iex> SnmpKit.SnmpLib.Utils.format_bytes(1048576)
"1.0 MB"

iex> SnmpKit.SnmpLib.Utils.format_bytes(512)
"512 B"

 format_hex(data, separator \\ ":")

 @spec format_hex(binary(), String.t()) :: String.t()

Formats binary data as hexadecimal string.
Parameters
	data: Binary data to format
	separator: String to use between hex bytes (default: ":")

Examples
iex> SnmpKit.SnmpLib.Utils.format_hex(<<0x00, 0x1B, 0x21>>)
"00:1B:21"

iex> SnmpKit.SnmpLib.Utils.format_hex(<<0xDE, 0xAD, 0xBE, 0xEF>>, " ")
"DE AD BE EF"

 format_number(number)

 @spec format_number(integer()) :: String.t()

Formats large numbers with thousand separators.
Examples
iex> SnmpKit.SnmpLib.Utils.format_number(1234567)
"1,234,567"

iex> SnmpKit.SnmpLib.Utils.format_number(42)
"42"

 format_rate(value, unit)

 @spec format_rate(number(), String.t()) :: String.t()

Formats rates with units.
Examples
iex> SnmpKit.SnmpLib.Utils.format_rate(1500, "bps")
"1.5 Kbps"

iex> SnmpKit.SnmpLib.Utils.format_rate(45, "pps")
"45 pps"

 format_response_time(microseconds)

 @spec format_response_time(non_neg_integer()) :: String.t()

Formats response time in human-readable units.
Parameters
	microseconds: Time in microseconds

Examples
iex> SnmpKit.SnmpLib.Utils.format_response_time(1500)
"1.50ms"

iex> SnmpKit.SnmpLib.Utils.format_response_time(2_500_000)
"2.50s"

iex> SnmpKit.SnmpLib.Utils.format_response_time(500)
"500μs"

 measure_request_time(fun)

 @spec measure_request_time(function()) :: {any(), non_neg_integer()}

Measures the execution time of a function in microseconds.
Parameters
	fun: Function to execute and time

Returns
Tuple of {result, time_microseconds} where result is the function's
return value and time_microseconds is the execution time.
Examples
iex> {result, time} = SnmpKit.SnmpLib.Utils.measure_request_time(fn -> :timer.sleep(100); :ok end)
iex> result
:ok
iex> time > 100_000
true

 parse_target(target)

 @spec parse_target(String.t() | tuple() | map()) ::
 {:ok, %{host: :inet.ip_address() | String.t(), port: pos_integer()}}
 | {:error, any()}

Parses SNMP target specifications into standardized format.
Accepts various input formats and returns a consistent target map with host and port.
IP addresses are resolved to tuples when possible, hostnames remain as strings.
Default port is 161 when not specified.
Parameters
	target: Target specification in various formats

Accepted Input Formats
	"192.168.1.1:161" - IP with port
	"192.168.1.1" - IP without port (uses default 161)
	"device.local:162" - hostname with port
	"device.local" - hostname without port (uses default 161)
	{192, 168, 1, 1} - IP tuple (uses default port 161)
	%{host: "192.168.1.1", port: 161} - already parsed map

Returns
	{:ok, %{host: host, port: port}} - Successfully parsed target
	{:error, reason} - Parse error with reason

Examples
iex> SnmpKit.SnmpLib.Utils.parse_target("192.168.1.1:161")
{:ok, %{host: {192, 168, 1, 1}, port: 161}}

iex> SnmpKit.SnmpLib.Utils.parse_target("192.168.1.1")
{:ok, %{host: {192, 168, 1, 1}, port: 161}}

iex> SnmpKit.SnmpLib.Utils.parse_target("device.local:162")
{:ok, %{host: "device.local", port: 162}}

iex> SnmpKit.SnmpLib.Utils.parse_target("device.local")
{:ok, %{host: "device.local", port: 161}}

iex> SnmpKit.SnmpLib.Utils.parse_target({192, 168, 1, 1})
{:ok, %{host: {192, 168, 1, 1}, port: 161}}

iex> SnmpKit.SnmpLib.Utils.parse_target(%{host: "192.168.1.1", port: 161})
{:ok, %{host: {192, 168, 1, 1}, port: 161}}

iex> SnmpKit.SnmpLib.Utils.parse_target("invalid:99999")
{:error, {:invalid_port, "99999"}}

 pretty_print_oid(oid)

 @spec pretty_print_oid(oid() | String.t()) :: String.t()

Pretty prints an OID for display.
Examples
iex> SnmpKit.SnmpLib.Utils.pretty_print_oid([1,3,6,1,2,1,1,1,0])
"1.3.6.1.2.1.1.1.0"

iex> SnmpKit.SnmpLib.Utils.pretty_print_oid("1.3.6.1.2.1.1.1.0")
"1.3.6.1.2.1.1.1.0"

 pretty_print_pdu(pdu)

 @spec pretty_print_pdu(pdu()) :: String.t()

Pretty prints an SNMP PDU for human-readable display.
Formats the PDU structure with proper indentation and readable field names,
suitable for logging, debugging, or CLI display.
Parameters
	pdu: SNMP PDU map containing type, request_id, error_status, etc.

Returns
Formatted string representation of the PDU.
Examples
iex> pdu = %{type: :get_request, request_id: 123, varbinds: [{[1,3,6,1,2,1,1,1,0], :null}]}
iex> result = SnmpKit.SnmpLib.Utils.pretty_print_pdu(pdu)
iex> String.contains?(result, "GET Request")
true

 pretty_print_value(value)

 @spec pretty_print_value(snmp_value()) :: String.t()

Pretty prints an SNMP value for display.
Formats SNMP values with appropriate type information and human-readable
representations.
Examples
iex> SnmpKit.SnmpLib.Utils.pretty_print_value({:counter32, 12345})
"Counter32: 12,345"

iex> SnmpKit.SnmpLib.Utils.pretty_print_value({:octet_string, "Hello"})
"OCTET STRING: \"Hello\""

iex> SnmpKit.SnmpLib.Utils.pretty_print_value(:null)
"NULL"

 pretty_print_varbinds(varbinds)

 @spec pretty_print_varbinds(varbinds()) :: String.t()

Pretty prints a list of varbinds for display.
Examples
iex> varbinds = [{[1,3,6,1,2,1,1,1,0], "Linux server"}]
iex> result = SnmpKit.SnmpLib.Utils.pretty_print_varbinds(varbinds)
iex> String.contains?(result, "1.3.6.1.2.1.1.1.0")
true

 sanitize_community(community)

 @spec sanitize_community(String.t()) :: String.t()

Sanitizes a community string for safe logging.
Replaces community strings with asterisks to prevent credential leakage
in logs while preserving length information.
Examples
iex> SnmpKit.SnmpLib.Utils.sanitize_community("secret123")
"*********"

iex> SnmpKit.SnmpLib.Utils.sanitize_community("")
"<empty>"

 truncate_string(string, max_length)

 @spec truncate_string(String.t(), pos_integer()) :: String.t()

Truncates a string to maximum length with ellipsis.
Examples
iex> SnmpKit.SnmpLib.Utils.truncate_string("Hello, World!", 10)
"Hello, ..."

iex> SnmpKit.SnmpLib.Utils.truncate_string("Short", 10)
"Short"

 valid_community_string?(community)

 @spec valid_community_string?(any()) :: boolean()

Validates an SNMP community string.
Community strings should be non-empty and contain only printable characters.
Examples
iex> SnmpKit.SnmpLib.Utils.valid_community_string?("public")
true

iex> SnmpKit.SnmpLib.Utils.valid_community_string?("")
false

 valid_snmp_version?(version)

 @spec valid_snmp_version?(any()) :: boolean()

Validates an SNMP version number.
Examples
iex> SnmpKit.SnmpLib.Utils.valid_snmp_version?(1)
true

iex> SnmpKit.SnmpLib.Utils.valid_snmp_version?(5)
false

SnmpKit.SnmpLib.Walker

Efficient SNMP table walking with bulk operations and streaming support.
This module provides high-performance table walking capabilities using GETBULK
operations for maximum efficiency. It's designed for collecting large amounts
of SNMP data with minimal network overhead and memory usage.
Features
	GETBULK Optimization: Uses GETBULK requests for 3-5x faster table walking
	Streaming Support: Process large tables without loading all data into memory
	Automatic Pagination: Handles table boundaries and end-of-mib-view conditions
	Error Recovery: Graceful handling of partial responses and network issues
	Adaptive Bulk Size: Automatically adjusts bulk size based on device capabilities
	Memory Efficient: Lazy evaluation and streaming for large datasets

Table Walking Strategies
Bulk Walking (Recommended)
Uses GETBULK operations for maximum efficiency. Best for SNMPv2c devices.
Sequential Walking
Falls back to GETNEXT operations for SNMPv1 devices or when GETBULK fails.
Streaming Walking
Processes table rows as they arrive, ideal for very large tables.
Examples
Walk entire interface table
{:ok, interfaces} = SnmpKit.SnmpLib.Walker.walk_table("192.168.1.1", [1, 3, 6, 1, 2, 1, 2, 2])

Stream large table to avoid memory issues
SnmpKit.SnmpLib.Walker.stream_table("192.168.1.1", [1, 3, 6, 1, 2, 1, 2, 2, 1, 2])
|> Stream.each(fn {interface_oid, interface_value} ->
 IO.puts("Interface: " <> inspect(interface_oid) <> " = " <> inspect(interface_value))
 end)
|> Stream.run()

Walk with custom bulk size and timeout
{:ok, data} = SnmpKit.SnmpLib.Walker.walk_table("10.0.0.1", "1.3.6.1.2.1.4.21",
 max_repetitions: 50, timeout: 15_000)

 Summary

 Types

 host()

 oid()

 stream_chunk()

 varbind()

 walk_opts()

 walk_result()

 Functions

 estimate_table_size(host, table_oid, opts \\ [])

 Estimates the size of a table by walking just the first column.

 stream_table(host, table_oid, opts \\ [])

 Streams table entries as they are retrieved, ideal for very large tables.

 walk_column(host, column_oid, opts \\ [])

 Walks a single table column efficiently.

 walk_subtree(host, base_oid, opts \\ [])

 Walks a subtree starting from the given OID.

 walk_table(host, table_oid, opts \\ [])

 Walks an entire SNMP table efficiently using GETBULK operations.

 Types

 host()

 @type host() :: binary() | :inet.ip_address()

 oid()

 @type oid() :: [non_neg_integer()] | binary()

 stream_chunk()

 @type stream_chunk() :: [varbind()]

 varbind()

 @type varbind() :: {oid(), any()}

 walk_opts()

 @type walk_opts() :: [
 community: binary(),
 version: :v1 | :v2c,
 timeout: pos_integer(),
 max_repetitions: pos_integer(),
 max_retries: non_neg_integer(),
 retry_delay: pos_integer(),
 port: pos_integer(),
 adaptive_bulk: boolean(),
 chunk_size: pos_integer()
]

 walk_result()

 @type walk_result() :: {:ok, [varbind()]} | {:error, any()}

 Functions

 estimate_table_size(host, table_oid, opts \\ [])

 @spec estimate_table_size(host(), oid(), walk_opts()) ::
 {:ok, non_neg_integer()} | {:error, any()}

Estimates the size of a table by walking just the first column.
Useful for determining table size before performing full table walks,
helping with memory planning and progress estimation.
Parameters
	host: Target device IP address or hostname
	table_oid: Base OID of the table
	opts: Walking options (typically with small max_repetitions)

Returns
	{:ok, count}: Estimated number of table rows
	{:error, reason}: Estimation failed

Examples
Test that estimate_table_size function exists and handles invalid input properly
iex> match?({:error, _}, SnmpKit.SnmpLib.Walker.estimate_table_size("invalid.host", [1, 3, 6, 1, 2, 1, 2, 2], timeout: 100))
true

 stream_table(host, table_oid, opts \\ [])

 @spec stream_table(host(), oid(), walk_opts()) :: Enumerable.t()

Streams table entries as they are retrieved, ideal for very large tables.
Returns a Stream that yields chunks of varbinds as they are collected.
This is memory-efficient for large tables as it doesn't load all data at once.
Parameters
	host: Target device IP address or hostname
	table_oid: Base OID of the table to stream
	opts: Streaming options (chunk_size controls entries per chunk)

Returns
A Stream that yields stream_chunk() (lists of varbinds)
Examples
Process large routing table in chunks
SnmpKit.SnmpLib.Walker.stream_table("192.168.1.1", [1, 3, 6, 1, 2, 1, 4, 21])
|> Stream.flat_map(& &1) # Flatten chunks into individual varbinds
|> Stream.filter(fn {_oid, value} -> value != 0 end) # Filter active routes
|> Enum.take(100) # Take first 100 active routes
returns list of active routes

Test that stream_table function exists and returns a stream
iex> stream = SnmpKit.SnmpLib.Walker.stream_table("invalid.host", "1.3.6.1.2.1.2.2.1.1", timeout: 100)
iex> is_function(stream, 2)
true

 walk_column(host, column_oid, opts \\ [])

 @spec walk_column(host(), oid(), walk_opts()) :: walk_result()

Walks a single table column efficiently.
Optimized for retrieving a single column from an SNMP table by using
the column OID directly and stopping at table boundaries.
Parameters
	host: Target device IP address or hostname
	column_oid: OID of the table column (e.g., [1,3,6,1,2,1,2,2,1,2] for ifDescr)
	opts: Walking options

Returns
	{:ok, column_data}: List of {index_oid, value} pairs for the column
	{:error, reason}: Walking failed

Examples
Test that walk_column function exists and handles invalid input properly
iex> match?({:error, _}, SnmpKit.SnmpLib.Walker.walk_column("invalid.host", [1, 3, 6, 1, 2, 1, 2, 2, 1, 2], timeout: 100))
true

 walk_subtree(host, base_oid, opts \\ [])

 @spec walk_subtree(host(), oid(), walk_opts()) :: walk_result()

Walks a subtree starting from the given OID.
Similar to walk_table/3 but continues until the OID prefix no longer matches,
making it suitable for walking MIB subtrees that may contain multiple tables.
Parameters
	host: Target device IP address or hostname
	base_oid: Starting OID for the subtree walk
	opts: Walking options

Returns
	{:ok, varbinds}: All OIDs under the base_oid with their values
	{:error, reason}: Walking failed

Examples
Test that walk_subtree function exists and handles invalid input properly
iex> match?({:error, _}, SnmpKit.SnmpLib.Walker.walk_subtree("invalid.host", [1, 3, 6, 1, 2, 1, 1], timeout: 100))
true

 walk_table(host, table_oid, opts \\ [])

 @spec walk_table(host(), oid(), walk_opts()) :: walk_result()

Walks an entire SNMP table efficiently using GETBULK operations.
This is the most efficient way to retrieve a complete SNMP table. Uses GETBULK
requests when possible (SNMPv2c) and automatically handles table boundaries.
Parameters
	host: Target device IP address or hostname
	table_oid: Base OID of the table to walk
	opts: Walking options (see module docs)

Returns
	{:ok, varbinds}: List of {oid, value} pairs for all table entries
	{:error, reason}: Walking failed with reason

Examples
Test that walk_table function exists and handles invalid input properly
iex> match?({:error, _}, SnmpKit.SnmpLib.Walker.walk_table("invalid.host", [1, 3, 6, 1, 2, 1, 2, 2], timeout: 100))
true

Walk with high bulk size for faster collection
SnmpKit.SnmpLib.Walker.walk_table("10.0.0.1", "1.3.6.1.2.1.2.2", max_repetitions: 50)
{:ok, [...]} returns many interface entries

SnmpKit.SnmpMgr.AdaptiveWalk

Intelligent SNMP walk operations with adaptive parameter tuning.
This module provides advanced walk operations that automatically adjust
bulk parameters based on device response characteristics for optimal performance.

 Summary

 Functions

 benchmark_device(target, test_oid, opts \\ [])

 Benchmarks a device to determine optimal bulk parameters.

 bulk_walk(target, root_oid, opts \\ [])

 Performs an adaptive bulk walk that automatically tunes parameters.

 get_optimal_params(target, opts \\ [])

 Gets optimal parameters for a previously benchmarked device.

 table_walk(target, table_oid, opts \\ [])

 Performs an adaptive table walk optimized for large tables.

 Functions

 benchmark_device(target, test_oid, opts \\ [])

Benchmarks a device to determine optimal bulk parameters.
Performs a series of test requests with different bulk sizes
to determine the best parameters for the target device.
Parameters
	target - The target device to benchmark
	test_oid - OID to use for testing (should have multiple entries)
	opts - Options including :test_sizes, :iterations

Examples
Note: This function makes actual network calls and is not suitable for doctests
{:ok, benchmark} = SnmpKit.SnmpMgr.AdaptiveWalk.benchmark_device("switch.local", "ifTable")
Returns comprehensive performance analysis:
%{
optimal_bulk_size: 25,
avg_response_time: 45,
error_rate: 0.0,
all_results: [
{1, 120}, {5, 85}, {10, 52}, {15, 48},
{20, 44}, {25, 42}, {30, 45}, {40, 52}, {50, 68}
],
recommendations: %{
max_repetitions: 25,
timeout: 3000,
adaptive_tuning: false # Device has consistent performance
}
}

Custom benchmark with specific test sizes:
{:ok, results} = SnmpKit.SnmpMgr.AdaptiveWalk.benchmark_device("router.local", "ipRouteTable",
 test_sizes: [5, 10, 20, 50], iterations: 5)

 bulk_walk(target, root_oid, opts \\ [])

Performs an adaptive bulk walk that automatically tunes parameters.
Starts with a conservative bulk size and adapts based on response times
and error rates to find the optimal parameters for the target device.
Parameters
	target - The target device
	root_oid - Starting OID for the walk
	opts - Options including :adaptive_tuning, :performance_threshold

Examples
Note: This function makes actual network calls and is not suitable for doctests
{:ok, results} = SnmpKit.SnmpMgr.AdaptiveWalk.bulk_walk("switch.local", "ifTable")
Automatically adjusts bulk size for optimal performance:
[
{"1.3.6.1.2.1.2.2.1.2.1", :octet_string, "FastEthernet0/1"},
{"1.3.6.1.2.1.2.2.1.2.2", :octet_string, "FastEthernet0/2"},
{"1.3.6.1.2.1.2.2.1.2.3", :octet_string, "GigabitEthernet0/1"},
... optimally retrieved with adaptive bulk sizing
]

With custom options:
{:ok, results} = SnmpKit.SnmpMgr.AdaptiveWalk.bulk_walk("router.local", "sysDescr",
 adaptive_tuning: true, max_entries: 100, performance_threshold: 50)
[{"1.3.6.1.2.1.1.1.0", :octet_string, "Cisco IOS Software, Version 15.1"}]

 get_optimal_params(target, opts \\ [])

Gets optimal parameters for a previously benchmarked device.
Returns cached optimal parameters or performs a quick benchmark
if no cached data is available.

 table_walk(target, table_oid, opts \\ [])

Performs an adaptive table walk optimized for large tables.
Automatically determines the optimal bulk size for table retrieval
and handles pagination for very large tables.
Parameters
	target - The target device
	table_oid - The table OID to walk
	opts - Options including :adaptive_tuning, :stream, :max_entries

Examples
Note: This function makes actual network calls and is not suitable for doctests
{:ok, table_data} = SnmpKit.SnmpMgr.AdaptiveWalk.table_walk("switch.local", "ifTable", max_entries: 1000)
Efficiently walks large tables with automatic optimization:
[
{"1.3.6.1.2.1.2.2.1.1.1", :integer, 1}, # ifIndex.1
{"1.3.6.1.2.1.2.2.1.2.1", :octet_string, "Ethernet1"}, # ifDescr.1
{"1.3.6.1.2.1.2.2.1.3.1", :integer, 6}, # ifType.1 (ethernetCsmacd)
{"1.3.6.1.2.1.2.2.1.5.1", :gauge32, 1000000000}, # ifSpeed.1 (1 Gbps)
... continues with adaptive pagination for large tables
]

For very large tables with streaming:
{:ok, results} = SnmpKit.SnmpMgr.AdaptiveWalk.table_walk("core-switch", "ipRouteTable",
 max_entries: 10000, adaptive_tuning: true)

SnmpKit.SnmpMgr.Bulk

Advanced SNMP bulk operations using SNMPv2c GETBULK.
This module provides efficient bulk operations that are significantly faster
than iterative GETNEXT requests for retrieving large amounts of data.

 Summary

 Functions

 get_bulk(target, oids, opts \\ [])

 Performs a single GETBULK request.

 get_bulk_multi(targets_and_oids, opts \\ [])

 Performs multiple concurrent GETBULK operations.

 get_table_bulk(target, table_oid, opts \\ [])

 Optimized table retrieval using GETBULK.

 walk_bulk(target, root_oid, opts \\ [])

 Bulk walk operation using GETBULK instead of iterative GETNEXT.

 Functions

 get_bulk(target, oids, opts \\ [])

Performs a single GETBULK request.
Parameters
	target - The target device
	oids - Single OID or list of OIDs to retrieve
	opts - Options including :max_repetitions, :non_repeaters

Examples
iex> SnmpKit.SnmpMgr.Bulk.get_bulk("192.168.1.1", "ifTable", max_repetitions: 20)
{:ok, [
 {[1,3,6,1,2,1,2,2,1,2,1], :octet_string, "eth0"},
 {[1,3,6,1,2,1,2,2,1,2,2], :octet_string, "eth1"},
 # ... up to 20 entries with type information
]}

 get_bulk_multi(targets_and_oids, opts \\ [])

Performs multiple concurrent GETBULK operations.
Parameters
	targets_and_oids - List of {target, oid} tuples
	opts - Options for all requests

Examples
iex> requests = [
...> {"device1", "sysDescr.0"},
...> {"device2", "sysUpTime.0"},
...> {"device3", "ifNumber.0"}
...>]
iex> SnmpKit.SnmpMgr.Bulk.get_bulk_multi(requests)
[
 {:ok, [{"1.3.6.1.2.1.1.1.0", "Device 1"}]},
 {:ok, [{"1.3.6.1.2.1.1.3.0", 123456}]},
 {:error, :timeout}
]

 get_table_bulk(target, table_oid, opts \\ [])

Optimized table retrieval using GETBULK.
Uses GETBULK to efficiently retrieve an entire SNMP table,
automatically handling pagination when tables are larger than max_repetitions.
Parameters
	target - The target device
	table_oid - The table OID to retrieve
	opts - Options including :max_repetitions, :max_entries

Examples
iex> SnmpKit.SnmpMgr.Bulk.get_table_bulk("switch.local", "ifTable")
{:ok, [
 {"1.3.6.1.2.1.2.2.1.2.1", "eth0"},
 {"1.3.6.1.2.1.2.2.1.3.1", 6},
 {"1.3.6.1.2.1.2.2.1.2.2", "eth1"},
 {"1.3.6.1.2.1.2.2.1.3.2", 6}
]}

 walk_bulk(target, root_oid, opts \\ [])

Bulk walk operation using GETBULK instead of iterative GETNEXT.
Significantly more efficient than traditional walks for large subtrees.
Parameters
	target - The target device
	root_oid - Starting OID for the walk
	opts - Options including :max_repetitions, :max_entries

Examples
iex> SnmpKit.SnmpMgr.Bulk.walk_bulk("device.local", "system")
{:ok, [
 {"1.3.6.1.2.1.1.1.0", "System Description"},
 {"1.3.6.1.2.1.1.2.0", "1.3.6.1.4.1.9"},
 {"1.3.6.1.2.1.1.3.0", 12345}
]}

SnmpKit.SnmpMgr.CircuitBreaker

Circuit breaker pattern implementation for SNMP device failure protection.
This module implements the circuit breaker pattern to prevent cascading failures
when SNMP devices become unresponsive. It provides automatic failure detection,
recovery attempts, and configurable thresholds for different failure scenarios.

 Summary

 Functions

 call(cb, target, fun, timeout \\ 5000)

 Executes a function with circuit breaker protection.

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 close_circuit(cb, target)

 Manually closes a circuit breaker for a target.

 configure(cb, config)

 Configures circuit breaker settings.

 configure_target(cb, target, config)

 Configures settings for a specific target.

 force_half_open(cb, target)

 Forces a circuit breaker to half-open state.

 force_open(cb, target)

 Forces a circuit breaker to open state.

 get_all_targets(cb)

 Gets all active targets.

 get_config(cb, target)

 Gets configuration for a specific target.

 get_global_stats(cb)

 Gets global circuit breaker statistics.

 get_state(cb, target)

 Gets the current state of a circuit breaker for a target.

 get_stats(cb)

 Gets statistics for all circuit breakers.

 get_stats(cb, target)

 Gets statistics for a specific target.

 open_circuit(cb, target)

 Manually opens a circuit breaker for a target.

 record_failure(cb, target, reason)

 Records a failure for a target.

 record_success(cb, target)

 Records a successful operation for a target.

 remove_target(cb, target)

 Removes a target from the circuit breaker.

 reset(cb, target)

 Resets a specific circuit breaker for a target.

 reset_all(cb)

 Resets all circuit breakers.

 start_link(opts \\ [])

 Starts the circuit breaker manager.

 Functions

 call(cb, target, fun, timeout \\ 5000)

Executes a function with circuit breaker protection.
Parameters
	cb - Circuit breaker PID or name
	target - Target identifier (device address/name)
	fun - Function to execute
	timeout - Operation timeout in ms

Examples
result = SnmpKit.SnmpMgr.CircuitBreaker.call(cb, "192.168.1.1", fn ->
 SnmpKit.SnmpMgr.get("192.168.1.1", "sysDescr.0")
end, 5000)

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 close_circuit(cb, target)

Manually closes a circuit breaker for a target.

 configure(cb, config)

Configures circuit breaker settings.

 configure_target(cb, target, config)

Configures settings for a specific target.

 force_half_open(cb, target)

Forces a circuit breaker to half-open state.

 force_open(cb, target)

Forces a circuit breaker to open state.

 get_all_targets(cb)

Gets all active targets.

 get_config(cb, target)

Gets configuration for a specific target.

 get_global_stats(cb)

Gets global circuit breaker statistics.

 get_state(cb, target)

Gets the current state of a circuit breaker for a target.

 get_stats(cb)

Gets statistics for all circuit breakers.

 get_stats(cb, target)

Gets statistics for a specific target.

 open_circuit(cb, target)

Manually opens a circuit breaker for a target.

 record_failure(cb, target, reason)

Records a failure for a target.

 record_success(cb, target)

Records a successful operation for a target.

 remove_target(cb, target)

Removes a target from the circuit breaker.

 reset(cb, target)

Resets a specific circuit breaker for a target.

 reset_all(cb)

Resets all circuit breakers.

 start_link(opts \\ [])

Starts the circuit breaker manager.
Options
	:failure_threshold - Number of failures before opening circuit (default: 5)
	:recovery_timeout - Time to wait before attempting recovery in ms (default: 30000)
	:timeout_threshold - Request timeout threshold in ms (default: 10000)
	:half_open_max_calls - Max calls in half-open state (default: 3)

Examples
{:ok, cb} = SnmpKit.SnmpMgr.CircuitBreaker.start_link(
 failure_threshold: 10,
 recovery_timeout: 60_000
)

SnmpKit.SnmpMgr.Config

Configuration management for SnmpKit.SnmpMgr.
Provides global defaults and configuration options that can be set
application-wide and used by all SNMP operations.

 Summary

 Functions

 add_mib_path(path)

 Adds a directory to the MIB search paths.

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 get(key)

 Gets configuration value with fallback to application config.

 get_all()

 Gets all current configuration as a map.

 get_default_community()

 Gets the default community string.

 get_default_port()

 Gets the default port.

 get_default_retries()

 Gets the default number of retries.

 get_default_timeout()

 Gets the default timeout.

 get_default_version()

 Gets the default SNMP version.

 get_mib_paths()

 Gets the current MIB search paths.

 merge_opts(opts)

 Merges the current configuration with provided opts, giving priority to opts.

 reset()

 Resets configuration to defaults.

 set_default_community(community)

 Sets the default community string for SNMP requests.

 set_default_port(port)

 Sets the default port for SNMP requests.

 set_default_retries(retries)

 Sets the default number of retries for SNMP requests.

 set_default_timeout(timeout)

 Sets the default timeout for SNMP requests in milliseconds.

 set_default_version(version)

 Sets the default SNMP version.

 set_mib_paths(paths)

 Sets the MIB search paths (replaces existing paths).

 start_link(opts \\ [])

 Starts the configuration GenServer.

 Functions

 add_mib_path(path)

Adds a directory to the MIB search paths.
Examples
iex> SnmpKit.SnmpMgr.Config.add_mib_path("/usr/share/snmp/mibs")
:ok

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 get(key)

Gets configuration value with fallback to application config.
This is the main function used by other modules to get configuration values.
It first checks the GenServer state, then falls back to application config,
then to module defaults.
Examples
iex> SnmpKit.SnmpMgr.Config.get(:community)
"public"

iex> SnmpKit.SnmpMgr.Config.get(:timeout)
5000

 get_all()

Gets all current configuration as a map.
Examples
iex> SnmpKit.SnmpMgr.Config.get_all()
%{
 community: "public",
 timeout: 5000,
 retries: 1,
 port: 161,
 version: :v1,
 mib_paths: []
}

 get_default_community()

Gets the default community string.
Examples
iex> SnmpKit.SnmpMgr.Config.get_default_community()
"public"

 get_default_port()

Gets the default port.

 get_default_retries()

Gets the default number of retries.

 get_default_timeout()

Gets the default timeout.

 get_default_version()

Gets the default SNMP version.

 get_mib_paths()

Gets the current MIB search paths.

 merge_opts(opts)

Merges the current configuration with provided opts, giving priority to opts.
This is useful for functions that want to use global defaults but allow
per-request overrides.
Examples
iex> SnmpKit.SnmpMgr.Config.merge_opts(community: "private", timeout: 10000)
[community: "private", timeout: 10000, retries: 1, port: 161]

 reset()

Resets configuration to defaults.
Examples
iex> SnmpKit.SnmpMgr.Config.reset()
:ok

 set_default_community(community)

Sets the default community string for SNMP requests.
Examples
iex> SnmpKit.SnmpMgr.Config.set_default_community("private")
:ok

 set_default_port(port)

Sets the default port for SNMP requests.
Examples
iex> SnmpKit.SnmpMgr.Config.set_default_port(1161)
:ok

 set_default_retries(retries)

Sets the default number of retries for SNMP requests.
Examples
iex> SnmpKit.SnmpMgr.Config.set_default_retries(3)
:ok

 set_default_timeout(timeout)

Sets the default timeout for SNMP requests in milliseconds.
Examples
iex> SnmpKit.SnmpMgr.Config.set_default_timeout(10000)
:ok

 set_default_version(version)

Sets the default SNMP version.
Examples
iex> SnmpKit.SnmpMgr.Config.set_default_version(:v2c)
:ok

 set_mib_paths(paths)

Sets the MIB search paths (replaces existing paths).
Examples
iex> SnmpKit.SnmpMgr.Config.set_mib_paths(["/usr/share/snmp/mibs", "./mibs"])
:ok

 start_link(opts \\ [])

Starts the configuration GenServer.

SnmpKit.SnmpMgr.Core

Core SNMP operations using Erlang's SNMP PDU functions directly.
This module handles the low-level SNMP PDU encoding/decoding and UDP communication
without requiring the heavyweight :snmpm manager process.

 Summary

 Types

 oid()

 opts()

 snmp_result()

 target()

 Functions

 parse_oid(oid)

 Parses and normalizes an OID using SnmpKit.SnmpLib.OID.normalize with MIB support.

 send_get_bulk_request(target, oid, opts \\ [])

 Sends an SNMP GETBULK request (SNMPv2c only).

 send_get_bulk_request_async(target, oid, opts \\ [])

 Sends an asynchronous SNMP GETBULK request.

 send_get_next_request(target, oid, opts \\ [])

 Sends a GETNEXT request to retrieve the next OID in the MIB tree.

 send_get_request(target, oid, opts \\ [])

 Sends an SNMP GET request and returns the response.

 send_get_request_async(target, oid, opts \\ [])

 Sends an asynchronous SNMP GET request.

 send_get_request_with_type(target, oid, opts \\ [])

 Sends a GET request and returns the result in 3-tuple format.

 send_set_request(target, oid, value, opts \\ [])

 Sends an SNMP SET request and returns the response.

 Types

 oid()

 @type oid() :: binary() | [non_neg_integer()]

 opts()

 @type opts() :: keyword()

 snmp_result()

 @type snmp_result() :: {:ok, term()} | {:error, atom() | tuple()}

 target()

 @type target() :: binary() | tuple() | map()

 Functions

 parse_oid(oid)

 @spec parse_oid(oid()) :: {:ok, [non_neg_integer()]} | {:error, term()}

Parses and normalizes an OID using SnmpKit.SnmpLib.OID.normalize with MIB support.

 send_get_bulk_request(target, oid, opts \\ [])

 @spec send_get_bulk_request(target(), oid(), opts()) :: snmp_result()

Sends an SNMP GETBULK request (SNMPv2c only).

 send_get_bulk_request_async(target, oid, opts \\ [])

 @spec send_get_bulk_request_async(target(), oid(), opts()) :: reference()

Sends an asynchronous SNMP GETBULK request.

 send_get_next_request(target, oid, opts \\ [])

 @spec send_get_next_request(target(), oid(), opts()) :: snmp_result()

Sends a GETNEXT request to retrieve the next OID in the MIB tree.
Now uses the proper SnmpKit.SnmpLib.Manager.get_next/3 function which handles
version-specific logic (GETNEXT for v1, GETBULK for v2c+) correctly.

 send_get_request(target, oid, opts \\ [])

 @spec send_get_request(target(), oid(), opts()) :: snmp_result()

Sends an SNMP GET request and returns the response.

 send_get_request_async(target, oid, opts \\ [])

 @spec send_get_request_async(target(), oid(), opts()) :: reference()

Sends an asynchronous SNMP GET request.

 send_get_request_with_type(target, oid, opts \\ [])

 @spec send_get_request_with_type(target(), oid(), opts()) ::
 {:ok, {String.t(), atom(), any()}} | {:error, any()}

Sends a GET request and returns the result in 3-tuple format.
This function returns {oid_string, type, value} for consistency with
other operations like walk, bulk, etc.

 send_set_request(target, oid, value, opts \\ [])

 @spec send_set_request(target(), oid(), term(), opts()) :: snmp_result()

Sends an SNMP SET request and returns the response.

SnmpKit.SnmpMgr.Engine

High-performance streaming PDU engine with request routing and connection pooling.
This module provides the core infrastructure for handling large volumes of SNMP
requests efficiently through connection pooling, request batching, and intelligent
routing strategies.

 Summary

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 get_pool_status(engine)

 Gets connection pool status.

 get_stats(engine)

 Gets engine statistics and metrics.

 start_link(opts \\ [])

 Starts the streaming PDU engine.

 stop(engine)

 Gracefully shuts down the engine.

 submit_batch(engine, requests, opts \\ [])

 Submits multiple requests as a batch.

 submit_request(engine, request, opts \\ [])

 Submits a request to the engine for processing.

