

 Solana

 v0.1.0

 Table of contents

 	Solana

 	LICENSE

 	
 Modules

 	Solana

 	Solana.SPL.AssociatedToken

 	Solana.SPL.Governance

 	Solana.SPL.Token

 	Solana.SPL.Token.Mint

 	Solana.SPL.Token.MultiSig

 	Solana.SPL.TokenSwap

 	Client

 	Solana.RPC

 	Solana.RPC.Request

 	Solana.RPC.Tracker

 	Transactions

 	Solana.Account

 	Solana.Instruction

 	Solana.Key

 	Solana.Transaction

 	System Program

 	Solana.SystemProgram

 	Solana.SystemProgram.Nonce

 	Testing

 	Solana.TestValidator

 Solana

The unofficial Elixir package for interacting with the
Solana blockchain.
Note that this README refers to the master branch of solana, not the latest
released version on Hex. See the documentation
for the documentation of the version you're using.

Installation
Add solana to your list of dependencies in mix.exs:
def deps do
 [
 {:solana, "~> 0.1.0"}
]
end
Documentation
	JSON-RPC API client	Using a custom HTTP client

	On-chain program interaction
	Writing a custom program client	Testing custom programs

JSON-RPC API Client
solana provides a simple interface for interacting with Solana's JSON-RPC
API. Here's an example
of requesting an airdrop to a new Solana account via the requestAirdrop
method:
key = Solana.keypair() |> Solana.pubkey!()
client = Solana.RPC.client(network: "localhost")
{:ok, signature} = Solana.RPC.send_request(client, Solana.RPC.Request.request_airdrop(key, 1))

Solana.Transaction.check(signature) # {:ok, ^signature}
To see the full list of supported methods, check the Solana.RPC.Request
module.
Using a custom HTTP client
Since this module uses Tesla for its API client, you can use whichever
HTTP client you wish, just be sure to include it in your dependencies:
def deps do
 [
 # Gun, for example
 {:gun, "~> 1.3"},
 {:idna, "~> 6.0"},
 {:castore, "~> 0.1"},
 # SSL verification
 {:ssl_verify_hostname, "~> 1.0"},
]
end
Then, specify the corresponding Tesla.Adapter when creating your client:
client = Solana.RPC.client(network: "localhost", adapter: {Tesla.Adapter.Gun, certificates_verification: true})
See the Solana.RPC module for more details about which options are available
when creating an API client.
On-chain program interaction
Since solana's JSON-RPC API client supports sendTransaction, you can use it
to interact with on-chain Solana programs. solana provides utilities to craft
transactions, send them, and confirm them on-chain. It also includes the
Solana.SystemProgram module, which allows you to create
SystemProgram
instructions.
Also check out the solana_spl package
documentation to interact with the Solana
Program Library.
Writing a custom program client
By providing an interface for the Solana.SystemProgram, solana provides
guidelines for how to build interfaces to your own programs. For more examples,
see the solana_spl package.
Testing custom programs
Once you've built your custom program's client, you should probably write some
tests for it. solana provides example tests for the Solana.SystemProgram in
test/solana/system_program_test.exs, along with an Elixir-managed Solana Test
Validator process to test
your program locally. See Solana.TestValidator for more details about how to
set this up.

 LICENSE

Copyright © 2021 Derek Meer

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

Solana

A library for interacting with the Solana blockchain.

 Summary

 Types

 key()

 See Solana.Key.t/0

 keypair()

 See Solana.Key.pair/0

 Functions

 bpf_loader()

 The public key for the BPF Loader
program

 clock()

 The public key for the Clock system
variable

 keypair()

 See Solana.Key.pair/0

 pubkey(pair_or_encoded)

 Decodes or extracts a Solana.Key.t/0 from a Base58-encoded string or a
Solana.Key.pair/0.

 pubkey!(pair_or_encoded)

 Decodes or extracts a Solana.Key.t/0 from a Base58-encoded string or a
Solana.Key.pair/0.

 recent_blockhashes()

 The public key for the RecentBlockhashes system
variable

 rent()

 The public key for the Rent system
variable.

 Types

 key()

 @type key() :: Solana.Key.t()

See Solana.Key.t/0

 keypair()

 @type keypair() :: Solana.Key.pair()

See Solana.Key.pair/0

 Functions

 bpf_loader()

The public key for the BPF Loader
program

 clock()

The public key for the Clock system
variable

 keypair()

See Solana.Key.pair/0

 pubkey(pair_or_encoded)

Decodes or extracts a Solana.Key.t/0 from a Base58-encoded string or a
Solana.Key.pair/0.
Returns {:ok, key} if the key is valid, or an error tuple if it's not.

 pubkey!(pair_or_encoded)

Decodes or extracts a Solana.Key.t/0 from a Base58-encoded string or a
Solana.Key.pair/0.
Throws an ArgumentError if it fails to retrieve the public key.

 recent_blockhashes()

The public key for the RecentBlockhashes system
variable

 rent()

The public key for the Rent system
variable.

Solana.SPL.AssociatedToken

Functions for interacting with the Associated Token Account
Program.
An associated token account's address is derived from a user's main system
account and the token mint, which means each user can only have one associated
token account per token.

 Summary

 Functions

 create_account(opts)

 Creates an associated token account.

 create_account_idempotent(opts)

 Creates an associated token account idempotently, ie it doesn't do anything if account is
already created.

 find_address(mint, owner)

 Finds the token account address associated with a given owner and mint.

 id()

 The Associated Token Account's Program ID

 Functions

 create_account(opts)

Creates an associated token account.
This will be owned by the owner regardless of who actually creates it.
Options
	:payer - Required. The account which will pay for the new account's creation

	:owner - Required. The account which will own the new account

	:new - Required. Public key of the associated token account to create

	:mint - Required. The mint of the new account

 create_account_idempotent(opts)

Creates an associated token account idempotently, ie it doesn't do anything if account is
already created.
This will be owned by the owner regardless of who actually creates it.
Options
	:payer - Required. The account which will pay for the new account's creation

	:owner - Required. The account which will own the new account

	:new - Required. Public key of the associated token account to create

	:mint - Required. The mint of the new account

 find_address(mint, owner)

 @spec find_address(mint :: Solana.key(), owner :: Solana.key()) ::
 {:ok, Solana.key()} | :error

Finds the token account address associated with a given owner and mint.
This address will be unique to the mint/owner combination.

 id()

The Associated Token Account's Program ID

Solana.SPL.Governance

Functions for interacting with the SPL Governance
program.
The governance program aims to provide core building blocks for creating
Decentralized Autonomous Organizations (DAOs).

 Summary

 Functions

 add_signatory(opts)

 Generates the instructions to add a signatory to the proposal.

 cancel_proposal(opts)

 Generates the instructions to cancel the given proposal.

 cast_vote(opts)

 Generates the instructions for a token owner to cast a vote on the given
proposal.

 create_account_governance(opts)

 Generates instructions which create an Account Governance account, used to
govern an arbitrary account.

 create_mint_governance(opts)

 Generates instructions which create an Mint Governance account, used to
govern a token mint.

 create_native_treasury(opts)

 Generates instructions to create a native SOL treasury account for a
Governance account.

 create_owner_record(opts)

 Generates instructions to create a Token Owner Record with no voter weight (0
deposit).

 create_program_governance(opts)

 Generates instructions which create an Program Governance account, used to
govern an upgradable Solana program.

 create_proposal(opts)

 Generates instructions which create a Proposal account.

 create_realm(opts)

 Generates instructions which create a new realm.

 create_token_governance(opts)

 Generates instructions which create a Token Governance account, used to
govern a token account.

 delegate(opts)

 Generates instructions which set the new governance delegate for an ownership
account within the given realm and mint.

 deposit(opts)

 Generates instructions which deposit governing tokens -- community or council
-- to the given realm.

 execute_instruction(opts)

 Generates instructions to execute the instruction at index index in the
proposal.

 finalize_vote(opts)

 Generates instructions to finalize a vote.

 find_account_governance_address(program, realm, account)

 Finds the account governance address for the given realm and account.
Should have the seeds: ["account-governance", realm, account].

 find_holding_address(program, realm, mint)

