

 Sobelow

 v0.14.1

 Table of contents

 	Sobelow

 	Changelog

 	
 Modules

 	Sobelow

 	Sobelow.CI

 	Sobelow.CI.OS

 	Sobelow.CI.System

 	Sobelow.Config

 	Sobelow.Config.CSP

 	Sobelow.Config.CSRF

 	Sobelow.Config.CSRFRoute

 	Sobelow.Config.CSWH

 	Sobelow.Config.HSTS

 	Sobelow.Config.HTTPS

 	Sobelow.Config.Headers

 	Sobelow.Config.Secrets

 	Sobelow.DOS

 	Sobelow.DOS.BinToAtom

 	Sobelow.DOS.ListToAtom

 	Sobelow.DOS.StringToAtom

 	Sobelow.IO

 	Sobelow.Misc

 	Sobelow.Misc.BinToTerm

 	Sobelow.Misc.FilePath

 	Sobelow.RCE

 	Sobelow.RCE.CodeModule

 	Sobelow.RCE.EEx

 	Sobelow.SQL

 	Sobelow.SQL.Query

 	Sobelow.SQL.Stream

 	Sobelow.Traversal

 	Sobelow.Traversal.FileModule

 	Sobelow.Traversal.SendDownload

 	Sobelow.Traversal.SendFile

 	Sobelow.Vuln

 	Sobelow.Vuln.Coherence

 	Sobelow.Vuln.CookieRCE

 	Sobelow.Vuln.Ecto

 	Sobelow.Vuln.HeaderInject

 	Sobelow.Vuln.PlugNull

 	Sobelow.Vuln.Redirect

 	Sobelow.XSS

 	Sobelow.XSS.ContentType

 	Sobelow.XSS.HTML

 	Sobelow.XSS.Raw

 	Sobelow.XSS.SendResp

 	
 Mix Tasks

 	mix sobelow

Sobelow

[image: Module Version]
[image: Hex Docs]
[image: Total Download]
[image: License]
[image: Last Updated]
Sobelow is a security-focused static analysis tool for Elixir & the
Phoenix framework. For security researchers, it is a useful
tool for getting a quick view of points-of-interest. For
project maintainers, it can be used to prevent the introduction
of a number of common vulnerabilities.
Currently Sobelow detects some types of the following
security issues:
	Insecure configuration
	Known-vulnerable Dependencies
	Cross-Site Scripting
	SQL injection
	Command injection
	Code execution
	Denial of Service
	Directory traversal
	Unsafe serialization

Potential vulnerabilities are flagged in different colors
according to confidence in their insecurity. High confidence is
red, medium confidence is yellow, and low confidence is green.
A finding is typically marked "low confidence" if it looks
like a function could be used insecurely, but it cannot
reliably be determined if the function accepts user-supplied
input. i.e. If a finding is marked green, it may be
critically insecure, but it will require greater manual
validation.
Note: This project is in constant development, and
additional vulnerabilities will be flagged as time goes on.
If you encounter a bug, or would like to request additional
features or security checks, please open an issue!

 Table of Contents

	Installation	To Use

	Options
	Configuration Files
	False Positives
	Modules
	Umbrella Apps
	Updates

 Installation

To use Sobelow, you can add it to your application's dependencies.
def deps do
 [
 {:sobelow, "~> 0.14", only: [:dev, :test], runtime: false, warn_if_outdated: true}
]
end
You can also install Sobelow globally by executing the following
from the command line:
$ mix escript.install hex sobelow

To install from the main branch, rather than the latest release,
the following command can be used:
$ mix escript.install github sobelow/sobelow

 To Use

After installation, the simplest way to scan a Phoenix project is to run the
following from the project root:
$ mix sobelow

 Options

Note: Any path arguments should be absolute paths, or
relative to the application root.
	--root or -r - Specify the application root directory.
Accepts a path argument, e.g. ../my_project.

	--verbose or -v - Print code snippets and additional
finding details.

	--ignore or -i - Ignore given finding types. Accepts a
comma-separated list of module names, e.g. XSS.Raw,Traversal.

	--ignore-files - Ignore files. Accepts a comma-separated
list of file names, e.g. config/prod.exs.

	--details or -d - Get finding-type details. Accepts a
single module name, e.g. Config.CSRF.

	--all-details - Get details of all finding-types.

	--private - Skip update checks.

	--router - Specify router location. This only needs to be
used if the router location is non-standard. Accepts a path
argument, e.g. my/strange/router.ex.

	--exit - Return non-zero exit status at or above a confidence
threshold of low, medium, or high. Defaults to false which returns a zero exit status

	--threshold - Return findings at or above a confidence level
of low (default), medium, or high.

	--format or -f - Specify findings output format. Accepts a format,
e.g. txt or json.
 Note that options such as --verbose will not work with the json format.
 All json formatted findings contain a type, file, and line key.
 Other keys may vary.

	--quiet - Return a single line indicating number of findings.
Otherwise, return no output if there are no findings.

	--compact - Minimal, single-line findings with output colorised
according to confidence.

	--flycheck - Minimal, single-line findings that are compatible
with flycheck-based tooling.

	--save-config - Generates a configuration file based on command
line options. See Configuration Files for more
information.

	--[no-]config - Run Sobelow with or without configuration file. See Configuration Files
for more information.

	--mark-skip-all - Mark all displayed findings as skippable.

	--clear-skip - Clear configuration created by --mark-skip-all.

	--skip - Ignore findings that have been marked for skipping. See False Positives
for more information.

	--version - Outputs the current version of Sobelow. This is useful for CI steps or integration with other tools like Salus.