 Functions

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 get_pool_status(engine)

Gets connection pool status.

 get_stats(engine)

Gets engine statistics and metrics.

 start_link(opts \\ [])

Starts the streaming PDU engine.
Options
	:pool_size - Number of UDP socket connections to maintain (default: 10)
	:max_rps - Maximum requests per second (default: 100)
	:request_timeout - Individual request timeout in ms (default: 5000)
	:batch_size - Maximum requests per batch (default: 50)
	:batch_timeout - Maximum time to wait for batch in ms (default: 100)

Examples
{:ok, engine} = SnmpKit.SnmpMgr.Engine.start_link(
 pool_size: 20,
 max_rps: 200,
 batch_size: 100
)

 stop(engine)

Gracefully shuts down the engine.

 submit_batch(engine, requests, opts \\ [])

Submits multiple requests as a batch.
Parameters
	engine - Engine PID or name
	requests - List of request specification maps
	opts - Batch options

Examples
requests = [
 %{type: :get, target: "device1", oid: "sysDescr.0"},
 %{type: :get, target: "device2", oid: "sysDescr.0"}
]

{:ok, batch_ref} = SnmpKit.SnmpMgr.Engine.submit_batch(engine, requests)

 submit_request(engine, request, opts \\ [])

Submits a request to the engine for processing.
Parameters
	engine - Engine PID or name
	request - Request specification map
	opts - Request options

Examples
request = %{
 type: :get,
 target: "192.168.1.1",
 oid: "1.3.6.1.2.1.1.1.0",
 community: "public"
}

{:ok, ref} = SnmpKit.SnmpMgr.Engine.submit_request(engine, request)

SnmpKit.SnmpMgr.EngineV2

Pure response correlator for SNMP operations.
This engine focuses solely on correlating SNMP responses back to their
originating processes. It does not handle sending - that is done directly
by Tasks using the shared socket from SocketManager.

 Summary

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 get_stats(engine)

 Gets engine statistics and metrics.

 pending_count(engine)

 Gets the number of pending requests.

 register_request(engine, request_id, caller_pid, timeout_ms \\ 5000)

 Registers a request for response correlation.

 start_link(opts \\ [])

 Starts the Engine response correlator.

 stop(engine)

 Gracefully shuts down the engine.

 unregister_request(engine, request_id)

 Unregisters a request (used when caller times out locally).

 Functions

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 get_stats(engine)

Gets engine statistics and metrics.

 pending_count(engine)

Gets the number of pending requests.

 register_request(engine, request_id, caller_pid, timeout_ms \\ 5000)

Registers a request for response correlation.
Parameters
	engine - Engine PID or name
	request_id - Unique request identifier
	caller_pid - Process to send response to
	timeout_ms - Timeout in milliseconds (optional)

Examples
SnmpKit.SnmpMgr.EngineV2.register_request(engine, 12345, self(), 5000)

 start_link(opts \\ [])

Starts the Engine response correlator.
Options
	:name - Process name (default: MODULE)

 stop(engine)

Gracefully shuts down the engine.

 unregister_request(engine, request_id)

Unregisters a request (used when caller times out locally).
Parameters
	engine - Engine PID or name
	request_id - Request identifier to unregister

SnmpKit.SnmpMgr.Errors

SNMP error handling and error code translation.
Provides functions to handle both SNMPv1 and SNMPv2c error conditions
and translate error codes to human-readable messages.

 Summary

 Functions

 analyze_error(error)

 Enhanced error analysis using SnmpKit.SnmpLib.Error for SNMP protocol errors.

 classify_error(error, context \\ nil)

 Classifies an error into a category for better handling.

 code_to_atom(error_code)

 Translates an SNMP error code to an atom.

 code_to_description(error_code)

 Translates an error code directly to a description.

 description(error_atom)

 Translates an SNMP error atom to a human-readable description.

 format_error(error)

 Formats an SNMP error for display.

 format_user_friendly_error(error, context \\ "Operation")

 Formats an error message in a user-friendly way with context.

 get_recovery_suggestions(arg1)

 Provides recovery suggestions for common errors.

 is_v2c_error?(error_atom)

 Determines if an error is version-specific.

 recoverable?(arg1)

 Checks if an error is recoverable (can be retried).

 Functions

 analyze_error(error)

Enhanced error analysis using SnmpKit.SnmpLib.Error for SNMP protocol errors.
Provides detailed error information including severity and RFC compliance
for SNMP protocol errors while preserving our comprehensive network error handling.
Examples
iex> SnmpKit.SnmpMgr.Errors.analyze_error({:snmp_error, 2})
%{
 type: :snmp_protocol,
 atom: :no_such_name,
 code: 2,
 severity: :error,
 retriable: false,
 category: :user_error,
 description: "Variable name not found"
}

iex> SnmpKit.SnmpMgr.Errors.analyze_error(:timeout)
%{
 type: :network,
 atom: :timeout,
 retriable: true,
 category: :transient_error,
 description: "Operation timed out"
}

 classify_error(error, context \\ nil)

Classifies an error into a category for better handling.
Examples
iex> SnmpKit.SnmpMgr.Errors.classify_error({:snmp_error, :no_such_name}, "Get request")
{:user_error, :invalid_oid}

iex> SnmpKit.SnmpMgr.Errors.classify_error({:network_error, :timeout}, "Network operation")
{:transient_error, :network_timeout}

iex> SnmpKit.SnmpMgr.Errors.classify_error({:snmp_error, :too_big}, "Bulk request")
{:recoverable_error, :response_too_large}

 code_to_atom(error_code)

Translates an SNMP error code to an atom.
Uses SnmpKit.SnmpLib.Error for validation and standardization of RFC-compliant error codes.
Examples
iex> SnmpKit.SnmpMgr.Errors.code_to_atom(2)
:no_such_name

iex> SnmpKit.SnmpMgr.Errors.code_to_atom(0)
:no_error

iex> SnmpKit.SnmpMgr.Errors.code_to_atom(999)
:unknown_error

 code_to_description(error_code)

Translates an error code directly to a description.
Examples
iex> SnmpKit.SnmpMgr.Errors.code_to_description(2)
"Variable name not found"

iex> SnmpKit.SnmpMgr.Errors.code_to_description(18)
"Inconsistent name"

 description(error_atom)

Translates an SNMP error atom to a human-readable description.
Examples
iex> SnmpKit.SnmpMgr.Errors.description(:no_such_name)
"Variable name not found"

iex> SnmpKit.SnmpMgr.Errors.description(:too_big)
"Response too big to fit in message"

iex> SnmpKit.SnmpMgr.Errors.description(:unknown_error)
"Unknown error"

 format_error(error)

Formats an SNMP error for display.
Examples
iex> SnmpKit.SnmpMgr.Errors.format_error({:snmp_error, 2})
"SNMP Error (2): Variable name not found"

iex> SnmpKit.SnmpMgr.Errors.format_error({:snmp_error, :no_such_name})
"SNMP Error: Variable name not found"

iex> SnmpKit.SnmpMgr.Errors.format_error({:v2c_error, :no_access, oid: "1.2.3.4"})
"SNMPv2c Error: Access denied (OID: 1.2.3.4)"

 format_user_friendly_error(error, context \\ "Operation")

Formats an error message in a user-friendly way with context.
Examples
iex> SnmpKit.SnmpMgr.Errors.format_user_friendly_error({:snmp_error, :no_such_name}, "Getting system description")
"Unable to get system description: The requested OID does not exist on the device"

iex> SnmpKit.SnmpMgr.Errors.format_user_friendly_error({:network_error, :timeout}, "Contacting device")
"Failed contacting device: The device did not respond within the timeout period"

 get_recovery_suggestions(arg1)

Provides recovery suggestions for common errors.
Examples
iex> SnmpKit.SnmpMgr.Errors.get_recovery_suggestions({:snmp_error, :no_such_name})
["Verify the OID is correct", "Check if the OID is supported by this device", "Try using MIB browser to explore available OIDs"]

iex> SnmpKit.SnmpMgr.Errors.get_recovery_suggestions({:network_error, :timeout})
["Increase timeout value", "Check network connectivity", "Verify device is responding to ping"]

 is_v2c_error?(error_atom)

Determines if an error is version-specific.
Examples
iex> SnmpKit.SnmpMgr.Errors.is_v2c_error?(:no_access)
true

iex> SnmpKit.SnmpMgr.Errors.is_v2c_error?(:no_such_name)
false

 recoverable?(arg1)

Checks if an error is recoverable (can be retried).
Examples
iex> SnmpKit.SnmpMgr.Errors.recoverable?({:network_error, :host_unreachable})
false

iex> SnmpKit.SnmpMgr.Errors.recoverable?({:snmp_error, :too_big})
true

iex> SnmpKit.SnmpMgr.Errors.recoverable?(:timeout)
true

SnmpKit.SnmpMgr.Format

SNMP data formatting and presentation utilities.
This module provides user-friendly formatting functions for SNMP data types,
delegating to the underlying SnmpKit.SnmpLib.Types functions while maintaining a
clean SnmpMgr API surface.
All functions work with the 3-tuple format {oid_string, type, value} that
SnmpMgr uses throughout the library.
Examples
Format uptime from SNMP result
{:ok, {_oid, :timeticks, ticks}} = SnmpKit.SnmpMgr.get("router.local", "sysUpTime.0")
SnmpKit.SnmpMgr.Format.uptime(ticks)
=> "5 days, 12 hours, 34 minutes, 56 seconds"

Format IP address
SnmpKit.SnmpMgr.Format.ip_address(<<192, 168, 1, 1>>)
=> "192.168.1.1"

Pretty print any SNMP result
{:ok, result} = SnmpKit.SnmpMgr.get("router.local", "sysDescr.0")
SnmpKit.SnmpMgr.Format.pretty_print(result)
=> {"1.3.6.1.2.1.1.1.0", :octet_string, "Cisco IOS Router"}

 Summary

 Functions

 bytes(byte_count)

 Formats byte counts into human-readable sizes.

 format_by_type(arg1, value)

 Automatically formats a value based on its SNMP type.

 interface_status(other)

 Formats SNMP interface status values into readable strings.

 interface_type(other)

 Formats SNMP interface types into readable strings.

 ip_address(ip_bytes)

 Formats IP address bytes into dotted decimal notation.

 mac_address(mac)

 Formats MAC addresses into standard colon-separated hex format.

 pretty_print(arg)

 Pretty prints an SNMP result with type-aware formatting.

 pretty_print_all(results)

 Pretty prints a list of SNMP results.

 speed(bps)

 Formats network speeds (bits per second) into human-readable rates.

 uptime(ticks)

 Formats timeticks (hundredths of seconds) into human-readable uptime.

 Functions

 bytes(byte_count)

Formats byte counts into human-readable sizes.
Examples
iex> SnmpKit.SnmpMgr.Format.bytes(1024)
"1.0 KB"

iex> SnmpKit.SnmpMgr.Format.bytes(1073741824)
"1.0 GB"

 format_by_type(arg1, value)

 @spec format_by_type(atom(), any()) :: String.t()

Automatically formats a value based on its SNMP type.
This function provides a single entry point for type-aware formatting,
automatically choosing the appropriate formatting function based on the type.
Examples
iex> SnmpKit.SnmpMgr.Format.format_by_type(:timeticks, 126691300)
"14 days 15 hours 55 minutes 13 seconds"

iex> SnmpKit.SnmpMgr.Format.format_by_type(:gauge32, 1000000000)
"1 GB"

iex> SnmpKit.SnmpMgr.Format.format_by_type(:octet_string, "Hello")
"Hello"

 interface_status(other)

Formats SNMP interface status values into readable strings.
Examples
iex> SnmpKit.SnmpMgr.Format.interface_status(1)
"up"

iex> SnmpKit.SnmpMgr.Format.interface_status(2)
"down"

 interface_type(other)

Formats SNMP interface types into readable strings.
Examples
iex> SnmpKit.SnmpMgr.Format.interface_type(6)
"ethernetCsmacd"

iex> SnmpKit.SnmpMgr.Format.interface_type(24)
"softwareLoopback"

 ip_address(ip_bytes)

Formats IP address bytes into dotted decimal notation.
Examples
iex> SnmpKit.SnmpMgr.Format.ip_address(<<192, 168, 1, 1>>)
"192.168.1.1"

iex> SnmpKit.SnmpMgr.Format.ip_address({10, 0, 0, 1})
"10.0.0.1"

 mac_address(mac)

 @spec mac_address(binary() | list() | String.t()) :: String.t()

Formats MAC addresses into standard colon-separated hex format.
Handles both binary and list representations of MAC addresses commonly
found in SNMP responses.
Examples
iex> SnmpKit.SnmpMgr.Format.mac_address(<<0x00, 0x1B, 0x21, 0x3C, 0x4D, 0x5E>>)
"00:1b:21:3c:4d:5e"

iex> SnmpKit.SnmpMgr.Format.mac_address([0, 27, 33, 60, 77, 94])
"00:1b:21:3c:4d:5e"

iex> SnmpKit.SnmpMgr.Format.mac_address("\x00\x1B\x21\x3C\x4D\x5E")
"00:1b:21:3c:4d:5e"

 pretty_print(arg)

Pretty prints an SNMP result with type-aware formatting.
Takes a 3-tuple {oid_string, type, value} and returns a formatted version
with human-readable values based on the SNMP type.
Examples
iex> SnmpKit.SnmpMgr.Format.pretty_print({"1.3.6.1.2.1.1.3.0", :timeticks, 12345678})
{"1.3.6.1.2.1.1.3.0", :timeticks, "1 day, 10 hours, 17 minutes, 36 seconds"}

iex> SnmpKit.SnmpMgr.Format.pretty_print({"1.3.6.1.2.1.4.20.1.1.192.168.1.1", :ip_address, <<192, 168, 1, 1>>})
{"1.3.6.1.2.1.4.20.1.1.192.168.1.1", :ip_address, "192.168.1.1"}

 pretty_print_all(results)

Pretty prints a list of SNMP results.
Examples
iex> results = [
...> {"1.3.6.1.2.1.1.3.0", :timeticks, 12345678},
...> {"1.3.6.1.2.1.1.1.0", :octet_string, "Router"}
...>]
iex> SnmpKit.SnmpMgr.Format.pretty_print_all(results)
[
 {"1.3.6.1.2.1.1.3.0", :timeticks, "1 day, 10 hours, 17 minutes, 36 seconds"},
 {"1.3.6.1.2.1.1.1.0", :octet_string, ""Router""}
]

 speed(bps)

Formats network speeds (bits per second) into human-readable rates.
Examples
iex> SnmpKit.SnmpMgr.Format.speed(100_000_000)
"100.0 Mbps"

iex> SnmpKit.SnmpMgr.Format.speed(1_000_000_000)
"1.0 Gbps"

 uptime(ticks)

Formats timeticks (hundredths of seconds) into human-readable uptime.
Examples
iex> SnmpKit.SnmpMgr.Format.uptime(12345678)
"1 day, 10 hours, 17 minutes, 36 seconds"

iex> SnmpKit.SnmpMgr.Format.uptime(4200)
"42 seconds"

SnmpKit.SnmpMgr.Metrics

Comprehensive metrics collection and monitoring for SNMP operations.
This module provides real-time metrics collection, aggregation, and reporting
for all SNMP operations including request latency, success rates, throughput,
and resource utilization across engines, pools, and circuit breakers.

 Summary

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 counter(metrics, metric_name, value \\ 1, tags \\ %{})

 Records a counter metric.

 gauge(metrics, metric_name, value, tags \\ %{})

 Records a gauge metric (current value).

 get_metrics(metrics)

 Gets current metrics snapshot.

 get_summary(metrics)

 Gets aggregated metrics summary.

 get_window_metrics(metrics, window_start, window_end)

 Gets metrics for a specific time window.

 histogram(metrics, metric_name, value, tags \\ %{})

 Records a histogram metric (for latency/duration measurements).

 reset(metrics)

 Resets all metrics.

 start_link(opts \\ [])

 Starts the metrics collector.

 subscribe(metrics, subscriber_pid)

 Subscribes to metrics updates.

 time(metrics, metric_name, fun, tags \\ %{})

 Records timing for a function execution.

 unsubscribe(metrics, subscriber_pid)

 Unsubscribes from metrics updates.

 Functions

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 counter(metrics, metric_name, value \\ 1, tags \\ %{})

Records a counter metric.
Parameters
	metrics - Metrics PID or name
	metric_name - Name of the metric
	value - Value to add (default: 1)
	tags - Optional tags for the metric

Examples
SnmpKit.SnmpMgr.Metrics.counter(metrics, :requests_total, 1, %{target: "device1"})

 gauge(metrics, metric_name, value, tags \\ %{})

Records a gauge metric (current value).
Parameters
	metrics - Metrics PID or name
	metric_name - Name of the metric
	value - Current value
	tags - Optional tags for the metric

Examples
SnmpKit.SnmpMgr.Metrics.gauge(metrics, :active_connections, 15, %{pool: "main"})

 get_metrics(metrics)

Gets current metrics snapshot.

 get_summary(metrics)

Gets aggregated metrics summary.

 get_window_metrics(metrics, window_start, window_end)

Gets metrics for a specific time window.

 histogram(metrics, metric_name, value, tags \\ %{})

Records a histogram metric (for latency/duration measurements).
Parameters
	metrics - Metrics PID or name
	metric_name - Name of the metric
	value - Value to record
	tags - Optional tags for the metric

Examples
SnmpKit.SnmpMgr.Metrics.histogram(metrics, :request_duration_ms, 150, %{operation: "get"})

 reset(metrics)

Resets all metrics.

 start_link(opts \\ [])

Starts the metrics collector.
Options
	:window_size - Metrics window size in seconds (default: 60)
	:retention_period - How long to keep metrics in seconds (default: 3600)
	:collection_interval - Collection frequency in ms (default: 1000)

Examples
{:ok, metrics} = SnmpKit.SnmpMgr.Metrics.start_link(
 window_size: 120,
 retention_period: 7200
)

 subscribe(metrics, subscriber_pid)

Subscribes to metrics updates.

 time(metrics, metric_name, fun, tags \\ %{})

Records timing for a function execution.
Parameters
	metrics - Metrics PID or name
	metric_name - Name of the metric
	fun - Function to time
	tags - Optional tags for the metric

Examples
result = SnmpKit.SnmpMgr.Metrics.time(metrics, :snmp_get_duration, fn ->
 SnmpKit.SnmpMgr.get("device1", "sysDescr.0")
end, %{device: "device1"})

 unsubscribe(metrics, subscriber_pid)

Unsubscribes from metrics updates.

SnmpKit.SnmpMgr.Multi

Concurrent multi-target SNMP operations.
Provides functions to perform SNMP operations against multiple targets
concurrently, with configurable timeouts and error handling.

 Summary

 Functions

 execute_mixed(operations, opts \\ [])

 Executes mixed SNMP operations against multiple targets concurrently.

 get_bulk_multi(targets_and_oids, opts \\ [])

 Performs GETBULK operations against multiple targets concurrently.

 get_multi(targets_and_oids, opts \\ [])

 Performs GET operations against multiple targets concurrently.

 monitor(targets_and_oids, callback, opts \\ [])

 Monitors multiple devices for changes by polling at regular intervals.

 walk_multi(targets_and_oids, opts \\ [])

 Performs walk operations against multiple targets concurrently.

 walk_table_multi(targets_and_tables, opts \\ [])

 Performs table walk operations against multiple targets concurrently.

 Functions

 execute_mixed(operations, opts \\ [])

Executes mixed SNMP operations against multiple targets concurrently.
Allows different operation types per target for maximum flexibility.
Parameters
	operations - List of {operation, target, oid_or_args, opts} tuples
	opts - Global options

Examples
iex> operations = [
...> {:get, "device1", "sysDescr.0", []},
...> {:get_bulk, "switch1", "ifTable", [max_repetitions: 20]},
...> {:walk, "router1", "system", [version: :v2c]}
...>]

Default list format
iex> SnmpKit.SnmpMgr.Multi.execute_mixed(operations)
[
 {:ok, "Device 1 Description"},
 {:ok, [{"1.3.6.1.2.1.2.2.1.2.1", "eth0"}, ...]},
 {:ok, [{"1.3.6.1.2.1.1.1.0", "Router 1"}, ...]}
]

Note: execute_mixed handles different operation types, so return_format
is not applicable here as operations have different target/args structures

 get_bulk_multi(targets_and_oids, opts \\ [])

Performs GETBULK operations against multiple targets concurrently.
Parameters
	targets_and_oids - List of {target, oid} or {target, oid, opts} tuples
	opts - Global options applied to all requests	:return_format - Format of returned results (default: :list)	:list - Returns list of results in same order as input
	:with_targets - Returns list of {target, oid, result} tuples
	:map - Returns map with {target, oid} keys and result values

Examples
iex> requests = [
...> {"switch1", "ifTable"},
...> {"switch2", "ifTable"},
...> {"router1", "ipRouteTable"}
...>]

Default list format
iex> SnmpKit.SnmpMgr.Multi.get_bulk_multi(requests, max_repetitions: 20)
[
 {:ok, [{[1,3,6,1,2,1,2,2,1,2,1], :octet_string, "eth0"}, ...]},
 {:ok, [{[1,3,6,1,2,1,2,2,1,2,1], :octet_string, "GigE0/1"}, ...]},
 {:error, :timeout}
]

With targets format
iex> SnmpKit.SnmpMgr.Multi.get_bulk_multi(requests, return_format: :with_targets, max_repetitions: 20)
[
 {"switch1", "ifTable", {:ok, [{[1,3,6,1,2,1,2,2,1,2,1], :octet_string, "eth0"}, ...]}},
 {"switch2", "ifTable", {:ok, [{[1,3,6,1,2,1,2,2,1,2,1], :octet_string, "GigE0/1"}, ...]}},
 {"router1", "ipRouteTable", {:error, :timeout}}
]

Map format
iex> SnmpKit.SnmpMgr.Multi.get_bulk_multi(requests, return_format: :map, max_repetitions: 20)
%{
 {"switch1", "ifTable"} => {:ok, [{[1,3,6,1,2,1,2,2,1,2,1], :octet_string, "eth0"}, ...]},
 {"switch2", "ifTable"} => {:ok, [{[1,3,6,1,2,1,2,2,1,2,1], :octet_string, "GigE0/1"}, ...]},
 {"router1", "ipRouteTable"} => {:error, :timeout}
}

 get_multi(targets_and_oids, opts \\ [])

Performs GET operations against multiple targets concurrently.
Parameters
	targets_and_oids - List of {target, oid} or {target, oid, opts} tuples
	opts - Global options applied to all requests	:return_format - Format of returned results (default: :list)	:list - Returns list of results in same order as input
	:with_targets - Returns list of {target, oid, result} tuples
	:map - Returns map with {target, oid} keys and result values

Examples
iex> requests = [
...> {"device1", "sysDescr.0"},
...> {"device2", "sysUpTime.0"},
...> {"device3", "ifNumber.0"}
...>]

Default list format
iex> SnmpKit.SnmpMgr.Multi.get_multi(requests)
[
 {:ok, "Device 1 Description"},
 {:ok, 123456},
 {:error, :timeout}
]

With targets format - includes host/oid association
iex> SnmpKit.SnmpMgr.Multi.get_multi(requests, return_format: :with_targets)
[
 {"device1", "sysDescr.0", {:ok, "Device 1 Description"}},
 {"device2", "sysUpTime.0", {:ok, 123456}},
 {"device3", "ifNumber.0", {:error, :timeout}}
]

Map format - easy result lookup by host/oid
iex> SnmpKit.SnmpMgr.Multi.get_multi(requests, return_format: :map)
%{
 {"device1", "sysDescr.0"} => {:ok, "Device 1 Description"},
 {"device2", "sysUpTime.0"} => {:ok, 123456},
 {"device3", "ifNumber.0"} => {:error, :timeout}
}

 monitor(targets_and_oids, callback, opts \\ [])

Monitors multiple devices for changes by polling at regular intervals.
Parameters
	targets_and_oids - List of {target, oid} tuples to monitor
	callback - Function called with {target, oid, old_value, new_value} when changes occur
	opts - Options including :interval, :initial_poll, :max_concurrent

Examples
targets = [{"device1", "sysUpTime.0"}, {"device2", "ifInOctets.1"}]
callback = fn change -> IO.inspect(change) end
{:ok, monitor_pid} = SnmpKit.SnmpMgr.Multi.monitor(targets, callback, interval: 30_000)

 walk_multi(targets_and_oids, opts \\ [])

Performs walk operations against multiple targets concurrently.
Parameters
	targets_and_oids - List of {target, root_oid} or {target, root_oid, opts} tuples
	opts - Global options applied to all requests	:return_format - Format of returned results (default: :list)	:list - Returns list of results in same order as input
	:with_targets - Returns list of {target, oid, result} tuples
	:map - Returns map with {target, oid} keys and result values

Examples
iex> requests = [
...> {"device1", "system"},
...> {"device2", "interfaces"},
...> {"device3", [1, 3, 6, 1, 2, 1, 4]}
...>]

Default list format
iex> SnmpKit.SnmpMgr.Multi.walk_multi(requests, version: :v2c)
[
 {:ok, [{[1,3,6,1,2,1,1,1,0], :octet_string, "Device 1"}, ...]},
 {:ok, [{[1,3,6,1,2,1,2,1,0], :integer, 24}, ...]},
 {:error, :timeout}
]

With targets format
iex> SnmpKit.SnmpMgr.Multi.walk_multi(requests, return_format: :with_targets, version: :v2c)
[
 {"device1", "system", {:ok, [{[1,3,6,1,2,1,1,1,0], :octet_string, "Device 1"}, ...]}},
 {"device2", "interfaces", {:ok, [{[1,3,6,1,2,1,2,1,0], :integer, 24}, ...]}},
 {"device3", [1, 3, 6, 1, 2, 1, 4], {:error, :timeout}}
]

Map format
iex> SnmpKit.SnmpMgr.Multi.walk_multi(requests, return_format: :map, version: :v2c)
%{
 {"device1", "system"} => {:ok, [{[1,3,6,1,2,1,1,1,0], :octet_string, "Device 1"}, ...]},
 {"device2", "interfaces"} => {:ok, [{[1,3,6,1,2,1,2,1,0], :integer, 24}, ...]},
 {"device3", [1, 3, 6, 1, 2, 1, 4]} => {:error, :timeout}
}

 walk_table_multi(targets_and_tables, opts \\ [])

Performs table walk operations against multiple targets concurrently.
Parameters
	targets_and_tables - List of {target, table_oid} or {target, table_oid, opts} tuples
	opts - Global options applied to all requests	:return_format - Format of returned results (default: :list)	:list - Returns list of results in same order as input
	:with_targets - Returns list of {target, oid, result} tuples
	:map - Returns map with {target, oid} keys and result values

Examples
iex> requests = [
...> {"switch1", "ifTable"},
...> {"switch2", "ifTable"},
...> {"router1", "ipRouteTable"}
...>]

Default list format
iex> SnmpKit.SnmpMgr.Multi.walk_table_multi(requests, version: :v2c)
[
 {:ok, [{"1.3.6.1.2.1.2.2.1.2.1", "eth0"}, ...]},
 {:ok, [{"1.3.6.1.2.1.2.2.1.2.1", "GigE0/1"}, ...]},
 {:error, :host_unreachable}
]

With targets format
iex> SnmpKit.SnmpMgr.Multi.walk_table_multi(requests, return_format: :with_targets, version: :v2c)
[
 {"switch1", "ifTable", {:ok, [{"1.3.6.1.2.1.2.2.1.2.1", "eth0"}, ...]}},
 {"switch2", "ifTable", {:ok, [{"1.3.6.1.2.1.2.2.1.2.1", "GigE0/1"}, ...]}},
 {"router1", "ipRouteTable", {:error, :host_unreachable}}
]

Map format
iex> SnmpKit.SnmpMgr.Multi.walk_table_multi(requests, return_format: :map, version: :v2c)
%{
 {"switch1", "ifTable"} => {:ok, [{"1.3.6.1.2.1.2.2.1.2.1", "eth0"}, ...]},
 {"switch2", "ifTable"} => {:ok, [{"1.3.6.1.2.1.2.2.1.2.1", "GigE0/1"}, ...]},
 {"router1", "ipRouteTable"} => {:error, :host_unreachable}
}

SnmpKit.SnmpMgr.MultiV2

High-performance concurrent multi-target SNMP operations.
This module provides efficient SNMP operations against multiple targets
using direct UDP sending and centralized response correlation, eliminating
GenServer bottlenecks while maintaining proper concurrency control.

 Summary

 Functions

 execute_mixed(operations, opts \\ [])

 Executes mixed SNMP operations against multiple targets concurrently.

 get_bulk_multi(targets_and_oids, opts \\ [])

 Performs GETBULK operations against multiple targets concurrently.

 get_multi(targets_and_oids, opts \\ [])

 Performs GET operations against multiple targets concurrently.

 walk_multi(targets_and_oids, opts \\ [])

 Performs walk operations against multiple targets concurrently.

 walk_table_multi(targets_and_tables, opts \\ [])

 Performs table walk operations against multiple targets concurrently.

 Functions

 execute_mixed(operations, opts \\ [])

Executes mixed SNMP operations against multiple targets concurrently.
Parameters
	operations - List of {operation, target, oid_or_args, opts} tuples
	opts - Global options

Examples
iex> operations = [
...> {:get, "device1", "sysDescr.0", []},
...> {:get_bulk, "switch1", "ifTable", [max_repetitions: 20]},
...> {:walk, "router1", "system", []}
...>]
iex> SnmpKit.SnmpMgr.MultiV2.execute_mixed(operations)
[
 {:ok, "Device 1 Description"},
 {:ok, [{"1.3.6.1.2.1.2.2.1.2.1", "eth0"}, ...]},
 {:ok, [{"1.3.6.1.2.1.1.1.0", "Router 1"}, ...]}
]

 get_bulk_multi(targets_and_oids, opts \\ [])

Performs GETBULK operations against multiple targets concurrently.
Parameters
	targets_and_oids - List of {target, oid} or {target, oid, opts} tuples
	opts - Global options applied to all requests	:max_repetitions - Maximum repetitions for GetBulk (default: 10)

Examples
iex> requests = [
...> {"switch1", "ifTable"},
...> {"switch2", "ifTable"}
...>]
iex> SnmpKit.SnmpMgr.MultiV2.get_bulk_multi(requests, max_repetitions: 20)
[
 {:ok, [{"1.3.6.1.2.1.2.2.1.2.1", "eth0"}, ...]},
 {:ok, [{"1.3.6.1.2.1.2.2.1.2.1", "GigE0/1"}, ...]}
]

 get_multi(targets_and_oids, opts \\ [])

Performs GET operations against multiple targets concurrently.
Parameters
	targets_and_oids - List of {target, oid} or {target, oid, opts} tuples
	opts - Global options applied to all requests	:timeout - Request timeout in milliseconds (default: 10000)
	:max_concurrent - Maximum concurrent requests (default: 10)
	:return_format - Format of returned results (default: :list)	:list - Returns list of results in same order as input
	:with_targets - Returns list of {target, oid, result} tuples
	:map - Returns map with {target, oid} keys and result values

Examples
iex> requests = [
...> {"device1", "sysDescr.0"},
...> {"device2", "sysUpTime.0"}
...>]
iex> SnmpKit.SnmpMgr.MultiV2.get_multi(requests)
[
 {:ok, "Device 1 Description"},
 {:ok, 123456}
]

 walk_multi(targets_and_oids, opts \\ [])

Performs walk operations against multiple targets concurrently.
Parameters
	targets_and_oids - List of {target, root_oid} or {target, root_oid, opts} tuples
	opts - Global options applied to all requests

Examples
iex> requests = [
...> {"device1", "system"},
...> {"device2", "interfaces"}
...>]
iex> SnmpKit.SnmpMgr.MultiV2.walk_multi(requests)
[
 {:ok, [{"1.3.6.1.2.1.1.1.0", "Device 1"}, ...]},
 {:ok, [{"1.3.6.1.2.1.2.1.0", 24}, ...]}
]

 walk_table_multi(targets_and_tables, opts \\ [])

Performs table walk operations against multiple targets concurrently.
Parameters
	targets_and_tables - List of {target, table_oid} or {target, table_oid, opts} tuples
	opts - Global options applied to all requests

Examples
iex> requests = [
...> {"switch1", "ifTable"},
...> {"switch2", "ifTable"}
...>]
iex> SnmpKit.SnmpMgr.MultiV2.walk_table_multi(requests)
[
 {:ok, [{"1.3.6.1.2.1.2.2.1.2.1", "eth0"}, ...]},
 {:ok, [{"1.3.6.1.2.1.2.2.1.2.1", "GigE0/1"}, ...]}
]

SnmpKit.SnmpMgr.PerformanceBenchmark

Performance benchmarking and profiling tools for SNMP operations.
Provides tools to measure and compare performance between different
SNMP architectures, including throughput, latency, memory usage,
and resource utilization.

 Summary

 Functions

 compare_architectures(opts \\ [])

 Runs a comprehensive benchmark comparing old vs new Multi architecture.

 measure_throughput(opts \\ [])

 Measures throughput (requests per second) for a given configuration.

 monitor_buffer_usage(targets, max_concurrent, timeout)

 Monitors UDP buffer utilization during high-load operations.

 profile_memory_usage(targets, max_concurrent, timeout)

 Profiles memory usage during concurrent SNMP operations.

 Functions

 compare_architectures(opts \\ [])

Runs a comprehensive benchmark comparing old vs new Multi architecture.
Options
	:target_count - Number of targets to test (default: 10)
	:requests_per_target - Number of requests per target (default: 5)
	:max_concurrent - Concurrency limit (default: 10)
	:timeout - Request timeout in ms (default: 5000)
	:warmup_rounds - Warmup iterations (default: 3)
	:benchmark_rounds - Benchmark iterations (default: 10)

 measure_throughput(opts \\ [])

Measures throughput (requests per second) for a given configuration.
Options
	:duration_seconds - How long to run the test (default: 30)
	:max_concurrent - Concurrency limit (default: 10)
	:target_count - Number of targets (default: 5)

 monitor_buffer_usage(targets, max_concurrent, timeout)

Monitors UDP buffer utilization during high-load operations.

 profile_memory_usage(targets, max_concurrent, timeout)

Profiles memory usage during concurrent SNMP operations.

SnmpKit.SnmpMgr.RequestIdGenerator

Atomic request ID generator using ETS for thread-safe counter operations.
Provides unique request IDs for SNMP operations without requiring
GenServer synchronization, eliminating serialization bottlenecks.

 Summary

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 current_value()

 Gets the current counter value without incrementing.

 next_id()

 Generates the next unique request ID.

 reset()

 Resets the counter to 0.

 start_link(opts \\ [])

 Starts the RequestIdGenerator GenServer.

 Functions

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 current_value()

Gets the current counter value without incrementing.
Useful for debugging and monitoring.

 next_id()

Generates the next unique request ID.
Uses atomic ETS operations for thread-safe counter increment.
Wraps around at 1000000 to prevent overflow.
Examples
iex> SnmpKit.SnmpMgr.RequestIdGenerator.next_id()
1

iex> SnmpKit.SnmpMgr.RequestIdGenerator.next_id()
2

 reset()

Resets the counter to 0.
Primarily used for testing.

 start_link(opts \\ [])

Starts the RequestIdGenerator GenServer.
Creates the ETS table for atomic counter operations.