 Finds a token holding address for the given community/council mint. Should
have the seeds: ["governance", realm, mint].

 find_metadata_address(program)

 Finds the program metadata address for the given governance program. Should
have the seeds: ["metadata"]

 find_mint_governance_address(program, realm, mint)

 Finds the mint governance address for the given realm and mint.
Should have the seeds: ["mint-governance", realm, mint].

 find_native_treasury_address(program, governance)

 Finds the native SOL treasury address for the given governance account.
Should have the seeds: ["treasury", governance]

 find_owner_record_address(program, realm, mint, owner)

 Finds the token owner record address for the given realm, mint, and
owner. Should have the seeds: ["governance", realm, mint, owner].

 find_program_governance_address(program, realm, governed)

 Finds the program governance address for the given realm and governed
program. Should have the seeds: ["program-governance", realm, governed].

 find_proposal_address(program, governance, mint, index)

 Finds the governance proposal address for the given mint and index.
Should have the seeds: ["governance", governance, mint, index].

 find_realm_address(program, name)

 Finds the realm address for the given name. Should have the seeds ["governance", name]

 find_realm_config_address(program, realm)

 Finds the realm config address for the given realm. Should have the seeds:
["realm-config", realm].

 find_signatory_record_address(program, proposal, signatory)

 Finds the proposal's signatory record address. Should have the seeds:
["governance", proposal, signatory].

 find_token_governance_address(program, realm, token)

 Finds the token governance address for the given realm and token.
Should have the seeds: ["token-governance", realm, token].

 find_transaction_address(program, proposal, index, option \\ 0)

 Finds the proposal's transaction address for the given option and index.
Should have the seeds: ["governance", proposal, option, index].

 find_vote_record_address(program, proposal, owner_record)

 Finds the vote record address for the given proposal and owner_record.
Should have the seeds: ["governance", proposal, owner_record].

 flag_instruction_error(opts)

 Flag an instruction and its parent proposal with "error" status.

 id()

 The Governance program's default instance ID. Organizations can also deploy
their own custom instance if they wish.

 insert_transaction(opts)

 Generates the instructions to insert a transaction into the proposal at the
given index.

 relinquish_vote(opts)

 Generates instructions to relinquish a voter's vote from a proposal.

 remove_signatory(opts)

 Generates the instructions to remove a signatory from the proposal.

 remove_transaction(opts)

 Generates the instructions to remove the Transaction data at the given index
from the given proposal.

 set_governance_config(opts)

 Generates the instructions to set a governance's config.

 set_realm_authority(opts)

 Generates the instructions to set a new realm authority.

 set_realm_config(opts)

 Generates instructions to set the realm config.

 sign_off_proposal(opts)

 Generates the instructions for a signatory to sign off on a proposal.

 test_id()

 The governance program's test instance ID. This can be used to set up test DAOs.

 update_program_metadata(opts)

 Generates instructions to update a Program Metadata account.

 withdraw(opts)

 Generates instructions which withdraw governing tokens -- community or council
-- from the given realm.

 Functions

 add_signatory(opts)

Generates the instructions to add a signatory to the proposal.
This means that the proposal can't leave Draft state until this signatory
signs off on it.
Options
	:proposal - Required. proposal account to add the signatory to.

	:signatory - Required. the signatory to add to the proposal.

	:authority - Required. Public key of the governance authority (or its delegate).

	:payer - Required. The account which will pay for the new signatory record's creation.

	:owner_record - Required. Public key of the proposal owner's Token Owner Record account.

	:program - Required. Public key of the governance program instance to use.

 cancel_proposal(opts)

Generates the instructions to cancel the given proposal.
Options
	:governance - Required. The governance account.

	:proposal - Required. The proposal account.

	:owner_record - Required. Public key of the proposal owner's Token Owner Record account.

	:authority - Required. Public key of the governance authority (or its delegate).

	:program - Required. Public key of the governance program instance to use.

 cast_vote(opts)

Generates the instructions for a token owner to cast a vote on the given
proposal.
By doing so, the owner indicates they approve or disapprove of running the
proposal's set of instructions.
If this vote causes the proposal to reach a consensus, the instructions can be
run after the configured delay.
Options
	:realm - Required. The realm account.

	:proposal - Required. The proposal account.

	:governance - Required. The governance account.

	:owner_record - Required. Public key of the proposal owner's Token Owner Record account.

	:authority - Required. Public key of the governance authority (or its delegate).

	:mint - Required. The governing token mint.

	:payer - Required. The account which will pay for the Vote Record account's creation.

	:voter_weight_record - Public key of the voter weight record account.

	:max_voter_weight_record - Public key of the max voter weight record account.

	:voter - Required. Public key of the voter's governing token account.

	:vote - Required. The user's vote. Passing an empty list indicates proposal rejection.

	:program - Required. Public key of the governance program instance to use.

 create_account_governance(opts)

Generates instructions which create an Account Governance account, used to
govern an arbitrary account.
Options
	:payer - Required. The account which will pay for the new Account Governance account's creation.

	:owner_record - Required. The address of the governing Token Owner Record.

	:authority - Required. Public key of the governance authority.

	:realm - Required. Public key of the realm the created Governance belongs to.

	:governed - Required. The account which will be goverened by the newly created governance.

	:program - Required. Public key of the governance program instance to use.

	:voter_weight_record - Public key of the voter weight record account.

	:max_voter_weight_record - Public key of the max voter weight record account.

	:config - Required. The desired governance configuration.
Options
	:threshold - Required. The type of vote threshold used to resolve a Proposal vote.

	:vote_weight_source - The source of vote weight for voters. The default value is :deposit.

	:minimum_community (non_neg_integer/0) - The minimum number of community tokens an owner must have to create a proposal. The default value is 1.

	:minimum_council (non_neg_integer/0) - The minimum number of council tokens an owner must have to create a proposal. The default value is 1.

	:duration (non_neg_integer/0) - Required. Time limit (in seconds) for a proposal to be open for voting.

	:cooldown (non_neg_integer/0) - The time period (in seconds) within which a proposal can still be cancelled after voting has
ended. The default value is 0.

	:delay (non_neg_integer/0) - Minimum wait time (in seconds) after a proposal has been voted on before an instruction can
be executed. The default value is 0.

 create_mint_governance(opts)

Generates instructions which create an Mint Governance account, used to
govern a token mint.
Options
	:payer - Required. The account which will pay for the new Mint Governance account's creation.

	:owner_record - Required. The address of the governing Token Owner Record.

	:authority - Required. Public key of the governance authority.

	:realm - Required. Public key of the realm the created Governance belongs to.

	:governed - Required. The mint which will be goverened by the newly created governance.

	:mint_authority - Required. The current mint authority of the mint to be governed.

	:program - Required. Public key of the governance program instance to use.

	:voter_weight_record - Public key of the voter weight record account.

	:max_voter_weight_record - Public key of the max voter weight record account.

	:config - Required. The desired governance configuration.
Options
	:threshold - Required. The type of vote threshold used to resolve a Proposal vote.

	:vote_weight_source - The source of vote weight for voters. The default value is :deposit.

	:minimum_community (non_neg_integer/0) - The minimum number of community tokens an owner must have to create a proposal. The default value is 1.

	:minimum_council (non_neg_integer/0) - The minimum number of council tokens an owner must have to create a proposal. The default value is 1.

	:duration (non_neg_integer/0) - Required. Time limit (in seconds) for a proposal to be open for voting.

	:cooldown (non_neg_integer/0) - The time period (in seconds) within which a proposal can still be cancelled after voting has
ended. The default value is 0.

	:delay (non_neg_integer/0) - Minimum wait time (in seconds) after a proposal has been voted on before an instruction can
be executed. The default value is 0.

	:transfer_mint_authority? (boolean/0) - Whether or not the governed mint's authority should be transferred to
the governance PDA. This can also be done later. The default value is false.

 create_native_treasury(opts)

Generates instructions to create a native SOL treasury account for a
Governance account.
The account has no data and can be used:
	as a payer for instructions signed by governance PDAs
	as a native SOL treasury

Options
	:governance - Required. The governance account associated with the new treasury account.

	:payer - Required. The account which will pay for the native treasury account's creation.