 Configuration Files

Sobelow allows users to save frequently used options in a
configuration file. For example, if you find yourself constantly
running:
$ mix sobelow -i XSS.Raw,Traversal --verbose --exit Low

You can use the --save-config flag to create your .sobelow-conf
config file:
$ mix sobelow -i XSS.Raw,Traversal --verbose --exit Low --save-config

This command will create the .sobelow-conf file at the root
of your application. You can edit this file directly to make
changes.
You can also run the command without any options:
$ mix sobelow --save-config

when you first start out using this package - the generated configuration file
will be populated with the default values for each option. (This helps in
quickly incorporating this package into a pre-existing codebase.)
The .sobelow-conf file is automatically used if detected. CLI switches will
take precedence over options in the config file. You can also specify
--no-config to prevent any config file settings being used if needed.

 False Positives

Sobelow favors over-reporting versus under-reporting. As such,
you may find a number of false positives in a typical scan.
These findings may be individually ignored by adding a
sobelow_skip comment, along with a list of modules, before
the function definition.
sobelow_skip ["Traversal"]
def vuln_func(...) do
 ...
end
When integrating Sobelow into a new project, there can be a
large number of false positives. To mark all printed findings
as false positives, run sobelow with the --mark-skip-all flag.
Once you have tagged the appropriate findings, run
Sobelow with the --skip flag.
$ mix sobelow --skip

While # sobelow_skip comments can only mark function-level
findings (and so cannot be used to skip configuration issues),
the --mark-skip-all flag can be used to skip any finding
type.

 Modules

Findings categories are broken up into modules. These modules
can then be used to either ignore classes of findings (via the
ignore and skip options) or to get vulnerability details (via the
details option).
This list, and other helpful information, can be found on the
command line:
$ mix help sobelow

 Umbrella Apps

In order to run Sobelow against all child apps within an umbrella app with a single command, you can add an alias for sobelow in your root mix.exs file:
defp aliases do
 [
 sobelow: ["cmd mix sobelow"]
]
end
If you wish to use configuration files in an umbrella app, create a .sobelow-conf in each child application.

 Updates

When scanning a project, Sobelow will occasionally check for
updates, and will print an alert if a new version is available.
Sobelow keeps track of the last update-check by creating a
.sobelow file in the root of the scanned project.
If this functionality is not desired, the --private flag can
be used with the scan.

Changelog

 v0.14.1

	Enhancements	Implicitly use .sobelow-conf if detected in the root directory rather than
require --config switch. The --no-config switch is still supported to
prevent any settings from being read in from the file if needed.
	Added guidance for warn_if_outdated option in mix deps
	Added support for Elixir v1.19.x

	Bug fixes	Handled extra config options for app releases in mix.exs
	Properly handle the use of CLI switches and config file settings in the same run.
These would previously clobber each other in unapparent ways leading to
confusing behavior. CLI switch take precedence.
	.sobelow-conf now sorted alphabetically
	Fix edwarning from zero argument functions
	Fixed broken skip funcationality
	Fixed broken GitHub Actions CI

	Misc	Typo fix

 v0.14.0

	Removed	Support for minimum Elixir versions 1.7 - 1.11 (POTENTIALLY BREAKING - only applies if you relied on Elixir 1.7 through 1.11, 1.12+ is still supported)

	Enhancements	Added support for multiple variations of SQL.query()
	Added support for System.shell' command introduced in Elixir v1.12 * Ignore runtime config duringConfig.HSTS* Updated developer dependencies (exdoc&credo) * Bug fixes * Fixedis_endpoint?error in main * Fixed findings normalization bug * Fixed truncation error * Misc * GitHub Actions test matrix updated (hence the large drop in support for old Elixir versions) * Addressed compiler warnings from Elixir v1.18.x * Moved frommasterbranch tomain## v0.13.0 * Removed * Support for minimum Elixir versions 1.5 & 1.6 (**POTENTIALLY BREAKING** - only applies if you relied on Elixir 1.5 or 1.6, 1.7+ is still supported) * Enhancements * Fixed allcredowarnings * Implemented allcredo` "Code Readability" adjustments
* Took advantage of _some credo refactoring opportunities
 Added (sub)module documentation that was missing for some vulnerabilities and unified presentation of others
 Bug fixes
 Fixed --details / -d not displaying correct information
 Fixed incompatibility issue with Elixir 1.15
 Misc
 Added mix credo --strict to project
 Improvements to GitHub CI
 Hex Audit
 Compiler Warnings as Errors
 Checks Formatting
 Added helper mix test.all alias

v0.12.2
 Bug fixes
 Removed :castore and introduced :verify_none to quiet warning and unblock escript usage, see #133 for more context on why this is necessary

v0.12.1
 Bug fixes
 Lowered required version of :castore to remove upgrade path issues
 Reconfigured :verify_peer to actually use CAStore and remove warning

v0.12.0
 Removed
 Support for minimum Elixir version 1.4 (POTENTIALLY BREAKING - only applies if you relied on Elixir 1.4, 1.5+ is still supported)
 Enhancements
 Adds support for HEEx to XSS.Raw
 Adds --version CLI flag
 README Improvements
 Umbrella App usage
 Clearer installation process
 Layout changes
 Updated dependencies
 Bug fixes
 Adds to_string() to exit_on
 Sets SSL opt verify_peer in version check
 Reworks -v, --verbose printing to not use the now deprecated Macro.to_string/2
 Misc
 Allows atom values for threshold in config file
 Uses SPDX ID for licenses in mixfile
 Fixed typo

v0.11.2
 Enhancements
 Simplify --flycheck output to align with expected format

v0.11.1
 Enhancements
 Sarif output with --out flag
 --strict flag, which throws compilation errors instead of suppressing them.

v0.11.0
 Enhancements
 Sarif output for GitHub integration
 --flycheck flag, which reverses output of --compact
 Bug fixes
 Non-compiling files now return an empty syntax tree instead of
causing Sobelow errors.
 Command Injection finding description are properly formatted
 Misc
 If you use Sobelow as a standalone utility (i.e. not as part of
a Phoenix application), you now need to install as an escript with
mix escript.install hex sobelow.
 Custom JSON serialization replaced with Jason.