SnmpKit.SnmpMgr.Router

Intelligent request routing and load balancing for SNMP requests.
This module provides sophisticated routing strategies to optimize request
distribution across multiple engines and target devices, with support for
load balancing, affinity routing, and performance-based routing decisions.

 Summary

 Functions

 add_engine(router, engine_spec)

 Adds an engine to the routing pool.

 attempt_engine_recovery(router, engine_name)

 Attempts to recover a failed engine.

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 configure_batch_strategy(router, strategy_config)

 Configures batch processing strategy.

 configure_engines(router, config)

 Configures engine settings.

 configure_health_check(router, config)

 Configures health check settings.

 get_engine_health(router)

 Gets engine health information.

 get_stats(router)

 Gets routing statistics and engine health.

 mark_engine_healthy(router, engine_name)

 Marks an engine as healthy.

 mark_engine_unhealthy(router, engine_name, reason)

 Marks an engine as unhealthy.

 remove_engine(router, engine_name)

 Removes an engine from the routing pool.

 route_batch(router, requests, opts \\ [])

 Routes multiple requests as a batch.

 route_request(router, request, opts \\ [])

 Routes a request to the best available engine.

 set_engine_weights(router, weights)

 Sets engine weights for weighted routing.

 set_strategy(router, strategy)

 Updates routing strategy.

 start_link(opts \\ [])

 Starts the request router.

 Functions

 add_engine(router, engine_spec)

Adds an engine to the routing pool.

 attempt_engine_recovery(router, engine_name)

Attempts to recover a failed engine.

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 configure_batch_strategy(router, strategy_config)

Configures batch processing strategy.

 configure_engines(router, config)

Configures engine settings.

 configure_health_check(router, config)

Configures health check settings.

 get_engine_health(router)

Gets engine health information.

 get_stats(router)

Gets routing statistics and engine health.

 mark_engine_healthy(router, engine_name)

Marks an engine as healthy.

 mark_engine_unhealthy(router, engine_name, reason)

Marks an engine as unhealthy.

 remove_engine(router, engine_name)

Removes an engine from the routing pool.

 route_batch(router, requests, opts \\ [])

Routes multiple requests as a batch.
Parameters
	router - Router PID or name
	requests - List of request specifications
	opts - Routing options

Examples
requests = [
 %{type: :get, target: "device1", oid: "sysDescr.0"},
 %{type: :get, target: "device2", oid: "sysUpTime.0"}
]

{:ok, results} = SnmpKit.SnmpMgr.Router.route_batch(router, requests)

 route_request(router, request, opts \\ [])

Routes a request to the best available engine.
Parameters
	router - Router PID or name
	request - Request specification
	opts - Routing options

Examples
request = %{
 type: :get,
 target: "192.168.1.1",
 oid: "sysDescr.0"
}

{:ok, result} = SnmpKit.SnmpMgr.Router.route_request(router, request)

 set_engine_weights(router, weights)

Sets engine weights for weighted routing.

 set_strategy(router, strategy)

Updates routing strategy.

 start_link(opts \\ [])

Starts the request router.
Options
	:strategy - Routing strategy (:round_robin, :least_connections, :weighted, :affinity)
	:engines - List of engine specifications
	:health_check_interval - Health check interval in ms (default: 30000)
	:max_retries - Maximum retry attempts (default: 3)

Examples
{:ok, router} = SnmpKit.SnmpMgr.Router.start_link(
 strategy: :least_connections,
 engines: [
 %{name: :engine1, weight: 2, max_load: 100},
 %{name: :engine2, weight: 1, max_load: 50}
]
)

SnmpKit.SnmpMgr.SocketManager

Manages shared UDP sockets for SNMP operations.
Provides centralized socket lifecycle management with configurable
buffer sizes and health monitoring. Eliminates the need for individual
processes to manage their own sockets.

 Summary

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 get_buffer_stats(manager \\ __MODULE__)

 Gets detailed UDP buffer utilization metrics.

 get_port(manager \\ __MODULE__)

 Gets the local port the socket is bound to.

 get_socket(manager \\ __MODULE__)

 Gets the shared UDP socket.

 get_stats(manager \\ __MODULE__)

 Gets socket statistics and health information.

 health_check(manager \\ __MODULE__)

 Checks if the socket is healthy and operational.

 start_link(opts \\ [])

 Starts the SocketManager GenServer.

 Functions

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 get_buffer_stats(manager \\ __MODULE__)

Gets detailed UDP buffer utilization metrics.
Returns buffer usage, queue lengths, and utilization percentages.

 get_port(manager \\ __MODULE__)

Gets the local port the socket is bound to.

 get_socket(manager \\ __MODULE__)

Gets the shared UDP socket.
Returns the socket reference that can be used for sending
SNMP packets. The socket is configured with appropriate
buffer sizes and options.
Examples
iex> socket = SnmpKit.SnmpMgr.SocketManager.get_socket()
iex> :gen_udp.send(socket, {192, 168, 1, 1}, 161, packet)

 get_stats(manager \\ __MODULE__)

Gets socket statistics and health information.
Returns information about buffer usage, packet counts,
and socket health metrics.

 health_check(manager \\ __MODULE__)

Checks if the socket is healthy and operational.

 start_link(opts \\ [])

Starts the SocketManager GenServer.
Options
	:buffer_size - UDP receive buffer size in bytes (default: 4MB)
	:port - Local port to bind (default: 0 for OS assignment)
	:name - Process name (default: MODULE)

SnmpKit.SnmpMgr.Stream

High-performance streaming SNMP operations for memory-efficient processing.
This module provides streaming APIs that allow processing of large SNMP datasets
without loading everything into memory at once. Perfect for large tables and
real-time monitoring scenarios.

 Summary

 Functions

 concurrent_stream(device_operations, opts \\ [])

 Creates a concurrent stream that processes multiple devices in parallel.

 filtered_stream(target, root_oid, filter_fn, opts \\ [])

 Creates a filtered stream that applies predicates during data fetching.

 monitor_stream(targets, opts \\ [])

 Creates a real-time monitoring stream that polls devices at intervals.

 table_stream(target, table_oid, opts \\ [])

 Creates a stream for processing large SNMP tables.

 walk_stream(target, root_oid, opts \\ [])

 Creates a stream for walking large SNMP trees without memory overhead.

 Functions

 concurrent_stream(device_operations, opts \\ [])

Creates a concurrent stream that processes multiple devices in parallel.
Combines results from multiple devices into a single stream with
configurable concurrency and ordering.
Parameters
	device_operations - List of {target, operation, oid, opts} tuples
	opts - Options including :max_concurrent, :ordered, :timeout

Examples
Concurrent table walks
operations = [
 {"switch1", :walk_table, "ifTable", []},
 {"switch2", :walk_table, "ifTable", []},
 {"router1", :walk, "ipRouteTable", []}
]

operations
|> SnmpKit.SnmpMgr.Stream.concurrent_stream(max_concurrent: 3)
|> Stream.each(&process_device_data/1)
|> Stream.run()

 filtered_stream(target, root_oid, filter_fn, opts \\ [])

Creates a filtered stream that applies predicates during data fetching.
This is more efficient than Stream.filter/2 for large datasets as it
can skip unnecessary network requests based on OID patterns.
Parameters
	target - The target device
	root_oid - Starting OID
	filter_fn - Function to filter OIDs and values
	opts - Stream options

Examples
Only fetch interface names (column 2)
filter_fn = fn {oid, _type, _value} ->
 case SnmpKit.SnmpLib.OID.string_to_list(oid) do
 {:ok, oid_list} -> List.last(oid_list, 2) |> hd() == 2
 _ -> false
 end
end

"switch.local"
|> SnmpKit.SnmpMgr.Stream.filtered_stream("ifTable", filter_fn)
|> Enum.to_list()

 monitor_stream(targets, opts \\ [])

Creates a real-time monitoring stream that polls devices at intervals.
Provides a continuous stream of SNMP data for real-time monitoring
and alerting applications.
Parameters
	targets - List of {target, oid} tuples to monitor
	opts - Options including :interval, :buffer_size, :error_handling

Examples
Monitor multiple devices
targets = [
 {"switch1", "ifInOctets.1"},
 {"switch2", "ifInOctets.1"},
 {"router1", "sysUpTime.0"}
]

targets
|> SnmpKit.SnmpMgr.Stream.monitor_stream(interval: 30_000)
|> Stream.each(&send_to_metrics_system/1)
|> Stream.run()

Monitor with error handling
targets
|> SnmpKit.SnmpMgr.Stream.monitor_stream(
 interval: 10_000,
 error_handling: :skip_errors
)
|> Stream.filter(&is_successful_reading/1)
|> Stream.each(&update_dashboard/1)
|> Stream.run()

 table_stream(target, table_oid, opts \\ [])

Creates a stream for processing large SNMP tables.
Optimized for table structures with intelligent chunking based on
table columns and indexes.
Parameters
	target - The target device
	table_oid - The table OID to stream
	opts - Options including :chunk_size, :columns, :indexes

Examples
Stream interface table with column filtering
"switch.local"
|> SnmpKit.SnmpMgr.Stream.table_stream("ifTable", columns: [:ifDescr, :ifOperStatus])
|> Stream.filter(fn {_index, data} -> data[:ifOperStatus] == 1 end)
|> Stream.map(fn {index, data} -> {index, data[:ifDescr]} end)
|> Enum.to_list()

Process table with custom chunk size
"device.local"
|> SnmpKit.SnmpMgr.Stream.table_stream("ipRouteTable", chunk_size: 200)
|> Stream.each(&process_route_entry/1)
|> Stream.run()

 walk_stream(target, root_oid, opts \\ [])

Creates a stream for walking large SNMP trees without memory overhead.
The stream lazily fetches data in chunks, allowing processing of arbitrarily
large SNMP trees with constant memory usage.
Parameters
	target - The target device
	root_oid - Starting OID for the walk
	opts - Options including :chunk_size, :version, :adaptive

Examples
Process a large table efficiently
"switch.local"
|> SnmpKit.SnmpMgr.Stream.walk_stream("ifTable")
|> Stream.filter(fn {_oid, value} -> String.contains?(value, "Gigabit") end)
|> Stream.map(&extract_interface_info/1)
|> Enum.to_list()

Real-time processing with backpressure
"router.local"
|> SnmpKit.SnmpMgr.Stream.walk_stream("ipRouteTable", chunk_size: 100)
|> Stream.each(&update_routing_database/1)
|> Stream.run()

SnmpKit.SnmpMgr.Supervisor

Main supervisor for the SnmpMgr streaming PDU engine infrastructure.
This supervisor manages all Phase 5 components including engines, routers,
connection pools, circuit breakers, and metrics collection.

 Summary

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 start_link(opts \\ [])

 Functions

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 start_link(opts \\ [])

SnmpKit.SnmpMgr.Table

Table processing utilities for SNMP table data.
Provides functions to convert flat OID/type/value lists into structured
table representations and perform table analysis operations.

 Summary

 Functions

 analyze(table_data, opts \\ [])

 Analyzes table structure and returns metadata about the table.

 column_stats(table_data, columns \\ nil)

 Calculates statistics for numeric columns in the table.

 filter_by_column(table_data, column, filter_fn)

 Filters table data by column values using a filter function.

 filter_by_index(table_data, index_filter)

 Filters table data by index using a filter function.

 find_duplicates(table_data, columns)

 Finds duplicate rows in the table based on specified columns.

 get_columns(table_data)

 Extracts all unique column numbers from table data.

 get_indexes(table_data)

 Extracts all unique indexes from table data.

 group_by_column(table_data, column)

 Groups table rows by values in a specific column.

 sort_by_column(table_data, column, direction \\ :asc)

 Sorts table data by a specific column.

 to_list(table_data)

 Converts table data to a list format for easier processing.

 to_map(oid_type_value_tuples, key_column)

 Converts table data to a map keyed by a specific column.

 to_rows(oid_type_value_tuples)

 Converts OID/type/value tuples to a list of row maps.

 to_table(oid_type_value_tuples, table_oid)

 Converts flat OID/type/value tuples to a structured table format.

 validate(table_data, opts \\ [])

 Validates table data integrity and consistency.

 Functions

 analyze(table_data, opts \\ [])

Analyzes table structure and returns metadata about the table.
Provides detailed information about table dimensions, column types,
missing data, and statistical analysis.
Parameters
	table_data - Table data as returned by to_table/2
	opts - Options including :analyze_types, :find_missing

Examples
iex> table = %{1 => %{2 => "eth0", 3 => 100}, 2 => %{2 => "eth1", 3 => 200}}
iex> SnmpKit.SnmpMgr.Table.analyze(table)
{:ok, %{
 row_count: 2,
 column_count: 2,
 columns: [2, 3],
 indexes: [1, 2],
 completeness: 1.0,
 column_types: %{2 => :string, 3 => :integer}
}}

 column_stats(table_data, columns \\ nil)

Calculates statistics for numeric columns in the table.
Parameters
	table_data - Table data as returned by to_table/2
	columns - List of column numbers to analyze (optional, analyzes all numeric columns)

Examples
iex> table = %{1 => %{2 => "eth0", 3 => 100}, 2 => %{2 => "eth1", 3 => 200}}
iex> SnmpKit.SnmpMgr.Table.column_stats(table, [3])
{:ok, %{3 => %{count: 2, sum: 300, avg: 150.0, min: 100, max: 200}}}

 filter_by_column(table_data, column, filter_fn)

Filters table data by column values using a filter function.
Parameters
	table_data - Table data as returned by to_table/2
	column - Column number to filter on
	filter_fn - Function that takes a value and returns boolean

Examples
iex> table = %{1 => %{2 => "eth0", 3 => 1}, 2 => %{2 => "eth1", 3 => 0}}
iex> SnmpKit.SnmpMgr.Table.filter_by_column(table, 3, fn val -> val == 1 end)
{:ok, %{1 => %{2 => "eth0", 3 => 1}}}

 filter_by_index(table_data, index_filter)

Filters table data by index using a filter function.
Parameters
	table_data - Table data as returned by to_table/2
	index_filter - Function that takes an index and returns boolean

Examples
iex> table = %{1 => %{2 => "eth0"}, 2 => %{2 => "eth1"}, 10 => %{2 => "lo"}}
iex> SnmpKit.SnmpMgr.Table.filter_by_index(table, fn index -> index < 10 end)
{:ok, %{1 => %{2 => "eth0"}, 2 => %{2 => "eth1"}}}

 find_duplicates(table_data, columns)

Finds duplicate rows in the table based on specified columns.
Parameters
	table_data - Table data as returned by to_table/2
	columns - List of column numbers to check for duplicates

Examples
iex> table = %{1 => %{2 => "eth", 3 => 1}, 2 => %{2 => "eth", 3 => 1}}
iex> SnmpKit.SnmpMgr.Table.find_duplicates(table, [2, 3])
{:ok, [[{1, %{2 => "eth", 3 => 1}}, {2, %{2 => "eth", 3 => 1}}]]}

 get_columns(table_data)

Extracts all unique column numbers from table data.

 get_indexes(table_data)

Extracts all unique indexes from table data.

 group_by_column(table_data, column)

Groups table rows by values in a specific column.
Parameters
	table_data - Table data as returned by to_table/2
	column - Column number to group by

Examples
iex> table = %{1 => %{2 => "eth", 3 => 1}, 2 => %{2 => "lo", 3 => 1}}
iex> SnmpKit.SnmpMgr.Table.group_by_column(table, 3)
{:ok, %{1 => [%{index: 1, 2 => "eth", 3 => 1}, %{index: 2, 2 => "lo", 3 => 1}]}}

 sort_by_column(table_data, column, direction \\ :asc)

Sorts table data by a specific column.
Parameters
	table_data - Table data as returned by to_table/2
	column - Column number to sort by
	direction - :asc or :desc (default: :asc)

Examples
iex> table = %{1 => %{2 => "eth1"}, 2 => %{2 => "eth0"}}
iex> SnmpKit.SnmpMgr.Table.sort_by_column(table, 2)
{:ok, [{2, %{2 => "eth0"}}, {1, %{2 => "eth1"}}]}

 to_list(table_data)

Converts table data to a list format for easier processing.
Examples
iex> table = %{1 => %{2 => "eth0", 3 => 6}, 2 => %{2 => "eth1", 3 => 6}}
iex> SnmpKit.SnmpMgr.Table.to_list(table)
{:ok, [
 %{index: 1, 2 => "eth0", 3 => 6},
 %{index: 2, 2 => "eth1", 3 => 6}
]}

 to_map(oid_type_value_tuples, key_column)

Converts table data to a map keyed by a specific column.
Parameters
	oid_type_value_tuples - List of {oid_string, type, value} tuples
	key_column - Column number to use as the key

Examples
iex> tuples = [
...> {"1.3.6.1.2.1.2.2.1.1.1", :integer, 1},
...> {"1.3.6.1.2.1.2.2.1.2.1", :string, "eth0"},
...> {"1.3.6.1.2.1.2.2.1.1.2", :integer, 2},
...> {"1.3.6.1.2.1.2.2.1.2.2", :string, "eth1"}
...>]
iex> SnmpKit.SnmpMgr.Table.to_map(tuples, 1)
{:ok, %{
 1 => %{ifIndex: 1, ifDescr: "eth0"},
 2 => %{ifIndex: 2, ifDescr: "eth1"}
}}

 to_rows(oid_type_value_tuples)

Converts OID/type/value tuples to a list of row maps.
Each row is a map where keys are column numbers and values are the data values.

 to_table(oid_type_value_tuples, table_oid)

Converts flat OID/type/value tuples to a structured table format.
Takes a list of {oid_string, type, value} tuples from a table walk
and converts them into a structured table with rows and columns.
Parameters
	oid_type_value_tuples - List of {oid_string, type, value} tuples
	table_oid - The base table OID (used to determine table structure)

Examples
iex> tuples = [
...> {"1.3.6.1.2.1.2.2.1.2.1", :string, "eth0"},
...> {"1.3.6.1.2.1.2.2.1.2.2", :string, "eth1"},
...> {"1.3.6.1.2.1.2.2.1.3.1", :integer, 6},
...> {"1.3.6.1.2.1.2.2.1.3.2", :integer, 6}
...>]
iex> SnmpKit.SnmpMgr.Table.to_table(tuples, [1, 3, 6, 1, 2, 1, 2, 2])
{:ok, %{
 1 => %{2 => "eth0", 3 => 6},
 2 => %{2 => "eth1", 3 => 6}
}}

 validate(table_data, opts \\ [])

Validates table data integrity and consistency.
Parameters
	table_data - Table data as returned by to_table/2
	opts - Validation options

Examples
iex> table = %{1 => %{2 => "eth0", 3 => 100}}
iex> SnmpKit.SnmpMgr.Table.validate(table)
{:ok, %{valid: true, issues: []}}

SnmpKit.SnmpMgr.Target

Target parsing and validation for SNMP requests.
Handles parsing of various target formats and resolves hostnames to IP addresses.

 Summary

 Functions

 parse(target)

 Parses a target string into a structured format.

 resolve_hostname(target)

 Resolves a hostname to an IP address if needed.

 validate_connectivity(map, timeout \\ 5000)

 Validates that a target is reachable (basic connectivity check).

 Functions

 parse(target)

Parses a target string into a structured format.
Examples
iex> SnmpKit.SnmpMgr.Target.parse("192.168.1.1:161")
{:ok, %{host: {192, 168, 1, 1}, port: 161}}

iex> SnmpKit.SnmpMgr.Target.parse("device.local")
{:ok, %{host: "device.local", port: 161}}

iex> SnmpKit.SnmpMgr.Target.parse("192.168.1.1")
{:ok, %{host: {192, 168, 1, 1}, port: 161}}

 resolve_hostname(target)

Resolves a hostname to an IP address if needed.
If the host is already an IP tuple, returns it unchanged.

 validate_connectivity(map, timeout \\ 5000)

Validates that a target is reachable (basic connectivity check).

SnmpKit.SnmpMgr.Types

SNMP data type handling and conversion.
Handles encoding and decoding of SNMP values, including automatic type inference
and explicit type specification.

 Summary

 Functions

 decode_value(value)

 Decodes an SNMP value to an Elixir term.

 encode_value(value, opts \\ [])

 Encodes a value for SNMP with optional type specification.

 infer_type(value)

 Automatically infers the SNMP type from an Elixir value.

 Functions

 decode_value(value)

Decodes an SNMP value to an Elixir term.
Examples
iex> SnmpKit.SnmpMgr.Types.decode_value({:string, "Hello"})
"Hello"

iex> SnmpKit.SnmpMgr.Types.decode_value({:integer, 42})
42

 encode_value(value, opts \\ [])

Encodes a value for SNMP with optional type specification.
Parameters
	value - The value to encode
	opts - Options including :type for explicit type specification

Examples
iex> SnmpKit.SnmpMgr.Types.encode_value("Hello World")
{:ok, {:string, "Hello World"}}

iex> SnmpKit.SnmpMgr.Types.encode_value(42)
{:ok, {:integer, 42}}

iex> SnmpKit.SnmpMgr.Types.encode_value("192.168.1.1", type: :ipAddress)
{:ok, {:ipAddress, {192, 168, 1, 1}}}

 infer_type(value)

Automatically infers the SNMP type from an Elixir value.
Examples
iex> SnmpKit.SnmpMgr.Types.infer_type("hello")
:string

iex> SnmpKit.SnmpMgr.Types.infer_type(42)
:integer

iex> SnmpKit.SnmpMgr.Types.infer_type("192.168.1.1")
:string # Would need explicit :ipAddress type

SnmpKit.SnmpMgr.Walk

SNMP walk operations using iterative GETNEXT requests.
This module provides efficient walking of SNMP trees and tables
using the GETNEXT operation repeatedly until the end of the subtree.

 Summary

 Functions

 walk(target, root_oid, opts \\ [])

 Performs a walk starting from the given root OID.

 walk_column(target, column_oid, opts \\ [])

 Walks a specific table column.

 walk_table(target, table_oid, opts \\ [])

 Walks an SNMP table starting from the table OID.

 Functions

 walk(target, root_oid, opts \\ [])

Performs a walk starting from the given root OID.
Automatically chooses between GETNEXT (SNMPv1) and GETBULK (SNMPv2c)
based on the version specified in options.
Parameters
	target - The target device
	root_oid - Starting OID for the walk
	opts - Options including :version, :max_repetitions, :timeout, :community

Examples
iex> SnmpKit.SnmpMgr.Walk.walk("192.168.1.1", [1, 3, 6, 1, 2, 1, 1])
{:ok, [
 {[1,3,6,1,2,1,1,1,0], :octet_string, "System description"},
 {[1,3,6,1,2,1,1,2,0], :object_identifier, [1,3,6,1,4,1,9,1,1]},
 {[1,3,6,1,2,1,1,3,0], :timeticks, 12345}
]}

 walk_column(target, column_oid, opts \\ [])

Walks a specific table column.
Parameters
	target - The target device
	column_oid - The full column OID (table + entry + column)
	opts - Options

 walk_table(target, table_oid, opts \\ [])

Walks an SNMP table starting from the table OID.
Automatically chooses between GETNEXT and GETBULK based on version.
GETBULK provides significantly better performance for large tables.
Parameters
	target - The target device
	table_oid - The table OID to walk
	opts - Options including :version, :max_repetitions, :timeout, :community

SnmpKit.SnmpSim.BehaviorConfig

Configuration system for enhancing walk files with realistic behaviors.
Provides easy-to-use behavior presets and customization options.

 Summary

 Functions

 apply_behaviors(profile, behavior_configs)

 Apply behavior configurations to a loaded profile.

 create_custom(behavior_specs)

 Create custom behavior configuration.

 get_preset(preset_name)

 Get predefined behavior configuration sets.

 list_available_behaviors()

 Get available behavior types and their configurations.

 Functions

 apply_behaviors(profile, behavior_configs)

Apply behavior configurations to a loaded profile.
Examples
Apply basic realistic behaviors
enhanced_profile = SnmpKit.SnmpSim.BehaviorConfig.apply_behaviors(profile, [
 :realistic_counters,
 :daily_patterns,
 {:custom_utilization, peak_hours: {9, 17}}
])

 create_custom(behavior_specs)

Create custom behavior configuration.
Examples
config = SnmpKit.SnmpSim.BehaviorConfig.create_custom([
 {:traffic_counters, %{
 rate_multiplier: 1.5,
 daily_pattern: true,
 burst_probability: 0.2
 }},
 {:signal_quality, %{
 base_snr: 25,
 weather_impact: true,
 degradation_rate: 0.1
 }}
])

 get_preset(preset_name)

Get predefined behavior configuration sets.
Examples
Cable modem realistic simulation
behaviors = SnmpKit.SnmpSim.BehaviorConfig.get_preset(:cable_modem_realistic)

High traffic simulation
behaviors = SnmpKit.SnmpSim.BehaviorConfig.get_preset(:high_traffic_simulation)

 list_available_behaviors()

Get available behavior types and their configurations.

SnmpKit.SnmpSim.BulkOperations

Efficient GETBULK implementation for SNMPv2c.
Handles non-repeaters, max-repetitions, and response size management.
GETBULK is a powerful SNMP operation that retrieves multiple variables in a single request.
It's particularly useful for retrieving large tables like interface statistics.
Algorithm
	Process first N variable bindings as non-repeaters (like GETNEXT)
	For remaining variable bindings, repeat up to max-repetitions times
	Respect UDP packet size limits (typically 1472 bytes for Ethernet)
	Return tooBig error if response would exceed limits

 Summary

 Functions

 estimate_response_size(varbinds)

 Calculate estimated response size for a list of variable bindings.
Used for response size management.

 handle_bulk_request(oid_tree, non_repeaters, max_repetitions, varbinds)

 Handle a GETBULK request with proper non-repeaters and max-repetitions processing.

 optimize_bulk_response(results, max_size \\ 1400)

 Optimize bulk response to fit within UDP packet size limits.
Estimates response size and truncates if necessary.

 process_interface_table(oid_tree, table_oid, max_repetitions)

 Process an interface table bulk request efficiently.
Optimized for common SNMP table walking operations.

 Functions

 estimate_response_size(varbinds)

Calculate estimated response size for a list of variable bindings.
Used for response size management.
Examples
size = SnmpKit.SnmpSim.BulkOperations.estimate_response_size(varbinds)

 handle_bulk_request(oid_tree, non_repeaters, max_repetitions, varbinds)

Handle a GETBULK request with proper non-repeaters and max-repetitions processing.
Parameters
	oid_tree: The OID tree to query
	non_repeaters: Number of variables to treat as non-repeating (GETNEXT only)
	max_repetitions: Maximum number of repetitions for repeating variables
	varbinds: List of starting OIDs for the bulk operation

Returns
	{:ok, result_varbinds}: Successful bulk operation results
	{:error, :too_big}: Response would exceed UDP size limits
	{:error, reason}: Other error conditions

Examples
varbinds = [{"1.3.6.1.2.1.2.2.1.1", nil}, {"1.3.6.1.2.1.2.2.1.2", nil}]
{:ok, results} = SnmpKit.SnmpSim.BulkOperations.handle_bulk_request(
 tree, 0, 10, varbinds
)

 optimize_bulk_response(results, max_size \\ 1400)

Optimize bulk response to fit within UDP packet size limits.
Estimates response size and truncates if necessary.
Parameters
	results: List of {oid, value, behavior} tuples
	max_size: Maximum response size in bytes (default: 1400)

Returns
	{:ok, optimized_results}: Results that fit within size limit
	{:error, :too_big}: Even minimal response exceeds size limit

Examples
{:ok, optimized} = SnmpKit.SnmpSim.BulkOperations.optimize_bulk_response(results, 1400)

 process_interface_table(oid_tree, table_oid, max_repetitions)

Process an interface table bulk request efficiently.
Optimized for common SNMP table walking operations.
Examples
{:ok, results} = SnmpKit.SnmpSim.BulkOperations.process_interface_table(
 tree, "1.3.6.1.2.1.2.2.1", 10
)

SnmpKit.SnmpSim.Config

Configuration management for SnmpSim with support for JSON and YAML files.
This module provides a convenient way to configure SnmpSim using external
configuration files, making it especially useful for container deployments
and development environments.
Supported formats
	JSON files
	YAML files (requires yaml_elixir dependency)
	Elixir configuration maps

Usage
Load from JSON file
{:ok, config} = SnmpKit.SnmpSim.Config.load_from_file("config/devices.json")
{:ok, devices} = SnmpKit.SnmpSim.Config.start_from_config(config)

Load from YAML file
{:ok, config} = SnmpKit.SnmpSim.Config.load_yaml("config/devices.yaml")
{:ok, devices} = SnmpKit.SnmpSim.Config.start_from_config(config)

Load from environment
{:ok, config} = SnmpKit.SnmpSim.Config.load_from_environment()
{:ok, devices} = SnmpKit.SnmpSim.Config.start_from_config(config)

 Summary

 Functions

 load_from_environment()

 Loads configuration from environment variables.

 load_from_file(file_path)

 Loads configuration from a JSON file.

 load_yaml(file_path)

 Loads configuration from a YAML file.

 sample_config()

 Creates a sample configuration for reference.

 start_from_config(map)

 Starts devices and services based on the provided configuration.

 validate_config(config)

 Validates a configuration map and provides helpful error messages.

 write_sample_config(file_path, format \\ :json)

 Writes a sample configuration to a file.

 Functions

 load_from_environment()

Loads configuration from environment variables.
This function reads common environment variables and creates a configuration
map suitable for starting devices and configuring the system.

 load_from_file(file_path)

Loads configuration from a JSON file.

 load_yaml(file_path)

Loads configuration from a YAML file.
Requires the yaml_elixir dependency to be added to your mix.exs:
{:yaml_elixir, "~> 2.9"}

 sample_config()

Creates a sample configuration for reference.

 start_from_config(map)

Starts devices and services based on the provided configuration.

 validate_config(config)

Validates a configuration map and provides helpful error messages.

 write_sample_config(file_path, format \\ :json)

Writes a sample configuration to a file.

SnmpKit.SnmpSim.Core.Server

High-performance UDP server for SNMP request handling.
Supports concurrent packet processing with minimal latency.

 Summary

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 get_stats(server_pid)

 Get server statistics.

 set_device_handler(server_pid, handler)

 Update the device handler function.

 start_link(port, opts \\ [])

 Start an SNMP UDP server on the specified port.

 Functions

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 get_stats(server_pid)

Get server statistics.

 set_device_handler(server_pid, handler)

Update the device handler function.

 start_link(port, opts \\ [])

Start an SNMP UDP server on the specified port.
Options
	:community - SNMP community string (default: "public")
	:device_handler - Module or function to handle device requests
	:socket_opts - Additional socket options

Examples
{:ok, server} = SnmpKit.SnmpSim.Core.Server.start_link(9001,
 community: "public",
 device_handler: &MyDevice.handle_request/2
)

SnmpKit.SnmpSim.CorrelationEngine

Implement realistic correlations between different metrics.
Network metrics don't exist in isolation - they influence each other in predictable ways:
	Signal quality degrades with higher utilization
	Error rates increase with poor signal quality
	Temperature affects equipment performance
	Power consumption correlates with activity levels

This module provides sophisticated correlation modeling for authentic network simulation.

 Summary

 Types

 correlation_config()

 correlation_type()

 Functions

 apply_correlations(primary_oid, primary_value, device_state, correlations, current_time)

 Apply correlations to a device's metrics based on primary metric changes.

 calculate_power_consumption_correlation(device_metrics, device_type)

 Model power consumption correlations with activity and temperature.

 calculate_signal_throughput_correlation(snr_db, power_level_dbmv, max_throughput)

 Calculate signal quality impact on throughput for DOCSIS devices.

 calculate_temperature_performance_correlation(temperature_celsius, equipment_type)

 Calculate temperature impact on equipment performance.

 calculate_utilization_error_correlation(utilization_percent, interface_type)

 Calculate utilization impact on error rates.

 get_device_correlations(device_type)

 Get standard correlation configurations for common device types.

 Types

 correlation_config()

 @type correlation_config() :: %{
 type: correlation_type(),
 strength: float(),
 delay_seconds: integer(),
 threshold: float(),
 noise_factor: float()
}

 correlation_type()

 @type correlation_type() ::
 :positive | :negative | :threshold | :exponential | :logarithmic

 Functions

 apply_correlations(primary_oid, primary_value, device_state, correlations, current_time)

 @spec apply_correlations(atom(), number(), map(), list(), DateTime.t()) :: map()

Apply correlations to a device's metrics based on primary metric changes.
Examples
device_state = %{
 interface_utilization: 0.8,
 signal_quality: 85.0,
 temperature: 45.0
}

correlations = [
 {:interface_utilization, :error_rate, :positive, 0.7},
 {:signal_quality, :throughput, :positive, 0.9},
 {:temperature, :cpu_usage, :positive, 0.6}
]

updated_state = SnmpKit.SnmpSim.CorrelationEngine.apply_correlations(
 :interface_utilization, 0.8, device_state, correlations, DateTime.utc_now()
)

 calculate_power_consumption_correlation(device_metrics, device_type)

 @spec calculate_power_consumption_correlation(map(), atom()) :: float()

Model power consumption correlations with activity and temperature.
Power consumption correlates with:
	CPU utilization
	Network activity
	Temperature (cooling requirements)

 calculate_signal_throughput_correlation(snr_db, power_level_dbmv, max_throughput)

 @spec calculate_signal_throughput_correlation(float(), float(), float()) :: float()

Calculate signal quality impact on throughput for DOCSIS devices.
Signal quality (SNR, power levels) directly affects achievable throughput
in cable modem systems.

 calculate_temperature_performance_correlation(temperature_celsius, equipment_type)

 @spec calculate_temperature_performance_correlation(float(), atom()) :: %{
 cpu_impact: float(),
 signal_impact: float(),
 error_impact: float()
}

Calculate temperature impact on equipment performance.
Higher temperatures affect:
	CPU performance (thermal throttling)
	Signal quality (thermal noise)
	Error rates (increased bit errors)

 calculate_utilization_error_correlation(utilization_percent, interface_type)

 @spec calculate_utilization_error_correlation(float(), atom()) :: float()

Calculate utilization impact on error rates.
Higher utilization typically leads to increased error rates due to:
	Buffer overflows
	Increased collision probability
	Thermal effects

 get_device_correlations(device_type)

 @spec get_device_correlations(atom()) :: list()

Get standard correlation configurations for common device types.
Examples
correlations = SnmpKit.SnmpSim.CorrelationEngine.get_device_correlations(:cable_modem)

SnmpKit.SnmpSim.Device.ErrorInjector

Error injection functionality for SNMP device simulation.
Handles various error conditions like timeouts, packet loss, SNMP errors, and malformed responses.

 Summary

 Functions

 check_error_conditions(pdu, state)

 Check if any error conditions should be applied to the PDU.
Returns appropriate error response or :continue to proceed normally.

 check_malformed_conditions(pdu, state)

 Check if malformed response conditions should be applied.

 check_packet_loss_conditions(pdu, state)

 Check if packet loss conditions should be applied.

 check_snmp_error_conditions(pdu, state)

 Check if SNMP error conditions should be applied.

 check_timeout_conditions(pdu, state)

 Check if timeout conditions should be applied.

 create_malformed_response(pdu, config)

 Create a malformed response based on the error configuration.

 device_failure_active?(state)

 Check if device failure condition is active.

 oid_matches_target?(pdu, target_oids)

 Check if PDU OIDs match target OIDs for error injection.

 should_apply_error?(probability)

 Determine if error should be applied based on probability.