	:program - Required. Public key of the governance program instance to use.

 create_owner_record(opts)

Generates instructions to create a Token Owner Record with no voter weight (0
deposit).
This is used to register a token owner when the Voter Weight Add-in is used
and the Governance program doesn't take deposits.
Options
	:realm - Required. The realm account.

	:owner - Required. The governing token owner's account.

	:mint - Required. The mint for the governing token.

	:payer - Required. The account which will pay for the Token Owner Record account's creation.

	:program - Required. Public key of the governance program instance to use.

 create_program_governance(opts)

Generates instructions which create an Program Governance account, used to
govern an upgradable Solana program.
Options
	:payer - Required. The account which will pay for the new Program Governance account's creation.

	:owner_record - Required. The address of the governing Token Owner Record.

	:authority - Required. Public key of the governance authority.

	:realm - Required. Public key of the realm the created Governance belongs to.

	:governed - Required. The program which will be goverened by the newly created governance.

	:upgrade_authority - Required. The current upgrade authority of the goverened program.

	:program - Required. Public key of the governance program instance to use.

	:voter_weight_record - Public key of the voter weight record account.

	:max_voter_weight_record - Public key of the max voter weight record account.

	:transfer_upgrade_authority? (boolean/0) - Whether or not the governed program's upgrade authority should be
transferred to the governance PDA. This can also be done later. The default value is false.

	:config - Required. The desired governance configuration.
Options
	:threshold - Required. The type of vote threshold used to resolve a Proposal vote.

	:vote_weight_source - The source of vote weight for voters. The default value is :deposit.

	:minimum_community (non_neg_integer/0) - The minimum number of community tokens an owner must have to create a proposal. The default value is 1.

	:minimum_council (non_neg_integer/0) - The minimum number of council tokens an owner must have to create a proposal. The default value is 1.

	:duration (non_neg_integer/0) - Required. Time limit (in seconds) for a proposal to be open for voting.

	:cooldown (non_neg_integer/0) - The time period (in seconds) within which a proposal can still be cancelled after voting has
ended. The default value is 0.

	:delay (non_neg_integer/0) - Minimum wait time (in seconds) after a proposal has been voted on before an instruction can
be executed. The default value is 0.

 create_proposal(opts)

Generates instructions which create a Proposal account.
Proposals allow governance token owners to propose governance changes (i.e.
instructions) to an account that will go into effect (i.e. be executed) at
some point in the future.
Options
	:payer - Required. The account which will pay for the new Proposal account's creation.

	:owner - Required. Public key of the token owner who is making the propsal.

	:authority - Required. Public key of the governance authority.

	:mint - Required. The governing token mint.

	:governance - Required. The governance account for which this proposal is made.

	:realm - Required. Public key of the realm the created Governance belongs to.

	:program - Required. Public key of the governance program instance to use.

	:voter_weight_record - Public key of the voter weight record account.

	:max_voter_weight_record - Public key of the max voter weight record account.

	:name (String.t/0) - Required. The proposal name.

	:description (String.t/0) - Required. The proposal explanation.

	:vote_type - Required. The proposal's vote type.

	:options (list of String.t/0) - Required. Proposal options.

	:has_deny_option? (boolean/0) - Indicates whether this proposal has a 'deny' option. Must be true if the
proposal wants to include executable instructions. The default value is true.

	:index (non_neg_integer/0) - Required. The proposal index, i.e. this is the Nth proposal for this governance.

 create_realm(opts)

Generates instructions which create a new realm.
Options
	:payer - Required. The account which will pay for the new realm account's creation.

	:authority - Required. Public key of the authority account for the new realm.

	:community_mint - Required. Community token mint for the new realm.

	:council_mint - Community token mint for the new realm.

	:program - Required. Public key of the governance program instance to use.

	:voter_weight_addin - Community voter weight add-in program ID.

	:max_voter_weight_addin - Max Community voter weight add-in program ID.

	:name (String.t/0) - Required. The name of the new realm.

	:max_vote_weight_source - Required. The source of max vote weight used for voting. Values below 100%
mint supply can be used when the governing token is fully minted but not
distributed yet.

	:minimum (non_neg_integer/0) - Required. Minimum number of community tokens a user must hold to create a governance.

 create_token_governance(opts)

Generates instructions which create a Token Governance account, used to
govern a token account.
Options
	:payer - Required. The account which will pay for the new Token Governance account's creation.

	:owner_record - Required. The address of the governing Token Owner Record.

	:authority - Required. Public key of the governance authority.

	:realm - Required. Public key of the realm the created Governance belongs to.

	:governed - Required. The account which will be goverened by the newly created governance.

	:owner - Required. The current owner of the goverened token account.

	:program - Required. Public key of the governance program instance to use.

	:voter_weight_record - Public key of the voter weight record account.

	:max_voter_weight_record - Public key of the max voter weight record account.

	:config - Required. The desired governance configuration.
Options
	:threshold - Required. The type of vote threshold used to resolve a Proposal vote.

	:vote_weight_source - The source of vote weight for voters. The default value is :deposit.

	:minimum_community (non_neg_integer/0) - The minimum number of community tokens an owner must have to create a proposal. The default value is 1.

	:minimum_council (non_neg_integer/0) - The minimum number of council tokens an owner must have to create a proposal. The default value is 1.

	:duration (non_neg_integer/0) - Required. Time limit (in seconds) for a proposal to be open for voting.

	:cooldown (non_neg_integer/0) - The time period (in seconds) within which a proposal can still be cancelled after voting has
ended. The default value is 0.

	:delay (non_neg_integer/0) - Minimum wait time (in seconds) after a proposal has been voted on before an instruction can
be executed. The default value is 0.

	:transfer_ownership? (boolean/0) - Whether or not the governed token's ownership should be transferred to
the governance PDA. This can also be done later. The default value is false.

 delegate(opts)

Generates instructions which set the new governance delegate for an ownership
account within the given realm and mint.
The delegate can vote or create Proposals on behalf of the owner.
Note: Delegating voting rights doesn't take them away from the original owner.
Options
	:owner - Required. The current non-delegated holder of voting rights within the realm.

	:record - Required. The Token Owner Record account for which the owner wishes to delegate rights.

	:to - The account which will receive voter rights from the owner in the given
realm. Not including this argument will rescind the current delegate's
voting rights.

	:program - Required. Public key of the governance program instance to use.

 deposit(opts)

Generates instructions which deposit governing tokens -- community or council
-- to the given realm.
This establishes a user's voter weight to be used when voting within the
realm.
Note: If a subsequent (top up) deposit is made, the user's vote weights on
active proposals won't be updated automatically. To do this, the user must
relinquish their votes and vote again.
Options
	:owner - Required. The from token account's owner.

	:authority - Required. The from token account's transfer authority.

	:realm - Required. Public key of the realm to deposit user tokens into.

	:mint - Required. The mint for the token the user wishes to deposit.

	:from - Required. The user's token account.

	:payer - Required. The account which will pay to create the user's token owner record account
(if necessary).

	:amount (pos_integer/0) - Required. The number of tokens to transfer.

	:program - Required. Public key of the governance program instance to use.

 execute_instruction(opts)

Generates instructions to execute the instruction at index index in the
proposal.
Anybody can execute an instruction once the Proposal has been approved and the
instruction's delay time has passed.
The instruction being executed will be signed by the Governance PDA the
proposal belongs to, e.g. the Program Governance PDA for program upgrade
instructions.
Options
	:proposal - Required. The proposal account.

	:instruction - Required. The Proposal Instruction account containing the instruction to execute.

	:accounts - Any extra accounts that are part of the instruction, in order.

	:program - Required. Public key of the governance program instance to use.

 finalize_vote(opts)

Generates instructions to finalize a vote.
This is available in case the vote was not automatically tipped with the
proposal's duration.
Options
	:realm - Required. The realm account.

	:proposal - Required. The proposal account.

	:governance - Required. The governance account.

	:owner_record - Required. Public key of the proposal owner's Token Owner Record account.

	:mint - Required. The governing token mint.