v0.10.6
 Bug fixes
 Handle nil config case

v0.10.5
 Misc
 Update code to clean up deprecation warnings

v0.10.4
 Enhancements
 Sobelow is now smarter about cross-site websocket hijacking
 Update URL for CSRF description

v0.10.3
 Bug fixes
 Fix directory structure issue in umbrella applications
 Handle function capture edge cases

v0.10.2
 Bug fixes
 Fix a format error in JSON output encoding

v0.10.1
 Bug fixes
 Sobelow will use ".sobelow-skips" instead of ".sobelow" in your root directory for --mark-skip-all

v0.10.0
 Enhancements
 Sobelow now uses "~/.sobelow/sobelow-vsn-check" for update checks
 The ".sobelow" file in your project root is for --mark-skip-all only

v0.9.3
 Enhancements
 Improved checks for all aliased functions

 Bug Fixes
 JSON output for Raw findings is now properly normalized
 send_download correctly flags aliased function calls
 send_download now correctly flags piped functions

v0.9.2
 Bug Fixes
 Fix error that resulted from redefining imported functions

v0.9.1
 Bug Fixes
 Revert umbrella app recursion

v0.9.0
 Enhancements
 Add --mark-skip-all and --clear-skip flags
 New CSRF via action reuse checks
 Sobelow can now be run in umbrella apps

 Bug Fixes
 Fix an error when printing some kinds of variables

v0.8.0
 Enhancements
 Improve output consistency
 All JSON findings contain type, file, and line keys
 "Line" output now refers directly to the vulnerable line
 Default output headers have been normalized

Note: If you depend on the structure of the output, this
may be a breaking change. More information can be found at
https://sobelow.io.

v0.7.8
 Enhancements
 Add --threshold flag
 Add module names to finding output

 Deprecations
 File/Path check has been deprecated

 Bug Fixes
 Fix inaccurate CSRF details

v0.7.7
 Enhancements
 Add check for insecure websocket settings

 Bug Fixes
 Accept module attributes for application name

v0.7.6

 Bug Fixes
 Fix issue that suppressed output options when config files were in use

v0.7.5

 Misc
 Sobelow will now only halt when --exit flag is used

v0.7.4

 Bug Fixes
 Log hardcoded secrets for txt output

v0.7.3

 Misc
 Tweaks to --out flag.

v0.7.2

 Enhancements
 Add router path to config findings
 Add --out flag for writing to file

v0.7.1

 Enhancements
 Improved handling of JSON format
 Additional checks for File functions

v0.7.0

 Enhancements
 Improved handling of vulnerabilities within templates.

 Bug Fixes
 Sobelow no longer incorrectly flags :binary send_download functions.

v0.6.9

 Enhancements
 Improve template parsing and validation.
 Support multiple routers, and improve route discovery.

 Misc.
 Update language for missing directory.

v0.6.8

 Bug Fixes
 Fix bug in the handling of certain piped functions.
 Revert not/in update that broke Elixir 1.4 compatibility.

v0.6.7

 Enhancements
 Remove banner print from JSON format.

 Bug Fixes
 Fix error that occurred with certain function names in JSON format.

v0.6.6

 Enhancements
 Add check for directory traversal via send_download
 Add check for missing Content-Security-Policy
 Check additional XSS vectors

v0.6.5

 Bug Fixes
 Allow RCE module to be appropriately ignored.

v0.6.4

 Enhancements
 Set timeout for version check.

v0.6.3

 Enhancements
 Add RCE module to check for code execution via Code and EEx.

 Deprecations
* The --with-code flag has been changed to --verbose. The --with-code
flag will continue to work as expected until v1.0.0, but will print a
warning message.

Sobelow

Sobelow is a static analysis tool for discovering
vulnerabilities in Phoenix applications.

 Summary

 Functions

 all_details()

 details()

 finding_modules()

 format()

 get_env(key)

 get_ignored()

 get_mod(mod_string)

 log_finding(finding)

 log_finding(details, finding)

 loggable?(finding, severity)

 meets_threshold?(severity)

 output_format()

 rules()

 run()

 save_config(conf_file)

 version()

 vuln?(arg)

 Functions

 all_details()

 details()

 finding_modules()

 format()

 get_env(key)

 get_ignored()

 get_mod(mod_string)

 log_finding(finding)

 log_finding(details, finding)

 loggable?(finding, severity)

 meets_threshold?(severity)

 output_format()

 rules()

 run()

 save_config(conf_file)

 version()

 vuln?(arg)

Sobelow.CI

Command Injection
Command Injection vulnerabilities are a result of
passing untrusted input to an operating system shell,
and may result in complete system compromise.
Read more about Command Injection here:
https://www.owasp.org/index.php/Command_Injection
If you wish to learn more about the specific vulnerabilities
found within the Command Injection category, you may run the
following commands to find out more:
 $ mix sobelow -d CI.OS
 $ mix sobelow -d CI.System
Command Injection checks of all types can be ignored with the
following command:
$ mix sobelow -i CI

 Summary

 Functions

 details()

 finding_modules()

 get_vulns(fun, meta_file, web_root, skip_mods \\ [])

 rules()

 Functions

 details()

 finding_modules()

 get_vulns(fun, meta_file, web_root, skip_mods \\ [])

 rules()

Sobelow.CI.OS

Command Injection in :os.cmd
This submodule of the CI module checks for Command Injection
vulnerabilities through usage of the :os.cmd function.
Ensure the the command passed to :os.cmd is not user-controlled.
:os.cmd Injection checks can be ignored with the following command:
$ mix sobelow -i CI.OS

 Summary

 Functions

 details()

 id()

 parse_def(fun)

 rule()

 run(fun, meta_file)