 Functions

 check_error_conditions(pdu, state)

Check if any error conditions should be applied to the PDU.
Returns appropriate error response or :continue to proceed normally.

 check_malformed_conditions(pdu, state)

Check if malformed response conditions should be applied.

 check_packet_loss_conditions(pdu, state)

Check if packet loss conditions should be applied.

 check_snmp_error_conditions(pdu, state)

Check if SNMP error conditions should be applied.

 check_timeout_conditions(pdu, state)

Check if timeout conditions should be applied.

 create_malformed_response(pdu, config)

Create a malformed response based on the error configuration.

 device_failure_active?(state)

Check if device failure condition is active.

 oid_matches_target?(pdu, target_oids)

Check if PDU OIDs match target OIDs for error injection.

 should_apply_error?(probability)

Determine if error should be applied based on probability.

SnmpKit.SnmpSim.Device.OidHandler

OID handling and value generation for SNMP device simulation.
Handles dynamic OID value generation, interface statistics, and MIB walking.

 Summary

 Functions

 build_correlation_factors(state)

 Builds correlation factors for related OIDs.

 build_device_state(state)

 Builds comprehensive device state for monitoring and OID responses.

 calculate_cpu_gauge(state)

 Calculates CPU utilization gauge with realistic load patterns.

 calculate_cpu_utilization(state)

 Calculates CPU utilization correlated with network activity.

 calculate_error_increment(state, counter_type)

 Calculates error increment for error counters with environmental factors.

 calculate_error_rate(state)

 Calculates error rate as a percentage based on signal quality.

 calculate_health_score(state)

 Calculates overall device health score.

 calculate_interface_utilization(state)

 Calculates interface utilization as a percentage.

 calculate_packet_increment(state, counter_type)

 Calculates packet increment for packet counters.

 calculate_signal_quality(state)

 Calculates signal quality metric.

 calculate_snr_gauge(state)

 Calculates Signal-to-Noise Ratio (SNR) gauge value for cable modems.

 calculate_storage_gauge(state)

 Calculates storage usage gauge in allocation units (typically KB).

 calculate_temperature(state)

 Calculates device temperature in Celsius.

 calculate_traffic_increment(state, counter_type)

 Calculates traffic increment for counters based on device type and time.

 calculate_uptime(arg1)

 Calculates device uptime in milliseconds.

 calculate_uptime_ticks(state)

 Calculates device uptime in SNMP TimeTicks (centiseconds).

 extract_oid(varbind)

 Extracts OID from SNMP PDU variable binding.

 extract_type_and_value(value)

 Extracts type and value from SNMP variable binding.

 get_bulk_oid_values(oid, count, state)

 Retrieves multiple OIDs for SNMP GetBulk operations.

 get_dynamic_oid_value(oid, state)

 Gets dynamic OID value based on device state and OID.

 get_fallback_bulk_oids(start_oid, max_repetitions, state)

 Gets fallback bulk OIDs for SNMP GetBulk operations.

 get_fallback_next_oid(oid_list, state)

 Gets fallback next OID for SNMP GetNext operations.

 get_interface_description(state)

 Gets interface description based on device type.

 get_next_oid_value(device_type, oid, state)

 Finds the next OID in lexicographic order for SNMP GetNext operations.

 get_oid_value(oid, state)

 Gets OID value based on device state and OID.

 get_time_factor()

 Gets time-of-day factor for simulating traffic patterns.

 handle_docsis_snr_oid(oid, state)

 Handles DOCSIS SNR OID.

 handle_hc_interface_oid(oid, state)

 Handles high capacity interface OID.

 handle_host_processor_oid(oid, state)

 Handles Host Resources processor OID.

 handle_host_storage_oid(oid, state)

 Handles Host Resources storage OID.

 handle_interface_oid(oid, state)

 Handles interface OID.

 oid_to_string(oid)

 Converts OID list to string representation.

 string_to_oid_list(oid_string)

 Converts string OID to list of integers.

 walk_oid_recursive(oid, root_oid, state, acc)

 walk_oid_values(oid, state)

 Walks OID values for SNMP MIB walking.

 Functions

 build_correlation_factors(state)

Builds correlation factors for related OIDs.
This can be expanded to track relationships between different metrics.
Parameters
	_state - Device state (currently unused)

Returns
	Map of correlation factors (currently empty)

 build_device_state(state)

Builds comprehensive device state for monitoring and OID responses.
Parameters
	state - Current device state

Returns
	Map containing calculated device metrics and status information

 calculate_cpu_gauge(state)

Calculates CPU utilization gauge with realistic load patterns.
Parameters
	state - Device state containing device_type

Returns
	Integer representing CPU utilization percentage (0-100)

 calculate_cpu_utilization(state)

Calculates CPU utilization correlated with network activity.
Parameters
	state - Device state

Returns
	Float representing CPU utilization (0.0 to 1.0)

 calculate_error_increment(state, counter_type)

Calculates error increment for error counters with environmental factors.
Parameters
	state - Device state
	counter_type - Type of error counter (:in_errors, :out_errors, etc.)

Returns
	Integer representing error count increment since device start

 calculate_error_rate(state)

Calculates error rate as a percentage based on signal quality.
Parameters
	state - Device state

Returns
	Float representing error rate percentage (0.0 to 0.05)

 calculate_health_score(state)

Calculates overall device health score.
Health score is based on signal quality, error rate, and uptime stability.
Parameters
	state - Device state

Returns
	Float representing health score (0.0 to 1.0)

 calculate_interface_utilization(state)

Calculates interface utilization as a percentage.
Parameters
	_state - Device state (currently unused)

Returns
	Float representing interface utilization (0.1 to 0.8)

 calculate_packet_increment(state, counter_type)

Calculates packet increment for packet counters.
Parameters
	state - Device state
	counter_type - Type of packet counter (:in_ucast_pkts, :out_ucast_pkts, etc.)

Returns
	Integer representing packet count increment since device start

 calculate_signal_quality(state)

Calculates signal quality metric.
Parameters
	_state - Device state (currently unused)

Returns
	Float representing signal quality (0.0 to 1.0)

 calculate_snr_gauge(state)

Calculates Signal-to-Noise Ratio (SNR) gauge value for cable modems.
Parameters
	state - Device state containing device_type

Returns
	Integer representing SNR in dB (15-45 range for cable modems)

 calculate_storage_gauge(state)

Calculates storage usage gauge in allocation units (typically KB).
Parameters
	state - Device state containing device_type

Returns
	Integer representing storage usage in allocation units

 calculate_temperature(state)

Calculates device temperature in Celsius.
Temperature is affected by CPU load and ambient conditions.
Parameters
	state - Device state

Returns
	Float representing temperature in Celsius

 calculate_traffic_increment(state, counter_type)

Calculates traffic increment for counters based on device type and time.
Parameters
	state - Device state
	counter_type - Type of traffic counter (:in_octets, :out_octets, etc.)

Returns
	Integer representing traffic increment since device start

 calculate_uptime(arg1)

Calculates device uptime in milliseconds.
Parameters
	state - Device state containing uptime_start timestamp

Returns
	Integer representing uptime in milliseconds

 calculate_uptime_ticks(state)

Calculates device uptime in SNMP TimeTicks (centiseconds).
Parameters
	state - Device state

Returns
	Integer representing uptime in centiseconds (1/100th of a second)

 extract_oid(varbind)

Extracts OID from SNMP PDU variable binding.
Parameters
	varbind - SNMP variable binding containing OID and value

Returns
	oid - Successfully extracted OID

 extract_type_and_value(value)

Extracts type and value from SNMP variable binding.
Parameters
	varbind - SNMP variable binding

Returns
	{type, value} - Tuple containing SNMP type and value

 get_bulk_oid_values(oid, count, state)

Retrieves multiple OIDs for SNMP GetBulk operations.
Parameters
	oid - Starting OID
	count - Maximum number of OIDs to retrieve
	state - Device state

Returns
	List of {oid, type, value} tuples

 get_dynamic_oid_value(oid, state)

Gets dynamic OID value based on device state and OID.
Parameters
	oid - OID as string
	state - Device state containing configuration and counters

Returns
	{:ok, {type, value}} - Successfully retrieved OID value with type
	{:error, reason} - Failed to retrieve OID value

 get_fallback_bulk_oids(start_oid, max_repetitions, state)

Gets fallback bulk OIDs for SNMP GetBulk operations.
Parameters
	oid - Starting OID
	count - Maximum number of OIDs to retrieve
	state - Device state

Returns
	List of {oid, type, value} tuples

 get_fallback_next_oid(oid_list, state)

Gets fallback next OID for SNMP GetNext operations.
Parameters
	oid_list - Starting OID as list of integers
	state - Device state

Returns
	{next_oid, type, value} - Next OID with its type and value

 get_interface_description(state)

Gets interface description based on device type.
Parameters
	state - Device state containing device_type

Returns
	String description of the interface

 get_next_oid_value(device_type, oid, state)

Finds the next OID in lexicographic order for SNMP GetNext operations.
Parameters
	oid - Starting OID as list of integers
	state - Device state

Returns
	{:ok, {next_oid, type, value}} - Next OID with its type and value
	{:error, :end_of_mib} - No more OIDs available

 get_oid_value(oid, state)

Gets OID value based on device state and OID.
Parameters
	oid - OID as list of integers or binary string
	state - Device state containing configuration and counters or device type

Returns
	{:ok, value} - Successfully retrieved OID value
	{:error, reason} - Failed to retrieve OID value

 get_time_factor()

Gets time-of-day factor for simulating traffic patterns.
Peak traffic occurs during evening hours (8-10 PM) with lower
utilization during overnight and early morning hours.
Returns
	Float representing traffic multiplier (0.6 to 1.5)

 handle_docsis_snr_oid(oid, state)

Handles DOCSIS SNR OID.
Parameters
	oid - DOCSIS SNR OID as string
	state - Device state

Returns
	{:ok, value} - Successfully retrieved OID value
	{:error, reason} - Failed to retrieve OID value

 handle_hc_interface_oid(oid, state)

Handles high capacity interface OID.
Parameters
	oid - High capacity interface OID as string
	state - Device state

Returns
	{:ok, value} - Successfully retrieved OID value
	{:error, reason} - Failed to retrieve OID value

 handle_host_processor_oid(oid, state)

Handles Host Resources processor OID.
Parameters
	oid - Host Resources processor OID as string
	state - Device state

Returns
	{:ok, value} - Successfully retrieved OID value
	{:error, reason} - Failed to retrieve OID value

 handle_host_storage_oid(oid, state)

Handles Host Resources storage OID.
Parameters
	oid - Host Resources storage OID as string
	state - Device state

Returns
	{:ok, value} - Successfully retrieved OID value
	{:error, reason} - Failed to retrieve OID value

 handle_interface_oid(oid, state)

Handles interface OID.
Parameters
	oid - Interface OID as string
	_state - Device state (unused)

Returns
	{:ok, value} - Successfully retrieved OID value
	{:error, reason} - Failed to retrieve OID value

 oid_to_string(oid)

Converts OID list to string representation.
Parameters
	oid - List of integers representing OID

Returns
	String representation of OID (e.g., "1.3.6.1.2.1.1.1.0")

 string_to_oid_list(oid_string)

Converts string OID to list of integers.
Parameters
	oid_string - String representation of OID

Returns
	List of integers representing OID

 walk_oid_recursive(oid, root_oid, state, acc)

 walk_oid_values(oid, state)

Walks OID values for SNMP MIB walking.
Parameters
	oid - Starting OID as list of integers
	state - Device state

Returns
	{:ok, oid_values} - List of OID values

SnmpKit.SnmpSim.Device.PduProcessor

Handles SNMP PDU processing for devices.

 Summary

 Functions

 process_getnext_request(variable_bindings, state)

 process_pdu(pdu, state)

 process_snmp_pdu(pdu, state)

 Functions

 process_getnext_request(variable_bindings, state)

 process_pdu(pdu, state)

 process_snmp_pdu(pdu, state)

SnmpKit.SnmpSim.Device.WalkPduProcessor

Simplified PDU processor for devices with walk data.
Handles GET, GETNEXT, and GETBULK requests using walk file data
with support for dynamic counters and gauges.

 Summary

 Functions

 process_get_request(pdu, state)

 Process a GET request for walk-based devices.

 process_getbulk_request(pdu, state)

 Process a GETBULK request for walk-based devices.

 process_getnext_request(pdu, state)

 Process a GETNEXT request for walk-based devices.

 process_set_request(pdu, state)

 Process a SET request for walk-based devices.
Since walk files contain read-only data, all SET requests return readOnly error.

 Functions

 process_get_request(pdu, state)

Process a GET request for walk-based devices.

 process_getbulk_request(pdu, state)

Process a GETBULK request for walk-based devices.

 process_getnext_request(pdu, state)

Process a GETNEXT request for walk-based devices.

 process_set_request(pdu, state)

Process a SET request for walk-based devices.
Since walk files contain read-only data, all SET requests return readOnly error.

SnmpKit.SnmpSim.DeviceDistribution

Device Type Distribution for realistic device type assignment across port ranges.
Supports mixed device populations for authentic testing environments.
Features:
	Realistic device type distribution patterns
	Flexible port range assignment strategies
	Support for custom device mixes
	Population density calculations
	Device type metadata and characteristics

 Summary

 Types

 device_mix()

 device_type()

 port_assignments()

 port_range()

 Functions

 build_port_assignments(device_mix, port_range)

 Build port assignments from a device mix and port range.
Distributes devices across the port range maintaining the specified ratios.

 calculate_density_stats(port_assignments)

 Calculate population density statistics for device assignments.

 default_port_assignments()

 Get the default device type port ranges for large-scale simulation.
Optimized for 10K device populations with realistic distribution.

 determine_device_type(port, port_assignments)

 Determine device type for a given port based on port assignments.

 generate_device_id(device_type, port, opts \\ [])

 Generate device ID with type-specific formatting.

 get_device_characteristics(arg1)

 Get device type characteristics and metadata.

 get_device_mix(atom)

 Get common device mix patterns for different testing scenarios.

 validate_port_assignments(port_assignments)

 Validate port assignments for consistency and coverage.

 Types

 device_mix()

 @type device_mix() :: %{required(device_type()) => non_neg_integer()}

 device_type()

 @type device_type() :: :cable_modem | :mta | :switch | :router | :cmts | :server

 port_assignments()

 @type port_assignments() :: %{required(device_type()) => port_range()}

 port_range()

 @type port_range() :: Range.t()

 Functions

 build_port_assignments(device_mix, port_range)

 @spec build_port_assignments(device_mix(), port_range()) :: port_assignments()

Build port assignments from a device mix and port range.
Distributes devices across the port range maintaining the specified ratios.

 calculate_density_stats(port_assignments)

 @spec calculate_density_stats(port_assignments()) :: %{required(atom()) => any()}

Calculate population density statistics for device assignments.

 default_port_assignments()

 @spec default_port_assignments() :: port_assignments()

Get the default device type port ranges for large-scale simulation.
Optimized for 10K device populations with realistic distribution.

 determine_device_type(port, port_assignments)

 @spec determine_device_type(non_neg_integer(), port_assignments()) ::
 device_type() | nil

Determine device type for a given port based on port assignments.

 generate_device_id(device_type, port, opts \\ [])

 @spec generate_device_id(device_type(), non_neg_integer(), keyword()) :: String.t()

Generate device ID with type-specific formatting.

 get_device_characteristics(arg1)

 @spec get_device_characteristics(device_type()) :: %{required(atom()) => any()}

Get device type characteristics and metadata.

 get_device_mix(atom)

 @spec get_device_mix(atom()) :: device_mix()

Get common device mix patterns for different testing scenarios.

 validate_port_assignments(port_assignments)

 @spec validate_port_assignments(port_assignments()) :: :ok | {:error, term()}

Validate port assignments for consistency and coverage.

SnmpKit.SnmpSim.ErrorInjector

Inject realistic error conditions for comprehensive testing.
Supports timeouts, packet loss, malformed responses, and device failures
for testing SNMP polling systems under realistic network conditions.
Features
	Network timeouts with configurable probability and duration
	Packet loss simulation with burst patterns
	SNMP protocol errors (noSuchName, genErr, tooBig)
	Malformed response corruption for robustness testing
	Device failure and reboot simulation
	Statistical tracking of all injected errors

Usage
Inject timeout condition
SnmpKit.SnmpSim.ErrorInjector.inject_timeout(device_pid, probability: 0.1, duration: 5000)

Simulate packet loss
SnmpKit.SnmpSim.ErrorInjector.inject_packet_loss(device_pid, loss_rate: 0.05)

Generate SNMP errors
SnmpKit.SnmpSim.ErrorInjector.inject_snmp_error(device_pid, :noSuchName, ["1.3.6.1.2.1.2.2.1.99"])

 Summary

 Types

 error_config()

 error_type()

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 clear_all_errors(injector_pid)

 Clear all error conditions and reset device to normal operation.

 get_error_statistics(injector_pid)

 Get statistics for all injected errors.

 inject_malformed_response(injector_pid, corruption_type, opts \\ [])

 Inject malformed response packets to test client robustness.

 inject_packet_loss(injector_pid, opts \\ [])

 Inject packet loss with configurable loss rates and patterns.

 inject_snmp_error(injector_pid, error_type, opts \\ [])

 Inject SNMP protocol errors for specific OIDs or patterns.

 inject_timeout(injector_pid, opts \\ [])

 Inject timeout conditions with specified probability and duration.

 remove_error_condition(injector_pid, error_type)

 Remove specific error condition.

 simulate_device_failure(injector_pid, failure_type, opts \\ [])

 Simulate device reboot or failure scenarios.

 start_link(device_pid, device_port)

 Start error injection monitoring for a device.

 Types

 error_config()

 @type error_config() :: %{
 probability: float(),
 duration_ms: integer(),
 burst_patterns: boolean(),
 target_oids: [String.t()] | :all,
 error_details: map()
}

 error_type()

 @type error_type() ::
 :timeout | :packet_loss | :snmp_error | :malformed | :device_failure

 Functions

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 clear_all_errors(injector_pid)

 @spec clear_all_errors(pid()) :: :ok

Clear all error conditions and reset device to normal operation.

 get_error_statistics(injector_pid)

 @spec get_error_statistics(pid()) :: map()

Get statistics for all injected errors.

 inject_malformed_response(injector_pid, corruption_type, opts \\ [])

 @spec inject_malformed_response(pid(), atom(), keyword()) :: :ok | {:error, term()}

Inject malformed response packets to test client robustness.
Corruption Types
	:truncated - Cut off response packets
	:invalid_ber - Corrupt BER/DER encoding
	:wrong_community - Incorrect community string
	:invalid_pdu_type - Invalid PDU type field
	:corrupted_varbinds - Corrupt variable bindings

Examples
Randomly truncate 2% of responses
ErrorInjector.inject_malformed_response(device, :truncated,
 probability: 0.02,
 corruption_severity: 0.3
)

Corrupt BER encoding occasionally
ErrorInjector.inject_malformed_response(device, :invalid_ber,
 probability: 0.01
)

 inject_packet_loss(injector_pid, opts \\ [])

 @spec inject_packet_loss(
 pid(),
 keyword()
) :: :ok | {:error, term()}

Inject packet loss with configurable loss rates and patterns.
Options
	loss_rate: Float 0.0-1.0, percentage of packets to drop
	burst_loss: Enable burst loss patterns (default: false)
	burst_size: Number of consecutive packets to drop in burst (default: 5)
	recovery_time_ms: Time between bursts (default: 30000)

Examples
5% random packet loss
ErrorInjector.inject_packet_loss(device, loss_rate: 0.05)

Burst packet loss - lose 10 consecutive packets occasionally
ErrorInjector.inject_packet_loss(device,
 loss_rate: 0.02,
 burst_loss: true,
 burst_size: 10,
 recovery_time_ms: 60000
)

 inject_snmp_error(injector_pid, error_type, opts \\ [])

 @spec inject_snmp_error(pid(), atom(), keyword()) :: :ok | {:error, term()}

Inject SNMP protocol errors for specific OIDs or patterns.
Error Types
	:noSuchName - OID does not exist
	:genErr - General error
	:tooBig - Response too large for UDP packet
	:badValue - Invalid value in SET request
	:readOnly - Attempt to SET read-only variable

Examples
Generate noSuchName errors for specific OIDs
ErrorInjector.inject_snmp_error(device, :noSuchName,
 target_oids: ["1.3.6.1.2.1.2.2.1.99"],
 probability: 1.0
)

Random genErr responses
ErrorInjector.inject_snmp_error(device, :genErr,
 probability: 0.05,
 target_oids: :all
)

 inject_timeout(injector_pid, opts \\ [])

 @spec inject_timeout(
 pid(),
 keyword()
) :: :ok | {:error, term()}

Inject timeout conditions with specified probability and duration.
Options
	probability: Float 0.0-1.0, chance each request times out
	duration_ms: Timeout duration in milliseconds
	burst_probability: Chance of timeout bursts (default: 0.1)
	burst_duration_ms: Duration of timeout bursts (default: 10000)

Examples
10% chance of 5-second timeouts
ErrorInjector.inject_timeout(device, probability: 0.1, duration_ms: 5000)

Burst timeouts - 20% of requests timeout for 30 seconds when burst occurs
ErrorInjector.inject_timeout(device,
 probability: 0.2,
 duration_ms: 30000,
 burst_probability: 0.05,
 burst_duration_ms: 60000
)

 remove_error_condition(injector_pid, error_type)

 @spec remove_error_condition(pid(), error_type()) :: :ok

Remove specific error condition.

 simulate_device_failure(injector_pid, failure_type, opts \\ [])

 @spec simulate_device_failure(pid(), atom(), keyword()) :: :ok | {:error, term()}

Simulate device reboot or failure scenarios.
Failure Types
	:reboot - Device becomes unreachable then recovers
	:power_failure - Complete device failure
	:network_disconnect - Network connectivity lost
	:firmware_crash - Device crash with recovery
	:overload - Device overloaded, slow responses

Examples
Simulate device reboot (30 seconds downtime)
ErrorInjector.simulate_device_failure(device, :reboot,
 duration_ms: 30000,
 recovery_behavior: :reset_counters
)

Network disconnect with gradual recovery
ErrorInjector.simulate_device_failure(device, :network_disconnect,
 duration_ms: 60000,
 recovery_behavior: :gradual
)

 start_link(device_pid, device_port)

 @spec start_link(pid(), integer()) :: {:ok, pid()} | {:error, term()}

Start error injection monitoring for a device.

SnmpKit.SnmpSim.LazyDevicePool

Lazy Device Pool Manager for on-demand device creation and lifecycle management.
Supports 10K+ devices with minimal memory footprint through lazy instantiation.
Features:
	On-demand device creation when first accessed
	Automatic cleanup of idle devices to conserve resources
	Port-based device type determination
	Efficient tracking of active devices and last access times
	Resource monitoring and cleanup scheduling

 Summary

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 cleanup_idle_devices()

 Force cleanup of idle devices immediately.

 clear_cache()

 Clear the device cache - alias for shutdown_all_devices for compatibility.

 configure_port_assignments(port_assignments)

 Configure device types for specific port ranges.

 get_or_create_device(port)

 Get or create a device for the specified port.
Creates the device on first access if it doesn't exist.

 get_stats()

 Get statistics about the device pool.

 init(opts)

 Callback implementation for GenServer.init/1.

 shutdown_all_devices()

 Shutdown all devices and reset the pool.

 shutdown_device(port)

 Shutdown a specific device.

 start_device_population(device_configs, opts \\ [])

 start_link(opts \\ [])

 Functions

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 cleanup_idle_devices()

Force cleanup of idle devices immediately.

 clear_cache()

Clear the device cache - alias for shutdown_all_devices for compatibility.

 configure_port_assignments(port_assignments)

Configure device types for specific port ranges.

 get_or_create_device(port)

Get or create a device for the specified port.
Creates the device on first access if it doesn't exist.

 get_stats()

Get statistics about the device pool.

 init(opts)

Callback implementation for GenServer.init/1.

 shutdown_all_devices()

Shutdown all devices and reset the pool.

 shutdown_device(port)

Shutdown a specific device.

 start_device_population(device_configs, opts \\ [])

 start_link(opts \\ [])

SnmpKit.SnmpSim.MIB.BehaviorAnalyzer

Automatically determine realistic behaviors from MIB object definitions.
Analyze object names, descriptions, and types to infer simulation patterns.

 Summary

 Types

 description_pattern()

 Functions

 analyze_mib_behaviors(mib_objects)

 Analyze a complete MIB and generate behavior patterns for all objects.

 analyze_object_behavior(oid_info)

 Analyze a MIB object and determine its simulation behavior.

 enhance_walk_file_behaviors(oid_map)

 Create behavior specifications from walk file data enhanced with intelligent analysis.

 Types

 description_pattern()

 @type description_pattern() ::
 :rate_based
 | :cumulative
 | :instantaneous
 | :inbound
 | :outbound
 | :quality_metric
 | :threshold_based
 | :time_based
 | :timestamp_based

 Functions

 analyze_mib_behaviors(mib_objects)

Analyze a complete MIB and generate behavior patterns for all objects.
Examples
{:ok, behaviors} = SnmpKit.SnmpSim.MIB.BehaviorAnalyzer.analyze_mib_behaviors(compiled_mib)

 analyze_object_behavior(oid_info)

Analyze a MIB object and determine its simulation behavior.
Examples
behavior = SnmpKit.SnmpSim.MIB.BehaviorAnalyzer.analyze_object_behavior(%{
 name: "ifInOctets",
 oid: "1.3.6.1.2.1.2.2.1.10",
 type: :counter32,
 description: "The total number of octets received on the interface"
})

Returns: {:traffic_counter, %{rate_range: {1000, 125_000_000}, increment_pattern: :bursty}}

 enhance_walk_file_behaviors(oid_map)

Create behavior specifications from walk file data enhanced with intelligent analysis.

SnmpKit.SnmpSim.MIB.Compiler

MIB Compiler for SNMP Simulator (Elixir)
	Compiles MIB files using MIB parsing and compilation.
	Handles MIB dependencies via IMPORTS parsing and topological sort.
	Does NOT use any Erlang SNMP APIs.
	Does NOT introspect MIB objects at runtime (for that, parse the compiled MIBs yourself).

This module provides MIB compilation functionality for SNMP simulation.

 Summary

 Functions

 compile_mib_directory(mib_dir, opts \\ [])

 Compile all .mib files in mib_dir (recursively resolves dependencies).
Returns a list of {mibfile, {:ok, } | {:error, _}}.

 compile_mib_files(mib_files, include_dirs \\ [])

 Compile a list of MIB files (in dependency order).
Returns a list of {mibfile, {:ok, } | {:error, _}}.

 Functions

 compile_mib_directory(mib_dir, opts \\ [])

Compile all .mib files in mib_dir (recursively resolves dependencies).
Returns a list of {mibfile, {:ok, } | {:error, _}}.

 compile_mib_files(mib_files, include_dirs \\ [])

Compile a list of MIB files (in dependency order).
Returns a list of {mibfile, {:ok, } | {:error, _}}.

SnmpKit.SnmpSim.MIB.SharedProfiles

Memory-efficient shared OID profiles using ETS tables.
Reduces memory from 1GB to ~10MB for 10K devices by sharing profile data.

 Summary

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 clear_all_profiles()

 Clear all profiles (useful for testing).

 compare_oids_lexicographically(oid1, oid2)

 Compare OIDs lexicographically (useful for testing).

 get_all_oids(device_type)

 Get all OIDs for a device type.

 get_bulk_oids(device_type, start_oid, max_repetitions)

 Get multiple OIDs for GETBULK operations.

 get_memory_stats()

 Get memory usage statistics for the shared profiles.

 get_next_oid(device_type, oid)

 Get the next OID in lexicographic order for GETNEXT operations.

 get_oid_value(device_type, oid, device_state)

 Get a value for a specific OID with device-specific state applied.

 init_profiles()

 Initialize shared profiles for device types.

 list_profiles()

 List all available device type profiles.

 load_mib_profile(device_type, mib_files, opts \\ [])

 Load a MIB-based profile for a device type.

 load_walk_profile(device_type, walk_file, opts \\ [])

 Load a walk file-based profile with enhanced behaviors.

 start_link(opts \\ [])

 Start the shared profiles manager.

 store_profile(device_type, profile_data, behavior_data)

 Store profile data directly (useful for testing).

 Functions

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 clear_all_profiles()

Clear all profiles (useful for testing).

 compare_oids_lexicographically(oid1, oid2)

Compare OIDs lexicographically (useful for testing).

 get_all_oids(device_type)

Get all OIDs for a device type.

 get_bulk_oids(device_type, start_oid, max_repetitions)

Get multiple OIDs for GETBULK operations.

 get_memory_stats()

Get memory usage statistics for the shared profiles.

 get_next_oid(device_type, oid)

Get the next OID in lexicographic order for GETNEXT operations.

 get_oid_value(device_type, oid, device_state)

Get a value for a specific OID with device-specific state applied.
Examples
value = SnmpKit.SnmpSim.MIB.SharedProfiles.get_oid_value(
 :cable_modem,
 "1.3.6.1.2.1.2.2.1.10.1",
 %{device_id: "cm_001", uptime: 3600}
)

 init_profiles()

Initialize shared profiles for device types.
Examples
:ok = SnmpKit.SnmpSim.MIB.SharedProfiles.init_profiles()

 list_profiles()

List all available device type profiles.

 load_mib_profile(device_type, mib_files, opts \\ [])

Load a MIB-based profile for a device type.
Examples
:ok = SnmpKit.SnmpSim.MIB.SharedProfiles.load_mib_profile(
 :cable_modem,
 ["DOCS-CABLE-DEVICE-MIB", "IF-MIB"]
)

 load_walk_profile(device_type, walk_file, opts \\ [])

Load a walk file-based profile with enhanced behaviors.
Examples
:ok = SnmpKit.SnmpSim.MIB.SharedProfiles.load_walk_profile(
 :cable_modem,
 "priv/walks/cable_modem.walk",
 behaviors: [:realistic_counters, :daily_patterns]
)

 start_link(opts \\ [])

Start the shared profiles manager.

 store_profile(device_type, profile_data, behavior_data)

Store profile data directly (useful for testing).

SnmpKit.SnmpSim.MultiDeviceStartup

Multi-Device Startup functionality for large-scale device population management.
Features:
	Bulk device population startup
	Progress monitoring and reporting
	Parallel device creation for speed
	Failure handling and recovery
	Integration with LazyDevicePool and DeviceDistribution

 Summary

 Types

 device_spec()

 progress_callback()

 startup_opts()

 startup_status()

 Functions

 console_progress_callback()

 Create a simple progress callback that logs to console.

 get_startup_status()

 Get startup progress and statistics.

 pre_warm_devices(device_specs, opts \\ [])

 Pre-warm a specified number of devices for immediate availability.

 shutdown_device_population()

 Gracefully shutdown all devices in the population.

 start_device_mix(mix_type, opts \\ [])

 Start devices using predefined device mix patterns.

 start_device_population(device_specs, opts \\ [])

 Start a large population of devices based on device specifications.

 start_with_progress(device_specs, opts \\ [])

 Start devices with console progress reporting.

 Types

 device_spec()

 @type device_spec() :: {device_type :: atom(), count :: non_neg_integer()}

 progress_callback()

 @type progress_callback() :: (%{
 completed: non_neg_integer(),
 total: non_neg_integer(),
 progress: float(),
 elapsed_ms: non_neg_integer(),
 eta_ms: nil | non_neg_integer()
 } ->
 :ok)

 startup_opts()

 @type startup_opts() :: [
 port_range: Range.t(),
 parallel_workers: pos_integer(),
 timeout_ms: pos_integer(),
 progress_callback: function() | nil
]

 startup_status()

 @type startup_status() :: %{
 active_devices: non_neg_integer(),
 peak_devices: non_neg_integer(),
 devices_created: non_neg_integer(),
 devices_cleaned_up: non_neg_integer(),
 total_ports_configured: non_neg_integer()
}

 Functions

 console_progress_callback()

 @spec console_progress_callback() :: progress_callback()

Create a simple progress callback that logs to console.

 get_startup_status()

 @spec get_startup_status() :: startup_status()

Get startup progress and statistics.

 pre_warm_devices(device_specs, opts \\ [])

 @spec pre_warm_devices([device_spec()], startup_opts()) ::
 {:ok, map()} | {:error, term()}

Pre-warm a specified number of devices for immediate availability.

 shutdown_device_population()

 @spec shutdown_device_population() :: :ok

Gracefully shutdown all devices in the population.

 start_device_mix(mix_type, opts \\ [])

 @spec start_device_mix(atom(), startup_opts()) :: {:ok, map()} | {:error, term()}

Start devices using predefined device mix patterns.
Examples
{:ok, result} = SnmpKit.SnmpSim.MultiDeviceStartup.start_device_mix(
 :cable_network,
 port_range: 30_000..39_999
)

 start_device_population(device_specs, opts \\ [])

 @spec start_device_population([device_spec()], startup_opts()) ::
 {:ok, map()} | {:error, term()}

Start a large population of devices based on device specifications.
Examples
device_specs = [
 {:cable_modem, 1000},
 {:switch, 50},
 {:router, 10},
 {:cmts, 5}
]

{:ok, result} = SnmpKit.SnmpSim.MultiDeviceStartup.start_device_population(
 device_specs,
 port_range: 30_000..31_099,
 parallel_workers: 100
)

 start_with_progress(device_specs, opts \\ [])

 @spec start_with_progress([device_spec()], startup_opts()) ::
 {:ok, map()} | {:error, term()}

Start devices with console progress reporting.

SnmpKit.SnmpSim.OIDTree

Optimized OID tree for fast lookups and lexicographic traversal.
Supports GETNEXT operations and GETBULK bulk retrieval.
Uses a radix tree structure optimized for OID operations with:
	Fast O(log n) lookups and insertions
	Efficient lexicographic traversal for GETNEXT
	Memory-efficient storage for 10K+ OIDs
	Optimized bulk operations

 Summary

 Functions

 bulk_walk(tree, start_oid, max_repetitions, non_repeaters \\ 0)

 Perform a bulk walk operation starting from the given OID.
Used for GETBULK operations with proper handling of non-repeaters and max-repetitions.

 empty?(tree)

 Check if the tree is empty.

 get(tree, oid_string)

 Get the value for an exact OID match.

 get_next(tree, oid_string)

 Get the next OID in lexicographic order (GETNEXT operation).
Returns the next OID after the given OID, or :end_of_mib if no more OIDs exist.

 insert(tree, oid_string, value, behavior_info \\ nil)

 Insert an OID with its value and behavior information into the tree.
Maintains lexicographic ordering for efficient GETNEXT operations.

 list_oids(tree)

 Get all OIDs in the tree in lexicographic order.
Useful for debugging and full tree traversal.

 new()

 Create a new empty OID tree.

 size(tree)

 Get the size of the tree (number of OIDs).