	:program - Required. Public key of the governance program instance to use.

 find_account_governance_address(program, realm, account)

 @spec find_account_governance_address(
 program :: Solana.Key.t(),
 realm :: Solana.Key.t(),
 account :: Solana.Key.t()
) :: {:ok, Solana.Key.t()} | {:error, :no_nonce}

Finds the account governance address for the given realm and account.
Should have the seeds: ["account-governance", realm, account].

 find_holding_address(program, realm, mint)

 @spec find_holding_address(
 program :: Solana.Key.t(),
 realm :: Solana.Key.t(),
 mint :: Solana.Key.t()
) ::
 {:ok, Solana.Key.t()} | {:error, :no_nonce}

Finds a token holding address for the given community/council mint. Should
have the seeds: ["governance", realm, mint].

 find_metadata_address(program)

 @spec find_metadata_address(program :: Solana.Key.t()) ::
 {:ok, Solana.Key.t()} | {:error, :no_nonce}

Finds the program metadata address for the given governance program. Should
have the seeds: ["metadata"]

 find_mint_governance_address(program, realm, mint)

 @spec find_mint_governance_address(
 program :: Solana.Key.t(),
 realm :: Solana.Key.t(),
 mint :: Solana.Key.t()
) :: {:ok, Solana.Key.t()} | {:error, :no_nonce}

Finds the mint governance address for the given realm and mint.
Should have the seeds: ["mint-governance", realm, mint].

 find_native_treasury_address(program, governance)

 @spec find_native_treasury_address(
 program :: Solana.Key.t(),
 governance :: Solana.Key.t()
) ::
 {:ok, Solana.Key.t()} | {:error, :no_nonce}

Finds the native SOL treasury address for the given governance account.
Should have the seeds: ["treasury", governance]

 find_owner_record_address(program, realm, mint, owner)

 @spec find_owner_record_address(
 program :: Solana.Key.t(),
 realm :: Solana.Key.t(),
 mint :: Solana.Key.t(),
 owner :: Solana.Key.t()
) :: {:ok, Solana.Key.t()} | {:error, :no_nonce}

Finds the token owner record address for the given realm, mint, and
owner. Should have the seeds: ["governance", realm, mint, owner].

 find_program_governance_address(program, realm, governed)

 @spec find_program_governance_address(
 program :: Solana.Key.t(),
 realm :: Solana.Key.t(),
 governed :: Solana.Key.t()
) :: {:ok, Solana.Key.t()} | {:error, :no_nonce}

Finds the program governance address for the given realm and governed
program. Should have the seeds: ["program-governance", realm, governed].

 find_proposal_address(program, governance, mint, index)

 @spec find_proposal_address(
 program :: Solana.Key.t(),
 governance :: Solana.Key.t(),
 mint :: Solana.Key.t(),
 index :: integer()
) :: {:ok, Solana.Key.t()} | {:error, :no_nonce}

Finds the governance proposal address for the given mint and index.
Should have the seeds: ["governance", governance, mint, index].

 find_realm_address(program, name)

 @spec find_realm_address(program :: Solana.Key.t(), name :: String.t()) ::
 {:ok, Solana.Key.t()} | {:error, :no_nonce}

Finds the realm address for the given name. Should have the seeds ["governance", name]

 find_realm_config_address(program, realm)

 @spec find_realm_config_address(program :: Solana.Key.t(), realm :: Solana.Key.t()) ::
 {:ok, Solana.Key.t()} | {:error, :no_nonce}

Finds the realm config address for the given realm. Should have the seeds:
["realm-config", realm].

 find_signatory_record_address(program, proposal, signatory)

 @spec find_signatory_record_address(
 program :: Solana.Key.t(),
 proposal :: Solana.Key.t(),
 signatory :: Solana.Key.t()
) :: {:ok, Solana.Key.t()} | {:error, :no_nonce}

Finds the proposal's signatory record address. Should have the seeds:
["governance", proposal, signatory].

 find_token_governance_address(program, realm, token)

 @spec find_token_governance_address(
 program :: Solana.Key.t(),
 realm :: Solana.Key.t(),
 token :: Solana.Key.t()
) :: {:ok, Solana.Key.t()} | {:error, :no_nonce}

Finds the token governance address for the given realm and token.
Should have the seeds: ["token-governance", realm, token].

 find_transaction_address(program, proposal, index, option \\ 0)

 @spec find_transaction_address(
 program :: Solana.Key.t(),
 proposal :: Solana.Key.t(),
 index :: non_neg_integer(),
 option :: non_neg_integer()
) :: {:ok, Solana.Key.t()} | {:error, :no_nonce}

Finds the proposal's transaction address for the given option and index.
Should have the seeds: ["governance", proposal, option, index].

 find_vote_record_address(program, proposal, owner_record)

 @spec find_vote_record_address(
 program :: Solana.Key.t(),
 proposal :: Solana.Key.t(),
 owner_record :: Solana.Key.t()
) :: {:ok, Solana.Key.t()} | {:error, :no_nonce}

Finds the vote record address for the given proposal and owner_record.
Should have the seeds: ["governance", proposal, owner_record].

 flag_instruction_error(opts)

Flag an instruction and its parent proposal with "error" status.
Options
	:proposal - Required. The proposal account.

	:instruction - Required. The Proposal Instruction account to flag.

	:authority - Required. Public key of the governance authority (or its delegate).

	:owner_record - Required. Public key of the proposal owner's Token Owner Record account.

	:program - Required. Public key of the governance program instance to use.

 id()

The Governance program's default instance ID. Organizations can also deploy
their own custom instance if they wish.

 insert_transaction(opts)

Generates the instructions to insert a transaction into the proposal at the
given index.
New transactions must be inserted at the end of the range indicated by the
proposal's transaction_next_index property. If a transaction replaces an
existing transaction at a given index, the old one must first be removed by
calling Solana.SPL.Governance.remove_transaction/1.
Options
	:governance - Required. The governance account.

	:proposal - Required. The proposal account.

	:owner_record - Required. Public key of the proposal owner's Token Owner Record account.

	:authority - Required. Public key of the governance authority (or its delegate).

	:payer - Required. The account which will pay for the Proposal Instruction account's creation.

	:option (non_neg_integer/0) - The index of the option the instruction is for. The default value is 0.

	:index (non_neg_integer/0) - Required. The index where the instruction will be inserted.

	:delay (non_neg_integer/0) - Wait time (in seconds) between the vote period ending and the
instruction being eligible for execution. The default value is 0.

	:instructions - Required. Data for the instructions to be executed

	:program - Required. Public key of the governance program instance to use.

 relinquish_vote(opts)

Generates instructions to relinquish a voter's vote from a proposal.
If the proposal is still being voted on, the voter's weight won't count toward
the outcome. If the proposal is already decided, this instruction has no
effect on the proposal, but allows voters to prune their outstanding votes in
case they want to withdraw governing tokens from the realm.
Options
	:proposal - Required. The proposal account.

	:governance - Required. The governance account.

	:owner_record - Required. Public key of the voter's governing Token Owner Record.

	:mint - Required. The governing token mint.

	:authority - Public key of the governance authority (or its delegate). Only required if
the proposal is still being voted on.

	:beneficiary - Public key of the account to receive the disposed vote record account's
lamports. Only required if the proposal is still being voted on.

	:program - Required. Public key of the governance program instance to use.

 remove_signatory(opts)

Generates the instructions to remove a signatory from the proposal.
Options
	:proposal - Required. proposal account to add the signatory to.

	:signatory - Required. the signatory to add to the proposal.

	:authority - Required. Public key of the governance authority (or its delegate).

	:owner_record - Required. Public key of the proposal owner's Token Owner Record account.

	:beneficiary - Required. Public key of the account to receive the disposed signatory record account's lamports.

	:program - Required. Public key of the governance program instance to use.

 remove_transaction(opts)

Generates the instructions to remove the Transaction data at the given index
from the given proposal.
Options
	:proposal - Required. The proposal account.

	:owner_record - Required. Public key of the proposal owner's Token Owner Record account.

	:authority - Required. Public key of the governance authority (or its delegate).

	:beneficiary - Required. Public key of the account to receive the disposed instruction account's lamports.

	:transaction - Required. The Proposal Transaction account indicating the transaction to remove.