 Functions

 details()

 id()

 parse_def(fun)

 rule()

 run(fun, meta_file)

Sobelow.CI.System

Command Injection via System
This submodule of the CI module checks for Command Injection
vulnerabilities through usage of the System.cmd function.
Ensure the the command passed to System.cmd is not user-controlled.
System.cmd Injection checks can be ignored with the following command:
$ mix sobelow -i CI.System

 Summary

 Functions

 details()

 id()

 parse_def(fun)

 parse_def_shell(fun)

 rule()

 run(fun, meta_file)

 Functions

 details()

 id()

 parse_def(fun)

 parse_def_shell(fun)

 rule()

 run(fun, meta_file)

Sobelow.Config

Configuration
Submodules contained within this vulnerability type
are related to common insecurities found in how
Phoenix applications are configured.
This can include things like missing headers,
insecure cookies, and more.
If you wish to learn more about the specific vulnerabilities
found within the Configuration category, you may run the
following commands to find out more:
 $ mix sobelow -d Config.CSP
 $ mix sobelow -d Config.CSRF
 $ mix sobelow -d Config.CSRFRoute
 $ mix sobelow -d Config.CSWH
 $ mix sobelow -d Config.Headers
 $ mix sobelow -d Config.Secrets
 $ mix sobelow -d Config.HTTPS
 $ mix sobelow -d Config.HSTS
Configuration checks of all types can be ignored with the
following command:
$ mix sobelow -i Config

 Summary

 Functions

 details()

 fetch(root, router, endpoints)

 finding_modules()

 get_configs(key, filepath)

 get_configs_by_file(secret, file)

 get_fuzzy_configs(key, filepath)

 get_pipelines(filepath)

 get_plug_accepts(arg1)

 get_plug_list(block)

 get_version(filepath)

 get_version(ast, acc)

 parse_accepts(list)

 plug?(arg1, type)

 rules()

 vuln_pipeline?(arg, atom)

 Functions

 details()

 fetch(root, router, endpoints)

 finding_modules()

 get_configs(key, filepath)

 get_configs_by_file(secret, file)

 get_fuzzy_configs(key, filepath)

 get_pipelines(filepath)

 get_plug_accepts(arg1)

 get_plug_list(block)

 get_version(filepath)

 get_version(ast, acc)

 parse_accepts(list)

 plug?(arg1, type)

 rules()

 vuln_pipeline?(arg, atom)

Sobelow.Config.CSP

Missing Content-Security-Policy
Content-Security-Policy is an HTTP header that helps mitigate
a number of attacks, including Cross-Site Scripting.
Read more about CSP here:
https://developer.mozilla.org/en-US/docs/Web/HTTP/CSP
Missing Content-Security-Policy is flagged by sobelow when
a pipeline implements the :put_secure_browser_headers plug,
but does not provide a Content-Security-Policy header in the
custom headers map.
When it comes to CSP, just about any policy is better than none.
If you are unsure about which policy to use, the following
mitigates most typical XSS vectors:
plug :put_secure_browser_headers, %{"content-security-policy" => "default-src 'self'"}
Documentation on the put_secure_browser_headers plug function
can be found here:
https://hexdocs.pm/phoenix/Phoenix.Controller.html#put_secure_browser_headers/2
Content-Security-Policy checks can be ignored with the following command:
$ mix sobelow -i Config.CSP

 Summary

 Functions

 check_vuln_pipeline(pipeline, meta_file)

 details()

 id()

 rule()

 run(router)

 Functions

 check_vuln_pipeline(pipeline, meta_file)

 details()

 id()

 rule()

 run(router)

Sobelow.Config.CSRF

Cross-Site Request Forgery
In a Cross-Site Request Forgery (CSRF) attack, an untrusted
application can cause a user's browser to submit requests or perform
actions on the user's behalf.
Read more about CSRF here:
https://owasp.org/www-community/attacks/csrf
Cross-Site Request Forgery is flagged by sobelow when
a pipeline fetches a session, but does not implement the
:protect_from_forgery plug.
CSRF checks can be ignored with the following command:
$ mix sobelow -i Config.CSRF

 Summary

 Functions

 details()

 id()

 rule()

 run(router)

 Functions

 details()

 id()

 rule()

 run(router)

Sobelow.Config.CSRFRoute

Cross-Site Request Forgery
In a Cross-Site Request Forgery (CSRF) attack, an untrusted
application can cause a user's browser to submit requests or perform
actions on the user's behalf.
Read more about CSRF here:
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)
This type of CSRF is flagged by sobelow when state-changing
routes share an action with GET-based routes. For example:
get "/users", UserController, :new
post "/users", UserController, :new
In this instance, it may be possible to trigger the POST
functionality with a GET request and query parameters.
CSRF checks can be ignored with the following command:
$ mix sobelow -i Config.CSRFRoute

 Summary

 Functions

 combine_scopes(scopes)

 details()

 id()

 route_findings(scope, finding)

 rule()

 run(router)

 Functions

 combine_scopes(scopes)

 details()

 id()

 route_findings(scope, finding)

 rule()

 run(router)

Sobelow.Config.CSWH

Cross-Site Websocket Hijacking
Websocket connections are not bound by the same-origin policy.
Connections that do not validate the origin may leak information
to an attacker.
More information can be found here: https://www.christian-schneider.net/CrossSiteWebSocketHijacking.html
Cross-Site Websocket Hijacking checks can be disabled with
the following command:
$ mix sobelow -i Config.CSWH

 Summary

 Functions

 check_socket(arg1)

 details()

 id()

 rule()

 run(endpoint)

 Functions

 check_socket(arg1)

 details()

 id()

 rule()

 run(endpoint)

Sobelow.Config.HSTS

HSTS
The HTTP Strict Transport Security (HSTS) header helps
defend against man-in-the-middle attacks by preventing
unencrypted connections.
HSTS checks can be ignored with the following command:
$ mix sobelow -i Config.HSTS