 Functions

 bulk_walk(tree, start_oid, max_repetitions, non_repeaters \\ 0)

Perform a bulk walk operation starting from the given OID.
Used for GETBULK operations with proper handling of non-repeaters and max-repetitions.
Examples
results = SnmpKit.SnmpSim.OIDTree.bulk_walk(tree, "1.3.6.1.2.1.2.2.1", 10, 0)

 empty?(tree)

Check if the tree is empty.
Examples
empty? = SnmpKit.SnmpSim.OIDTree.empty?(tree)

 get(tree, oid_string)

Get the value for an exact OID match.
Examples
{:ok, value, behavior} = SnmpKit.SnmpSim.OIDTree.get(tree, "1.3.6.1.2.1.1.1.0")
:not_found = SnmpKit.SnmpSim.OIDTree.get(tree, "1.3.6.1.2.1.1.1.999")

 get_next(tree, oid_string)

Get the next OID in lexicographic order (GETNEXT operation).
Returns the next OID after the given OID, or :end_of_mib if no more OIDs exist.
Examples
{:ok, next_oid, value, behavior} = SnmpKit.SnmpSim.OIDTree.get_next(tree, "1.3.6.1.2.1.1.1.0")
:end_of_mib = SnmpKit.SnmpSim.OIDTree.get_next(tree, "1.3.6.1.9.9.9.9.9")

 insert(tree, oid_string, value, behavior_info \\ nil)

Insert an OID with its value and behavior information into the tree.
Maintains lexicographic ordering for efficient GETNEXT operations.
Examples
tree = SnmpKit.SnmpSim.OIDTree.new()
tree = SnmpKit.SnmpSim.OIDTree.insert(tree, "1.3.6.1.2.1.1.1.0", "System Description", nil)

 list_oids(tree)

Get all OIDs in the tree in lexicographic order.
Useful for debugging and full tree traversal.
Examples
oids = SnmpKit.SnmpSim.OIDTree.list_oids(tree)

 new()

Create a new empty OID tree.
Examples
tree = SnmpKit.SnmpSim.OIDTree.new()

 size(tree)

Get the size of the tree (number of OIDs).
Examples
size = SnmpKit.SnmpSim.OIDTree.size(tree)

SnmpKit.SnmpSim.PDUHelper

Provides utility functions for PDU manipulation.

 Summary

 Functions

 pdu_version_to_int(arg1)

 Converts a PDU version atom (e.g., :v1, :v2c) to its integer representation.
Defaults to 2 (for SNMPv2c) if the atom is not :v1.

 Functions

 pdu_version_to_int(arg1)

Converts a PDU version atom (e.g., :v1, :v2c) to its integer representation.
Defaults to 2 (for SNMPv2c) if the atom is not :v1.

SnmpKit.SnmpSim.Performance.Benchmarks

Comprehensive benchmarking framework for SNMP simulator performance testing.
Features:
	Load testing with configurable request patterns
	Throughput and latency measurement
	Memory and CPU profiling
	Concurrent client simulation
	Performance regression detection
	Automated benchmark reporting

 Summary

 Functions

 run_benchmark_suite(opts \\ [])

 Run comprehensive benchmark suite.

 run_error_resilience_benchmark(opts \\ [])

 Benchmark response to various error conditions.

 run_memory_stress_benchmark(opts)

 Run memory stress test to identify memory leaks and limits.

 run_scaling_benchmark(opts)

 Run scaling benchmark to test performance at different device counts.

 run_single_benchmark(test_name, opts \\ [])

 Run single benchmark with specified parameters.

 Functions

 run_benchmark_suite(opts \\ [])

Run comprehensive benchmark suite.

 run_error_resilience_benchmark(opts \\ [])

Benchmark response to various error conditions.

 run_memory_stress_benchmark(opts)

Run memory stress test to identify memory leaks and limits.

 run_scaling_benchmark(opts)

Run scaling benchmark to test performance at different device counts.

 run_single_benchmark(test_name, opts \\ [])

Run single benchmark with specified parameters.

SnmpKit.SnmpSim.Performance.Benchmarks.BenchmarkResult

Structure for benchmark results

SnmpKit.SnmpSim.Performance.OptimizedDevicePool

High-performance device pool with ETS-based caching and optimization.
Designed for 10K+ concurrent devices with sub-millisecond lookup times.
Features:
	ETS-based device registry for O(1) lookups
	Profile caching to avoid repeated profile loading
	Connection pooling for efficient resource reuse
	Hot/warm/cold device tiers for optimal memory usage
	Pre-computed response caching for common OIDs

 Summary

 Functions

 cache_response(port, oid, response, ttl_ms \\ 300_000)

 Cache response for future requests.

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 cleanup_cold_devices()

 Force cleanup of cold tier devices.

 configure_port_assignments(assignments)

 Configure port assignments for device types.

 get_cached_response(port, oid)

 Get cached response for common OID requests.
Returns {:cache_hit, response} or :cache_miss.

 get_device(port)

 Get device PID with optimized lookup (O(1) from ETS).
Creates device lazily if it doesn't exist.

 get_device_profile(device_type)

 Get device profile from cache or load it.

 get_performance_stats()

 Get performance statistics for monitoring.

 promote_to_hot_tier(port)

 Promote device to hot tier for frequent access optimization.

 start_link(opts \\ [])

 Functions

 cache_response(port, oid, response, ttl_ms \\ 300_000)

Cache response for future requests.

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 cleanup_cold_devices()

Force cleanup of cold tier devices.

 configure_port_assignments(assignments)

Configure port assignments for device types.

 get_cached_response(port, oid)

Get cached response for common OID requests.
Returns {:cache_hit, response} or :cache_miss.

 get_device(port)

Get device PID with optimized lookup (O(1) from ETS).
Creates device lazily if it doesn't exist.

 get_device_profile(device_type)

Get device profile from cache or load it.

 get_performance_stats()

Get performance statistics for monitoring.

 promote_to_hot_tier(port)

Promote device to hot tier for frequent access optimization.

 start_link(opts \\ [])

SnmpKit.SnmpSim.Performance.OptimizedUdpServer

High-performance UDP server optimized for 100K+ requests/second throughput.
Features:
	Multi-socket architecture for load distribution
	Worker pool for concurrent packet processing
	Ring buffer for packet queuing
	Socket-level optimizations for minimal latency
	Adaptive backpressure management
	Direct response path bypassing GenServer for hot paths

 Summary

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 force_packet_processing(port)

 Force immediate packet processing (drain queue).

 get_performance_stats(port)

 Get comprehensive server performance statistics.

 start_link(port, opts \\ [])

 start_optimized(port, opts \\ [])

 Start optimized UDP server with performance tuning.

 update_optimization(port, opts)

 Update server optimization settings at runtime.

 Functions

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 force_packet_processing(port)

Force immediate packet processing (drain queue).

 get_performance_stats(port)

Get comprehensive server performance statistics.

 start_link(port, opts \\ [])

 start_optimized(port, opts \\ [])

Start optimized UDP server with performance tuning.

 update_optimization(port, opts)

Update server optimization settings at runtime.

SnmpKit.SnmpSim.Performance.PerformanceMonitor

Real-time performance monitoring and telemetry for SNMP simulator.
Provides comprehensive metrics collection, alerting, and performance analytics.
Integrates with :telemetry for external monitoring systems.

 Summary

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 force_performance_analysis()

 Force immediate performance analysis and reporting.

 get_current_metrics()

 Get current performance metrics snapshot.

 get_performance_history(duration_minutes \\ 60)

 Get performance history for trend analysis.

 record_device_event(event_type, port, device_type)

 Record device lifecycle events.

 record_request_timing(port, oid, duration_microseconds, success \\ true)

 Record device request timing for performance tracking.

 register_alert_callback(name, callback_fun)

 Register callback for performance alerts.

 start_link(opts \\ [])

 update_thresholds(new_thresholds)

 Update performance thresholds for alerts.

 Functions

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 force_performance_analysis()

Force immediate performance analysis and reporting.

 get_current_metrics()

Get current performance metrics snapshot.

 get_performance_history(duration_minutes \\ 60)

Get performance history for trend analysis.

 record_device_event(event_type, port, device_type)

Record device lifecycle events.

 record_request_timing(port, oid, duration_microseconds, success \\ true)

Record device request timing for performance tracking.

 register_alert_callback(name, callback_fun)

Register callback for performance alerts.

 start_link(opts \\ [])

 update_thresholds(new_thresholds)

Update performance thresholds for alerts.

SnmpKit.SnmpSim.Performance.ResourceManager

System resource management for SNMP simulator.
Enforces memory limits, device limits, and automatic cleanup.
Optimizes resource utilization for high-scale scenarios.

 Summary

 Functions

 can_allocate_device?()

 Check if we can allocate a new device within resource limits.

 check_memory_limit()

 Check if memory usage is within limits.

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 force_cleanup()

 Force immediate cleanup of idle devices.

 get_resource_stats()

 Get current resource usage statistics.

 register_device(device_pid, device_type)

 Register a new device allocation.

 start_link(opts \\ [])

 unregister_device(device_pid)

 Unregister a device that has been stopped.

 update_limits(opts)

 Update resource limits dynamically.

 Functions

 can_allocate_device?()

Check if we can allocate a new device within resource limits.

 check_memory_limit()

Check if memory usage is within limits.

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 force_cleanup()

Force immediate cleanup of idle devices.

 get_resource_stats()

Get current resource usage statistics.

 register_device(device_pid, device_type)

Register a new device allocation.

 start_link(opts \\ [])

 unregister_device(device_pid)

Unregister a device that has been stopped.

 update_limits(opts)

Update resource limits dynamically.

SnmpKit.SnmpSim.TestHelpers

Comprehensive SNMP testing utilities for SnmpSim.
This module provides a rich set of testing utilities for SNMP simulation,
performance testing, stability testing, and production validation.

 Summary

 Functions

 analyze_response_times(response_times)

 Analyzes response time statistics.

 calculate_error_rate(error_count, total_count)

 Calculates error rate as a percentage.

 check_system_health()

 Monitors system health metrics.

 cleanup_devices(devices)

 Cleans up test devices and resources with enhanced error handling.

 cleanup_monitored_devices(monitored_devices)

 Cleanup monitored devices with enhanced tracking.

 cleanup_single_device(device)

 Cleanup a single device with robust error handling.

 create_monitored_test_devices(opts \\ [])

 Create test devices with monitoring and automatic cleanup tracking.
Returns devices with monitor references for better cleanup handling.

 create_test_devices(opts \\ [])

 Creates test devices with various configurations.

 create_test_walk_data(oid_count \\ 100)

 Creates test SNMP walk data for testing.

 generate_bulk_test_data(device_count, operations_per_device)

 Generates test data for bulk operations.

 inject_delay(delay_ms)

 Injects artificial delays for testing timeout scenarios.

 measure_response_time(fun)

 Measures the response time of an operation.

 perform_test_operations(device, operations \\ [:get, :get_next, :get_bulk, :walk])

 Performs various SNMP operations on a device for testing.

 reset_system_state()

 Resets system state for testing.

 run_load_test(devices, opts \\ [])

 Runs a load test against a set of devices.

 simulate_network_conditions(opts \\ [])

 Simulates network conditions (packet loss, delays).

 validate_snmp_response(other)

 Validates SNMP response format.

 validate_system_invariants()

 Validates system invariants during testing.

 wait_for_condition(condition_fun, timeout_ms \\ 30000)

 Waits for a condition to be met within a timeout.

 Functions

 analyze_response_times(response_times)

Analyzes response time statistics.

 calculate_error_rate(error_count, total_count)

Calculates error rate as a percentage.

 check_system_health()

Monitors system health metrics.

 cleanup_devices(devices)

Cleans up test devices and resources with enhanced error handling.

 cleanup_monitored_devices(monitored_devices)

Cleanup monitored devices with enhanced tracking.

 cleanup_single_device(device)

Cleanup a single device with robust error handling.

 create_monitored_test_devices(opts \\ [])

Create test devices with monitoring and automatic cleanup tracking.
Returns devices with monitor references for better cleanup handling.

 create_test_devices(opts \\ [])

Creates test devices with various configurations.
Options
	:count - Number of devices to create (default: 10)
	:community - SNMP community string (default: "public")
	:host - Host address (default: "127.0.0.1")
	:port_start - Starting port number (default: 30000)
	:walk_file - SNMP walk file to use (default: "priv/walks/cable_modem.walk")
	:batch_size - Create devices in batches (default: 10)
	:delay_between_batches - Delay between batches in ms (default: 100)

Examples
devices = TestHelpers.create_test_devices(count: 50)
devices = TestHelpers.create_test_devices(count: 100, community: "private")

 create_test_walk_data(oid_count \\ 100)

Creates test SNMP walk data for testing.

 generate_bulk_test_data(device_count, operations_per_device)

Generates test data for bulk operations.

 inject_delay(delay_ms)

Injects artificial delays for testing timeout scenarios.

 measure_response_time(fun)

Measures the response time of an operation.

 perform_test_operations(device, operations \\ [:get, :get_next, :get_bulk, :walk])

Performs various SNMP operations on a device for testing.

 reset_system_state()

Resets system state for testing.

 run_load_test(devices, opts \\ [])

Runs a load test against a set of devices.
Options
	:duration_ms - Test duration in milliseconds
	:requests_per_second - Target requests per second
	:operation - SNMP operation to perform (:get, :get_next, :get_bulk, :walk)
	:monitor_memory - Whether to monitor memory usage
	:monitor_processes - Whether to monitor process count

 simulate_network_conditions(opts \\ [])

Simulates network conditions (packet loss, delays).

 validate_snmp_response(other)

Validates SNMP response format.

 validate_system_invariants()

Validates system invariants during testing.

 wait_for_condition(condition_fun, timeout_ms \\ 30000)

Waits for a condition to be met within a timeout.

SnmpKit.SnmpSim.TestHelpers.PerformanceHelper

Performance testing utilities for SnmpSim.

 Summary

 Functions

 analyze_memory_patterns(devices, test_scenarios)

 Tests memory usage patterns under different loads.

 analyze_response_times(response_times)

 Analyzes response time data and returns statistics.

 benchmark_throughput(devices, max_rps, step_size, duration_per_step_ms)

 Performs throughput benchmarking.

 calculate_error_rate(error_count, total_requests)

 Calculates error rate from error count and total requests.

 find_breaking_point(devices, options \\ %{})

 Stress tests the system to find breaking points.

 measure_latency_under_load(devices, load_scenarios)

 Measures latency under various load conditions.

 measure_scalability(base_device_count, max_device_count, step_size, test_duration_ms)

 Measures scalability by testing performance at different device counts.

 profile_cpu_usage(devices, duration_ms, sample_interval_ms)

 Profiles CPU usage under load.

 run_sustained_load_test(devices, target_rps, duration_ms, options \\ %{})

 Runs a sustained load test with comprehensive monitoring.

 Functions

 analyze_memory_patterns(devices, test_scenarios)

Tests memory usage patterns under different loads.

 analyze_response_times(response_times)

Analyzes response time data and returns statistics.

 benchmark_throughput(devices, max_rps, step_size, duration_per_step_ms)

Performs throughput benchmarking.

 calculate_error_rate(error_count, total_requests)

Calculates error rate from error count and total requests.

 find_breaking_point(devices, options \\ %{})

Stress tests the system to find breaking points.

 measure_latency_under_load(devices, load_scenarios)

Measures latency under various load conditions.

 measure_scalability(base_device_count, max_device_count, step_size, test_duration_ms)

Measures scalability by testing performance at different device counts.

 profile_cpu_usage(devices, duration_ms, sample_interval_ms)

Profiles CPU usage under load.

 run_sustained_load_test(devices, target_rps, duration_ms, options \\ %{})

Runs a sustained load test with comprehensive monitoring.

SnmpKit.SnmpSim.TestHelpers.PortAllocator

Simple port allocation service for tests.
Manages a pool of available ports and allocates them on demand.
Ports can be reserved and released for reuse.

 Summary

 Functions

 allocate_port_range(test_type, count)

 Legacy function for backward compatibility.
Allocates a port range for a specific test type.

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 get_stats()

 Get allocation statistics.

 release_port(port)

 Release a single port back to the pool.

 release_port_range(start_port, end_port)

 Release a port range back to the pool.

 reserve_port()

 Reserve a single port.
Returns {:ok, port} or {:error, reason}

 reserve_port_range(count)

 Reserve a range of ports.
Returns {:ok, {start_port, end_port}} or {:error, reason}

 reset()

 Reset all allocations.

 start_link(opts \\ [])

 Start the port allocator service.

 Functions

 allocate_port_range(test_type, count)

Legacy function for backward compatibility.
Allocates a port range for a specific test type.

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 get_stats()

Get allocation statistics.

 release_port(port)

Release a single port back to the pool.

 release_port_range(start_port, end_port)

Release a port range back to the pool.

 reserve_port()

Reserve a single port.
Returns {:ok, port} or {:error, reason}

 reserve_port_range(count)

Reserve a range of ports.
Returns {:ok, {start_port, end_port}} or {:error, reason}

 reset()

Reset all allocations.

 start_link(opts \\ [])

Start the port allocator service.

SnmpKit.SnmpSim.TestHelpers.PortHelper

Simple helper functions for port allocation in tests.

 Summary

 Functions

 get_port()

 Get a port for testing, ensuring PortAllocator is started.
Falls back to server port range if PortAllocator fails.

 get_port_range(count)

 Get a range of ports for testing.

 release_port(port)

 Release a port back to the pool.

 release_port_range(start_port, end_port)

 Release a port range back to the pool.

 Functions

 get_port()

Get a port for testing, ensuring PortAllocator is started.
Falls back to server port range if PortAllocator fails.

 get_port_range(count)

Get a range of ports for testing.

 release_port(port)

Release a port back to the pool.

 release_port_range(start_port, end_port)

Release a port range back to the pool.

SnmpKit.SnmpSim.TestHelpers.ProductionTestHelper

Specialized testing utilities for production validation and testing.

 Summary

 Functions

 cleanup_all()

 Cleanup all production test resources.

 cleanup_devices(devices)

 Cleanup specific devices.

 clear_monitoring_condition(condition_type)

 Clears a specific monitoring condition.

 create_devices_efficiently(device_count, opts \\ [])

 Creates devices efficiently in batches for large-scale testing.

 get_latest_alert(metric)

 Gets the latest alert for a specific metric.

 inject_monitoring_condition(condition_type, threshold)

 Injects specific monitoring conditions for testing alerting systems.

 integration_available?(system_name)

 Checks if an integration system is available for testing.

 reset_system_state()

 Resets system state for production testing.

 run_deployment_test(test_type, options \\ %{})

 Runs deployment tests to validate operational procedures.

 run_integration_test(test_type, options \\ %{})

 Runs integration tests with external systems.

 run_reliability_test(devices, duration_ms, failure_scenarios, options \\ %{})

 Runs a comprehensive reliability test with failure injection.

 run_security_test(test_type, options \\ %{})

 Runs security tests to validate system resilience against attacks.

 wait_for_alert(metric, timeout_ms)

 Waits for a specific alert to be triggered within a timeout.

 wait_for_recovery_alert(metric, timeout_ms)

 Waits for a recovery alert indicating the condition has cleared.

 Functions

 cleanup_all()

Cleanup all production test resources.

 cleanup_devices(devices)

Cleanup specific devices.

 clear_monitoring_condition(condition_type)

Clears a specific monitoring condition.

 create_devices_efficiently(device_count, opts \\ [])

Creates devices efficiently in batches for large-scale testing.

 get_latest_alert(metric)

Gets the latest alert for a specific metric.

 inject_monitoring_condition(condition_type, threshold)

Injects specific monitoring conditions for testing alerting systems.

 integration_available?(system_name)

Checks if an integration system is available for testing.

 reset_system_state()

Resets system state for production testing.

 run_deployment_test(test_type, options \\ %{})

Runs deployment tests to validate operational procedures.

 run_integration_test(test_type, options \\ %{})

Runs integration tests with external systems.

 run_reliability_test(devices, duration_ms, failure_scenarios, options \\ %{})

Runs a comprehensive reliability test with failure injection.

 run_security_test(test_type, options \\ %{})

Runs security tests to validate system resilience against attacks.

 wait_for_alert(metric, timeout_ms)

Waits for a specific alert to be triggered within a timeout.

 wait_for_recovery_alert(metric, timeout_ms)

Waits for a recovery alert indicating the condition has cleared.

SnmpKit.SnmpSim.TestHelpers.StabilityTestHelper

Specialized testing utilities for stability and endurance testing.

 Summary

 Functions

 analyze_memory_samples(samples)

 Analyzes memory usage patterns to detect leaks and trends.

 check_system_health()

 Checks overall system health and returns metrics.

 cleanup_all()

 Cleanup all test resources.

 clear_failure_injection()

 Clears any active failure injections.

 inject_failure(scenario)

 Injects various types of failures for testing system resilience.

 monitor_memory_usage(duration_ms, sample_interval_ms, test_function)

 Monitors memory usage over a specified duration while running a test function.

 reset_system_state()

 Resets system state for stability testing.

 run_endurance_test(duration_ms, options \\ %{})

 Runs an endurance test with varying workload patterns.

 run_load_test(devices, target_rps, duration_ms, options \\ %{})

 Runs a comprehensive load test with monitoring.

 Functions

 analyze_memory_samples(samples)

Analyzes memory usage patterns to detect leaks and trends.

 check_system_health()

Checks overall system health and returns metrics.

 cleanup_all()

Cleanup all test resources.

 clear_failure_injection()

Clears any active failure injections.

 inject_failure(scenario)

Injects various types of failures for testing system resilience.

 monitor_memory_usage(duration_ms, sample_interval_ms, test_function)

Monitors memory usage over a specified duration while running a test function.

 reset_system_state()

Resets system state for stability testing.

 run_endurance_test(duration_ms, options \\ %{})

Runs an endurance test with varying workload patterns.

 run_load_test(devices, target_rps, duration_ms, options \\ %{})

Runs a comprehensive load test with monitoring.

SnmpKit.SnmpSim.TestScenarios

Pre-built test scenarios for common network conditions.
Simplify complex error injection patterns with realistic network scenarios
that test SNMP polling systems under various failure conditions.
Scenario Categories
	Network Outages: Complete connectivity loss and recovery patterns
	Signal Degradation: DOCSIS/wireless signal quality issues
	High Load: Network congestion and overload conditions
	Device Failures: Equipment failures, reboots, and recovery
	Intermittent Issues: Flapping, sporadic failures, timing issues
	Environmental: Weather, power, temperature-related problems

Usage
Apply network outage scenario to all devices
TestScenarios.network_outage_scenario(devices, duration_seconds: 300)

Simulate signal degradation for cable modems
TestScenarios.signal_degradation_scenario(cable_modems,
 snr_degradation: 10, duration_minutes: 15
)

Test high load conditions
TestScenarios.high_load_scenario(devices, utilization_percent: 95)

 Summary

 Types

 device_list()

 scenario_result()

 Functions

 cascading_failure_scenario(devices, opts \\ [])

 Simulate cascading failure - devices fail in sequence.

 device_flapping_scenario(devices, opts \\ [])

 Simulate device flapping - intermittent connectivity issues.

 environmental_scenario(devices, opts \\ [])

 Simulate environmental conditions affecting network equipment.

 high_load_scenario(devices, opts \\ [])

 Simulate high network load and congestion conditions.

 multi_scenario_test(devices, scenarios)

 Apply multiple scenarios simultaneously for complex testing.

 network_outage_scenario(devices, opts \\ [])

 Simulate complete network outage affecting all devices.

 signal_degradation_scenario(devices, opts \\ [])

 Simulate signal degradation for wireless/cable devices.

 Types

 device_list()

 @type device_list() :: [pid()] | [{:device_type, integer()}]

 scenario_result()

 @type scenario_result() :: %{
 scenario_id: String.t(),
 start_time: DateTime.t(),
 devices_affected: integer(),
 conditions_applied: [map()],
 estimated_duration_ms: integer()
}

 Functions

 cascading_failure_scenario(devices, opts \\ [])

 @spec cascading_failure_scenario(
 device_list(),
 keyword()
) :: scenario_result()

Simulate cascading failure - devices fail in sequence.
Models scenarios where initial failures trigger subsequent failures,
testing system resilience under escalating conditions.
Options
	initial_failure_percentage: Initial devices that fail (default: 0.1)
	cascade_delay_seconds: Time between cascade waves (default: 60)
	cascade_growth_factor: How much each wave grows (default: 1.5)
	max_affected_percentage: Maximum devices affected (default: 0.8)

Examples
Start with 5% failure, cascade every 30 seconds
TestScenarios.cascading_failure_scenario(devices,
 initial_failure_percentage: 0.05,
 cascade_delay_seconds: 30,
 cascade_growth_factor: 2.0
)

 device_flapping_scenario(devices, opts \\ [])

 @spec device_flapping_scenario(
 device_list(),
 keyword()
) :: scenario_result()

Simulate device flapping - intermittent connectivity issues.
Models unstable devices that repeatedly go offline and come back online.
Options
	flap_interval_seconds: Time between state changes (default: 30)
	down_duration_seconds: How long device stays down (default: 10)
	total_duration_minutes: Total scenario duration (default: 30)
	flap_pattern: :regular | :irregular | :degrading (default: :irregular)

Examples
Regular flapping every 60 seconds
TestScenarios.device_flapping_scenario(devices,
 flap_interval_seconds: 60,
 down_duration_seconds: 15,
 flap_pattern: :regular
)

Irregular flapping with degrading stability
TestScenarios.device_flapping_scenario(devices,
 flap_pattern: :degrading,
 total_duration_minutes: 45
)

 environmental_scenario(devices, opts \\ [])

 @spec environmental_scenario(
 device_list(),
 keyword()
) :: scenario_result()

Simulate environmental conditions affecting network equipment.
Models weather, power, or temperature-related issues that affect
multiple devices simultaneously.
Options
	condition_type: :weather | :power | :temperature | :interference

	severity: :mild | :moderate | :severe (default: :moderate)

	duration_hours: Condition duration (default: 2)
	geographic_pattern: :random | :clustered | :linear (default: :clustered)

Examples
Severe weather affecting clustered devices
TestScenarios.environmental_scenario(devices,
 condition_type: :weather,
 severity: :severe,
 duration_hours: 4,
 geographic_pattern: :clustered
)

Power instability
TestScenarios.environmental_scenario(devices,
 condition_type: :power,
 severity: :moderate,
 duration_hours: 1
)

 high_load_scenario(devices, opts \\ [])

 @spec high_load_scenario(
 device_list(),
 keyword()
) :: scenario_result()

Simulate high network load and congestion conditions.
Tests poller behavior under network stress with increased latency,
packet loss, and timeout conditions.
Options
	utilization_percent: Network utilization level (default: 85)
	duration_minutes: Load duration (default: 60)
	congestion_type: :steady | :bursty | :cascade (default: :bursty)

	error_rate_multiplier: Error rate increase factor (default: 5.0)

Examples
Sustained high load
TestScenarios.high_load_scenario(devices,
 utilization_percent: 95,
 duration_minutes: 120,
 congestion_type: :steady
)

Bursty congestion with high error rates
TestScenarios.high_load_scenario(devices,
 utilization_percent: 90,
 congestion_type: :bursty,
 error_rate_multiplier: 10.0
)

 multi_scenario_test(devices, scenarios)

 @spec multi_scenario_test(device_list(), [{atom(), keyword()}]) :: [scenario_result()]

Apply multiple scenarios simultaneously for complex testing.
Combines different failure patterns to test system behavior under
realistic multi-factor conditions.
Examples
scenarios = [
 {:signal_degradation, [snr_degradation: 8, duration_minutes: 60]},
 {:high_load, [utilization_percent: 90, duration_minutes: 45]},
 {:device_flapping, [flap_interval_seconds: 120]}
]

TestScenarios.multi_scenario_test(devices, scenarios)

 network_outage_scenario(devices, opts \\ [])

 @spec network_outage_scenario(
 device_list(),
 keyword()
) :: scenario_result()

Simulate complete network outage affecting all devices.
Tests poller behavior during total connectivity loss and recovery.
Options
	duration_seconds: Outage duration (default: 300)
	recovery_type: :immediate | :gradual | :sporadic (default: :gradual)

	affected_percentage: Percentage of devices affected (default: 1.0)

Examples
5-minute complete outage
TestScenarios.network_outage_scenario(devices, duration_seconds: 300)

Gradual recovery affecting 80% of devices
TestScenarios.network_outage_scenario(devices,
 duration_seconds: 600,
 recovery_type: :gradual,
 affected_percentage: 0.8
)

 signal_degradation_scenario(devices, opts \\ [])

 @spec signal_degradation_scenario(
 device_list(),
 keyword()
) :: scenario_result()

Simulate signal degradation for wireless/cable devices.
Models weather-related signal issues, interference, or equipment problems.
Options
	snr_degradation: SNR reduction in dB (default: 5)
	power_variation: Power level variation in dBmV (default: 3)
	duration_minutes: Degradation duration (default: 30)
	pattern: :steady | :fluctuating | :progressive (default: :fluctuating)

Examples
Weather-related signal degradation
TestScenarios.signal_degradation_scenario(cable_modems,
 snr_degradation: 10,
 power_variation: 5,
 duration_minutes: 45,
 pattern: :progressive
)

SnmpKit.SnmpSim.TimePatterns

Realistic time-based variations for network metrics.
Implements daily, weekly, and seasonal patterns for authentic simulation.

 Summary

 Functions

 apply_seasonal_variation(datetime, pattern_type \\ :generic)

 Apply seasonal variations to any metric.

 apply_weather_variation(datetime)

 Apply weather-related variations to signal quality metrics.

 get_burst_pattern(device_type, datetime)

 Get burst patterns for specific device types and times.

 get_correlation_pattern(primary_metric, secondary_metric, primary_value, datetime)

 Get correlation patterns for linked metrics.

 get_daily_temperature_pattern(datetime)

 Get daily temperature variation pattern.

 get_daily_utilization_pattern(datetime)

 Get daily utilization pattern factor (0.0 to 1.5).

 get_interface_traffic_rate(interface_type, datetime)

 Get interface traffic rate based on interface type and time patterns.

 get_maintenance_window_factor(datetime)

 Get maintenance window patterns.

 get_monthly_pattern(datetime)

 Get monthly pattern for maintenance windows and operational changes.

 get_seasonal_temperature_pattern(datetime)

 Get seasonal temperature variation.

 get_weekly_pattern(datetime)

 Get weekly pattern factor based on day of week.

 Functions

 apply_seasonal_variation(datetime, pattern_type \\ :generic)

Apply seasonal variations to any metric.
Generic seasonal pattern that can be applied to various metrics.
Useful for metrics that have yearly cycles.
Examples
Apply to equipment failure rates (higher in summer heat)
factor = SnmpKit.SnmpSim.TimePatterns.apply_seasonal_variation(datetime, :equipment_stress)

Apply to power consumption (higher in winter/summer for heating/cooling)
factor = SnmpKit.SnmpSim.TimePatterns.apply_seasonal_variation(datetime, :power_consumption)

 apply_weather_variation(datetime)

Apply weather-related variations to signal quality metrics.
Simulates weather patterns that affect signal strength:
	Rain/snow: Reduces signal quality
	Clear weather: Optimal signal quality
	Seasonal patterns for different weather probabilities

Examples
factor = SnmpKit.SnmpSim.TimePatterns.apply_weather_variation(~U[2024-01-15 14:00:00Z])
Returns: 0.85 (some weather impact)

 get_burst_pattern(device_type, datetime)

Get burst patterns for specific device types and times.
Different devices have different burst characteristics:
	Servers: Application-driven bursts
	Routers: Protocol-driven bursts
	Cable modems: User-activity bursts

 get_correlation_pattern(primary_metric, secondary_metric, primary_value, datetime)

Get correlation patterns for linked metrics.
Many network metrics are correlated and should move together:
	Traffic volume vs packet count
	Utilization vs error rates
	Signal quality vs throughput

 get_daily_temperature_pattern(datetime)

Get daily temperature variation pattern.
Returns temperature offset based on time of day:
	Coldest: ~6 AM
	Warmest: ~3 PM
	Smooth sinusoidal pattern

Examples
6 AM (coldest)
offset = SnmpKit.SnmpSim.TimePatterns.get_daily_temperature_pattern(~U[2024-01-15 06:00:00Z])
Returns: -3.2

3 PM (warmest)
offset = SnmpKit.SnmpSim.TimePatterns.get_daily_temperature_pattern(~U[2024-01-15 15:00:00Z])
Returns: 4.1

 get_daily_utilization_pattern(datetime)

Get daily utilization pattern factor (0.0 to 1.5).
Returns a multiplier based on time of day:
	0-5 AM: Low usage (0.3)
	6-8 AM: Morning ramp (0.7)
	9-17 PM: Business hours (0.9-1.2)
	18-20 PM: Evening peak (1.5)
	21-23 PM: Late evening (0.8)

Examples
2 PM business hours
factor = SnmpKit.SnmpSim.TimePatterns.get_daily_utilization_pattern(~U[2024-01-15 14:00:00Z])
Returns: ~1.1

7 PM evening peak
factor = SnmpKit.SnmpSim.TimePatterns.get_daily_utilization_pattern(~U[2024-01-15 19:00:00Z])
Returns: ~1.5

 get_interface_traffic_rate(interface_type, datetime)

Get interface traffic rate based on interface type and time patterns.
Returns expected traffic rate ranges for different interface types
with time-based adjustments.
Examples
rate = SnmpKit.SnmpSim.TimePatterns.get_interface_traffic_rate(:ethernet_gigabit, datetime)
Returns: {min_rate, max_rate, current_factor}

 get_maintenance_window_factor(datetime)

Get maintenance window patterns.
Network maintenance typically happens during low-usage periods:
	2-6 AM local time
	Weekend mornings
	Holiday periods

 get_monthly_pattern(datetime)

Get monthly pattern for maintenance windows and operational changes.
Some months have different operational characteristics:
	End of quarters: Higher activity
	Summer months: Maintenance windows
	Holiday months: Lower activity

 get_seasonal_temperature_pattern(datetime)

Get seasonal temperature variation.
Returns temperature offset in Celsius based on month and location patterns.
Simulates realistic seasonal temperature changes.
Examples
January (winter)
offset = SnmpKit.SnmpSim.TimePatterns.get_seasonal_temperature_pattern(~U[2024-01-15 14:00:00Z])
Returns: -8.5

July (summer)
offset = SnmpKit.SnmpSim.TimePatterns.get_seasonal_temperature_pattern(~U[2024-07-15 14:00:00Z])
Returns: 12.3

 get_weekly_pattern(datetime)

Get weekly pattern factor based on day of week.
Returns multiplier for weekday vs weekend patterns:
	Monday-Friday: 1.0 (full pattern)
	Saturday: 0.7 (reduced business, increased residential)
	Sunday: 0.5 (lowest overall usage)

Examples
Tuesday
factor = SnmpKit.SnmpSim.TimePatterns.get_weekly_pattern(~U[2024-01-16 14:00:00Z])
Returns: 1.0

Saturday
factor = SnmpKit.SnmpSim.TimePatterns.get_weekly_pattern(~U[2024-01-20 14:00:00Z])
Returns: 0.7

SnmpKit.SnmpSim.ValueSimulator

Generate realistic values based on MIB-derived behavior patterns.
Supports counters, gauges, enums, and correlated metrics with time-based variations.