	:program - Required. Public key of the governance program instance to use.

 set_governance_config(opts)

Generates the instructions to set a governance's config.
Options
	:realm - Required. The realm account the governance belongs to.

	:governance - Required. The governance account to receive the new config.

	:config - Required. The desired governance configuration.
Options
	:threshold - Required. The type of vote threshold used to resolve a Proposal vote.

	:vote_weight_source - The source of vote weight for voters. The default value is :deposit.

	:minimum_community (non_neg_integer/0) - The minimum number of community tokens an owner must have to create a proposal. The default value is 1.

	:minimum_council (non_neg_integer/0) - The minimum number of council tokens an owner must have to create a proposal. The default value is 1.

	:duration (non_neg_integer/0) - Required. Time limit (in seconds) for a proposal to be open for voting.

	:cooldown (non_neg_integer/0) - The time period (in seconds) within which a proposal can still be cancelled after voting has
ended. The default value is 0.

	:delay (non_neg_integer/0) - Minimum wait time (in seconds) after a proposal has been voted on before an instruction can
be executed. The default value is 0.

	:program - Required. Public key of the governance program instance to use.

 set_realm_authority(opts)

Generates the instructions to set a new realm authority.
Options
	:realm - Required. The realm account to assign a new authority.

	:current - Required. The current realm authority.

	:new - The new realm authority. Must be one of the realm governances.

	:program - Required. Public key of the governance program instance to use.

	:action - Required. The action to apply to the current realm authority. :set sets the new
realm authority without checks, :set_checked makes sure the new
authority is one of the realm's governances, and :remove removes the
realm authority.

 set_realm_config(opts)

Generates instructions to set the realm config.
Options
	:realm - Required. The realm account.

	:authority - Required. The realm authority.

	:council_mint - The realm's council token mint.

	:payer - The account which will pay for the Realm Config account's creation.

	:voter_weight_addin - Community voter weight add-in program ID.

	:max_voter_weight_addin - Max Community voter weight add-in program ID.

	:program - Required. Public key of the governance program instance to use.

	:max_vote_weight_source - Required. The source of max vote weight used for voting. Values below 100%
mint supply can be used when the governing token is fully minted but not
distributed yet.

	:minimum (non_neg_integer/0) - Required. Minimum number of community tokens a user must hold to create a governance.

 sign_off_proposal(opts)

Generates the instructions for a signatory to sign off on a proposal.
This indicates the signatory approves of the proposal. When the last
signatory signs off, the proposal moves to the Voting state.
Options
	:proposal - Required. The proposal account.

	:signatory - Required. the signatory signing off on the proposal.

	:program - Required. Public key of the governance program instance to use.

 test_id()

The governance program's test instance ID. This can be used to set up test DAOs.

 update_program_metadata(opts)

Generates instructions to update a Program Metadata account.
This dumps information implied by the governance program's code into a
persistent account.
Options
	:payer - Required. The account which will pay for the Program Metadata account's creation.

	:program - Required. Public key of the governance program instance to use.

 withdraw(opts)

Generates instructions which withdraw governing tokens -- community or council
-- from the given realm.
This downgrades a user's voter weight within the realm.
Note: It's only possible to withdraw tokens if the user doesn't have any
outstanding active votes. Otherwise, the user needs to relinquish those
votes before withdrawing their tokens.
Options
	:owner - Required. The to token account's owner.

	:realm - Required. Public key of the realm to withdraw governance tokens from.

	:mint - Required. The mint for the token the user wishes to withdraw.

	:to - Required. The user's token account. All tokens will be transferred to this account.

	:program - Required. Public key of the governance program instance to use.

Solana.SPL.Token

Functions for interacting with Solana's Token
Program.

 Summary

 Types

 t()

 Token account metadata.

 Functions

 approve(opts)

 Creates an instruction to approves a delegate.

 burn(opts)

 Creates an instruction to burn tokens by removing them from an account.

 byte_size()

 The size of a serialized token account.

 close_account(opts)

 Creates an instruction to close an account by transferring all its SOL to the
destination account.

 freeze(opts)

 Creates an instruction to freeze an initialized account using the mint's
freeze_authority (if set).

 from_account_info(info)

 Translates the result of a Solana.RPC.Request.get_account_info/2 into a
Solana.SPL.Token.t/0.

 id()

 The Token Program's ID.

 init(opts)

 Creates the instructions which initialize a new account to hold tokens.

 mint_to(opts)

 Creates an instruction to mints new tokens to an account.

 revoke(opts)

 Creates an instruction to revoke a previously approved delegate's authority to
make transfers.

 set_authority(opts)

 Creates an instruction to set a new authority for a mint or account.

 thaw(opts)

 Creates an instruction to thaw a frozen account using the mint's
freeze_authority (if set).

 transfer(opts)

 Creates an instruction to transfer tokens from one account to another either
directly or via a delegate.

 Types

 t()

 @type t() :: %Solana.SPL.Token{
 amount: non_neg_integer(),
 close_authority: Solana.key() | nil,
 delegate: Solana.key() | nil,
 delegated_amount: non_neg_integer(),
 frozen?: boolean(),
 initialized?: boolean(),
 mint: Solana.key(),
 native?: boolean(),
 owner: Solana.key(),
 rent_exempt_reserve: non_neg_integer() | nil
}

Token account metadata.

 Functions

 approve(opts)

Creates an instruction to approves a delegate.
A delegate is given the authority over tokens on behalf of the source
account's owner.
If you want to check the token's mint and decimals, set the checked?
option to true and provide the mint and decimals options.
Options
	:source - Required. The account to send tokens from

	:delegate - Required. The account authorized to perform a transfer of tokens from source

	:owner - Required. The account which owns source

	:multi_signers - signing accounts if the owner is a Solana.SPL.Token.MultiSig account

	:amount (pos_integer/0) - Required. The maximum number of tokens that delegate can send on behalf of source

	:checked? (boolean/0) - whether or not to check the token mint and decimals; may be useful
 when creating transactions offline or within a hardware wallet. The default value is false.

	:decimals - The number of decimals in the amount. Only used if checked? is true.

	:mint - The mint account for from and to. Only used if checked? is true.

 burn(opts)

Creates an instruction to burn tokens by removing them from an account.
burn/1 does not support accounts associated with the native mint, use
close_account/1 instead.
If you want to check the token's mint and decimals, set the checked?
option to true and provide the decimals option.
Options
	:token - Required. The token account which will have its tokens burned

	:mint - Required. The mint account which will burn the tokens

	:owner - Required. the owner of token

	:amount (pos_integer/0) - Required. amount of tokens to burn

	:multi_signers - signing accounts if the owner is a Solana.SPL.Token.MultiSig account

	:checked? (boolean/0) - whether or not to check the token mint and decimals; may be useful
 when creating transactions offline or within a hardware wallet. The default value is false.

	:decimals - The number of decimals in the amount. Only used if checked? is true.

 byte_size()

 @spec byte_size() :: pos_integer()

The size of a serialized token account.

 close_account(opts)

Creates an instruction to close an account by transferring all its SOL to the
destination account.
A non-native account may only be closed if its token amount is zero.
Options
	:to_close - Required. The account to close

	:destination - Required. The account which will receive the remaining balance of to_close

	:authority - Required. the account close authority for to_close

	:multi_signers - signing accounts if the authority is a Solana.SPL.Token.MultiSig account

 freeze(opts)

Creates an instruction to freeze an initialized account using the mint's
freeze_authority (if set).
Options
	:to_freeze - Required. The account to freeze

	:mint - Required. The mint account for to_freeze

	:authority - Required. the freeze authority for mint

	:multi_signers - signing accounts if the authority is a Solana.SPL.Token.MultiSig account

 from_account_info(info)

 @spec from_account_info(info :: map()) :: t() | :error

Translates the result of a Solana.RPC.Request.get_account_info/2 into a
Solana.SPL.Token.t/0.

 id()

 @spec id() :: binary()

The Token Program's ID.

 init(opts)

Creates the instructions which initialize a new account to hold tokens.
If this account is associated with the native mint then the token balance of
the initialized account will be equal to the amount of SOL in the account. If
this account is associated with another mint, that mint must be initialized
before this command can succeed.
All instructions must be executed as part of the same transaction. Otherwise
another party can acquire ownership of the uninitialized account.
Options
	:payer - Required. The account that will pay for the token account creation

	:balance (non_neg_integer/0) - Required. The lamport balance the token account should have

	:mint - Required. The mint of the newly-created token account

	:owner - Required. The owner of the newly-created token account

	:new - Required. The public key of the newly-created token account

 mint_to(opts)

Creates an instruction to mints new tokens to an account.
The native mint does not support minting.
If you want to check the token's mint and decimals, set the checked?
option to true and provide the decimals option.
Options
	:token - Required. The token account which will receive the minted tokens

	:mint - Required. The mint account which will mint the tokens

	:authority - Required. the current mint authority

	:amount (pos_integer/0) - Required. amount of tokens to mint

	:multi_signers - signing accounts if the authority is a Solana.SPL.Token.MultiSig account

	:checked? (boolean/0) - whether or not to check the token mint and decimals; may be useful
 when creating transactions offline or within a hardware wallet. The default value is false.