 Summary

 Functions

 details()

 id()

 rule()

 run(dir_path, configs)

 Functions

 details()

 id()

 rule()

 run(dir_path, configs)

Sobelow.Config.HTTPS

HTTPS
Without HTTPS, attackers in a privileged network position can
intercept and modify traffic.
Sobelow detects missing HTTPS by checking the prod
configuration.
HTTPS checks can be ignored with the following command:
$ mix sobelow -i Config.HTTPS

 Summary

 Functions

 details()

 id()

 rule()

 run(dir_path, configs)

 Functions

 details()

 id()

 rule()

 run(dir_path, configs)

Sobelow.Config.Headers

Missing Secure HTTP Headers
By default, Phoenix HTTP responses contain a number of
secure HTTP headers that attempt to mitigate XSS,
click-jacking, and content-sniffing attacks.
Missing Secure HTTP Headers is flagged by sobelow when
a pipeline accepts "html" requests, but does not implement
the :put_secure_browser_headers plug.
Secure Headers checks can be ignored with the following
command:
$ mix sobelow -i Config.Headers

 Summary

 Functions

 details()

 id()

 rule()

 run(router)

 Functions

 details()

 id()

 rule()

 run(router)

Sobelow.Config.Secrets

Hard-coded Secrets
In the event of a source-code disclosure via file read
vulnerability, accidental commit, etc, hard-coded secrets
may be exposed to an attacker. This may result in
database access, cookie forgery, and other issues.
Sobelow detects missing hard-coded secrets by checking the prod
configuration.
Hard-coded secrets checks can be ignored with the following command:
$ mix sobelow -i Config.Secrets

 Summary

 Functions

 details()

 env_var?(arg1)

 id()

 rule()

 run(dir_path, configs)

 Functions

 details()

 env_var?(arg1)

 id()

 rule()

 run(dir_path, configs)

Sobelow.DOS

Denial of Service
The Denial of Service (DOS) attack is focused on making a
resource (site, application, server) unavailable for the
purpose it was designed.
Read more about Denial of Service here:
https://owasp.org/www-community/attacks/Denial_of_Service
If you wish to learn more about the specific vulnerabilities
found within the Denial of Service category, you may run the
following commands to find out more:
 $ mix sobelow -d DOS.StringToAtom
 $ mix sobelow -d DOS.ListToAtom
 $ mix sobelow -d DOS.BinToAtom
Denial of Service checks of all types can be ignored with the
following command:
$ mix sobelow -i DOS

 Summary

 Functions

 details()

 finding_modules()

 get_vulns(fun, meta_file, web_root, skip_mods \\ [])

 rules()

 Functions

 details()

 finding_modules()

 get_vulns(fun, meta_file, web_root, skip_mods \\ [])

 rules()

Sobelow.DOS.BinToAtom

Denial of Service via Unsafe Atom Interpolation
In Elixir, atoms are not garbage collected. As such, if user input
is used to create atoms (as in :"foo#{bar}", or in :erlang.binary_to_atom),
it may result in memory exhaustion. Prefer the String.to_existing_atom
function for untrusted user input.
Atom interpolation checks can be ignored with the following command:
$ mix sobelow -i DOS.BinToAtom

 Summary

 Functions

 details()

 id()

 parse_def(fun)

 rule()

 run(fun, meta_file)

 Functions

 details()

 id()

 parse_def(fun)

 rule()

 run(fun, meta_file)

Sobelow.DOS.ListToAtom

Denial of Service via List.to_atom
In Elixir, atoms are not garbage collected. As such, if user input
is passed to the List.to_atom function, it may result in memory
exhaustion. Prefer the List.to_existing_atom function for untrusted
user input.
List.to_atom checks can be ignored with the following command:
$ mix sobelow -i DOS.ListToAtom

 Summary

 Functions

 details()

 id()

 parse_def(fun)

 rule()

 run(fun, meta_file)

 Functions

 details()

 id()

 parse_def(fun)

 rule()

 run(fun, meta_file)

Sobelow.DOS.StringToAtom

Denial of Service via String.to_atom
In Elixir, atoms are not garbage collected. As such, if user input
is passed to the String.to_atom function, it may result in memory
exhaustion. Prefer the String.to_existing_atom function for untrusted
user input.
String.to_atom checks can be ignored with the following command:
$ mix sobelow -i DOS.StringToAtom

 Summary

 Functions

 details()

 id()

 parse_def(fun)

 rule()

 run(fun, meta_file)

 Functions

 details()

 id()

 parse_def(fun)

 rule()

 run(fun, meta_file)

Sobelow.IO

IO helpers. Mostly mirror Mix.Shell.IO, but Mix will not always be available
to Sobelow.

 Summary

 Functions

 error(message)

 info(message)

 yes?(message)

 Functions

 error(message)

 info(message)

 yes?(message)

Sobelow.Misc

Miscellaneous
This suite of tests is to be a catch-all for
checks that don't fall neatly into the other
detection categories.
If you wish to learn more about the specific vulnerabilities
found within the Miscellaneous category, you may run the
following commands to find out more:
 $ mix sobelow -d Misc.BinToTerm
Miscellaneous checks of all types can be ignored with the
following command:
$ mix sobelow -i Misc

 Summary

 Functions

 details()

 finding_modules()

 get_vulns(fun, meta_file, web_root, skip_mods \\ [])

 rules()

 Functions

 details()

 finding_modules()

 get_vulns(fun, meta_file, web_root, skip_mods \\ [])

 rules()

Sobelow.Misc.BinToTerm

Insecure use of binary_to_term
If user input is passed to Erlang's binary_to_term function
it may result in memory exhaustion or code execution. Even with
the :safe option, binary_to_term will deserialize functions,
and shouldn't be considered safe to use with untrusted input.
binary_to_term checks can be ignored with the following command:
$ mix sobelow -i Misc.BinToTerm

