

 sofa

 v0.1.3

 Table of contents

 	Sofa

 	Changelog

 	LICENSE

 	
 Modules

 	Sofa

 	Sofa.Cushion

 	Sofa.DB

 	Sofa.Doc

 	Sofa.Response

 	Sofa.User

 	Exceptions

 	Sofa.Error

Sofa

A straightforwards, idiomatic CouchDB client.
The intention is to provide an idiomatic Elixir client, that can play
nicely with Ecto, Maps, and in particular, Structs and Protocols. You
should be able to store a Struct in CouchDB, and have it come back to
you as a Struct again, assuming you're not doing anything too messy,
such as nested structs, or trying to store pids, refs, and other
distinctly non-JSON things.

 Installation

It is recommended to use a Tesla.Adapter. While in principle these are
all equivalent, in practice, their patterns for handling query
parameters, headers, empty HTTP bodies, IPv6, and generally dealing with
nil, true, false and so forth mean that they are not created
equal. This library should work, in most cases transparently, and if
not, we welcome tests and converters to address any shortcomings.
Sofa makes no guarantees about specific HTTP modules, but should run
with:
	default Erlang httpc "no dependencies!"
	Mint and Finch

The package can be installed by adding sofa to your list of
dependencies in mix.exs:
def deps do
 [
 {:sofa, "~> 0.1.0"}
]
end
config/config.exs
import Config

if config_env() == :test do
 config :tesla, adapter: Tesla.Mock
else
 config :tesla, adapter: Tesla.Adapter.Mint
end

 Docs

	hexdocs as usual has all the goodies
	the CouchDB API should map very closely to Sofa

Sofa really only has 2 important abstractions that live above the
CouchDB API:
	%Sofa{} aka Sofa.t() which is a struct that wraps your HTTP API
 connection, along with any custom headers & settings you may
 require, and the returned data from the CouchDB server you connect
 to, including feature flags and vendor settings. As a convenience,
 it also doubles as your "database" struct, as that's really only a
 single additional field to be inserted into the CouchDB URL
	%Sofa.Doc{} aka Sofa.Doc.t() which is the main struct you'll work
 with. We've tried to keep it as close to the CouchDB API as possible,
 so aside from id, rev, and the attachments stubs, all the
 JSON is contained in a body and Sofa keeps out of your way.

 Road Map

While not yet implemented, Sofa wants to support "native" Elixir struct
usage, where you implement the Protocol to convert your custom Struct
to/from Sofa, and Sofa will use the type key that is commonly used in
CouchDB to detect & marshall your Struct directly to/from CouchDB's JSON
API transparently.
	[x] server: Sofa.*
	[x] raw HTTP: Sofa.Raw.*
	[x] database: Sofa.DB.*
	[x] document: Sofa.Doc.*
	[x] user: Sofa.User.*
	[] attachments
	[] transparent Struct API
	[] view: Sofa.View.*
	[] changes: Sofa.Changes.*
	[] timeouts for requests and inactivity
	[] bearer token authorisation
	[] runtime tracing filterable by method & URL
	[] embeddable within CouchDB BEAM runtime
	[] native CouchDB erlang term support

 Usage

 Connecting to CouchDB

Sofa.init/1 and Sofa.client/1 are effectively static structures, so
you can build them at compile time, or store them efficiently in ETS
tables, or persistent_term for faster access.
Sofa.connect!/1 needs access to the CouchDB server, to verify that
your credentials are sufficient, and to retrieve feature flags and
vendor settings.
Exactly how you use this, is dependent on your Tesla.Adapter and
supervision trees. Make sure that you're not opening a new TCP
connection for every call to the database, and then leave them
dangling until your app or the server runs of of connections!