	:decimals - The number of decimals in the amount. Only used if checked? is true.

 revoke(opts)

Creates an instruction to revoke a previously approved delegate's authority to
make transfers.
Options
	:source - Required. The account to send tokens from

	:owner - Required. The account which owns source

	:multi_signers - signing accounts if the owner is a Solana.SPL.Token.MultiSig account

 set_authority(opts)

Creates an instruction to set a new authority for a mint or account.
Options
	:account - Required. The account which will change authority, either a mint or token account

	:authority - Required. the current authority for mint_or_token

	:new_authority - the new authority for mint_or_token

	:type - Required. type of authority to set

	:multi_signers - signing accounts if the authority is a Solana.SPL.Token.MultiSig account

 thaw(opts)

Creates an instruction to thaw a frozen account using the mint's
freeze_authority (if set).
Options
	:to_thaw - Required. The account to thaw

	:mint - Required. The mint account for to_thaw

	:authority - Required. the freeze authority for mint

	:multi_signers - signing accounts if the authority is a Solana.SPL.Token.MultiSig account

 transfer(opts)

Creates an instruction to transfer tokens from one account to another either
directly or via a delegate.
If this account is associated with the native mint then equal amounts of SOL
and Tokens will be transferred to the destination account.
If you want to check the token's mint and decimals, set the checked?
option to true and provide the mint and decimals options.
Options
	:from - Required. The account to send tokens from

	:to - Required. The account to receive tokens

	:owner - Required. The owner of from

	:multi_signers - signing accounts if the owner is a Solana.SPL.Token.MultiSig account

	:amount (pos_integer/0) - Required. The number of tokens to send

	:checked? (boolean/0) - whether or not to check the token mint and decimals; may be useful
when creating transactions offline or within a hardware wallet. The default value is false.

	:decimals - The number of decimals in the amount. Only used if checked? is true.

	:mint - The mint account for from and to. Only used if checked? is true.

Solana.SPL.Token.Mint

Functions for interacting with the mint accounts of Solana's Token
Program.

 Summary

 Types

 t()

 Token Program mint account metadata.

 Functions

 byte_size()

 The size of a serialized token mint account.

 from_account_info(info)

 Translates the result of a Solana.RPC.Request.get_account_info/2 into a
Solana.SPL.Token.Mint.t/0.

 init(opts)

 Genereates the instructions to initialize a mint account.

 Types

 t()

 @type t() :: %Solana.SPL.Token.Mint{
 authority: Solana.key() | nil,
 decimals: byte(),
 freeze_authority: Solana.key() | nil,
 initialized?: boolean(),
 supply: non_neg_integer()
}

Token Program mint account metadata.

 Functions

 byte_size()

 @spec byte_size() :: pos_integer()

The size of a serialized token mint account.

 from_account_info(info)

 @spec from_account_info(info :: map()) :: t() | :error

Translates the result of a Solana.RPC.Request.get_account_info/2 into a
Solana.SPL.Token.Mint.t/0.

 init(opts)

Genereates the instructions to initialize a mint account.
Options
	:payer - Required. The account that will pay for the mint creation

	:balance (non_neg_integer/0) - Required. The lamport balance the mint account should have

	:decimals - Required. decimals for the new mint

	:authority - Required. authority for the new mint

	:freeze_authority - freeze authority for the new mint

	:new - Required. public key for the new mint

Solana.SPL.Token.MultiSig

Functions for dealing with multi-signature accounts.
Multi-signature accounts can used in place of any single owner/delegate
accounts in any token instruction that require an owner/delegate to be
present.

 Summary

 Types

 t()

 Multi-signature account metadata.

 Functions

 byte_size()

 The size of a serialized multi-signature account.

 from_account_info(info)

 Translates the result of a Solana.RPC.Request.get_account_info/2 into a
Solana.SPL.Token.MultiSig.t/0.

 init(opts)

 Creates the instructions to initialize a multisignature account.

 Types

 t()

 @type t() :: %Solana.SPL.Token.MultiSig{
 initialized?: boolean(),
 signers: [Solana.key()],
 signers_required: byte(),
 signers_total: byte()
}

Multi-signature account metadata.

 Functions

 byte_size()

The size of a serialized multi-signature account.

 from_account_info(info)

 @spec from_account_info(info :: map()) :: t() | :error

Translates the result of a Solana.RPC.Request.get_account_info/2 into a
Solana.SPL.Token.MultiSig.t/0.

 init(opts)

Creates the instructions to initialize a multisignature account.
These instructions must be included in the same Transaction.
Options
	:payer - Required. The account that will pay for the multisig creation

	:balance (non_neg_integer/0) - Required. The lamport balance the multisig account should have

	:signers - Required. The full set of signers; should be a list of 11 members or fewer

	:signatures_required - Required. number of signatures required; should be between 1 and 11 (inclusive)

	:new - Required. public key for the new multisig account

Solana.SPL.TokenSwap

Functions for interacting with Solana's Token Swap
Program.

 Summary

 Functions

 byte_size()

 The size of a serialized token swap account.

 deposit(opts)

 Creates the instructions to deposit A or B tokens into the pool.

 deposit_all(opts)

 Creates the instructions to deposit both A and B tokens into the pool.

 from_account_info(info)

 Translates the result of a Solana.RPC.Request.get_account_info/2 into
token swap account information.

 id()

 The Token Swap Program's ID.

 init(opts)

 Creates the instructions to initialize a new token swap account.

 swap(opts)

 Creates the instructions to swap token A for token B or vice versa.

 withdraw(opts)

 Creates the instructions to withdraw A or B tokens from the pool.

 withdraw_all(opts)

 Creates the instructions to withdraw both A and B tokens from the pool.

 Functions

 byte_size()

 @spec byte_size() :: pos_integer()

The size of a serialized token swap account.

 deposit(opts)

Creates the instructions to deposit A or B tokens into the pool.
Options
	:swap - Required. The token swap to use.

	:authority - Required. the swap account's swap authority.

	:user_token - Required. The user's account for token A or B.

	:swap_a - Required. The swap account for token A.

	:swap_b - Required. The swap account for token B.

	:user_pool - Required. The user's account for the pool token. Pool tokens will be deposited here.

	:pool_mint - Required. The swap pool token's mint.

	:user_authority - Required. Account delegated to transfer the user's tokens.

	:amount (pos_integer/0) - Required. Amount of token A or B to deposit.

	:amount_pool (pos_integer/0) - Required. Minimum amount of pool tokens to mint.

 deposit_all(opts)

Creates the instructions to deposit both A and B tokens into the pool.
Options
	:swap - Required. The token swap to use.

	:authority - Required. the swap account's swap authority.

	:user_a - Required. The user's account for token A.

	:user_b - Required. The user's account for token B.

	:swap_a - Required. The swap account for token A.

	:swap_b - Required. The swap account for token B.

	:user_pool - Required. The user's account for the pool token. Pool tokens will be deposited here.

	:pool_mint - Required. The swap pool token's mint.

	:user_authority - Required. Account delegated to transfer the user's tokens.

	:amount_a (pos_integer/0) - Required. Maximum amount of token A to deposit.

	:amount_b (pos_integer/0) - Required. Maximum amount of token B to deposit.