 Summary

 Functions

 apply_configurable_jitter(value, metric_type, device_type, jitter_config \\ %{})

 Apply configurable jitter to gauge values based on device and metric type.
Different metrics have different jitter characteristics.

 apply_device_specific_counter_behavior(value, type, device_type, config \\ %{})

 Simulate realistic counter wrap behavior with device-specific patterns.
Different device types may handle wrap differently.

 counter_approaching_wrap?(value, type, threshold_percent \\ 0.95)

 Check if a counter value is approaching its maximum and likely to wrap soon.
Used to predict and prepare for counter wrap events.

 handle_counter_discontinuity(old_value, new_value, discontinuity_counter)

 Generate counter discontinuity events that occur during counter wraps.
Some devices increment discontinuity counters when main counters wrap.

 simulate_value(profile_data, behavior_config, device_state)

 Simulate a value based on profile data, behavior configuration, and device state.

 time_until_counter_wrap(current_value, increment_rate, type)

 Calculate the time until counter wrap based on current increment rate.
Returns estimated seconds until wrap occurs.

 Functions

 apply_configurable_jitter(value, metric_type, device_type, jitter_config \\ %{})

Apply configurable jitter to gauge values based on device and metric type.
Different metrics have different jitter characteristics.

 apply_device_specific_counter_behavior(value, type, device_type, config \\ %{})

Simulate realistic counter wrap behavior with device-specific patterns.
Different device types may handle wrap differently.

 counter_approaching_wrap?(value, type, threshold_percent \\ 0.95)

Check if a counter value is approaching its maximum and likely to wrap soon.
Used to predict and prepare for counter wrap events.

 handle_counter_discontinuity(old_value, new_value, discontinuity_counter)

Generate counter discontinuity events that occur during counter wraps.
Some devices increment discontinuity counters when main counters wrap.

 simulate_value(profile_data, behavior_config, device_state)

Simulate a value based on profile data, behavior configuration, and device state.
Examples
Traffic counter simulation
value = SnmpKit.SnmpSim.ValueSimulator.simulate_value(
 %{type: "Counter32", value: 1000000},
 {:traffic_counter, %{rate_range: {1000, 125_000_000}}},
 %{device_id: "cm_001", uptime: 3600, interface_utilization: 0.3}
)

 time_until_counter_wrap(current_value, increment_rate, type)

Calculate the time until counter wrap based on current increment rate.
Returns estimated seconds until wrap occurs.

SnmpKit.SnmpSim.WalkParser

Parse both named MIB and numeric OID walk file formats.
Handle different snmpwalk output variations automatically.

 Summary

 Functions

 parse_walk_file(file_path)

 Parse a walk file and return a map of OID -> value mappings.

 parse_walk_line(line)

 Parse a single line from a walk file.

 Functions

 parse_walk_file(file_path)

Parse a walk file and return a map of OID -> value mappings.
Supports both named MIB format and numeric OID format:
	Named: "IF-MIB::ifInOctets.2 = Counter32: 1234567890"
	Numeric: ".1.3.6.1.2.1.2.2.1.10.2 = Counter32: 1234567890"

Examples
{:ok, oid_map} = SnmpKit.SnmpSim.WalkParser.parse_walk_file("priv/walks/cable_modem.walk")

 parse_walk_line(line)

Parse a single line from a walk file.
Examples
Named MIB format
result = SnmpKit.SnmpSim.WalkParser.parse_walk_line("IF-MIB::ifInOctets.2 = Counter32: 1234567890")
=> {"1.3.6.1.2.1.2.2.1.10.2", %{type: "Counter32", value: 1234567890, mib_name: "IF-MIB::ifInOctets.2"}}

Numeric OID format
result = SnmpKit.SnmpSim.WalkParser.parse_walk_line(".1.3.6.1.2.1.2.2.1.10.2 = Counter32: 1234567890")
=> {"1.3.6.1.2.1.2.2.1.10.2", %{type: "Counter32", value: 1234567890}}

SnmpKit

Unified API for SnmpKit - A comprehensive SNMP toolkit for Elixir.
This module provides a clean, organized interface to all SnmpKit functionality
through context-based sub-modules:
	SnmpKit.SNMP - SNMP operations (get, walk, bulk, etc.)
	SnmpKit.MIB - MIB compilation, loading, and resolution
	SnmpKit.Sim - SNMP device simulation and testing

Quick Examples
SNMP Operations
{:ok, value} = SnmpKit.SNMP.get("192.168.1.1", "sysDescr.0")
{:ok, results} = SnmpKit.SNMP.walk("192.168.1.1", "system")

MIB Operations
{:ok, oid} = SnmpKit.MIB.resolve("sysDescr.0")
{:ok, compiled} = SnmpKit.MIB.compile("MY-MIB.mib")

Simulation
{:ok, device} = SnmpKit.Sim.start_device(profile, port: 1161)
For backward compatibility, many common operations are also available
directly on the main SnmpKit module.

 Summary

 Functions

 bulk_walk(target, root_oid)

 See SnmpKit.SnmpMgr.bulk_walk/2.

 bulk_walk(target, root_oid, opts)

 See SnmpKit.SnmpMgr.bulk_walk/3.

 get(target, oid)

 See SnmpKit.SnmpMgr.get/2.

 get(target, oid, opts)

 See SnmpKit.SnmpMgr.get/3.

 get_bulk(target, oid_or_oids)

 See SnmpKit.SnmpMgr.get_bulk/2.

 get_bulk(target, oid_or_oids, opts)

 See SnmpKit.SnmpMgr.get_bulk/3.

 get_bulk_multi(targets_and_oids)

 See SnmpKit.SnmpMgr.get_bulk_multi/1.

 get_bulk_multi(targets_and_oids, opts)

 See SnmpKit.SnmpMgr.get_bulk_multi/2.

 resolve(name)

 See SnmpKit.SnmpMgr.MIB.resolve/1.

 set(target, oid, value)

 See SnmpKit.SnmpMgr.set/3.

 set(target, oid, value, opts)

 See SnmpKit.SnmpMgr.set/4.

 walk(target, oid)

 See SnmpKit.SnmpMgr.walk/2.

 walk(target, oid, opts)

 See SnmpKit.SnmpMgr.walk/3.

 walk_multi(targets_and_oids)

 See SnmpKit.SnmpMgr.walk_multi/1.

 walk_multi(targets_and_oids, opts)

 See SnmpKit.SnmpMgr.walk_multi/2.

 walk_table(target, table_oid)

 See SnmpKit.SnmpMgr.walk_table/2.

 walk_table(target, table_oid, opts)

 See SnmpKit.SnmpMgr.walk_table/3.

 Functions

 bulk_walk(target, root_oid)

See SnmpKit.SnmpMgr.bulk_walk/2.

 bulk_walk(target, root_oid, opts)

See SnmpKit.SnmpMgr.bulk_walk/3.

 get(target, oid)

See SnmpKit.SnmpMgr.get/2.

 get(target, oid, opts)

See SnmpKit.SnmpMgr.get/3.

 get_bulk(target, oid_or_oids)

See SnmpKit.SnmpMgr.get_bulk/2.

 get_bulk(target, oid_or_oids, opts)

See SnmpKit.SnmpMgr.get_bulk/3.

 get_bulk_multi(targets_and_oids)

See SnmpKit.SnmpMgr.get_bulk_multi/1.

 get_bulk_multi(targets_and_oids, opts)

See SnmpKit.SnmpMgr.get_bulk_multi/2.

 resolve(name)

See SnmpKit.SnmpMgr.MIB.resolve/1.

 set(target, oid, value)

See SnmpKit.SnmpMgr.set/3.

 set(target, oid, value, opts)

See SnmpKit.SnmpMgr.set/4.

 walk(target, oid)

See SnmpKit.SnmpMgr.walk/2.

 walk(target, oid, opts)

See SnmpKit.SnmpMgr.walk/3.

 walk_multi(targets_and_oids)

See SnmpKit.SnmpMgr.walk_multi/1.

 walk_multi(targets_and_oids, opts)

See SnmpKit.SnmpMgr.walk_multi/2.

 walk_table(target, table_oid)

See SnmpKit.SnmpMgr.walk_table/2.

 walk_table(target, table_oid, opts)

See SnmpKit.SnmpMgr.walk_table/3.

SnmpKit.MIB

MIB (Management Information Base) operations.
This module provides comprehensive MIB support including:
	MIB compilation from source files
	Loading and managing compiled MIBs
	OID name resolution and reverse lookup
	MIB tree navigation and analysis

 Summary

 Functions

 children(oid)

 See SnmpKit.SnmpMgr.MIB.children/1.

 compile(mib_file)

 See SnmpKit.SnmpMgr.MIB.compile/1.

 compile(mib_file, opts)

 See SnmpKit.SnmpMgr.MIB.compile/2.

 compile_all(mib_files)

 See SnmpKit.SnmpLib.MIB.compile_all/1.

 compile_all(mib_files, opts)

 See SnmpKit.SnmpLib.MIB.compile_all/2.

 compile_dir(directory)

 See SnmpKit.SnmpMgr.MIB.compile_dir/1.

 compile_dir(directory, opts)

 See SnmpKit.SnmpMgr.MIB.compile_dir/2.

 compile_raw(mib_source)

 See SnmpKit.SnmpLib.MIB.compile/1.

 compile_raw(mib_source, opts)

 See SnmpKit.SnmpLib.MIB.compile/2.

 compile_string(mib_content)

 See SnmpKit.SnmpLib.MIB.compile_string/1.

 compile_string(mib_content, opts)

 See SnmpKit.SnmpLib.MIB.compile_string/2.

 load(compiled_mib_path)

 See SnmpKit.SnmpMgr.MIB.load/1.

 load_and_integrate_mib(mib_file)

 See SnmpKit.SnmpMgr.MIB.load_and_integrate_mib/1.

 load_and_integrate_mib(mib_file, opts)

 See SnmpKit.SnmpMgr.MIB.load_and_integrate_mib/2.

 load_compiled(compiled_path)

 See SnmpKit.SnmpLib.MIB.load_compiled/1.

 load_standard_mibs()

 See SnmpKit.SnmpMgr.MIB.load_standard_mibs/0.

 parent(oid)

 See SnmpKit.SnmpMgr.MIB.parent/1.

 parse_mib_content(content)

 See SnmpKit.SnmpMgr.MIB.parse_mib_content/1.

 parse_mib_content(content, opts)

 See SnmpKit.SnmpMgr.MIB.parse_mib_content/2.

 parse_mib_file(mib_file)

 See SnmpKit.SnmpMgr.MIB.parse_mib_file/1.

 parse_mib_file(mib_file, opts)

 See SnmpKit.SnmpMgr.MIB.parse_mib_file/2.

 resolve(name)

 See SnmpKit.SnmpMgr.MIB.resolve/1.

 resolve_enhanced(name)

 See SnmpKit.SnmpMgr.MIB.resolve_enhanced/1.

 resolve_enhanced(name, opts)

 See SnmpKit.SnmpMgr.MIB.resolve_enhanced/2.

 reverse_lookup(oid)

 See SnmpKit.SnmpMgr.MIB.reverse_lookup/1.

 start_link()

 See SnmpKit.SnmpMgr.MIB.start_link/0.

 start_link(opts)

 See SnmpKit.SnmpMgr.MIB.start_link/1.

 walk_tree(root_oid)

 See SnmpKit.SnmpMgr.MIB.walk_tree/1.

 walk_tree(root_oid, opts)

 See SnmpKit.SnmpMgr.MIB.walk_tree/2.

 Functions

 children(oid)

See SnmpKit.SnmpMgr.MIB.children/1.

 compile(mib_file)

See SnmpKit.SnmpMgr.MIB.compile/1.

 compile(mib_file, opts)

See SnmpKit.SnmpMgr.MIB.compile/2.

 compile_all(mib_files)

See SnmpKit.SnmpLib.MIB.compile_all/1.

 compile_all(mib_files, opts)

See SnmpKit.SnmpLib.MIB.compile_all/2.

 compile_dir(directory)

See SnmpKit.SnmpMgr.MIB.compile_dir/1.

 compile_dir(directory, opts)

See SnmpKit.SnmpMgr.MIB.compile_dir/2.

 compile_raw(mib_source)

See SnmpKit.SnmpLib.MIB.compile/1.

 compile_raw(mib_source, opts)

See SnmpKit.SnmpLib.MIB.compile/2.

 compile_string(mib_content)

See SnmpKit.SnmpLib.MIB.compile_string/1.

 compile_string(mib_content, opts)

See SnmpKit.SnmpLib.MIB.compile_string/2.

 load(compiled_mib_path)

See SnmpKit.SnmpMgr.MIB.load/1.

 load_and_integrate_mib(mib_file)

See SnmpKit.SnmpMgr.MIB.load_and_integrate_mib/1.

 load_and_integrate_mib(mib_file, opts)

See SnmpKit.SnmpMgr.MIB.load_and_integrate_mib/2.

 load_compiled(compiled_path)

See SnmpKit.SnmpLib.MIB.load_compiled/1.

 load_standard_mibs()

See SnmpKit.SnmpMgr.MIB.load_standard_mibs/0.

 parent(oid)

See SnmpKit.SnmpMgr.MIB.parent/1.

 parse_mib_content(content)

See SnmpKit.SnmpMgr.MIB.parse_mib_content/1.

 parse_mib_content(content, opts)

See SnmpKit.SnmpMgr.MIB.parse_mib_content/2.

 parse_mib_file(mib_file)

See SnmpKit.SnmpMgr.MIB.parse_mib_file/1.

 parse_mib_file(mib_file, opts)

See SnmpKit.SnmpMgr.MIB.parse_mib_file/2.

 resolve(name)

See SnmpKit.SnmpMgr.MIB.resolve/1.

 resolve_enhanced(name)

See SnmpKit.SnmpMgr.MIB.resolve_enhanced/1.

 resolve_enhanced(name, opts)

See SnmpKit.SnmpMgr.MIB.resolve_enhanced/2.

 reverse_lookup(oid)

See SnmpKit.SnmpMgr.MIB.reverse_lookup/1.

 start_link()

See SnmpKit.SnmpMgr.MIB.start_link/0.

 start_link(opts)

See SnmpKit.SnmpMgr.MIB.start_link/1.

 walk_tree(root_oid)

See SnmpKit.SnmpMgr.MIB.walk_tree/1.

 walk_tree(root_oid, opts)

See SnmpKit.SnmpMgr.MIB.walk_tree/2.

SnmpKit.SNMP

SNMP client operations for querying and managing SNMP devices.
This module provides all SNMP protocol operations including:
	Basic operations: get, set, get_next
	Bulk operations: get_bulk, walk, table operations
	Advanced features: streaming, async operations, multi-target
	Pretty formatting and analysis tools

 Summary

 Functions

 adaptive_walk(target, root_oid)

 See SnmpKit.SnmpMgr.adaptive_walk/2.

 adaptive_walk(target, root_oid, opts)

 See SnmpKit.SnmpMgr.adaptive_walk/3.

 analyze_table(table_data)

 See SnmpKit.SnmpMgr.analyze_table/1.

 analyze_table(table_data, opts)

 See SnmpKit.SnmpMgr.analyze_table/2.

 benchmark_device(target, test_oid)

 See SnmpKit.SnmpMgr.benchmark_device/2.

 benchmark_device(target, test_oid, opts)

 See SnmpKit.SnmpMgr.benchmark_device/3.

 bulk_pretty(target, oid)

 See SnmpKit.SnmpMgr.bulk_pretty/2.

 bulk_pretty(target, oid, opts)

 See SnmpKit.SnmpMgr.bulk_pretty/3.

 bulk_walk(target, oid)

 See SnmpKit.SnmpMgr.bulk_walk/2.

 bulk_walk(target, oid, opts)

 See SnmpKit.SnmpMgr.bulk_walk/3.

 bulk_walk!(target, root_oid, opts \\ [])

 Like bulk_walk/3 but raises on error.

 bulk_walk_pretty(target, oid)

 See SnmpKit.SnmpMgr.bulk_walk_pretty/2.

 bulk_walk_pretty(target, oid, opts)

 See SnmpKit.SnmpMgr.bulk_walk_pretty/3.

 bulk_walk_stream(target, root_oid, opts \\ [])

 Streaming variant of bulk_walk/3 that enforces bulk semantics (v2c) and lazily
retrieves data in chunks.

 engine_batch(requests)

 See SnmpKit.SnmpMgr.engine_batch/1.

 engine_batch(requests, opts)

 See SnmpKit.SnmpMgr.engine_batch/2.

 engine_request(request)

 See SnmpKit.SnmpMgr.engine_request/1.

 engine_request(request, opts)

 See SnmpKit.SnmpMgr.engine_request/2.

 get(target, oid)

 See SnmpKit.SnmpMgr.get/2.

 get(target, oid, opts)

 See SnmpKit.SnmpMgr.get/3.

 get_async(target, oid)

 See SnmpKit.SnmpMgr.get_async/2.

 get_async(target, oid, opts)

 See SnmpKit.SnmpMgr.get_async/3.

 get_bulk(target, oid)

 See SnmpKit.SnmpMgr.get_bulk/2.

 get_bulk(target, oid, opts)

 See SnmpKit.SnmpMgr.get_bulk/3.

 get_bulk!(target, oid, opts \\ [])

 Like get_bulk/3 but raises on error.

 get_bulk_async(target, oid)

 See SnmpKit.SnmpMgr.get_bulk_async/2.

 get_bulk_async(target, oid, opts)

 See SnmpKit.SnmpMgr.get_bulk_async/3.

 get_bulk_multi(targets_and_oids)

 See SnmpKit.SnmpMgr.get_bulk_multi/1.

 get_bulk_multi(targets_and_oids, opts)

 See SnmpKit.SnmpMgr.get_bulk_multi/2.

 get_column(target, table_oid, column)

 See SnmpKit.SnmpMgr.get_column/3.

 get_column(target, table_oid, column, opts)

 See SnmpKit.SnmpMgr.get_column/4.

 get_engine_stats()

 See SnmpKit.SnmpMgr.get_engine_stats/0.

 get_engine_stats(opts)

 See SnmpKit.SnmpMgr.get_engine_stats/1.

 get_multi(targets_and_oids)

 See SnmpKit.SnmpMgr.get_multi/1.

 get_multi(targets_and_oids, opts)

 See SnmpKit.SnmpMgr.get_multi/2.

 get_next(target, oid)

 See SnmpKit.SnmpMgr.get_next/2.

 get_next(target, oid, opts)

 See SnmpKit.SnmpMgr.get_next/3.

 get_next_with_type(target, oid)

 See SnmpKit.SnmpMgr.get_next_with_type/2.

 get_next_with_type(target, oid, opts)

 See SnmpKit.SnmpMgr.get_next_with_type/3.

 get_pretty(target, oid)

 See SnmpKit.SnmpMgr.get_pretty/2.

 get_pretty(target, oid, opts)

 See SnmpKit.SnmpMgr.get_pretty/3.

 get_table(target, table_oid)

 See SnmpKit.SnmpMgr.get_table/2.

 get_table(target, table_oid, opts)

 See SnmpKit.SnmpMgr.get_table/3.

 get_with_type(target, oid)

 See SnmpKit.SnmpMgr.get_with_type/2.

 get_with_type(target, oid, opts)

 See SnmpKit.SnmpMgr.get_with_type/3.

 record_metric(metric_type, metric_name, value)

 See SnmpKit.SnmpMgr.record_metric/3.

 record_metric(metric_type, metric_name, value, tags)

 See SnmpKit.SnmpMgr.record_metric/4.

 set(target, oid, value)

 See SnmpKit.SnmpMgr.set/3.

 set(target, oid, value, opts)

 See SnmpKit.SnmpMgr.set/4.

 start_engine()

 See SnmpKit.SnmpMgr.start_engine/0.

 start_engine(opts)

 See SnmpKit.SnmpMgr.start_engine/1.

 table_bulk_stream(target, table_oid, opts \\ [])

 Streaming variant of table walk that enforces bulk semantics (v2c).

 table_stream(target, table_oid)

 See SnmpKit.SnmpMgr.table_stream/2.

 table_stream(target, table_oid, opts)

 See SnmpKit.SnmpMgr.table_stream/3.

 walk(target, oid)

 See SnmpKit.SnmpMgr.walk/2.

 walk(target, oid, opts)

 See SnmpKit.SnmpMgr.walk/3.

 walk_multi(targets_and_oids)

 See SnmpKit.SnmpMgr.walk_multi/1.

 walk_multi(targets_and_oids, opts)

 See SnmpKit.SnmpMgr.walk_multi/2.

 walk_pretty(target, oid)

 See SnmpKit.SnmpMgr.walk_pretty/2.

 walk_pretty(target, oid, opts)

 See SnmpKit.SnmpMgr.walk_pretty/3.

 walk_stream(target, root_oid)

 See SnmpKit.SnmpMgr.walk_stream/2.

 walk_stream(target, root_oid, opts)

 See SnmpKit.SnmpMgr.walk_stream/3.

 walk_table(target, table_oid)

 See SnmpKit.SnmpMgr.walk_table/2.

 walk_table(target, table_oid, opts)

 See SnmpKit.SnmpMgr.walk_table/3.

 with_circuit_breaker(target, fun)

 See SnmpKit.SnmpMgr.with_circuit_breaker/2.

 with_circuit_breaker(target, fun, opts)

 See SnmpKit.SnmpMgr.with_circuit_breaker/3.

 Functions

 adaptive_walk(target, root_oid)

See SnmpKit.SnmpMgr.adaptive_walk/2.

 adaptive_walk(target, root_oid, opts)

See SnmpKit.SnmpMgr.adaptive_walk/3.

 analyze_table(table_data)

See SnmpKit.SnmpMgr.analyze_table/1.

 analyze_table(table_data, opts)

See SnmpKit.SnmpMgr.analyze_table/2.

 benchmark_device(target, test_oid)

See SnmpKit.SnmpMgr.benchmark_device/2.

 benchmark_device(target, test_oid, opts)

See SnmpKit.SnmpMgr.benchmark_device/3.

 bulk_pretty(target, oid)

See SnmpKit.SnmpMgr.bulk_pretty/2.

 bulk_pretty(target, oid, opts)

See SnmpKit.SnmpMgr.bulk_pretty/3.

 bulk_walk(target, oid)

See SnmpKit.SnmpMgr.bulk_walk/2.

 bulk_walk(target, oid, opts)

See SnmpKit.SnmpMgr.bulk_walk/3.

 bulk_walk!(target, root_oid, opts \\ [])

 @spec bulk_walk!(term(), term(), keyword()) :: term()

Like bulk_walk/3 but raises on error.

 bulk_walk_pretty(target, oid)

See SnmpKit.SnmpMgr.bulk_walk_pretty/2.

 bulk_walk_pretty(target, oid, opts)

See SnmpKit.SnmpMgr.bulk_walk_pretty/3.

 bulk_walk_stream(target, root_oid, opts \\ [])

 @spec bulk_walk_stream(term(), term(), keyword()) :: Enumerable.t()

Streaming variant of bulk_walk/3 that enforces bulk semantics (v2c) and lazily
retrieves data in chunks.

 engine_batch(requests)

See SnmpKit.SnmpMgr.engine_batch/1.

 engine_batch(requests, opts)

See SnmpKit.SnmpMgr.engine_batch/2.

 engine_request(request)

See SnmpKit.SnmpMgr.engine_request/1.

 engine_request(request, opts)

See SnmpKit.SnmpMgr.engine_request/2.

 get(target, oid)

See SnmpKit.SnmpMgr.get/2.

 get(target, oid, opts)

See SnmpKit.SnmpMgr.get/3.

 get_async(target, oid)

See SnmpKit.SnmpMgr.get_async/2.

 get_async(target, oid, opts)

See SnmpKit.SnmpMgr.get_async/3.

 get_bulk(target, oid)

See SnmpKit.SnmpMgr.get_bulk/2.

 get_bulk(target, oid, opts)

See SnmpKit.SnmpMgr.get_bulk/3.

 get_bulk!(target, oid, opts \\ [])

 @spec get_bulk!(term(), term(), keyword()) :: term()

Like get_bulk/3 but raises on error.

 get_bulk_async(target, oid)

See SnmpKit.SnmpMgr.get_bulk_async/2.

 get_bulk_async(target, oid, opts)

See SnmpKit.SnmpMgr.get_bulk_async/3.

 get_bulk_multi(targets_and_oids)

See SnmpKit.SnmpMgr.get_bulk_multi/1.

 get_bulk_multi(targets_and_oids, opts)

See SnmpKit.SnmpMgr.get_bulk_multi/2.

 get_column(target, table_oid, column)

See SnmpKit.SnmpMgr.get_column/3.

 get_column(target, table_oid, column, opts)

See SnmpKit.SnmpMgr.get_column/4.

 get_engine_stats()

See SnmpKit.SnmpMgr.get_engine_stats/0.

 get_engine_stats(opts)

See SnmpKit.SnmpMgr.get_engine_stats/1.

 get_multi(targets_and_oids)

See SnmpKit.SnmpMgr.get_multi/1.

 get_multi(targets_and_oids, opts)

See SnmpKit.SnmpMgr.get_multi/2.

 get_next(target, oid)

See SnmpKit.SnmpMgr.get_next/2.

 get_next(target, oid, opts)

See SnmpKit.SnmpMgr.get_next/3.

 get_next_with_type(target, oid)

See SnmpKit.SnmpMgr.get_next_with_type/2.

 get_next_with_type(target, oid, opts)

See SnmpKit.SnmpMgr.get_next_with_type/3.

 get_pretty(target, oid)

See SnmpKit.SnmpMgr.get_pretty/2.

 get_pretty(target, oid, opts)

See SnmpKit.SnmpMgr.get_pretty/3.

 get_table(target, table_oid)

See SnmpKit.SnmpMgr.get_table/2.

 get_table(target, table_oid, opts)

See SnmpKit.SnmpMgr.get_table/3.

 get_with_type(target, oid)

See SnmpKit.SnmpMgr.get_with_type/2.

 get_with_type(target, oid, opts)

See SnmpKit.SnmpMgr.get_with_type/3.

 record_metric(metric_type, metric_name, value)

See SnmpKit.SnmpMgr.record_metric/3.

 record_metric(metric_type, metric_name, value, tags)

See SnmpKit.SnmpMgr.record_metric/4.

 set(target, oid, value)

See SnmpKit.SnmpMgr.set/3.

 set(target, oid, value, opts)

See SnmpKit.SnmpMgr.set/4.

 start_engine()

See SnmpKit.SnmpMgr.start_engine/0.

 start_engine(opts)

See SnmpKit.SnmpMgr.start_engine/1.

 table_bulk_stream(target, table_oid, opts \\ [])

 @spec table_bulk_stream(term(), term(), keyword()) :: Enumerable.t()

Streaming variant of table walk that enforces bulk semantics (v2c).

 table_stream(target, table_oid)

See SnmpKit.SnmpMgr.table_stream/2.

 table_stream(target, table_oid, opts)

See SnmpKit.SnmpMgr.table_stream/3.

 walk(target, oid)

See SnmpKit.SnmpMgr.walk/2.

 walk(target, oid, opts)

See SnmpKit.SnmpMgr.walk/3.

 walk_multi(targets_and_oids)

See SnmpKit.SnmpMgr.walk_multi/1.

 walk_multi(targets_and_oids, opts)

See SnmpKit.SnmpMgr.walk_multi/2.

 walk_pretty(target, oid)

See SnmpKit.SnmpMgr.walk_pretty/2.

 walk_pretty(target, oid, opts)

See SnmpKit.SnmpMgr.walk_pretty/3.

 walk_stream(target, root_oid)

See SnmpKit.SnmpMgr.walk_stream/2.

 walk_stream(target, root_oid, opts)

See SnmpKit.SnmpMgr.walk_stream/3.

 walk_table(target, table_oid)

See SnmpKit.SnmpMgr.walk_table/2.

 walk_table(target, table_oid, opts)

See SnmpKit.SnmpMgr.walk_table/3.

 with_circuit_breaker(target, fun)

See SnmpKit.SnmpMgr.with_circuit_breaker/2.

 with_circuit_breaker(target, fun, opts)

See SnmpKit.SnmpMgr.with_circuit_breaker/3.

SnmpKit.Sim

SNMP device simulation for testing and development.
This module provides tools for creating and managing simulated SNMP devices:
	Start individual devices with custom profiles
	Create device populations for testing
	Manage device lifecycles

 Summary

 Functions

 start_device(profile)

 See SnmpKit.TestSupport.start_device/1.

 start_device(profile, opts)

 See SnmpKit.TestSupport.start_device/2.

 start_device_population(device_configs)

 See SnmpKit.TestSupport.start_device_population/1.

 start_device_population(device_configs, opts)

 See SnmpKit.TestSupport.start_device_population/2.

 Functions

 start_device(profile)

See SnmpKit.TestSupport.start_device/1.

 start_device(profile, opts)

See SnmpKit.TestSupport.start_device/2.

 start_device_population(device_configs)

See SnmpKit.TestSupport.start_device_population/1.

 start_device_population(device_configs, opts)

See SnmpKit.TestSupport.start_device_population/2.

SnmpKit.SnmpLib

Unified SNMP library providing RFC-compliant PDU encoding/decoding, OID manipulation, and SNMP utilities.
This library consolidates common SNMP functionality from multiple projects into a single,
well-tested, and performant library suitable for both SNMP managers and simulators.
Phase 2 provides complete RFC compliance including SNMPv2c exception values and
proper multibyte OID encoding.
Phase 2 Core Modules
	SnmpKit.SnmpLib.PDU - SNMP PDU encoding/decoding with full RFC compliance
	SNMPv1 and SNMPv2c protocol support
	SNMPv2c exception values (noSuchObject, noSuchInstance, endOfMibView)
	High-performance encoding/decoding
	Comprehensive error handling

	SnmpKit.SnmpLib.ASN1 - Low-level ASN.1 BER encoding/decoding
	RFC-compliant OID multibyte encoding (values ≥ 128)
	Complete integer, string, null, sequence support
	Optimized length handling for large values
	Robust error handling and validation

	SnmpKit.SnmpLib.OID - OID string/list conversion and manipulation utilities
	Fast string/list conversions with validation
	Tree operations and comparisons
	Table index parsing and construction
	Enterprise OID utilities

	SnmpKit.SnmpLib.Types - SNMP data type validation and formatting
	Complete SNMP type system support
	SNMPv2c exception value handling
	Human-readable formatting
	Range checking and validation

	SnmpKit.SnmpLib.Transport - UDP socket management for SNMP communications
	Socket creation and management
	Address resolution and validation
	Performance optimizations

Key Features
	100% RFC Compliance: Passes comprehensive RFC test suite (30/30 tests)
	SNMPv2c Exception Values: Proper encoding/decoding of special response values
	Multibyte OID Support: Correct handling of OID components ≥ 128
	High Performance: Optimized encoding/decoding with fast paths
	Comprehensive Testing: Extensive test coverage with edge cases
	Production Ready: Used in real SNMP management systems

Phase 3B: Advanced Features
Phase 3B adds enterprise-grade capabilities for high-scale SNMP deployments:
	SnmpKit.SnmpLib.Pool - Connection pooling and session management
	FIFO, round-robin, and device-affinity strategies
	Automatic overflow handling and health monitoring
	60-80% reduction in socket creation overhead
	Support for 100+ concurrent device operations

	SnmpKit.SnmpLib.ErrorHandler - Intelligent error handling and recovery
	Exponential backoff with jitter for retry operations
	Circuit breaker patterns for failing device management
	Error classification (transient, permanent, degraded)
	Adaptive timeout calculation based on device performance

	SnmpKit.SnmpLib.Monitor - Performance monitoring and analytics
	Real-time operation metrics and device statistics
	Configurable alerting system with callback support
	Data export in JSON, CSV, and Prometheus formats
	Health scoring and trend analysis

	SnmpKit.SnmpLib.Manager - High-level SNMP management operations
	Simple API for GET, GETBULK, SET operations
	Connection reuse and performance optimizations
	Comprehensive error handling with meaningful messages
	Timeout management and community support

Phase 4: Real-World Integration & Optimization
Phase 4 provides production-ready integration and optimization features:
	SnmpKit.SnmpLib.Config - Configuration management system
	Environment-aware configuration (dev/test/prod)
	Hot-reload capabilities and validation
	Multi-tenant deployment support
	Secrets management and security

	SnmpKit.SnmpLib.Dashboard - Real-time monitoring and visualization
	Live performance dashboards and metrics
	Alert management and notification routing
	Prometheus/Grafana integration
	Historical analytics and capacity planning

	SnmpKit.SnmpLib.Cache - Intelligent caching system
	Multi-level caching (L1/L2/L3) with compression
	Adaptive TTL based on data volatility
	Smart invalidation and cache warming
	50-80% reduction in redundant queries

Quick Start
Basic SNMP Operations
Simple SNMP GET operation
{:ok, {type, value}} = SnmpKit.SnmpLib.Manager.get("192.168.1.1", [1, 3, 6, 1, 2, 1, 1, 1, 0])

SNMP GETBULK for efficient bulk retrieval
{:ok, results} = SnmpKit.SnmpLib.Manager.get_bulk("192.168.1.1", [1, 3, 6, 1, 2, 1, 2, 2],
 max_repetitions: 20)

SNMP SET operation
{:ok, :success} = SnmpKit.SnmpLib.Manager.set("192.168.1.1", [1, 3, 6, 1, 2, 1, 1, 5, 0],
 {:string, "New System Name"})
High-Performance Connection Pooling
Start a connection pool for network monitoring
{:ok, _pid} = SnmpKit.SnmpLib.Pool.start_pool(:network_monitor,
 strategy: :device_affinity,
 size: 20,
 max_overflow: 10
)

Use pooled connections for improved performance
SnmpKit.SnmpLib.Pool.with_connection(:network_monitor, "192.168.1.1", fn conn ->
 SnmpKit.SnmpLib.Manager.get_multi(conn.socket, "192.168.1.1", oids, conn.opts)
end)
Intelligent Error Handling
Retry operations with exponential backoff
result = SnmpKit.SnmpLib.ErrorHandler.with_retry(fn ->
 SnmpKit.SnmpLib.Manager.get("unreliable.device.local", [1, 3, 6, 1, 2, 1, 1, 1, 0])
end, max_attempts: 5, base_delay: 2000)

Circuit breaker for problematic devices
{:ok, breaker} = SnmpKit.SnmpLib.ErrorHandler.start_circuit_breaker("192.168.1.1")
result = SnmpKit.SnmpLib.ErrorHandler.call_through_breaker(breaker, fn ->
 SnmpKit.SnmpLib.Manager.get_bulk("192.168.1.1", [1, 3, 6, 1, 2, 1, 2, 2])
end)
Performance Monitoring and Analytics
Start monitoring system
{:ok, _pid} = SnmpKit.SnmpLib.Monitor.start_link()

Record operation metrics
SnmpKit.SnmpLib.Monitor.record_operation(%{
 device: "192.168.1.1",
 operation: :get,
 duration: 245,
 result: :success
})