 Summary

 Functions

 details()

 id()

 parse_def(fun)

 rule()

 run(fun, meta_file)

 Functions

 details()

 id()

 parse_def(fun)

 rule()

 run(fun, meta_file)

Sobelow.Misc.FilePath

Insecure use of File and Path
Note: This check has been deprecated. File/Path issues were
addressed with the release of OTP 21.
In Elixir, File methods are null-terminated, while Path
functions are not. This may cause security issues in certain
situations. For example:
user_input = "/var/www/secret.txt\0/name"

path = Path.dirname(user_input)
public_file = path <> "/public.txt"

File.read(public_file)
Because Path functions are not null-terminated, this
will attempt to read the file, "/var/www/secret.txt\0/public.txt".
However, due to the null-byte termination of File functions
"secret.txt" will ultimately be read.
File/Path checks can be ignored with the following command:
$ mix sobelow -i Misc.FilePath

Sobelow.RCE

Remote Code Execution
Remote Code Execution vulnerabilities are a result of
untrusted user input being executed or interpreted by
the system and may result in complete system compromise.
If you wish to learn more about the specific vulnerabilities
found within the Remote Code Execution category, you may run the
following commands to find out more:
 $ mix sobelow -d RCE.EEx
 $ mix sobelow -d RCE.CodeModule
Remote Code Execution checks of all types can be ignored with the
following command:
$ mix sobelow -i RCE

 Summary

 Functions

 details()

 finding_modules()

 get_vulns(fun, meta_file, web_root, skip_mods \\ [])

 rules()

 Functions

 details()

 finding_modules()

 get_vulns(fun, meta_file, web_root, skip_mods \\ [])

 rules()

Sobelow.RCE.CodeModule

Code Execution in eval function
Arbitrary strings passed to the Code.eval_* functions can be
executed as malicious code.
Ensure the the code passed to the function is not user-controlled
or remove the function call completely.
Read more about Elixir RCE here:
https://erlef.github.io/security-wg/secure_coding_and_deployment_hardening/sandboxing
Code Execution checks can be ignored with the following command:
$ mix sobelow -i RCE.CodeModule

 Summary

 Functions

 details()

 id()

 parse_def(fun, code_fun)

 rule()

 run(fun, meta_file)

 Functions

 details()

 id()

 parse_def(fun, code_fun)

 rule()

 run(fun, meta_file)

Sobelow.RCE.EEx

Insecure EEx evaluation
If user input is passed to EEx eval functions, it may result in
arbitrary code execution. The root cause of these issues is often
directory traversal.
EEx checks can be ignored with the following command:
$ mix sobelow -i RCE.EEx

 Summary

 Functions

 details()

 id()

 parse_def(fun, eex_fun)

 rule()

 run(fun, meta_file)

 Functions

 details()

 id()

 parse_def(fun, eex_fun)

 rule()

 run(fun, meta_file)

Sobelow.SQL

SQL Injection
SQL Injection occurs when untrusted input is interpolated
directly into a SQL query. In a typical Phoenix application,
this would mean using the Ecto.Adapters.SQL.query method
and not using the parameterization feature.
Read more about SQL injection here:
https://www.owasp.org/index.php/SQL_Injection
If you wish to learn more about the specific vulnerabilities
found within the SQL Injection category, you may run the
following commands to find out more:
 $ mix sobelow -d SQL.Query
 $ mix sobelow -d SQL.Stream
SQL Injection checks of all types can be ignored with the following command:
$ mix sobelow -i SQL

 Summary

 Functions

 details()

 finding_modules()

 get_vulns(fun, meta_file, web_root, skip_mods \\ [])

 rules()

 Functions

 details()

 finding_modules()

 get_vulns(fun, meta_file, web_root, skip_mods \\ [])

 rules()

Sobelow.SQL.Query

SQL Injection in Query
This submodule of the SQL module checks for SQL injection
vulnerabilities through usage of the Ecto.Adapters.SQL.query
and Ecto.Adapters.SQL.query!.
Ensure that the query is parameterized and not user-controlled.
SQLi Query checks can be ignored with the following command:
$ mix sobelow -i SQL.Query

 Summary

 Functions

 details()

 id()

 parse_repo_query_def(fun, type)

 parse_sql_def(fun, type)

 rule()

 run(fun, meta_file)

 Functions

 details()

 id()

 parse_repo_query_def(fun, type)

 parse_sql_def(fun, type)

 rule()

 run(fun, meta_file)

Sobelow.SQL.Stream

SQL Injection in Stream
This submodule of the SQL module checks for SQL injection
vulnerabilities through usage of the Ecto.Adapters.SQL.stream.
Ensure that the query is parameterized and not user-controlled.
SQLi Stream checks can be ignored with the following command:
$ mix sobelow -i SQL.Stream

 Summary

 Functions

 details()

 id()

 parse_sql_def(fun)

 rule()

 run(fun, meta_file)

 Functions

 details()

 id()

 parse_sql_def(fun)

 rule()

 run(fun, meta_file)

Sobelow.Traversal

Path Traversal
Path traversal vulnerabilities are a result of
interacting with the filesystem using untrusted input.
This class of vulnerability may result in file disclosure,
code execution, denial of service, and other issues.
Read more about Path Traversal here:
https://www.owasp.org/index.php/Path_Traversal
If you wish to learn more about the specific vulnerabilities
found within the Path Traversal category, you may run the
following commands to find out more:
 $ mix sobelow -d Traversal.SendFile
 $ mix sobelow -d Traversal.FileModule
 $ mix sobelow -d Traversal.SendDownload
Path Traversal checks of all types can be ignored with the following command:
$ mix sobelow -i Traversal

 Summary

 Functions

 details()

 finding_modules()

 get_vulns(fun, meta_file, web_root, skip_mods \\ [])

 rules()