	:amount_pool (pos_integer/0) - Required. Amount of pool tokens to mint.

 from_account_info(info)

 @spec from_account_info(info :: map()) :: map() | :error

Translates the result of a Solana.RPC.Request.get_account_info/2 into
token swap account information.

 id()

 @spec id() :: binary()

The Token Swap Program's ID.

 init(opts)

Creates the instructions to initialize a new token swap account.
Options
	:payer - Required. The account that will pay for the token swap account creation.

	:balance (non_neg_integer/0) - Required. The lamport balance the token swap account should have.

	:authority - Required. The token swap account's swap authority

	:new - Required. The public key of the newly-created token swap account.

	:token_a - Required. The A token account in token swaps. Must be owned by authority.

	:token_b - Required. The B token account in token swaps. Must be owned by authority.

	:pool - Required. The token account which holds outside liquidity and enables A/B trades.

	:pool_mint - Required. The mint of the pool.

	:fee_account - Required. The token account which receives all trading and withdrawal fees.

	:trade_fee - The new swap account's trading fee. Trade fees are extra token amounts
that are held inside the token accounts during a trade, making the value
of liquidity tokens rise. The default value is {0, 1}.

	:owner_trade_fee - The new swap account's owner trading fee. Owner trading fees are extra
token amounts that are held inside the token accounts during a trade, with
the equivalent in pool tokens minted to the owner of the program. The default value is {0, 1}.

	:owner_withdraw_fee - The new swap account's owner withdraw fee. Owner withdraw fees are extra
liquidity pool token amounts that are sent to the owner on every
withdrawal. The default value is {0, 1}.

	:host_fee - The new swap account's host fee. Host fees are a proportion of the
owner trading fees, sent to an extra account provided during the trade. The default value is {0, 1}.

	:curve - Required. The automated market maker (AMM) curve to use for the new token swap account.
Should take the form {type, params}. See the
docs on which curves are available.

 swap(opts)

Creates the instructions to swap token A for token B or vice versa.
Options
	:swap - Required. The token swap to use.

	:authority - Required. the swap account's swap authority.

	:user_source - Required. User's source token account. Must have the same mint as swap_source.

	:swap_source - Required. swap source token account. Must have the same mint as user_source.

	:user_destination - Required. User's destination token account. Must have the same mint as swap_destination.

	:swap_destination - Required. swap destination token account. Must have the same mint as user_destination.

	:pool_mint - Required. The swap pool token's mint.

	:fee_account - Required. The token account which receives all trading and withdrawal fees.

	:host_fee_account - Host account to gather fees.

	:user_authority - Required. Account delegated to transfer the user's tokens.

	:amount (pos_integer/0) - Required. Amount to transfer from the source account.

	:minimum_return (pos_integer/0) - Required. Minimum number of tokens the user will receive.

 withdraw(opts)

Creates the instructions to withdraw A or B tokens from the pool.
Options
	:swap - Required. The token swap to use.

	:authority - Required. the swap account's swap authority.

	:user_token - Required. The user's account for token A or B.

	:swap_a - Required. The swap account for token A.

	:swap_b - Required. The swap account for token B.

	:user_pool - Required. The user's account for the pool token. Pool tokens with be withdrawn from here.

	:pool_mint - Required. The swap pool token's mint.

	:user_authority - Required. Account delegated to transfer the user's tokens.

	:fee_account - Required. The token account which receives all trading and withdrawal fees.

	:amount (pos_integer/0) - Required. Amount of token A or B to withdraw.

	:amount_pool (pos_integer/0) - Required. Maximum amount of pool tokens to burn.

 withdraw_all(opts)

Creates the instructions to withdraw both A and B tokens from the pool.
Options
	:swap - Required. The token swap to use.

	:authority - Required. the swap account's swap authority.

	:user_a - Required. The user's account for token A.

	:user_b - Required. The user's account for token B.

	:swap_a - Required. The swap account for token A.

	:swap_b - Required. The swap account for token B.

	:user_pool - Required. The user's account for the pool token. Pool tokens with be withdrawn from here.

	:pool_mint - Required. The swap pool token's mint.

	:user_authority - Required. Account delegated to transfer the user's tokens.

	:fee_account - Required. The token account which receives all trading and withdrawal fees.

	:amount_a (pos_integer/0) - Required. Minimum amount of token A to withdraw.

	:amount_b (pos_integer/0) - Required. Minimum amount of token B to withdraw.

	:amount_pool (pos_integer/0) - Required. Amount of pool tokens to burn.

Solana.RPC

Functions for dealing with Solana's JSON-RPC
API.

 Summary

 Types

 client()

 Solana JSON-RPC API client.

 Functions

 client(opts)

 Creates an API client used to interact with Solana's JSON-RPC
API.

 send_and_confirm(client, tracker, txs, opts \\ [])

 Sends the provided transactions to the configured RPC endpoint, then confirms them.

 send_request(client, requests)

 Sends the provided requests to the configured Solana RPC endpoint.

 Types

 client()

 @type client() :: Tesla.Client.t()

Solana JSON-RPC API client.

 Functions

 client(opts)

 @spec client(keyword()) :: client()

Creates an API client used to interact with Solana's JSON-RPC
API.
Example
iex> key = Solana.keypair() |> Solana.pubkey!()
iex> client = Solana.RPC.client(network: "localhost")
iex> {:ok, signature} = Solana.RPC.send_request(client, Solana.RPC.Request.request_airdrop(key, 1))
iex> is_binary(signature)
true
Options
	:adapter (term/0) - Which Tesla adapter to use. The default value is Tesla.Adapter.Httpc.

	:network - Required. Which Solana cluster to connect to.

	:retry_options (keyword/0) - Options to pass to Tesla.Middleware.Retry. The default value is [].

	:headers (list of tuple of String.t/0, String.t/0 values) - API headers The default value is [].

 send_and_confirm(client, tracker, txs, opts \\ [])

 @spec send_and_confirm(
 client(),
 pid(),
 [Solana.Transaction.t()] | Solana.Transaction.t(),
 keyword()
) ::
 {:ok, [binary()]} | {:error, :timeout, [binary()]}

Sends the provided transactions to the configured RPC endpoint, then confirms them.
Returns a tuple containing all the transactions in the order they were confirmed, OR
an error tuple containing the list of all the transactions that were confirmed
before the error occurred.

 send_request(client, requests)

 @spec send_request(client(), [term()] | term()) :: {:ok, term()} | {:error, term()}

Sends the provided requests to the configured Solana RPC endpoint.

Solana.RPC.Request

Functions for creating Solana JSON-RPC API requests.
This client only implements the most common methods (see the function
documentation below). If you need a method that's on the full
list
but is not implemented here, please open an issue or contact the maintainers.

 Summary

 Types

 json()

 JSON-RPC API request (JSON encoding)

 t()

 JSON-RPC API request (pre-encoding)

 Functions

 encode(requests)

 Encodes a Solana.RPC.Request.t/0 (or a list of them) in the required
format.

 get_account_info(account, opts \\ [])

 Returns all information associated with the account of the provided Pubkey.

 get_balance(account, opts \\ [])

 Returns the balance of the provided pubkey's account.

 get_block(slot, opts \\ [])

 Returns identity and transaction information about a confirmed block in the
ledger.

 get_block_height(opts \\ [])

 Returns the current block height of the node

 get_fee_for_message(message, opts \\ [])

 Get the fee the network will charge for a particular Message

 get_first_available_block()

 Returns the slot of the lowest confirmed block that has not been purged from the ledger.

 get_latest_blockhash(opts \\ [])

 Returns a recent block hash from the ledger, and a fee schedule that can be
used to compute the cost of submitting a transaction using it.

 get_minimum_balance_for_rent_exemption(length, opts \\ [])

 Returns minimum balance required to make an account rent exempt.

 get_multiple_accounts(accounts, opts \\ [])

 Returns the account information for a list of pubkeys.

 get_signature_statuses(signatures, opts \\ [])

 Returns the statuses of a list of signatures.

 get_signatures_for_address(account, opts \\ [])

 Returns confirmed signatures for transactions involving an address backwards
in time from the provided signature or most recent confirmed block.

 get_slot(opts \\ [])

 get_token_account_balance(account, opts \\ [])

 get_token_largest_accounts(mint, opts \\ [])

 Returns the 20 largest accounts of a particular SPL Token type.

 get_token_supply(mint, opts \\ [])

 Returns the total supply of an SPL Token.

 get_transaction(signature, opts \\ [])

 Returns transaction details for a confirmed transaction.

 request_airdrop(account, sol, opts \\ [])

 Requests an airdrop of lamports to an account.

 send_transaction(tx, opts \\ [])

 Submits a signed transaction to the cluster for processing.