Get device statistics and health scores
stats = SnmpKit.SnmpLib.Monitor.get_device_stats("192.168.1.1")
IO.puts("Device health score: " <> to_string(stats.health_score))

Set up automated alerting
SnmpKit.SnmpLib.Monitor.set_alert_threshold("192.168.1.1", :response_time, 5000)
Configuration Management
Load production configuration
{:ok, _pid} = SnmpKit.SnmpLib.Config.start_link(
 config_file: "/etc/snmp_lib/production.exs",
 environment: :prod
)

Get configuration values with fallbacks
timeout = SnmpKit.SnmpLib.Config.get(:snmp, :default_timeout, 5000)
pool_size = SnmpKit.SnmpLib.Config.get(:pool, :default_size, 10)

Hot-reload configuration
:ok = SnmpKit.SnmpLib.Config.reload()
Real-Time Dashboard and Monitoring
Start dashboard with Prometheus integration
{:ok, _pid} = SnmpKit.SnmpLib.Dashboard.start_link(
 port: 4000,
 prometheus_enabled: true,
 retention_days: 14
)

Record custom metrics
SnmpKit.SnmpLib.Dashboard.record_metric(:snmp_response_time, 125, %{
 device: "192.168.1.1",
 operation: "get"
})

Create alerts for monitoring
SnmpKit.SnmpLib.Dashboard.create_alert(:device_unreachable, :critical, %{
 device: "192.168.1.1",
 consecutive_failures: 5
})

Export metrics for external systems
prometheus_data = SnmpKit.SnmpLib.Dashboard.export_prometheus()
Intelligent Caching
Start cache with compression and adaptive TTL
{:ok, _pid} = SnmpKit.SnmpLib.Cache.start_link(
 max_size: 50_000,
 compression_enabled: true,
 adaptive_ttl_enabled: true
)

Cache SNMP responses with adaptive TTL
SnmpKit.SnmpLib.Cache.put_adaptive("device_1:sysDescr", description,
 base_ttl: 3_600_000,
 volatility: :low
)

Retrieve from cache with fallback
device_desc = case SnmpKit.SnmpLib.Cache.get("device_1:sysDescr") do
 {:ok, cached_desc} -> cached_desc
 :miss ->
 {:ok, desc} = SnmpKit.SnmpLib.Manager.get("device_1", [1,3,6,1,2,1,1,1,0])
 SnmpKit.SnmpLib.Cache.put("device_1:sysDescr", desc, ttl: 3_600_000)
 desc
end

Warm cache for predictable access patterns
SnmpKit.SnmpLib.Cache.warm_cache("device_1", :auto, strategy: :predictive)
Low-Level PDU Operations
Encode a GET request PDU
iex> pdu = SnmpKit.SnmpLib.PDU.build_get_request([1, 3, 6, 1, 2, 1, 1, 1, 0], 12345)
iex> message = SnmpKit.SnmpLib.PDU.build_message(pdu, "public", :v2c)
iex> {:ok, encoded} = SnmpKit.SnmpLib.PDU.encode_message(message)
iex> is_binary(encoded)
true

Build GETBULK request (SNMPv2c)
iex> bulk_pdu = SnmpKit.SnmpLib.PDU.build_get_bulk_request([1, 3, 6, 1, 2, 1, 2, 2], 456, 0, 10)
iex> bulk_pdu.type
:get_bulk_request

OID manipulation with multibyte values
iex> {:ok, oid_list} = SnmpKit.SnmpLib.OID.string_to_list("1.3.6.1.4.1.200.1")
iex> oid_list
[1, 3, 6, 1, 4, 1, 200, 1]
iex> {:ok, oid_string} = SnmpKit.SnmpLib.OID.list_to_string([1, 3, 6, 1, 4, 1, 200, 1])
iex> oid_string
"1.3.6.1.4.1.200.1"

Handle SNMPv2c exception values
iex> {:ok, exception_val} = SnmpKit.SnmpLib.Types.coerce_value(:no_such_object, nil)
iex> exception_val
{:no_such_object, nil}
Real-World Integration Examples
Network Monitoring System
Monitor multiple devices with error handling
defmodule NetworkMonitor do
 def poll_devices(device_list, community \ "public") do
 device_list
 |> Task.async_stream(fn device ->
 case SnmpKit.SnmpLib.Manager.get(device, "1.3.6.1.2.1.1.3.0",
 community: community, timeout: 5000) do
 {:ok, uptime} -> {device, :ok, uptime}
 {:error, reason} -> {device, :error, reason}
 end
 end, max_concurrency: 10, timeout: 10_000)
 |> Enum.map(fn {:ok, result} -> result end)
 end

 def get_interface_stats(device, community \ "public") do
 base_oid = [1, 3, 6, 1, 2, 1, 2, 2, 1]

 # Get interface table using GETBULK
 case SnmpKit.SnmpLib.Manager.get_bulk(device, base_oid,
 community: community,
 max_repetitions: 50) do
 {:ok, varbinds} ->
 varbinds
 |> Enum.group_by(fn {oid, _value} ->
 # Group by interface index (last component)
 List.last(oid)
 end)
 |> Enum.map(fn {if_index, binds} ->
 %{
 interface: if_index,
 stats: parse_interface_binds(binds)
 }
 end)

 {:error, reason} -> {:error, reason}
 end
 end

 defp parse_interface_binds(binds) do
 Enum.reduce(binds, %{}, fn {oid, value}, acc ->
 case oid do
 [1, 3, 6, 1, 2, 1, 2, 2, 1, 10, _] -> Map.put(acc, :in_octets, value)
 [1, 3, 6, 1, 2, 1, 2, 2, 1, 16, _] -> Map.put(acc, :out_octets, value)
 [1, 3, 6, 1, 2, 1, 2, 2, 1, 2, _] -> Map.put(acc, :description, value)
 _ -> acc
 end
 end)
 end
end

Usage example
devices = ["192.168.1.1", "192.168.1.2", "192.168.1.3"]
results = NetworkMonitor.poll_devices(devices, "monitoring")
SNMP Agent Simulator
Build custom SNMP responses for testing
defmodule SnmpSimulator do
 def create_system_response(request_id, community) do
 # Build response with system information
 varbinds = [
 {[1, 3, 6, 1, 2, 1, 1, 1, 0], "Linux Test Server"},
 {[1, 3, 6, 1, 2, 1, 1, 2, 0], [1, 3, 6, 1, 4, 1, 8072]},
 {[1, 3, 6, 1, 2, 1, 1, 3, 0], 123456789}
]

 response_pdu = SnmpKit.SnmpLib.PDU.build_response(request_id, 0, 0, varbinds)
 message = SnmpKit.SnmpLib.PDU.build_message(response_pdu, community, :v2c)

 case SnmpKit.SnmpLib.PDU.encode_message(message) do
 {:ok, encoded} -> {:ok, encoded}
 {:error, reason} -> {:error, reason}
 end
 end

 def handle_bulk_request(request_pdu, community) do
 # Simulate interface table response
 base_oid = [1, 3, 6, 1, 2, 1, 2, 2, 1]
 max_reps = request_pdu.max_repetitions

 varbinds = for i <- 1..max_reps do
 [
 {base_oid ++ [2, i], "eth" <> Integer.to_string(i)}, # ifDescr
 {base_oid ++ [10, i], :rand.uniform(1000000)}, # ifInOctets
 {base_oid ++ [16, i], :rand.uniform(1000000)} # ifOutOctets
]
 end |> List.flatten()

 response_pdu = SnmpKit.SnmpLib.PDU.build_response(
 request_pdu.request_id, 0, 0, varbinds
)

 message = SnmpKit.SnmpLib.PDU.build_message(response_pdu, community, :v2c)
 SnmpKit.SnmpLib.PDU.encode_message(message)
 end
end
High-Performance Data Collection
Efficient bulk data collection with connection reuse
defmodule PerformanceCollector do
 def collect_interface_data(devices, opts \ []) do
 concurrency = Keyword.get(opts, :concurrency, 20)
 timeout = Keyword.get(opts, :timeout, 5000)
 community = Keyword.get(opts, :community, "public")

 start_time = System.monotonic_time(:microsecond)

 results = devices
 |> Task.async_stream(fn device ->
 collect_device_interfaces(device, community, timeout)
 end, max_concurrency: concurrency, timeout: timeout + 1000)
 |> Enum.map(fn
 {:ok, result} -> result
 {:exit, reason} -> {:error, {:timeout, reason}}
 end)

 end_time = System.monotonic_time(:microsecond)
 duration_ms = (end_time - start_time) / 1000

 %{
 results: results,
 performance: %{
 total_devices: length(devices),
 duration_ms: duration_ms,
 devices_per_second: length(devices) / (duration_ms / 1000),
 success_rate: calculate_success_rate(results)
 }
 }
 end

 defp collect_device_interfaces(device, community, timeout) do
 # Use GETBULK for efficient table walking
 case SnmpKit.SnmpLib.Manager.get_bulk(
 device,
 [1, 3, 6, 1, 2, 1, 2, 2, 1, 2], # ifDescr table
 community: community,
 timeout: timeout,
 max_repetitions: 100
) do
 {:ok, varbinds} ->
 {:ok, %{device: device, interface_count: length(varbinds), data: varbinds}}
 {:error, reason} ->
 {:error, %{device: device, reason: reason}}
 end
 end

 defp calculate_success_rate(results) do
 total = length(results)
 successes = Enum.count(results, fn
 {:ok, _} -> true
 _ -> false
 end)

 if total > 0, do: (successes / total) * 100, else: 0
 end
end
Performance Benchmarking Examples
Encoding/Decoding Performance
Benchmark PDU encoding performance
defmodule SnmpBenchmark do
 def benchmark_encoding(iterations \ 10_000) do
 # Prepare test data
 pdu = SnmpKit.SnmpLib.PDU.build_get_request([1, 3, 6, 1, 2, 1, 1, 1, 0], 12345)
 message = SnmpKit.SnmpLib.PDU.build_message(pdu, "public", :v2c)

 # Benchmark encoding
 {encode_time, _} = :timer.tc(fn ->
 for _ <- 1..iterations do
 {:ok, _encoded} = SnmpKit.SnmpLib.PDU.encode_message(message)
 end
 end)

 # Encode once for decoding benchmark
 {:ok, encoded} = SnmpKit.SnmpLib.PDU.encode_message(message)

 # Benchmark decoding
 {decode_time, _} = :timer.tc(fn ->
 for _ <- 1..iterations do
 {:ok, _decoded} = SnmpKit.SnmpLib.PDU.decode_message(encoded)
 end
 end)

 %{
 iterations: iterations,
 encode_time_ms: encode_time / 1000,
 decode_time_ms: decode_time / 1000,
 encode_ops_per_sec: iterations / (encode_time / 1_000_000),
 decode_ops_per_sec: iterations / (decode_time / 1_000_000),
 encode_time_per_op_us: encode_time / iterations,
 decode_time_per_op_us: decode_time / iterations
 }
 end

 def benchmark_bulk_operations(device_count \ 100) do
 devices = for i <- 1..device_count, do: "192.168.1." <> Integer.to_string(i)

 # Benchmark sequential operations
 {seq_time, seq_results} = :timer.tc(fn ->
 Enum.map(devices, fn device ->
 SnmpKit.SnmpLib.Manager.get(device, [1, 3, 6, 1, 2, 1, 1, 3, 0], timeout: 100)
 end)
 end)

 # Benchmark concurrent operations
 {conc_time, conc_results} = :timer.tc(fn ->
 devices
 |> Task.async_stream(fn device ->
 SnmpKit.SnmpLib.Manager.get(device, [1, 3, 6, 1, 2, 1, 1, 3, 0], timeout: 100)
 end, max_concurrency: 50, timeout: 1000)
 |> Enum.map(fn {:ok, result} -> result end)
 end)

 %{
 device_count: device_count,
 sequential: %{
 time_ms: seq_time / 1000,
 ops_per_sec: device_count / (seq_time / 1_000_000),
 success_count: count_successes(seq_results)
 },
 concurrent: %{
 time_ms: conc_time / 1000,
 ops_per_sec: device_count / (conc_time / 1_000_000),
 success_count: count_successes(conc_results),
 speedup: seq_time / conc_time
 }
 }
 end

 def benchmark_oid_operations(iterations \ 100_000) do
 test_oids = [
 "1.3.6.1.2.1.1.1.0",
 "1.3.6.1.4.1.8072.1.3.2.3.1.2.8.110.101.116.45.115.110.109.112",
 "1.3.6.1.2.1.2.2.1.10.1000"
]

 results = for oid_string <- test_oids do
 # Benchmark string to list conversion
 {str_to_list_time, _} = :timer.tc(fn ->
 for _ <- 1..iterations do
 {:ok, _list} = SnmpKit.SnmpLib.OID.string_to_list(oid_string)
 end
 end)

 # Convert once for reverse benchmark
 {:ok, oid_list} = SnmpKit.SnmpLib.OID.string_to_list(oid_string)

 # Benchmark list to string conversion
 {list_to_str_time, _} = :timer.tc(fn ->
 for _ <- 1..iterations do
 {:ok, _string} = SnmpKit.SnmpLib.OID.list_to_string(oid_list)
 end
 end)

 %{
 oid: oid_string,
 oid_length: length(oid_list),
 str_to_list_us_per_op: str_to_list_time / iterations,
 list_to_str_us_per_op: list_to_str_time / iterations,
 str_to_list_ops_per_sec: iterations / (str_to_list_time / 1_000_000),
 list_to_str_ops_per_sec: iterations / (list_to_str_time / 1_000_000)
 }
 end

 %{
 iterations: iterations,
 oid_benchmarks: results,
 average_str_to_list_us: Enum.reduce(results, 0, &(&1.str_to_list_us_per_op + &2)) / length(results),
 average_list_to_str_us: Enum.reduce(results, 0, &(&1.list_to_str_us_per_op + &2)) / length(results)
 }
 end

 defp count_successes(results) do
 Enum.count(results, fn
 {:ok, _} -> true
 _ -> false
 end)
 end
end

Example usage:
encoding_perf = SnmpBenchmark.benchmark_encoding(50_000)
IO.puts("Encoding: " <> Integer.to_string(trunc(encoding_perf.encode_ops_per_sec)) <> " ops/sec")
IO.puts("Decoding: " <> Integer.to_string(trunc(encoding_perf.decode_ops_per_sec)) <> " ops/sec")

bulk_perf = SnmpBenchmark.benchmark_bulk_operations(200)
IO.puts("Sequential: " <> Float.to_string(bulk_perf.sequential.time_ms) <> "ms")
IO.puts("Concurrent: " <> Float.to_string(bulk_perf.concurrent.time_ms) <> "ms (" <> Float.to_string(bulk_perf.concurrent.speedup) <> "x faster)")

oid_perf = SnmpBenchmark.benchmark_oid_operations(100_000)
IO.puts("Average OID conversion: " <> Float.to_string(oid_perf.average_str_to_list_us) <> "μs per operation")
RFC Compliance
This library achieves 100% compliance with:
	RFC 1157 (SNMPv1)
	RFC 1905 (SNMPv2c Protocol Operations)
	RFC 3416 (SNMPv2c Enhanced Operations)
	ITU-T X.690 (ASN.1 BER Encoding Rules)

 Summary

 Functions

 info()

 Returns comprehensive information about the SnmpLib library capabilities.

 version()

 Returns the version of the SnmpLib library.

 Functions

 info()

 @spec info() :: map()

Returns comprehensive information about the SnmpLib library capabilities.
Useful for debugging, configuration validation, and feature discovery.
Returns
A map containing:
	:version: Library version
	:features: Available features and capabilities
	:modules: Core modules and their descriptions
	:compliance: RFC compliance information

Examples
info = SnmpLib.info()
IO.puts("SNMP Library v" <> info.version)
IO.puts("Features: " <> Enum.join(info.features, ", "))

 version()

Returns the version of the SnmpLib library.
Examples
iex> is_binary(SnmpLib.version())
true

iex> SnmpLib.version() |> String.contains?(".")
true

SnmpKit.SnmpLib.Types

SNMP data type validation, formatting, and coercion utilities.
Provides comprehensive support for all SNMP data types including validation,
formatting for display, and type coercion between different representations.
Includes full support for SNMPv2c exception values.
Supported SNMP Types
	Basic Types: INTEGER, OCTET STRING, NULL, OBJECT IDENTIFIER
	Application Types: Counter32, Gauge32, TimeTicks, Counter64, IpAddress, Opaque
	SNMPv2c Exception Types: NoSuchObject, NoSuchInstance, EndOfMibView
	Constructed Types: SEQUENCE (for complex structures)

SNMPv2c Exception Values
These special values are used in SNMPv2c responses to indicate specific conditions:
	:no_such_object (0x80): The requested object does not exist in the MIB
	:no_such_instance (0x81): The object exists but the specific instance does not
	:end_of_mib_view (0x82): End of MIB tree reached during GETBULK/walk operations

Features
	Type validation with detailed error reporting
	Human-readable formatting for logging and display
	Type coercion and normalization
	Range checking and constraint validation
	Performance-optimized operations
	RFC-compliant exception value handling

Examples
Basic type validation
iex> SnmpKit.SnmpLib.Types.validate_counter32(42)
:ok
iex> SnmpKit.SnmpLib.Types.validate_counter32(-1)
{:error, :out_of_range}

Formatting for display
iex> SnmpKit.SnmpLib.Types.format_timeticks_uptime(4200)
"42 seconds"
iex> SnmpKit.SnmpLib.Types.format_ip_address(<<192, 168, 1, 1>>)
"192.168.1.1"

Type coercion
iex> SnmpKit.SnmpLib.Types.coerce_value(:counter32, 42)
{:ok, {:counter32, 42}}
iex> SnmpKit.SnmpLib.Types.coerce_value(:string, "test")
{:ok, {:string, "test"}}

SNMPv2c exception values
iex> SnmpKit.SnmpLib.Types.coerce_value(:no_such_object, nil)
{:ok, {:no_such_object, nil}}
iex> SnmpKit.SnmpLib.Types.coerce_value(:end_of_mib_view, nil)
{:ok, {:end_of_mib_view, nil}}

 Summary

 Types

 snmp_type()

 snmp_value()

 Functions

 coerce_value(arg1, value)

 Coerces a value to the specified SNMP type.

 decode_value(value)

 Decodes an SNMP typed value back to a native Elixir value.

 encode_value(value, opts \\ [])

 Encodes a value with automatic type inference or explicit type specification.

 format_bytes(bytes)

 Formats bytes as human-readable size.

 format_counter64(value)

 Formats Counter64 value with appropriate units.

 format_hex(binary)

 Formats binary data as hexadecimal string.

 format_ip_address(arg1)

 Formats an IP address from binary format.

 format_rate(value, unit)

 Formats a rate value with units.

 format_timeticks_uptime(centiseconds)

 Formats TimeTicks as human-readable uptime string.

 infer_type(value)

 Automatically infers the SNMP type from an Elixir value.

 is_binary_type?(type)

 Checks if a type is a binary SNMP type.

 is_exception_type?(type)

 Checks if a type is an exception SNMP type.

 is_numeric_type?(type)

 Checks if a type is a numeric SNMP type.

 max_value(arg1)

 Returns the maximum value for a numeric SNMP type.

 min_value(type)

 Returns the minimum value for a numeric SNMP type.

 normalize_type(type)

 Normalizes a type identifier to a consistent format.

 parse_hex_string(hex_string)

 Parses a hexadecimal string to binary.

 parse_ip_address(ip_string)

 Parses an IP address string into a 4-tuple of integers.

 truncate_string(string, max_length)

 Truncates a string to a maximum length with ellipsis.

 validate_counter32(value)

 Validates a Counter32 value.

 validate_counter64(value)

 Validates a Counter64 value.

 validate_gauge32(value)

 Validates a Gauge32 value.

 validate_integer(value)

 Validates an SNMP integer value.

 validate_ip_address(value)

 Validates an IP address value.

 validate_octet_string(value)

 Validates an OCTET STRING value.

 validate_oid(oid)

 Validates an OBJECT IDENTIFIER value.

 validate_opaque(value)

 Validates an Opaque value.

 validate_timeticks(value)

 Validates a TimeTicks value.

 validate_unsigned32(value)

 Validates an Unsigned32 value.

 Types

 snmp_type()

 @type snmp_type() ::
 :integer
 | :string
 | :null
 | :oid
 | :counter32
 | :gauge32
 | :timeticks
 | :counter64
 | :ip_address
 | :opaque
 | :no_such_object
 | :no_such_instance
 | :end_of_mib_view
 | :unsigned32
 | :octet_string
 | :object_identifier
 | :boolean

 snmp_value()

 @type snmp_value() ::
 integer()
 | binary()
 | :null
 | [non_neg_integer()]
 | {:counter32, non_neg_integer()}
 | {:gauge32, non_neg_integer()}
 | {:timeticks, non_neg_integer()}
 | {:counter64, non_neg_integer()}
 | {:ip_address, binary()}
 | {:opaque, binary()}
 | {:unsigned32, non_neg_integer()}
 | {:no_such_object, nil}
 | {:no_such_instance, nil}
 | {:end_of_mib_view, nil}
 | {:string, binary()}
 | {:octet_string, binary()}
 | {:object_identifier, [non_neg_integer()]}
 | {:boolean, boolean()}

 Functions

 coerce_value(arg1, value)

 @spec coerce_value(snmp_type(), term()) :: {:ok, snmp_value()} | {:error, atom()}

Coerces a value to the specified SNMP type.
Parameters
	type: Target SNMP type
	raw_value: Value to coerce

Returns
	{:ok, typed_value} on success
	{:error, reason} on failure

Examples
{:ok, {:counter32, 42}} = SnmpKit.SnmpLib.Types.coerce_value(:counter32, 42)
{:ok, {:string, "test"}} = SnmpKit.SnmpLib.Types.coerce_value(:string, "test")
{:ok, {:ip_address, <<192, 168, 1, 1>>}} = SnmpKit.SnmpLib.Types.coerce_value(:ip_address, {192, 168, 1, 1})

 decode_value(value)

 @spec decode_value({snmp_type(), term()} | term()) :: term()

Decodes an SNMP typed value back to a native Elixir value.
Converts SNMP-encoded values back to their most natural Elixir representation,
with consistent handling of strings (always returns binaries, not charlists).
Parameters
	typed_value: A tuple of {type, value} or just a value

Returns
The decoded Elixir value in its most natural form
Examples
"hello" = SnmpKit.SnmpLib.Types.decode_value({:string, "hello"})
"192.168.1.1" = SnmpKit.SnmpLib.Types.decode_value({:ip_address, {192, 168, 1, 1}})
42 = SnmpKit.SnmpLib.Types.decode_value({:counter32, 42})
[1, 3, 6, 1] = SnmpKit.SnmpLib.Types.decode_value({:object_identifier, [1, 3, 6, 1]})

 encode_value(value, opts \\ [])

 @spec encode_value(
 term(),
 keyword()
) :: {:ok, {snmp_type(), term()}} | {:error, atom()}

Encodes a value with automatic type inference or explicit type specification.
This is the main entry point for encoding values into SNMP types. It supports
both automatic type inference based on the value and explicit type specification.
Parameters
	value: The value to encode
	opts: Options including:	:type - Explicit type specification (overrides inference)
	:validate - Whether to validate the encoded value (default: true)

Returns
	{:ok, {type, encoded_value}} on success
	{:error, reason} on failure

Examples
Automatic type inference
{:ok, {:string, "hello"}} = SnmpKit.SnmpLib.Types.encode_value("hello")
{:ok, {:integer, 42}} = SnmpKit.SnmpLib.Types.encode_value(42)

Explicit type specification
{:ok, {:ip_address, {192, 168, 1, 1}}} = SnmpKit.SnmpLib.Types.encode_value("192.168.1.1", type: :ip_address)
{:ok, {:counter32, 100}} = SnmpKit.SnmpLib.Types.encode_value(100, type: :counter32)

 format_bytes(bytes)

 @spec format_bytes(non_neg_integer()) :: binary()

Formats bytes as human-readable size.
Examples
"1.5 KB" = SnmpKit.SnmpLib.Types.format_bytes(1536)
"2.3 MB" = SnmpKit.SnmpLib.Types.format_bytes(2400000)

 format_counter64(value)

 @spec format_counter64(non_neg_integer()) :: binary()

Formats Counter64 value with appropriate units.
Examples
"42" = SnmpKit.SnmpLib.Types.format_counter64(42)
"18,446,744,073,709,551,615" = SnmpKit.SnmpLib.Types.format_counter64(18446744073709551615)

 format_hex(binary)

 @spec format_hex(binary()) :: binary()

Formats binary data as hexadecimal string.
Examples
"48656C6C6F" = SnmpKit.SnmpLib.Types.format_hex(<<"Hello">>)
"DEADBEEF" = SnmpKit.SnmpLib.Types.format_hex(<<0xDE, 0xAD, 0xBE, 0xEF>>)

 format_ip_address(arg1)

 @spec format_ip_address(binary()) :: binary()

Formats an IP address from binary format.
Examples
"192.168.1.1" = SnmpKit.SnmpLib.Types.format_ip_address(<<192, 168, 1, 1>>)
"0.0.0.0" = SnmpKit.SnmpLib.Types.format_ip_address(<<0, 0, 0, 0>>)

 format_rate(value, unit)

 @spec format_rate(number(), binary()) :: binary()

Formats a rate value with units.
Examples
"100 bps" = SnmpKit.SnmpLib.Types.format_rate(100, "bps")
"1.5 Mbps" = SnmpKit.SnmpLib.Types.format_rate(1500000, "bps")

 format_timeticks_uptime(centiseconds)

 @spec format_timeticks_uptime(non_neg_integer()) :: binary()

Formats TimeTicks as human-readable uptime string.
Parameters
	centiseconds: Time in centiseconds (hundredths of a second)

Returns
	Human-readable uptime string

Examples
"42 centiseconds" = SnmpKit.SnmpLib.Types.format_timeticks_uptime(42)
"1 second 50 centiseconds" = SnmpKit.SnmpLib.Types.format_timeticks_uptime(150)
"1 minute 30 seconds" = SnmpKit.SnmpLib.Types.format_timeticks_uptime(9000)
"2 hours 15 minutes 30 seconds" = SnmpKit.SnmpLib.Types.format_timeticks_uptime(81300)

 infer_type(value)

 @spec infer_type(term()) :: snmp_type()

Automatically infers the SNMP type from an Elixir value.
Uses intelligent heuristics to determine the most appropriate SNMP type
for a given Elixir value.
Examples
:string = SnmpKit.SnmpLib.Types.infer_type("hello")
:integer = SnmpKit.SnmpLib.Types.infer_type(42)
:ip_address = SnmpKit.SnmpLib.Types.infer_type("192.168.1.1")
:object_identifier = SnmpKit.SnmpLib.Types.infer_type([1, 3, 6, 1, 2, 1])
:boolean = SnmpKit.SnmpLib.Types.infer_type(true)

 is_binary_type?(type)

 @spec is_binary_type?(snmp_type()) :: boolean()

Checks if a type is a binary SNMP type.
Examples
true = SnmpKit.SnmpLib.Types.is_binary_type?(:string)
true = SnmpKit.SnmpLib.Types.is_binary_type?(:opaque)
false = SnmpKit.SnmpLib.Types.is_binary_type?(:integer)

 is_exception_type?(type)

 @spec is_exception_type?(snmp_type()) :: boolean()

Checks if a type is an exception SNMP type.
Examples
true = SnmpKit.SnmpLib.Types.is_exception_type?(:no_such_object)
false = SnmpKit.SnmpLib.Types.is_exception_type?(:integer)

 is_numeric_type?(type)

 @spec is_numeric_type?(snmp_type()) :: boolean()

Checks if a type is a numeric SNMP type.
Examples
true = SnmpKit.SnmpLib.Types.is_numeric_type?(:counter32)
true = SnmpKit.SnmpLib.Types.is_numeric_type?(:integer)
false = SnmpKit.SnmpLib.Types.is_numeric_type?(:string)

 max_value(arg1)

 @spec max_value(snmp_type()) :: non_neg_integer() | nil

Returns the maximum value for a numeric SNMP type.
Examples
4294967295 = SnmpKit.SnmpLib.Types.max_value(:counter32)
2147483647 = SnmpKit.SnmpLib.Types.max_value(:integer)

 min_value(type)

 @spec min_value(snmp_type()) :: integer() | nil

Returns the minimum value for a numeric SNMP type.
Examples
-2147483648 = SnmpKit.SnmpLib.Types.min_value(:integer)
0 = SnmpKit.SnmpLib.Types.min_value(:counter32)

 normalize_type(type)

 @spec normalize_type(term()) :: snmp_type() | :unknown

Normalizes a type identifier to a consistent format.
Examples
:counter32 = SnmpKit.SnmpLib.Types.normalize_type("counter32")
:integer = SnmpKit.SnmpLib.Types.normalize_type(:integer)
:string = SnmpKit.SnmpLib.Types.normalize_type("octet_string")

 parse_hex_string(hex_string)

 @spec parse_hex_string(binary()) :: {:ok, binary()} | {:error, atom()}

Parses a hexadecimal string to binary.
Examples
{:ok, <<"Hello">>} = SnmpKit.SnmpLib.Types.parse_hex_string("48656C6C6F")
{:error, :invalid_hex} = SnmpKit.SnmpLib.Types.parse_hex_string("XYZ")

 parse_ip_address(ip_string)

 @spec parse_ip_address(binary()) ::
 {:ok, {0..255, 0..255, 0..255, 0..255}} | {:error, atom()}

Parses an IP address string into a 4-tuple of integers.
Parameters
	ip_string: IP address as a string like "192.168.1.1"

Returns
	{:ok, {a, b, c, d}} on success
	{:error, reason} on failure

Examples
{:ok, {192, 168, 1, 1}} = SnmpKit.SnmpLib.Types.parse_ip_address("192.168.1.1")
{:ok, {127, 0, 0, 1}} = SnmpKit.SnmpLib.Types.parse_ip_address("127.0.0.1")
{:error, :invalid_format} = SnmpKit.SnmpLib.Types.parse_ip_address("invalid")

 truncate_string(string, max_length)

 @spec truncate_string(binary(), pos_integer()) :: binary()

Truncates a string to a maximum length with ellipsis.
Examples
"hello" = SnmpKit.SnmpLib.Types.truncate_string("hello", 10)
"hello..." = SnmpKit.SnmpLib.Types.truncate_string("hello world", 8)

 validate_counter32(value)

 @spec validate_counter32(term()) :: :ok | {:error, atom()}

Validates a Counter32 value.
Counter32 is a 32-bit unsigned integer that wraps around when it reaches its maximum value.
Parameters
	value: Value to validate

Returns
	:ok if valid
	{:error, reason} if invalid

Examples
:ok = SnmpKit.SnmpLib.Types.validate_counter32(42)
:ok = SnmpKit.SnmpLib.Types.validate_counter32(4294967295)
{:error, :out_of_range} = SnmpKit.SnmpLib.Types.validate_counter32(-1)
{:error, :not_integer} = SnmpKit.SnmpLib.Types.validate_counter32("42")

 validate_counter64(value)

 @spec validate_counter64(term()) :: :ok | {:error, atom()}

Validates a Counter64 value.
Counter64 is a 64-bit unsigned integer for high-speed interfaces.

 validate_gauge32(value)

 @spec validate_gauge32(term()) :: :ok | {:error, atom()}

Validates a Gauge32 value.
Gauge32 is a 32-bit unsigned integer that represents a non-negative integer value.
Unlike Counter32, it does not wrap around.

 validate_integer(value)

 @spec validate_integer(term()) :: :ok | {:error, atom()}

Validates an SNMP integer value.
SNMP INTEGER is a signed 32-bit integer.

 validate_ip_address(value)

 @spec validate_ip_address(term()) :: :ok | {:error, atom()}

Validates an IP address value.
IP address should be a 4-byte binary or a tuple of 4 integers.
Examples
:ok = SnmpKit.SnmpLib.Types.validate_ip_address(<<192, 168, 1, 1>>)
:ok = SnmpKit.SnmpLib.Types.validate_ip_address({192, 168, 1, 1})
{:error, :invalid_length} = SnmpKit.SnmpLib.Types.validate_ip_address(<<192, 168, 1>>)

 validate_octet_string(value)

 @spec validate_octet_string(term()) :: :ok | {:error, atom()}

Validates an OCTET STRING value.
OCTET STRING should be a binary with reasonable length limits.

 validate_oid(oid)

 @spec validate_oid(term()) :: :ok | {:error, atom()}

Validates an OBJECT IDENTIFIER value.
OID should be a list of non-negative integers.

 validate_opaque(value)

 @spec validate_opaque(term()) :: :ok | {:error, atom()}

Validates an Opaque value.
Opaque is used for arbitrary binary data.

 validate_timeticks(value)

 @spec validate_timeticks(term()) :: :ok | {:error, atom()}

Validates a TimeTicks value.
TimeTicks represents time in hundredths of a second (centiseconds).

 validate_unsigned32(value)

 @spec validate_unsigned32(term()) :: :ok | {:error, atom()}

Validates an Unsigned32 value.
Unsigned32 is a 32-bit unsigned integer.

SnmpKit.SnmpLib.MIB

SNMP MIB compiler with enhanced Elixir ergonomics.
Provides a clean, functional API for compiling MIB files with proper
error handling, logging, and performance optimizations.
This module serves as the main entry point for MIB compilation operations.

 Summary

 Types

 compile_opts()

 compile_result()

 compiled_mib()

 error()

 warning()

 Functions

 compile(mib_source, opts \\ [])

 Compile a MIB file to Elixir code.

 compile_all(mib_files, opts \\ [])

 Compile multiple MIB files in dependency order.

 compile_string(mib_content, opts \\ [])

 Compile MIB content from a string.

 load_compiled(compiled_path)

 Load a previously compiled MIB module.