 Functions

 details()

 finding_modules()

 get_vulns(fun, meta_file, web_root, skip_mods \\ [])

 rules()

Sobelow.Traversal.FileModule

Directory Traversal in File function
This submodule checks for directory traversal vulnerabilities in the File
module.
Ensure that the path passed to File functions is not user-controlled.
File checks can be ignored with the following command:
$ mix sobelow -i Traversal.FileModule

 Summary

 Functions

 details()

 id()

 parse_def(fun, type)

 parse_second_def(fun, type)

 rule()

 run(fun, meta_file)

 Functions

 details()

 id()

 parse_def(fun, type)

 parse_second_def(fun, type)

 rule()

 run(fun, meta_file)

Sobelow.Traversal.SendDownload

Directory Traversal in send_download
This submodule checks for directory traversal vulnerabilities in the
send_download function of a Phoenix Controller.
Ensure that the path passed to send_download is not user-controlled.
Send Download checks can be ignored with the following command:
$ mix sobelow -i Traversal.SendDownload

 Summary

 Functions

 details()

 id()

 parse_def(fun)

 rule()

 run(fun, meta_file)

 Functions

 details()

 id()

 parse_def(fun)

 rule()

 run(fun, meta_file)

Sobelow.Traversal.SendFile

Directory Traversal in send_file
This submodule checks for directory traversal vulnerabilities in the
send_file function.
Ensure that the path passed to send_file is not user-controlled.
Send File checks can be ignored with the following command:
$ mix sobelow -i Traversal.SendFile

 Summary

 Functions

 details()

 id()

 parse_def(fun)

 rule()

 run(fun, meta_file)

 Functions

 details()

 id()

 parse_def(fun)

 rule()

 run(fun, meta_file)

Sobelow.Vuln

Known Vulnerable Dependencies
An application with known vulnerabilities is more easily subjected
to automated or targeted attacks.
If you wish to learn more about the specific vulnerabilities
found within the Known Vulnerable Dependencies category, you may run the
following commands to find out more:
 $ mix sobelow -d Vuln.PlugNull
 $ mix sobelow -d Vuln.CookieRCE
 $ mix sobelow -d Vuln.HeaderInject
 $ mix sobelow -d Vuln.Redirect
 $ mix sobelow -d Vuln.Coherence
 $ mix sobelow -d Vuln.Ecto
Known Vulnerable checks of all types can be ignored with the following command:
$ mix sobelow -i Vuln

 Summary

 Functions

 details()

 finding_modules()

 get_vulns(root)

 print_finding(file, vsn, package, detail, cve \\ "TBA", mod)

 rules()

 Functions

 details()

 finding_modules()

 get_vulns(root)

 print_finding(file, vsn, package, detail, cve \\ "TBA", mod)

 rules()

Sobelow.Vuln.Coherence

Coherence Version Vulnerable to Privilege Escalation
For more information visit:
https://github.com/advisories/GHSA-mrq8-53r4-3j5m
Coherence checks can be ignored with the following command:
$ mix sobelow -i Vuln.Coherence

 Summary

 Functions

 details()

 id()

 rule()

 run(root)

 Functions

 details()

 id()

 rule()

 run(root)

Sobelow.Vuln.CookieRCE

Plug Version Vulnerable to Arbitrary Code Execution in Cookie Serialization
For more information visit:
https://github.com/advisories/GHSA-5v4m-c73v-c7gq
Cookie RCE checks can be ignored with the following command:
$ mix sobelow -i Vuln.CookieRCE

 Summary

 Functions

 details()

 id()

 rule()

 run(root)

 Functions

 details()

 id()

 rule()

 run(root)

Sobelow.Vuln.Ecto

Ecto Version Lacks Protection Mechanism
For more information visit:
https://github.com/advisories/GHSA-2xxx-fhc8-9qvq
Ecto checks can be ignored with the following command:
$ mix sobelow -i Vuln.Ecto

 Summary

 Functions

 details()

 id()

 rule()

 run(root)

 Functions

 details()

 id()

 rule()

 run(root)

Sobelow.Vuln.HeaderInject

Plug Version Vulnerable to Header Injection
For more information visit:
https://github.com/advisories/GHSA-9h73-w7ch-rh73
Header Injection checks can be ignored with the following command:
$ mix sobelow -i Vuln.HeaderInject

 Summary

 Functions

 details()

 id()

 rule()

 run(root)

 Functions

 details()

 id()

 rule()

 run(root)

Sobelow.Vuln.PlugNull

Plug Version Vulnerable to Null Byte Injection
For more information visit:
https://github.com/advisories/GHSA-2q6v-32mr-8p8x
Null Byte Injection checks can be ignored with the following command:
$ mix sobelow -i Vuln.PlugNull

 Summary

 Functions

 details()

 id()

 rule()

 run(root)

 Functions

 details()

 id()

 rule()

 run(root)

Sobelow.Vuln.Redirect

Phoenix Version Vulnerable to Arbitrary URL Redirection
For more information visit:
https://github.com/advisories/GHSA-cmfh-8f8r-fj96
URL Redirection checks can be ignored with the following command:
$ mix sobelow -i Vuln.Redirect

 Summary

 Functions

 details()

 id()

 rule()

 run(root)

 Functions

 details()

 id()

 rule()

 run(root)

Sobelow.XSS

Cross-Site Scripting
Cross-Site Scripting (XSS) vulnerabilities are a result
of rendering untrusted input on a page without proper encoding.
XSS may allow an attacker to perform actions on behalf of
other users, steal session tokens, or access private data.
Read more about XSS here:
https://www.owasp.org/index.php/Cross-site_Scripting_(XSS)
If you wish to learn more about the specific vulnerabilities
found within the Cross-Site Scripting category, you may run the
following commands to find out more:
 $ mix sobelow -d XSS.SendResp
 $ mix sobelow -d XSS.ContentType
 $ mix sobelow -d XSS.Raw
 $ mix sobelow -d XSS.HTML
XSS checks of all types can be ignored with the following command:
$ mix sobelow -i XSS