The Sofa.DB.open!/2 call also does similar checks, ensuring you have
at least permissions to access the database, in some form. There is
nothing that changes over time within this struct, so feel free to cache
it "for a while" in your processes if that helps.
connect to CouchDB and ensure our credentials are valid
iex> sofa = Sofa.init("http://admin:passwd@localhost:5984/")
 |> Sofa.client()
 |> Sofa.connect!()
 #Sofa<
 client: %Tesla.Client{
 adapter: nil,
 fun: nil,
 post: [],
 pre: [{Tesla.Middleware.BaseUrl, ...}, {...}, ...]
 },
 features: ["access-ready", "partitioned", "pluggable-storage-engines",
 "reshard", "scheduler"],
 timeout: nil,
 uri: %URI{
 authority: "admin:passwd@localhost:5984",
 fragment: nil,
 host: "localhost",
 ...
 },
 uuid: "092b8cafefcaeef659beef7b60a5a9",
 vendor: %{"name" => "FreeBSD", ...},
 version: "3.2.0",
 ...
re-use the same struct, and confirm we can access a specific database
iex> db = Sofa.DB.open!("mydb")
 #Sofa<
 client: %Tesla.Client{ ... },
 database: "mydb",
 ...
 version: "3.2.0"
 >

 Doc Usage

There shouldn't be any surprises here - an Elixir Map %{} becomes the
body of the %Sofa.Doc{} struct, and the usual CouchDB internal
fields are available as additional atom fields off the struct:
iex> doc = %{"_id" => "smol", "cute" => true} |> Sofa.Doc.from_map()
 %Sofa.Doc{
 attachments: nil,
 body: %{
 "cute" => true
 },
 id: "smol",
 rev: nil,
 type: nil
 }
iex> doc |> Sofa.Doc.to_map()
 %{
 "_id" => "smol",
 "cute" => true
 }
fetch and retrieve documents works like you'd expect
iex> Sofa.Doc.exists?(db,"missing")
 false

 Raw Mode

Sometimes you just want to re-upholster the Couch yourself. That's fine,
raw mode is here to help you:
raw mode gives you direct access to CouchDB API, with JSONification
iex> db = Sofa.init("http://admin:passwd@localhost:5984/")
 |> Sofa.client()
 |> Sofa.connect!()
 |> Sofa.raw("/_membership")
{:ok,
 #Sofa<
 client: %Tesla.Client{...},
 database: nil,
 features: ["access-ready",... "reshard", "scheduler"],
 timeout: nil,
 uri: %URI{...},
 uuid: "092b8cafefcaeef659beef7b60a5a9",
 vendor: %{"name" => "FreeBSD", ...},
 version: "3.2.0",
 ...
 >,
 %Sofa.Response{
 body: %{
 "all_nodes" => ["couchdb@127.0.0.1"],
 "cluster_nodes" => ["couchdb@127.0.0.1"]
 },
 headers: %{
 cache_control: "must-revalidate",
 content_length: 74,
 content_type: "application/json",
 date: "Wed, 28 Apr 2021 14:11:10 GMT",
 server: "CouchDB/3.2.0 (Erlang OTP/22)"
 },
 method: :get,
 query: [],
 status: 200,
 url: "http://localhost:5984/_membership"
 }}

 Contributing

If raw mode can't do it, send a PR, and we'll make it so. If you find
yourself reaching for raw mode often, consider a PR that extends Sofa
itself?
Sofa should pass credo, and also respect dialyzer, via make lint.

 Thanks

To the CouchDB team, a part of my life for more than a decade. Relax.

Changelog

 0.1.3

	Fix module doc iex> DocTest indentation to make HexDocs look pretty

 0.1.2

	Initial release

LICENSE

BSD 2-Clause License

Copyright (c) 2021-2038 SkunkWerks, GmbH
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this
 list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice,
 this list of conditions and the following disclaimer in the documentation
 and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Sofa

Documentation for Sofa, a test-driven idiomatic Apache CouchDB client.
If the only tool you have is CouchDB, then
everything looks like {:ok, :relax}

 Examples

iex> Sofa.init() |> Sofa.client() |> Sofa.connect!()

%{
 "couchdb" => "Welcome",
 "features" => ["access-ready", "partitioned", "pluggable-storage-engines",
 "reshard", "scheduler"],
 "git_sha" => "ce596c65d",
 "uuid" => "59c032d3a6adcd5b44315137a124bf69",
 "vendor" => %{"name" => "FreeBSD"},
 "version" => "3.1.1"
}

 Summary

 Types

 t()

 Functions

 active_tasks(sofa)

 Get _active_tasks. Only available to admin users.

 all_dbs(sofa)

 List all databases. Only available to admin users.

 auth_info(info)

 Returns user & password credentials extracted from a typical %URI{} userinfo
field, as a Tesla-compatible authorization header. Currently only supports
BasicAuth user:password combination.

 client(couch)

 Builds Telsa runtime client, with appropriate middleware header credentials,
from supplied %Sofa{} struct.