 Types

 compile_opts()

 @type compile_opts() :: [
 output_dir: Path.t(),
 include_dirs: [Path.t()],
 log_level: Logger.level(),
 format: :elixir | :erlang | :both,
 optimize: boolean(),
 warnings_as_errors: boolean(),
 vendor_quirks: boolean()
]

 compile_result()

 @type compile_result() ::
 {:ok, compiled_mib()}
 | {:error, [error()]}
 | {:warning, compiled_mib(), [warning()]}

 compiled_mib()

 @type compiled_mib() :: %{
 name: binary(),
 objects_count: non_neg_integer(),
 output_path: Path.t(),
 compilation_time: non_neg_integer(),
 metadata: map()
}

 error()

 @type error() :: term()

 warning()

 @type warning() :: term()

 Functions

 compile(mib_source, opts \\ [])

 @spec compile(Path.t() | binary(), compile_opts()) ::
 {:error, [SnmpKit.SnmpLib.MIB.Error.t()]}

Compile a MIB file to Elixir code.
Options
	:output_dir - Directory for generated files (default: "./lib/generated")
	:include_dirs - Directories to search for imported MIBs (default: ["./priv/mibs"])
	:log_level - Logging verbosity (default: :info)
	:format - Output format :elixir, :erlang, or :both (default: :elixir)
	:optimize - Enable performance optimizations (default: true)
	:warnings_as_errors - Treat warnings as compilation errors (default: false)
	:vendor_quirks - Enable vendor-specific MIB compatibility (default: true)

Examples
iex> SnmpKit.SnmpLib.MIB.compile("priv/mibs/RFC1213-MIB.txt")
{:error, [%SnmpKit.SnmpLib.MIB.Error{type: :file_not_found, ...}]}

 compile_all(mib_files, opts \\ [])

 @spec compile_all([Path.t()], compile_opts()) ::
 {:ok, [compiled_mib()]} | {:error, [{Path.t(), [error()]}]}

Compile multiple MIB files in dependency order.
Automatically resolves import dependencies and compiles MIBs in the correct order.
Examples
iex> mibs = ["SNMPv2-SMI.txt", "SNMPv2-TC.txt", "RFC1213-MIB.txt"]
iex> SnmpKit.SnmpLib.MIB.compile_all(mibs)
{:ok, [%{name: "SNMPv2-SMI", ...}, %{name: "SNMPv2-TC", ...}, ...]}

 compile_string(mib_content, opts \\ [])

 @spec compile_string(binary(), compile_opts()) ::
 {:error, [SnmpKit.SnmpLib.MIB.Error.t()]}

Compile MIB content from a string.
Useful when the MIB content is already loaded or generated dynamically.
Examples
iex> mib_content = File.read!("RFC1213-MIB.txt")
iex> SnmpKit.SnmpLib.MIB.compile_string(mib_content)
{:ok, %{name: "RFC1213-MIB", ...}}

 load_compiled(compiled_path)

 @spec load_compiled(Path.t()) :: {:ok, compiled_mib()} | {:error, term()}

Load a previously compiled MIB module.
Examples
iex> SnmpKit.SnmpLib.MIB.load_compiled("lib/generated/rfc1213_mib.ex")
{:ok, %{name: "RFC1213-MIB", ...}}

SnmpKit.SnmpMgr.MIB

MIB compilation and symbolic name resolution.
This module provides MIB compilation using Erlang's :snmpc when available,
and includes a built-in registry of standard MIB objects for basic operations.

 Summary

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 children(oid)

 Gets the children of an OID node.

 compile(mib_file, opts \\ [])

 Compiles a MIB file using SnmpKit.SnmpLib.MIB pure Elixir implementation.

 compile_dir(directory, opts \\ [])

 Compiles all MIB files in a directory using enhanced SnmpKit.SnmpLib.MIB capabilities.

 load(compiled_mib_path)

 Loads a compiled MIB file using SnmpKit.SnmpLib.MIB.load_compiled with fallback.

 load_and_integrate_mib(mib_file, opts \\ [])

 Loads and parses a MIB file, integrating it into the name resolution system.

 load_standard_mibs()

 Loads standard MIBs that are built into the library.

 parent(oid)

 Gets the parent of an OID node.

 parse_mib_content(content, opts \\ [])

 Parses MIB content string using SnmpKit.SnmpLib.MIB.Parser.

 parse_mib_file(mib_file, opts \\ [])

 Parses a MIB file to extract object definitions using SnmpKit.SnmpLib.MIB.Parser.

 resolve(name)

 Resolves a symbolic name to an OID.

 resolve_enhanced(name, opts \\ [])

 Enhanced MIB object resolution with parsed MIB data integration.

 reverse_lookup(oid)

 Performs reverse lookup from OID to symbolic name.

 start_link(opts \\ [])

 Starts the MIB registry GenServer.

 walk_tree(root_oid, opts \\ [])

 Walks the MIB tree starting from a root OID.

 Functions

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 children(oid)

Gets the children of an OID node.

 compile(mib_file, opts \\ [])

Compiles a MIB file using SnmpKit.SnmpLib.MIB pure Elixir implementation.
Enhanced to use SnmpKit.SnmpLib.MIB for improved compilation with better error handling.
Examples
iex> SnmpKit.SnmpMgr.MIB.compile("SNMPv2-MIB.mib")
{:ok, "SNMPv2-MIB.bin"}

iex> SnmpKit.SnmpMgr.MIB.compile("nonexistent.mib")
{:error, :file_not_found}

 compile_dir(directory, opts \\ [])

Compiles all MIB files in a directory using enhanced SnmpKit.SnmpLib.MIB capabilities.

 load(compiled_mib_path)

Loads a compiled MIB file using SnmpKit.SnmpLib.MIB.load_compiled with fallback.

 load_and_integrate_mib(mib_file, opts \\ [])

Loads and parses a MIB file, integrating it into the name resolution system.
This combines compilation/loading with parsing for comprehensive MIB support.

 load_standard_mibs()

Loads standard MIBs that are built into the library.

 parent(oid)

Gets the parent of an OID node.

 parse_mib_content(content, opts \\ [])

Parses MIB content string using SnmpKit.SnmpLib.MIB.Parser.
Examples
iex> content = "sysDescr OBJECT-TYPE SYNTAX DisplayString ACCESS read-only STATUS mandatory"
iex> SnmpKit.SnmpMgr.MIB.parse_mib_content(content)
{:ok, %{tokens: [...], parsed_objects: [...]}}

 parse_mib_file(mib_file, opts \\ [])

Parses a MIB file to extract object definitions using SnmpKit.SnmpLib.MIB.Parser.
This provides enhanced MIB analysis without requiring compilation.
Examples
iex> SnmpKit.SnmpMgr.MIB.parse_mib_file("SNMPv2-MIB.mib")
{:ok, %{objects: [...], imports: [...], exports: [...]}}

 resolve(name)

Resolves a symbolic name to an OID.
Examples
iex> SnmpKit.SnmpMgr.MIB.resolve("sysDescr.0")
{:ok, [1, 3, 6, 1, 2, 1, 1, 1, 0]}

iex> SnmpKit.SnmpMgr.MIB.resolve("sysDescr")
{:ok, [1, 3, 6, 1, 2, 1, 1, 1]}

iex> SnmpKit.SnmpMgr.MIB.resolve("unknownName")
{:error, :not_found}

 resolve_enhanced(name, opts \\ [])

Enhanced MIB object resolution with parsed MIB data integration.
Leverages both standard MIBs and any loaded/parsed MIB files for comprehensive name resolution.

 reverse_lookup(oid)

Performs reverse lookup from OID to symbolic name.
Examples
iex> SnmpKit.SnmpMgr.MIB.reverse_lookup([1, 3, 6, 1, 2, 1, 1, 1, 0])
{:ok, "sysDescr.0"}

iex> SnmpKit.SnmpMgr.MIB.reverse_lookup([1, 3, 6, 1, 2, 1, 1, 1])
{:ok, "sysDescr"}

 start_link(opts \\ [])

Starts the MIB registry GenServer.

 walk_tree(root_oid, opts \\ [])

Walks the MIB tree starting from a root OID.

SnmpKit.SnmpSim.Device

Lightweight Device GenServer for handling SNMP requests.
Uses shared profiles and minimal device-specific state for scalability.
Features:
	Dynamic value generation with realistic patterns
	Shared profile system for memory efficiency
	Counter and gauge simulation with proper incrementing
	Comprehensive error handling and fallback mechanisms
	Support for SNMP walk operations

 Summary

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 cleanup_all_devices()

 Cleanup all orphaned SNMP simulator device processes.
Useful for test cleanup when devices may have been left running.

 get(device_pid, oid)

 Get an OID value from the device (for testing).

 get_bulk(device_pid, oids, max_repetitions)

 Get bulk OID values from the device (for testing).

 get_bulk(device_pid, oids, non_repeaters, max_repetitions)

 get_info(device_pid)

 Get device information and statistics.

 get_next(device_pid, oid)

 Get the next OID value from the device (for testing).

 monitor_device(device_pid)

 Monitor a device process and get notified when it dies.
Returns a monitor reference that can be used with Process.demonitor/1.

 reboot(device_pid)

 Simulate a device reboot.

 set_gauge(device_pid, oid, value)

 Set a gauge value manually (useful for testing).

 start_link(device_config)

 Start a device with the given device configuration.

 start_link_monitored(device_config)

 Create a device with monitoring enabled.
Returns {:ok, {device_pid, monitor_ref}} or {:error, reason}.

 stop(device_pid)

 Stop a device gracefully with resilient error handling.

 update_counter(device_pid, oid, increment)

 Update device counters manually (useful for testing).

 walk(device_pid, oid)

 Walk OID values from the device (for testing).

 Functions

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 cleanup_all_devices()

Cleanup all orphaned SNMP simulator device processes.
Useful for test cleanup when devices may have been left running.

 get(device_pid, oid)

Get an OID value from the device (for testing).

 get_bulk(device_pid, oids, max_repetitions)

Get bulk OID values from the device (for testing).

 get_bulk(device_pid, oids, non_repeaters, max_repetitions)

 get_info(device_pid)

Get device information and statistics.

 get_next(device_pid, oid)

Get the next OID value from the device (for testing).

 monitor_device(device_pid)

Monitor a device process and get notified when it dies.
Returns a monitor reference that can be used with Process.demonitor/1.

 reboot(device_pid)

Simulate a device reboot.

 set_gauge(device_pid, oid, value)

Set a gauge value manually (useful for testing).

 start_link(device_config)

Start a device with the given device configuration.
Device Config
Device config should contain:
	:port - UDP port for the device (required)
	:device_type - Type of device (:cable_modem, :switch, etc.)
	:device_id - Unique device identifier
	:community - SNMP community string (default: "public")
	:mac_address - MAC address (auto-generated if not provided)

Examples
device_config = %{
 port: 9001,
 device_type: :cable_modem,
 device_id: "cable_modem_9001",
 community: "public"
}

{:ok, device} = SnmpKit.SnmpSim.Device.start_link(device_config)

 start_link_monitored(device_config)

Create a device with monitoring enabled.
Returns {:ok, {device_pid, monitor_ref}} or {:error, reason}.

 stop(device_pid)

Stop a device gracefully with resilient error handling.

 update_counter(device_pid, oid, increment)

Update device counters manually (useful for testing).

 walk(device_pid, oid)

Walk OID values from the device (for testing).

SnmpKit.SnmpSim.ProfileLoader

Flexible profile loading supporting multiple sources and progressive enhancement.
Start with simple walk files, upgrade to MIB-based simulation when ready.

 Summary

 Functions

 get_next_oid(profile, oid)

 Find the next OID after the given OID for GETNEXT operations.

 get_oid_value(profile_loader, oid)

 Get the value for a specific OID from a loaded profile.

 get_ordered_oids(profile_loader)

 Get all OIDs in lexicographic order for GETNEXT operations.

 load_profile(device_type, source, opts \\ [])

 Load a device profile from various source types.

 Functions

 get_next_oid(profile, oid)

Find the next OID after the given OID for GETNEXT operations.

 get_oid_value(profile_loader, oid)

Get the value for a specific OID from a loaded profile.
Examples
value = SnmpKit.SnmpSim.ProfileLoader.get_oid_value(profile, "1.3.6.1.2.1.1.1.0")

 get_ordered_oids(profile_loader)

Get all OIDs in lexicographic order for GETNEXT operations.

 load_profile(device_type, source, opts \\ [])

Load a device profile from various source types.
Supported source types:
	{:walk_file, path} - SNMP walk files (both named and numeric formats)
	{:oid_walk, path} - Raw OID dumps (numeric OIDs only)
	{:json_profile, path} - Structured JSON profiles
	{:manual, oid_map} - Manual OID definitions (for testing)
	{:compiled_mib, mib_files} - Advanced MIB compilation (future)

Examples
Load from SNMP walk file
profile = SnmpKit.SnmpSim.ProfileLoader.load_profile(
 :cable_modem,
 {:walk_file, "priv/walks/cable_modem.walk"}
)

Load with behaviors
profile = SnmpKit.SnmpSim.ProfileLoader.load_profile(
 :cable_modem,
 {:walk_file, "priv/walks/cable_modem.walk"},
 behaviors: [
 {:increment_counters, rate: 1000},
 {:vary_gauges, variance: 0.1}
]
)

SnmpKit.SnmpMgr

Lightweight SNMP client library for Elixir.
This library provides a simple, stateless interface for SNMP operations
without requiring heavyweight management processes or configurations.

 Summary

 Types

 oid()

 opts()

 target()

 Functions

 adaptive_walk(target, root_oid, opts \\ [])

 Performs an adaptive bulk walk that automatically optimizes parameters.

 analyze_table(table_data, opts \\ [])

 Analyzes table structure and returns detailed metadata.

 benchmark_device(target, test_oid, opts \\ [])

 Benchmarks a device to determine optimal bulk parameters.

 bulk_pretty(target, oid, opts \\ [])

 Performs an SNMP BULK operation and returns formatted results.

 bulk_walk(target, oid, opts \\ [])

 Performs an SNMP BULK WALK operation and returns raw results with type information.

 bulk_walk_pretty(target, oid, opts \\ [])

 Performs an SNMP BULK WALK operation and returns formatted results with type information.

 engine_batch(requests, opts \\ [])

 Submits multiple requests as a batch through the streaming engine.

 engine_request(request, opts \\ [])

 Submits a request through the streaming engine.

 get(target, oid, opts \\ [])

 Performs an SNMP GET request.

 get_async(target, oid, opts \\ [])

 Performs an asynchronous SNMP GET request.

 get_bulk(target, oid, opts \\ [])

 Performs an SNMP GETBULK request (SNMPv2c only).

 get_bulk_async(target, oid, opts \\ [])

 Performs an asynchronous SNMP GETBULK request.

 get_bulk_multi(targets_and_oids, opts \\ [])

 Performs concurrent GETBULK operations against multiple targets.

 get_column(target, table_oid, column, opts \\ [])

 Gets a specific column from an SNMP table.

 get_engine_stats(opts \\ [])

 Gets comprehensive system metrics and statistics.

 get_multi(targets_and_oids, opts \\ [])

 Performs concurrent GET operations against multiple targets.

 get_next(target, oid, opts \\ [])

 Performs an SNMP GETNEXT request.

 get_next_with_type(target, oid, opts \\ [])

 Performs an SNMP GET-NEXT request and returns the result with type information.

 get_pretty(target, oid, opts \\ [])

 Performs an SNMP GET operation and returns a formatted value.

 get_table(target, table_oid, opts \\ [])

 Gets all entries from an SNMP table and formats them as a structured table.

 get_with_type(target, oid, opts \\ [])

 Performs an SNMP GET request and returns the result in 3-tuple format.

 record_metric(metric_type, metric_name, value, tags \\ %{})

 Records a custom metric.

 set(target, oid, value, opts \\ [])

 Performs an SNMP SET request.

 start_engine(opts \\ [])

 Starts the streaming PDU engine infrastructure.

 table_stream(target, table_oid, opts \\ [])

 Creates a stream for processing large SNMP tables.

 walk(target, root_oid, opts \\ [])

 Performs an SNMP walk operation using iterative GETNEXT requests.

 walk_multi(targets_and_oids, opts \\ [])

 Performs concurrent walk operations against multiple targets.

 walk_pretty(target, oid, opts \\ [])

 Performs an SNMP WALK operation and returns formatted results.

 walk_stream(target, root_oid, opts \\ [])

 Creates a stream for memory-efficient processing of large SNMP data.

 walk_table(target, table_oid, opts \\ [])

 Walks an SNMP table and returns all entries.

 with_circuit_breaker(target, fun, opts \\ [])

 Executes a function with circuit breaker protection.

 Types

 oid()

 @type oid() :: binary() | list()

 opts()

 @type opts() :: keyword()

 target()

 @type target() :: binary() | tuple() | map()

 Functions

 adaptive_walk(target, root_oid, opts \\ [])

Performs an adaptive bulk walk that automatically optimizes parameters.
Uses intelligent parameter tuning based on device response characteristics
for optimal performance.
Parameters
	target - The target device
	root_oid - Starting OID for the walk
	opts - Options including :adaptive_tuning, :max_entries

Examples
Note: This function makes actual network calls and is not suitable for doctests
{:ok, results} = SnmpMgr.adaptive_walk("switch.local", "ifTable")
Returns optimally retrieved interface table data:
[
{"1.3.6.1.2.1.2.2.1.1.1", 1}, # ifIndex.1
{"1.3.6.1.2.1.2.2.1.2.1", "eth0"}, # ifDescr.1
{"1.3.6.1.2.1.2.2.1.8.1", 1}, # ifOperStatus.1
{"1.3.6.1.2.1.2.2.1.1.2", 2}, # ifIndex.2
{"1.3.6.1.2.1.2.2.1.2.2", "eth1"}, # ifDescr.2
{"1.3.6.1.2.1.2.2.1.8.2", 1} # ifOperStatus.2
]

 analyze_table(table_data, opts \\ [])

Analyzes table structure and returns detailed metadata.
Parameters
	table_data - Table data as returned by get_table/3
	opts - Analysis options

Examples
{:ok, table} = SnmpMgr.get_table("192.0.2.1", "ifTable")
{:ok, analysis} = SnmpMgr.analyze_table(table)
IO.inspect(analysis.completeness) # Shows data completeness ratio

 benchmark_device(target, test_oid, opts \\ [])

Benchmarks a device to determine optimal bulk parameters.
Parameters
	target - The target device to benchmark
	test_oid - OID to use for testing
	opts - Benchmark options

Examples
{:ok, results} = SnmpMgr.benchmark_device("192.0.2.1", "ifTable")
optimal_size = results.optimal_bulk_size

 bulk_pretty(target, oid, opts \\ [])

 @spec bulk_pretty(target(), oid(), opts()) ::
 {:ok, [{String.t(), String.t()}]} | {:error, any()}

Performs an SNMP BULK operation and returns formatted results.
Returns a list of {oid, formatted_value} tuples where values are automatically
formatted based on their SNMP types.
Examples
Bulk operation with automatic formatting
{:ok, results} = SnmpMgr.bulk_pretty("192.168.1.1", "1.3.6.1.2.1.2.2", max_repetitions: 10)
Returns: [{"1.3.6.1.2.1.2.2.1.2.1", "eth0"}, ...]

 bulk_walk(target, oid, opts \\ [])

 @spec bulk_walk(target(), oid(), opts()) ::
 {:ok, [{String.t(), atom(), any()}]} | {:error, any()}

Performs an SNMP BULK WALK operation and returns raw results with type information.
Returns a list of {oid_string, type, raw_value} tuples where:
	oid_string: OID formatted as dotted decimal string
	type: SNMP type atom (:string, :integer, :gauge32, etc.)
	raw_value: Raw unformatted value from SNMP response

Examples
Bulk walk interface table with raw values
{:ok, results} = SnmpMgr.bulk_walk("192.168.1.1", "1.3.6.1.2.1.2.2")
Returns: [
{"1.3.6.1.2.1.2.2.1.2.1", :octet_string, "eth0"},
{"1.3.6.1.2.1.2.2.1.5.1", :gauge32, 1000000000},
...
]

 bulk_walk_pretty(target, oid, opts \\ [])

 @spec bulk_walk_pretty(target(), oid(), opts()) ::
 {:ok, [{String.t(), atom(), String.t()}]} | {:error, any()}

Performs an SNMP BULK WALK operation and returns formatted results with type information.
Returns a list of {oid_string, type, formatted_value} tuples where:
	oid_string: OID formatted as dotted decimal string
	type: SNMP type atom (:string, :integer, :gauge32, etc.)
	formatted_value: Human-readable formatted value

Examples
Bulk walk interface table with automatic formatting
{:ok, results} = SnmpMgr.bulk_walk_pretty("192.168.1.1", "1.3.6.1.2.1.2.2")
Returns: [
{"1.3.6.1.2.1.2.2.1.2.1", :octet_string, "eth0"},
{"1.3.6.1.2.1.2.2.1.5.1", :gauge32, "1 Gbps"},
...
]

 engine_batch(requests, opts \\ [])

Submits multiple requests as a batch through the streaming engine.
Parameters
	requests - List of request specification maps
	opts - Batch options

Examples
requests = [
 %{type: :get, target: "device1", oid: "sysDescr.0"},
 %{type: :get, target: "device2", oid: "sysUpTime.0"}
]

{:ok, results} = SnmpMgr.engine_batch(requests)

 engine_request(request, opts \\ [])

Submits a request through the streaming engine.
Routes the request through the high-performance engine infrastructure
with automatic load balancing, circuit breaking, and metrics collection.
Parameters
	request - Request specification map
	opts - Request options

Examples
request = %{
 type: :get,
 target: "192.0.2.1",
 oid: "sysDescr.0",
 community: "public"
}

{:ok, result} = SnmpMgr.engine_request(request)

 get(target, oid, opts \\ [])

Performs an SNMP GET request.
Parameters
	target - The target device (e.g., "192.168.1.1:161" or "device.local")
	oid - The OID to retrieve (string format)
	opts - Options including :community, :timeout, :retries

Examples
Note: This function makes actual network calls and is not suitable for doctests
{:ok, value} = SnmpMgr.get("device.local:161", "sysDescr.0", community: "public")
"Linux server 5.4.0-42-generic #46-Ubuntu SMP Fri Jul 10 00:24:02 UTC 2020 x86_64"

{:ok, uptime} = SnmpMgr.get("router.local", "sysUpTime.0")
{:timeticks, 123456789} # System uptime in hundredths of seconds

 get_async(target, oid, opts \\ [])

Performs an asynchronous SNMP GET request.
Returns immediately with a reference. The caller will receive a message
with the result.
Examples
Note: This function makes actual network calls and is not suitable for doctests
ref = SnmpMgr.get_async("device.local", "sysDescr.0")
receive do
 {^ref, {:ok, description}} -> description
 {^ref, {:error, reason}} -> {:error, reason}
after
 5000 -> {:error, :timeout}
end
"Linux server 5.4.0-42-generic"

 get_bulk(target, oid, opts \\ [])

 @spec get_bulk(target(), oid(), opts()) ::
 {:ok, [{list(), atom(), any()}]} | {:error, any()}

Performs an SNMP GETBULK request (SNMPv2c only).
GETBULK is more efficient than multiple GETNEXT requests for retrieving
large amounts of data. It can retrieve multiple variables in a single request.
Parameters
	target - The target device
	oid - The starting OID
	opts - Options including :non_repeaters, :max_repetitions, :community, :timeout

Examples
Note: This function makes actual network calls and is not suitable for doctests
{:ok, results} = SnmpMgr.get_bulk("switch.local", "ifTable", max_repetitions: 10)
[
{[1,3,6,1,2,1,2,2,1,1,1], :integer, 1}, # ifIndex.1
{[1,3,6,1,2,1,2,2,1,2,1], :octet_string, "FastEthernet0/1"}, # ifDescr.1
{[1,3,6,1,2,1,2,2,1,8,1], :integer, 1}, # ifOperStatus.1 (up)
{[1,3,6,1,2,1,2,2,1,1,2], :integer, 2}, # ifIndex.2
{[1,3,6,1,2,1,2,2,1,2,2], :octet_string, "FastEthernet0/2"}, # ifDescr.2
... up to max_repetitions entries
]

 get_bulk_async(target, oid, opts \\ [])

Performs an asynchronous SNMP GETBULK request.
Returns immediately with a reference. The caller will receive a message
with the result.

 get_bulk_multi(targets_and_oids, opts \\ [])

Performs concurrent GETBULK operations against multiple targets.
Parameters
	targets_and_oids - List of {target, oid} tuples
	opts - Options applied to all requests including :max_repetitions

 get_column(target, table_oid, column, opts \\ [])

Gets a specific column from an SNMP table.
Parameters
	target - The target device
	table_oid - The table OID
	column - The column number or name
	opts - Options including :community, :timeout

 get_engine_stats(opts \\ [])

Gets comprehensive system metrics and statistics.
Parameters
	opts - Options including which components to include

Examples
{:ok, stats} = SnmpMgr.get_engine_stats()
IO.inspect(stats.router.requests_routed)
IO.inspect(stats.metrics.current_metrics)

 get_multi(targets_and_oids, opts \\ [])

Performs concurrent GET operations against multiple targets.
Parameters
	targets_and_oids - List of {target, oid} tuples
	opts - Options applied to all requests

Examples
Note: Network operations will fail on unreachable hosts
iex> SnmpMgr.get_multi([{"device1", [1,3,6,1,2,1,1,1,0]}, {"device2", [1,3,6,1,2,1,1,3,0]}])
[{:error, {:network_error, :hostname_resolution_failed}}, {:error, {:network_error, :hostname_resolution_failed}}]

 get_next(target, oid, opts \\ [])

Performs an SNMP GETNEXT request.
Parameters
	target - The target device
	oid - The starting OID
	opts - Options including :community, :timeout, :retries

Examples
Note: This function makes actual network calls and is not suitable for doctests
{:ok, {next_oid, value}} = SnmpMgr.get_next("switch.local", "1.3.6.1.2.1.1")
{"1.3.6.1.2.1.1.1.0", "Cisco IOS Software, C2960 Software"}

{:ok, {oid, val}} = SnmpMgr.get_next("device.local", "sysDescr")
{"1.3.6.1.2.1.1.1.0", "Linux hostname 5.4.0 #1 SMP"}

 get_next_with_type(target, oid, opts \\ [])

Performs an SNMP GET-NEXT request and returns the result with type information.
Parameters
	target - The target device (host:port format)
	oid - The OID to use as starting point for GET-NEXT
	opts - Options including :community, :timeout, :retries

Examples
{:ok, {oid, type, val}} = SnmpMgr.get_next_with_type("device.local", "1.3.6.1.2.1.1")
{"1.3.6.1.2.1.1.1.0", :octet_string, "Linux hostname 5.4.0 #1 SMP"}

 get_pretty(target, oid, opts \\ [])

 @spec get_pretty(target(), oid(), opts()) :: {:ok, String.t()} | {:error, any()}

Performs an SNMP GET operation and returns a formatted value.
This is a convenience function that combines get_with_type/3 and automatic
formatting based on the SNMP type. Returns just the formatted value since
the OID is already known.
Examples
Get system uptime with automatic formatting
{:ok, formatted_uptime} = SnmpMgr.get_pretty("192.168.1.1", "1.3.6.1.2.1.1.3.0")
Returns: "14 days 15 hours 55 minutes 13 seconds"

 get_table(target, table_oid, opts \\ [])

Gets all entries from an SNMP table and formats them as a structured table.
Parameters
	target - The target device
	table_oid - The table OID
	opts - Options including :community, :timeout

Examples
Note: This function makes actual network calls and is not suitable for doctests
{:ok, table} = SnmpMgr.get_table("switch.local", "ifTable")
%{
columns: ["ifIndex", "ifDescr", "ifType", "ifMtu", "ifSpeed", "ifOperStatus"],
rows: [
%{"ifIndex" => 1, "ifDescr" => "GigabitEthernet0/1", "ifType" => 6,
"ifMtu" => 1500, "ifSpeed" => 1000000000, "ifOperStatus" => 1},
%{"ifIndex" => 2, "ifDescr" => "GigabitEthernet0/2", "ifType" => 6,
"ifMtu" => 1500, "ifSpeed" => 1000000000, "ifOperStatus" => 2}
]
}

 get_with_type(target, oid, opts \\ [])

Performs an SNMP GET request and returns the result in 3-tuple format.
This function returns the same format as walk, bulk, and other operations:
{oid_string, type, value} for consistency across the library.
Parameters
	target - The target device (e.g., "192.168.1.1:161" or "device.local")
	oid - The OID to retrieve (string format)
	opts - Options including :community, :timeout, :retries

Examples
Note: This function makes actual network calls and is not suitable for doctests
{:ok, {oid, type, value}} = SnmpMgr.get_with_type("device.local:161", "sysDescr.0", community: "public")
{:ok, {"1.3.6.1.2.1.1.1.0", :octet_string, "Linux server 5.4.0-42-generic"}}

{:ok, {oid, type, uptime}} = SnmpMgr.get_with_type("router.local", "sysUpTime.0")
{:ok, {"1.3.6.1.2.1.1.3.0", :timeticks, 123456789}}

 record_metric(metric_type, metric_name, value, tags \\ %{})

Records a custom metric.
Parameters
	metric_type - Type of metric (:counter, :gauge, :histogram)
	metric_name - Name of the metric
	value - Value to record
	tags - Optional tags

Examples
SnmpMgr.record_metric(:counter, :custom_requests, 1, %{device: "switch1"})
SnmpMgr.record_metric(:histogram, :custom_latency, 150, %{operation: "bulk"})

 set(target, oid, value, opts \\ [])

Performs an SNMP SET request.
Parameters
	target - The target device
	oid - The OID to set
	value - The value to set
	opts - Options including :community, :timeout, :retries

Examples
Note: This function makes actual network calls and is not suitable for doctests
{:ok, :ok} = SnmpMgr.set("device.local", "sysLocation.0", "Server Room A")
:ok

{:ok, :ok} = SnmpMgr.set("switch.local", "sysContact.0", "admin@company.com",
 community: "private", timeout: 3000)
:ok

 start_engine(opts \\ [])

Starts the streaming PDU engine infrastructure.
Initializes all Phase 5 components including engines, routers, connection pools,
circuit breakers, and metrics collection for high-performance SNMP operations.
Options
	:engine - Engine configuration options
	:router - Router configuration options
	:pool - Connection pool options
	:circuit_breaker - Circuit breaker options
	:metrics - Metrics collection options

Examples
{:ok, _pid} = SnmpMgr.start_engine(
 engine: [pool_size: 20, max_rps: 500],
 router: [strategy: :least_connections],
 pool: [pool_size: 50],
 metrics: [window_size: 120]
)

 table_stream(target, table_oid, opts \\ [])

Creates a stream for processing large SNMP tables.
Parameters
	target - The target device
	table_oid - The table OID to stream
	opts - Options including :chunk_size, :columns

Examples
Note: Requires Erlang SNMP modules for actual operation
stream = SnmpMgr.table_stream("192.0.2.1", "ifTable")
Process table stream...

 walk(target, root_oid, opts \\ [])

 @spec walk(target(), oid(), opts()) ::
 {:ok, [{list(), atom(), any()}]} | {:error, any()}

Performs an SNMP walk operation using iterative GETNEXT requests.
Walks the SNMP tree starting from the given OID and returns all OID/value
pairs found under that subtree.
Parameters
	target - The target device
	root_oid - The starting OID for the walk
	opts - Options including :community, :timeout, :max_repetitions

Examples
Note: This function makes actual network calls and is not suitable for doctests
{:ok, results} = SnmpMgr.walk("device.local", "1.3.6.1.2.1.1")
[
{[1,3,6,1,2,1,1,1,0], :octet_string, "Linux hostname 5.4.0-42-generic"}, # sysDescr
{[1,3,6,1,2,1,1,2,0], :object_identifier, [1,3,6,1,4,1,8072,3,2,10]}, # sysObjectID
{[1,3,6,1,2,1,1,3,0], :timeticks, 12345678}, # sysUpTime
{[1,3,6,1,2,1,1,4,0], :octet_string, "admin@company.com"}, # sysContact
{[1,3,6,1,2,1,1,5,0], :octet_string, "server01.company.com"}, # sysName
{[1,3,6,1,2,1,1,6,0], :octet_string, "Data Center Room 42"} # sysLocation
]

 walk_multi(targets_and_oids, opts \\ [])

Performs concurrent walk operations against multiple targets.
Parameters
	targets_and_oids - List of {target, root_oid} tuples
	opts - Options applied to all requests

 walk_pretty(target, oid, opts \\ [])

 @spec walk_pretty(target(), oid(), opts()) ::
 {:ok, [{String.t(), String.t()}]} | {:error, any()}

Performs an SNMP WALK operation and returns formatted results.
Returns a list of {oid, formatted_value} tuples where values are automatically
formatted based on their SNMP types.
Examples
Walk system group with automatic formatting
{:ok, results} = SnmpMgr.walk_pretty("192.168.1.1", "1.3.6.1.2.1.1")
Returns: [{"1.3.6.1.2.1.1.3.0", "14 days 15 hours"}, ...]

 walk_stream(target, root_oid, opts \\ [])

Creates a stream for memory-efficient processing of large SNMP data.
Parameters
	target - The target device
	root_oid - Starting OID for the walk
	opts - Options including :chunk_size, :adaptive

Examples
Note: Requires Erlang SNMP modules for actual operation
stream = SnmpMgr.walk_stream("192.0.2.1", "ifTable")
Process stream lazily...

 walk_table(target, table_oid, opts \\ [])

 @spec walk_table(target(), oid(), opts()) ::
 {:ok, [{list(), atom(), any()}]} | {:error, any()}

Walks an SNMP table and returns all entries.
Parameters
	target - The target device
	table_oid - The table OID to walk
	opts - Options including :community, :timeout

Examples
Note: This function makes actual network calls and is not suitable for doctests
{:ok, entries} = SnmpMgr.walk_table("switch.local", "ifTable")
[
{[1,3,6,1,2,1,2,2,1,1,1], :integer, 1}, # ifIndex.1
{[1,3,6,1,2,1,2,2,1,2,1], :octet_string, "GigabitEthernet0/1"}, # ifDescr.1
{[1,3,6,1,2,1,2,2,1,3,1], :integer, 6}, # ifType.1 (ethernetCsmacd)
{[1,3,6,1,2,1,2,2,1,5,1], :gauge32, 1000000000}, # ifSpeed.1 (1 Gbps)
... all interface table entries with type information
]

 with_circuit_breaker(target, fun, opts \\ [])

Executes a function with circuit breaker protection.
Parameters
	target - Target device identifier
	fun - Function to execute with protection
	opts - Circuit breaker options

Examples
result = SnmpMgr.with_circuit_breaker("192.0.2.1", fn ->
 SnmpMgr.get("192.0.2.1", "sysDescr.0")
end)

SnmpKit.TestSupport

SNMP Simulator for Elixir - Production-ready SNMP device simulation.
Provides high-performance SNMP device simulation supporting walk files,
realistic behaviors, and large-scale testing scenarios.

 Summary

 Functions

 start(type, args)

 start_device(profile, opts \\ [])

 Start a single SNMP device with the given profile.

 start_device_population(device_configs, opts \\ [])

 Start a population of devices with mixed types and configurations.

 Functions

 start(type, args)

 start_device(profile, opts \\ [])

Start a single SNMP device with the given profile.
Examples
Start device with walk file profile
profile = SnmpKit.SnmpSim.ProfileLoader.load_profile(
 :cable_modem,
 {:walk_file, "priv/walks/cable_modem.walk"}
)
{:ok, device} = SnmpSim.start_device(profile, port: 9001)

 start_device_population(device_configs, opts \\ [])

Start a population of devices with mixed types and configurations.
Examples
device_configs = [
 {:cable_modem, {:walk_file, "priv/walks/cm.walk"}, count: 1000},
 {:switch, {:oid_walk, "priv/walks/switch.walk"}, count: 50}
]

{:ok, devices} = SnmpSim.start_device_population(
 device_configs,
 port_range: 30_000..39_999
)

 OEBPS/dist/epub-4WIP524F.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);function r(e){document.readyState!=="loading"?e():document.addEventListener("DOMContentLoaded",e)}var l="hll";window.addEventListener("exdoc:loaded",t);function t(){o("[data-group-id]").forEach(e=>{e.addEventListener("mouseenter",i),e.addEventListener("mouseleave",i)})}function i(e){let n=e.currentTarget,a=e.type==="mouseenter",c=n.getAttribute("data-group-id");n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach(u=>{u.classList.toggle(l,a)})}r(()=>{t()});})();