 Summary

 Functions

 details()

 finding_modules()

 get_template_vulns(meta_file)

 get_vulns(fun, meta_file, web_root, skip_mods \\ [])

 rules()

 Functions

 details()

 finding_modules()

 get_template_vulns(meta_file)

 get_vulns(fun, meta_file, web_root, skip_mods \\ [])

 rules()

Sobelow.XSS.ContentType

XSS in put_resp_content_type
If an attacker is able to set arbitrary content types for an
HTTP response containing user input, the attacker is likely to
be able to leverage this for cross-site scripting (XSS).
For example, consider an endpoint that returns JSON with user
input:
{"json": "user_input"}
If an attacker can control the content type set in the HTTP
response, they can set it to "text/html" and update the
JSON to the following in order to cause XSS:
{"json": "<script>alert(document.domain)</script>"}
Content Type checks can be ignored with the following command:
$ mix sobelow -i XSS.ContentType

 Summary

 Functions

 details()

 id()

 parse_def(fun)

 rule()

 run(fun, meta_file)

 Functions

 details()

 id()

 parse_def(fun)

 rule()

 run(fun, meta_file)

Sobelow.XSS.HTML

XSS in html
This submodule looks for XSS vulnerabilities in html
calls from the Phoenix Controller.
HTML checks can be ignored with the following command:
$ mix sobelow -i XSS.HTML

 Summary

 Functions

 details()

 id()

 parse_def(fun)

 rule()

 run(fun, meta_file)

 Functions

 details()

 id()

 parse_def(fun)

 rule()

 run(fun, meta_file)

Sobelow.XSS.Raw

XSS in raw
This submodule checks for the use of raw in templates
as this can lead to XSS vulnerabilities if taking user input.
Raw checks can be ignored with the following command:
$ mix sobelow -i XSS.Raw

 Summary

 Functions

 details()

 id()

 parse_raw_def(fun)

 parse_render_def(fun)

 rule()

 run(fun, meta_file, arg3, controller)

 Functions

 details()

 id()

 parse_raw_def(fun)

 parse_render_def(fun)

 rule()

 run(fun, meta_file, arg3, controller)

Sobelow.XSS.SendResp

XSS in send_resp
This submodule looks for XSS vulnerabilities in the body
argument of Conn.send_resp.
SendResp checks can be ignored with the following command:
$ mix sobelow -i XSS.SendResp

 Summary

 Functions

 details()

 id()

 parse_def(fun)

 rule()

 run(fun, meta_file)

 Functions

 details()

 id()

 parse_def(fun)

 rule()

 run(fun, meta_file)

mix sobelow

Sobelow is a static analysis tool for discovering
vulnerabilities in Phoenix applications.
This tool should be run in the root of the project directory
with the following command:
mix sobelow

 Command line options

	--root -r - Specify application root directory
	--verbose -v - Print vulnerable code snippets
	--ignore -i - Ignore modules
	--ignore-files - Ignore files
	--details -d - Get module details
	--all-details - Get all module details
	--private - Skip update checks
	--strict - Exit when bad syntax is encountered
	--mark-skip-all - Mark all printed findings as skippable
	--clear-skip - Clear configuration added by --mark-skip-all
	--skip - Skip functions flagged with #sobelow_skip or tagged with --mark-skip-all
	--router - Specify router location
	--exit - Return non-zero exit status
	--threshold - Only return findings at or above a given confidence level
	--format - Specify findings output format
	--quiet - Return no output if there are no findings
	--compact - Minimal, single-line findings
	--save-config - Generates a configuration file based on command line options
	--[no-]config - Run Sobelow with or without the configuration file.
	--version - Output current version of Sobelow

 Ignoring modules

If specific modules, or classes of modules are not relevant
to the scan, it is possible to ignore them with a
comma-separated list.
mix sobelow -i XSS.Raw,Traversal

 Supported modules

	XSS
	XSS.Raw
	XSS.SendResp
	XSS.ContentType
	XSS.HTML
	SQL
	SQL.Query
	SQL.Stream
	Config
	Config.CSRF
	Config.Headers
	Config.CSP
	Config.HTTPS
	Config.HSTS
	Config.Secrets
	Config.CSWH
	Vuln
	Vuln.CookieRCE
	Vuln.HeaderInject
	Vuln.PlugNull
	Vuln.Redirect
	Vuln.Coherence
	Vuln.Ecto
	Traversal
	Traversal.SendFile
	Traversal.FileModule
	Traversal.SendDownload
	Misc
	Misc.BinToTerm
	Misc.FilePath
	RCE.EEx
	RCE.CodeModule
	CI
	CI.System
	CI.OS
	DOS
	DOS.StringToAtom
	DOS.ListToAtom
	DOS.BinToAtom

 Summary

 Functions

 main(argv)

 run(argv)

 Callback implementation for Mix.Task.run/1.

 run_diff(argv)

 set_env(key, value)

 Functions

 main(argv)

 run(argv)

Callback implementation for Mix.Task.run/1.

 run_diff(argv)

 set_env(key, value)

 OEBPS/dist/epub-4WIP524F.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);function r(e){document.readyState!=="loading"?e():document.addEventListener("DOMContentLoaded",e)}var l="hll";window.addEventListener("exdoc:loaded",t);function t(){o("[data-group-id]").forEach(e=>{e.addEventListener("mouseenter",i),e.addEventListener("mouseleave",i)})}function i(e){let n=e.currentTarget,a=e.type==="mouseenter",c=n.getAttribute("data-group-id");n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach(u=>{u.classList.toggle(l,a)})}r(()=>{t()});})();