 connect(sofa)

 Given an existing %Sofa{} struct, or a prepared URI, attempts to connect
to the CouchDB instance, and returns an updated %Sofa{} to use in future
connections to this server, using the same HTTP credentials.

 connect!(sofa)

 Bang! wrapper around Sofa.connect/1; raises exceptions on error.

 init(uri \\ "http://admin:passwd@localhost:5984/")

 Takes an optional parameter, the CouchDB uri, and returns a struct
containing the usual CouchDB server properties. The URI may be given
as a string or as a %URI struct.

 raw(sofa, path \\ "", method \\ :get, query \\ [], body \\ "", headers \\ [])

 Minimal wrapper around native CouchDB HTTP API, allowing an escape hatch
for raw functionality, and as the core abstraction layer for Sofa itself.

 raw!(sofa, path \\ "", method \\ :get, query \\ [], body \\ %{})

 Bang! wrapper around Sofa.raw/1; raises exceptions on error.

 Types

 t()

 @type t() :: %Sofa{
 auth: any(),
 client: nil | Tesla.Client.t(),
 database: nil | binary(),
 features: nil | list(),
 timeout: nil | integer(),
 uri: nil | URI.t(),
 uuid: nil | binary(),
 vendor: nil | map(),
 version: nil | binary()
}

 Functions

 active_tasks(sofa)

 @spec active_tasks(t()) :: {:error, any()} | {:ok, t(), [String.t()]}

Get _active_tasks. Only available to admin users.

 all_dbs(sofa)

 @spec all_dbs(t()) :: {:error, any()} | {:ok, t(), [String.t()]}

List all databases. Only available to admin users.

 auth_info(info)

 @spec auth_info(nil | String.t()) :: %{} | %{user: String.t(), password: String.t()}

Returns user & password credentials extracted from a typical %URI{} userinfo
field, as a Tesla-compatible authorization header. Currently only supports
BasicAuth user:password combination.

 Examples

iex> Sofa.auth_info("admin:password")
%{username: "admin", password: "password"}

iex> Sofa.auth_info("blank:")
%{username: "blank", password: ""}

iex> Sofa.auth_info("garbage")
%{}

 client(couch)

 @spec client(t()) :: t()

Builds Telsa runtime client, with appropriate middleware header credentials,
from supplied %Sofa{} struct.

 connect(sofa)

 @spec connect(String.t() | t()) :: {:ok, t()} | {:error, any()}

Given an existing %Sofa{} struct, or a prepared URI, attempts to connect
to the CouchDB instance, and returns an updated %Sofa{} to use in future
connections to this server, using the same HTTP credentials.
Returns an updated {:ok, %Sofa{}} on success, or {:error, reason}, if
for example, the URL is unreachable, times out, supplied credentials are
rejected by CouchDB, or returns unexpected HTTP status codes.

 connect!(sofa)

 @spec connect!(String.t() | t()) :: t()

Bang! wrapper around Sofa.connect/1; raises exceptions on error.

 init(uri \\ "http://admin:passwd@localhost:5984/")

 @spec init(uri :: String.t() | URI.t()) :: t()

Takes an optional parameter, the CouchDB uri, and returns a struct
containing the usual CouchDB server properties. The URI may be given
as a string or as a %URI struct.
This should be piped into Sofa.client/1 to create the HTTP client,
which is stored inside the struct with correct authentication information.

 Examples

iex> Sofa.init("https://very:Secure@foreignho.st:6984/")

%Sofa{
 auth: "very:Secure",
 features: nil,
 uri: %URI{
 authority: "very:Secure@foreignho.st:6984",
 fragment: nil,
 host: "foreignho.st",
 path: "/",
 port: 6984,
 query: nil,
 scheme: "https",
 userinfo: "very:Secure"
 },
 uuid: nil,
 vendor: nil,
 version: nil
}

 raw(sofa, path \\ "", method \\ :get, query \\ [], body \\ "", headers \\ [])

 @spec raw(
 t(),
 Tesla.Env.url(),
 Tesla.Env.method(),
 Tesla.Env.opts(),
 Tesla.Env.body(),
 Tesla.Env.headers()
) :: {:error, any()} | {:ok, t(), Sofa.Response.t()}

Minimal wrapper around native CouchDB HTTP API, allowing an escape hatch
for raw functionality, and as the core abstraction layer for Sofa itself.

 raw!(sofa, path \\ "", method \\ :get, query \\ [], body \\ %{})

 @spec raw!(
 t(),
 Tesla.Env.url(),
 Tesla.Env.method(),
 Tesla.Env.opts(),
 Tesla.Env.body()
) :: Sofa.Response.t()

Bang! wrapper around Sofa.raw/1; raises exceptions on error.

Sofa.Cushion

Internal Helpers for Sofa, with a vanity naming convention.
If the only tool you have is CouchDB, everything is very
uncomfortable without a Cushion.

 Summary

 Functions

 untaint_headers(h)

 Sanitise HTTP headers into ones we trust and format, and drop the rest.
This is necessary because proxies, clients, HTTP1* and HTTP2 all disagree
about whether headers should be upper, lower, camel, snake, or wtf case.

 Functions

 untaint_headers(h)

 @spec untaint_headers(Tesla.Env.headers()) :: map()

Sanitise HTTP headers into ones we trust and format, and drop the rest.
This is necessary because proxies, clients, HTTP1* and HTTP2 all disagree
about whether headers should be upper, lower, camel, snake, or wtf case.
Server : CouchDB/3.1.1 (Erlang OTP/22)
X-Couch-Request-Id : f5b74b7038
X-Couchdb-Body-Time : 0
Cache-Control : must-revalidate
Content-Length : 443
Content-Type : application/json
Date : Sun, 25 Apr 2021 18:43:36 GMT
Etag : "4-322add00c33cab838bf9d7909f18d4f5"

Sofa.DB

Documentation for Sofa.DB, a test-driven idiomatic Apache CouchDB client.
If the only tool you have is CouchDB, then
everything looks like {:ok, :relax}

 Examples

iex> sofa = Sofa.init("http://admin:passwd@localhost:5984/")
 |> Sofa.client()
 |> Sofa.connect!()
 #Sofa<"...">

iex> Sofa.DB.create(sofa, "testy")
 {:ok,
 #Sofa<
 client: %Tesla.Client{},
 database: "testy7",
 uri: %URI{},
 ...
 >,
 %Sofa.Response{
 body: %{"ok" => true},
 headers: %{
 cache_control: "must-revalidate",
 content_length: 95,
 content_type: "application/json",
 couch_body_time: 0,
 couch_request_id: "aa6cc50741",
 date: "Sun, 25 Apr 2021 20:04:34 GMT",
 server: "CouchDB/3.1.1 (Erlang OTP/22)"
 },
 method: :put,
 query: [],
 status: 201,
 url: "http://localhost:5984/testy7"
 }}

iex> Sofa.DB.open!(sofa, "testy")
 #Sofa<
 database: "testy",
 client: %Tesla.Client{},
 ...>

 Summary

 Functions

 create(sofa, db)

 create DB. Only available to cluster admin users.

 delete(sofa, db)

 Delete DB. Only available to cluster admin users.

 info(sofa, db)

 Get DB info. Only available to database & cluster admin users.

 open(sofa, db)

 Open DB. Checks if supplied credentials have access to the DB, and returns
updated %Sofa{} struct with DB. Ideal for subsequent use to read/write Docs.

 open!(sofa, db)

 Bang! version of open/2. Opens DB and raises on failure. Ideal for piping
directly into reading and writing Docs.

 Functions

 create(sofa, db)

 @spec create(Sofa.t(), String.t()) :: {:error, any()} | {:ok, Sofa.t(), any()}

create DB. Only available to cluster admin users.

 delete(sofa, db)

 @spec delete(Sofa.t(), String.t()) :: {:error, any()} | {:ok, Sofa.t(), any()}

Delete DB. Only available to cluster admin users.

 info(sofa, db)

 @spec info(Sofa.t(), String.t()) :: {:error, any()} | {:ok, Sofa.t(), any()}

Get DB info. Only available to database & cluster admin users.

 open(sofa, db)

 @spec open(Sofa.t(), String.t()) :: {:error, any()} | {:ok, Sofa.t(), any()}

Open DB. Checks if supplied credentials have access to the DB, and returns
updated %Sofa{} struct with DB. Ideal for subsequent use to read/write Docs.

 open!(sofa, db)

 @spec open!(Sofa.t(), String.t()) :: Sofa.t()

Bang! version of open/2. Opens DB and raises on failure. Ideal for piping
directly into reading and writing Docs.

Sofa.Doc

Documentation for Sofa.Doc, a test-driven idiomatic Apache CouchDB client.
If the only tool you have is CouchDB, then
everything looks like {:ok, :relax}

 Examples

iex> Sofa.Doc.new()

 Summary

 Types

 t()

 Functions

 coerce_to_elixir_type(type)

 Coerces a CouchDB "type" field to an existing atom. It is assumed that there
will be a related Elixir Module Type of the same name. Elixir prefixes Module
names with Elixir. and then elides this in iex, tests, and elsewhere, but
here we need to make that explicit.

 delete(sofa, doc)

 delete doc

 exists(sofa, doc)

 Check if doc exists via HEAD /:db/:doc and returns either

 exists?(sofa, doc)

 Check if doc exists via HEAD /:db/:doc and returns either true or false

 from_map(m)

 Converts CouchDB-native JSON-friendly map to internal %Sofa.Doc{} format

 get(sofa, doc)

 GET doc and returns standard HTTP status, or the requested doc

 new(id)

 Creates a new (empty) document

 put(sofa, doc)

 Optimistically write/update doc assuming rev matches

 to_map(doc)

 Converts internal %Sofa.Doc{} format to CouchDB-native JSON-friendly map

 Types

 t()

 @type t() :: %Sofa.Doc{
 attachments: map(),
 body: map(),
 id: binary(),
 rev: nil | binary(),
 type: atom() | nil
}

 Functions

 coerce_to_elixir_type(type)

 @spec coerce_to_elixir_type(String.t()) :: atom()

Coerces a CouchDB "type" field to an existing atom. It is assumed that there
will be a related Elixir Module Type of the same name. Elixir prefixes Module
names with Elixir. and then elides this in iex, tests, and elsewhere, but
here we need to make that explicit.
The "user" type is special-cased as it is already present in CouchDB /_users
database.
This function is expected to be paired up with Ecto Schemas to properly manage
the appropriate fields in your document body.

 delete(sofa, doc)

 @spec delete(Sofa.t(), t()) :: {:error, any()} | {:ok, Sofa.t(), any()}

delete doc

 exists(sofa, doc)

 @spec exists(Sofa.t(), String.t()) :: {:error, any()} | {:ok, %{}}

Check if doc exists via HEAD /:db/:doc and returns either:
	{:error, not_found} # doc doesn't exist
	{:ok, %Sofa.Doc{}} # doc exists and has metadata

 exists?(sofa, doc)

 @spec exists?(Sofa.t(), String.t()) :: false | true

Check if doc exists via HEAD /:db/:doc and returns either true or false

 from_map(m)

 @spec from_map(map()) :: t()

Converts CouchDB-native JSON-friendly map to internal %Sofa.Doc{} format

 Examples

 iex> %{ "_id" => "smol", "_rev" => "1-cute", "yes" => true}
 |> from_map()

 %Sofa.Doc{
 attachments: nil,
 body: %{"yes" => true},
 id: "smol",
 rev: "1-cute",
 type: nil
 }

 get(sofa, doc)

 @spec get(Sofa.t(), String.t()) :: {:error, any()} | t()

GET doc and returns standard HTTP status, or the requested doc
	 # doc doesn't exist, or similar HTTP status
	%Sofa.Doc{} # doc exists and has metadata

 new(id)

 @spec new(String.t() | %{}) :: t()

Creates a new (empty) document

 put(sofa, doc)

 @spec put(Sofa.t(), t()) :: {:ok, t()} | {:error, any()}

Optimistically write/update doc assuming rev matches

 to_map(doc)

 @spec to_map(t()) :: map()

Converts internal %Sofa.Doc{} format to CouchDB-native JSON-friendly map

 Examples

 iex> %Sofa.Doc{id: "smol", rev: "1-cute", body: %{"yes" => true}}
 |> to_map()

 %{ "_id" => "smol", "_rev" => "1-cute", "yes" => true}

Sofa.Response

HTTP Response Handler for Sofa, the Elixir-native Apache CouchDB client
If the only tool you have is CouchDB, then
everything looks like {:ok, :relax}

 Examples

iex> Sofa.init() |> Sofa.client() |> Sofa.connect!() |> Sofa.raw("/_up")
%Sofa.Response{
 body: nil,
 headers: %{
 cache_control: "must-revalidate",
 content_length: 95,
 content_type: "application/json",
 couch_body_time: 0,
 couch_request_id: "aa6cc50741",
 date: "Sun, 25 Apr 2021 20:04:34 GMT",
 server: "CouchDB/3.1.1 (Erlang OTP/22)"
 },
 method: :get,
 query: [],
 status: 200,
 url: "http://localhost:5984/_up"
}

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Sofa.Response{
 body: map() | nil,
 headers: map(),
 method: atom(),
 query: list() | binary(),
 status: integer() | nil,
 url: binary()
}

Sofa.User

Documentation for Sofa.User, a test-driven idiomatic Apache CouchDB client.
If the only tool you have is CouchDB, then
everything looks like {:ok, :relax}

The User module provides simple wrappers around the usual Sofa.DB and
Sofa.Doc functions, specifically for the _users DB.
You need appropriate permissions for this to work - either as administrator,
or alternatively, if your user/group have permissions and your local.ini
has users_security_editable = true set in [couchdb] section. If you
use a group to assign permissions, users is a good choice.

 Summary

 Functions

 generate_random_secret(length \\ 64)

 Generate small, random secret of length 16-64 characters inclusive,
using base64 encoding, suitable for CouchDB default user passwords.

 get(sofa, name)

 GET doc and returns standard HTTP status codes, or the user doc

 new(name, password \\ "", roles \\ [])

 Create a new _user Sofa.Doc with the usual attributes per

 put(sofa, doc)

 PUT a valid Sofa.Doc with user attributes into the /_users DB.

 reset_password(doc, password \\ "")

 Resets user password. NB you still need to write this doc to CouchDB.

 Functions

 generate_random_secret(length \\ 64)

 @spec generate_random_secret(integer()) :: String.t()

Generate small, random secret of length 16-64 characters inclusive,
using base64 encoding, suitable for CouchDB default user passwords.

 Examples

> Sofa.User.generate_random_secret()
"E3gZtvNhF7pkHpeyoPjMnfRJidI5nRHD/MeRPR11jMKBxcMUXl75U8msnRj1bG/R"

 get(sofa, name)

 @spec get(Sofa.t(), String.t()) :: {:error, any()} | Sofa.Doc.t()

GET doc and returns standard HTTP status codes, or the user doc
	{:error, :not_found} - doc doesn't exist
	%Sofa.Doc{} - doc exists and has metadata

 new(name, password \\ "", roles \\ [])

 @spec new(String.t(), String.t(), [String.t()]) :: Sofa.Doc.t()

Create a new _user Sofa.Doc with the usual attributes per
 # https://docs.couchdb.org/en/stable/intro/security.html?highlight=_users#creating-a-new-user
{ _id: "org.couchdb.user:jan",
 "name": "jan",
 "password": "apple",
 "roles": ["chair"],
 "type": "user"
}

 Examples

iex> Sofa.User.new("jan", "apple", ["pointy_hat", "users"])

%Sofa.Doc{
 attachments: %{},
 body: %{"name" => "jan", "password" => "apple", "roles" => ["pointy_hat", "users"]},
 id: "org.couchdb.user:jan",
 rev: nil,
 type: :user
}

 put(sofa, doc)

 @spec put(Sofa.t(), Sofa.Doc.t()) :: {:ok, Sofa.Doc.t()} | {:error, any()}

PUT a valid Sofa.Doc with user attributes into the /_users DB.
If doc.body.password is supplied, remove hash info and update password.

 reset_password(doc, password \\ "")

 @spec reset_password(Sofa.Doc.t(), String.t()) :: Sofa.Doc.t()

Resets user password. NB you still need to write this doc to CouchDB.

Sofa.Error exception

 OEBPS/dist/epub-4WIP524F.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);function r(e){document.readyState!=="loading"?e():document.addEventListener("DOMContentLoaded",e)}var l="hll";window.addEventListener("exdoc:loaded",t);function t(){o("[data-group-id]").forEach(e=>{e.addEventListener("mouseenter",i),e.addEventListener("mouseleave",i)})}function i(e){let n=e.currentTarget,a=e.type==="mouseenter",c=n.getAttribute("data-group-id");n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach(u=>{u.classList.toggle(l,a)})}r(()=>{t()});})();