 Types

 json()

 @type json() :: %{jsonrpc: String.t(), id: term(), method: String.t(), params: list()}

JSON-RPC API request (JSON encoding)

 t()

 @type t() :: {String.t(), [String.t() | map()]}

JSON-RPC API request (pre-encoding)

 Functions

 encode(requests)

 @spec encode(requests :: [t()]) :: [json()]

 @spec encode(request :: t()) :: json()

Encodes a Solana.RPC.Request.t/0 (or a list of them) in the required
format.

 get_account_info(account, opts \\ [])

 @spec get_account_info(account :: Solana.key(), opts :: keyword()) :: t()

Returns all information associated with the account of the provided Pubkey.
For more information, see the Solana
docs.

 get_balance(account, opts \\ [])

 @spec get_balance(account :: Solana.key(), opts :: keyword()) :: t()

Returns the balance of the provided pubkey's account.
For more information, see the Solana
docs.

 get_block(slot, opts \\ [])

 @spec get_block(slot :: non_neg_integer(), opts :: keyword()) :: t()

 @spec get_block(slot :: non_neg_integer(), opts :: keyword()) :: t()

Returns identity and transaction information about a confirmed block in the
ledger.
For more information, see the Solana
docs.

 get_block_height(opts \\ [])

Returns the current block height of the node
For more information, see the Solana
docs.

 get_fee_for_message(message, opts \\ [])

 @spec get_fee_for_message(binary(), opts :: keyword()) :: t()

Get the fee the network will charge for a particular Message
For more information, see the Solana
docs.

 get_first_available_block()

 @spec get_first_available_block() :: t()

Returns the slot of the lowest confirmed block that has not been purged from the ledger.
For more information, see the Solana
docs.

 get_latest_blockhash(opts \\ [])

 @spec get_latest_blockhash(opts :: keyword()) :: t()

Returns a recent block hash from the ledger, and a fee schedule that can be
used to compute the cost of submitting a transaction using it.
For more information, see the Solana
docs.

 get_minimum_balance_for_rent_exemption(length, opts \\ [])

 @spec get_minimum_balance_for_rent_exemption(
 length :: non_neg_integer(),
 opts :: keyword()
) :: t()

Returns minimum balance required to make an account rent exempt.
For more information, see the Solana
docs.

 get_multiple_accounts(accounts, opts \\ [])

 @spec get_multiple_accounts(accounts :: [Solana.key()], opts :: keyword()) :: t()

Returns the account information for a list of pubkeys.
For more information, see the Solana
docs.

 get_signature_statuses(signatures, opts \\ [])

 @spec get_signature_statuses(signatures :: [Solana.key()], opts :: keyword()) :: t()

Returns the statuses of a list of signatures.
Unless the searchTransactionHistory configuration parameter is included,
this method only searches the recent status cache of signatures, which retains
statuses for all active slots plus MAX_RECENT_BLOCKHASHES rooted slots.
For more information, see the Solana
docs.

 get_signatures_for_address(account, opts \\ [])

 @spec get_signatures_for_address(account :: Solana.key(), opts :: keyword()) :: t()

Returns confirmed signatures for transactions involving an address backwards
in time from the provided signature or most recent confirmed block.
For more information, see the Solana
docs.

 get_slot(opts \\ [])

 get_token_account_balance(account, opts \\ [])

 @spec get_token_account_balance(account :: Solana.key(), opts :: keyword()) :: t()

 get_token_largest_accounts(mint, opts \\ [])

 @spec get_token_largest_accounts(mint :: Solana.key(), opts :: keyword()) :: t()

Returns the 20 largest accounts of a particular SPL Token type.
For more information, see the Solana
docs.

 get_token_supply(mint, opts \\ [])

 @spec get_token_supply(mint :: Solana.key(), opts :: keyword()) :: t()

Returns the total supply of an SPL Token.
For more information, see the Solana
docs.

 get_transaction(signature, opts \\ [])

 @spec get_transaction(signature :: Solana.key(), opts :: keyword()) :: t()

Returns transaction details for a confirmed transaction.
For more information, see the Solana
docs.

 request_airdrop(account, sol, opts \\ [])

 @spec request_airdrop(
 account :: Solana.key(),
 sol :: pos_integer(),
 opts :: keyword()
) :: t()

Requests an airdrop of lamports to an account.
For more information, see the Solana
docs.

 send_transaction(tx, opts \\ [])

 @spec send_transaction(transaction :: Solana.Transaction.t(), opts :: keyword()) ::
 t()

Submits a signed transaction to the cluster for processing.
For more information, see the Solana
docs.

Solana.RPC.Tracker

A GenServer you can use to track the status of transaction signatures.
Example
iex> key = Solana.keypair() |> Solana.pubkey!()
iex> {:ok, tracker} = Solana.RPC.Tracker.start_link(network: "localhost")
iex> client = Solana.RPC.client(network: "localhost")
iex> {:ok, tx} = Solana.RPC.send_request(client, Solana.RPC.Request.request_airdrop(key, 1))
iex> Solana.Tracker.start_tracking(tracker, tx)
iex> receive do
...> {:ok, [^tx]} -> IO.puts("confirmed!")
...> end
confirmed!

 Summary

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 start_link(opts)

 Starts a Solana.RPC.Tracker process linked to the current process.

 start_tracking(tracker, signatures, opts)

 Starts tracking a transaction signature or list of transaction signatures.

 Functions

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 start_link(opts)

Starts a Solana.RPC.Tracker process linked to the current process.

 start_tracking(tracker, signatures, opts)

Starts tracking a transaction signature or list of transaction signatures.
Sends messages back to the calling process as transactions from the list
are confirmed. Stops tracking automatically once transactions have been
confirmed.

Solana.Account

Functions, types, and structures related to Solana
accounts.

 Summary

 Types

 t()

 All the information needed to encode an account in a transaction message.

 Types

 t()

 @type t() :: %Solana.Account{
 key: Solana.key() | nil,
 signer?: boolean(),
 writable?: boolean()
}

All the information needed to encode an account in a transaction message.

Solana.Instruction

Functions, types, and structures related to Solana
instructions.

 Summary

 Types

 t()

 All the details needed to encode an instruction.

 Types

 t()

 @type t() :: %Solana.Instruction{
 accounts: [Solana.Account.t()],
 data: binary() | nil,
 program: Solana.key() | nil
}

All the details needed to encode an instruction.

Solana.Key

Functions for creating and validating Solana
keys and
keypairs.

 Summary

 Types

 pair()

 a public/private keypair

 t()

 Solana public or private key

 Functions

 check(key)

 Checks to see if a Solana.Key.t/0 is valid.

 decode(encoded)

 decodes a base58-encoded key and returns it in a tuple.

 decode!(encoded)

 decodes a base58-encoded key and returns it.

 derive_address(seeds, program_id)

 Derives a program address from seeds and a program ID.

 find_address(seeds, program_id)

 Finds a valid program address.

 pair()

 Generates a public/private key pair in the format {private_key, public_key}

 pair_from_file(path)

 Reads a public/private key pair from a file system
wallet in the format
{private_key, public_key}. Returns {:ok, pair} if successful, or {:error, reason} if not.

 with_seed(base, seed, program_id)

 Derive a public key from another key, a seed, and a program ID.

 Types

 pair()

 @type pair() :: {t(), t()}

a public/private keypair

 t()

 @type t() :: binary()

Solana public or private key

 Functions

 check(key)

 @spec check(key :: binary()) :: {:ok, t()} | {:error, binary()}

Checks to see if a Solana.Key.t/0 is valid.

 decode(encoded)

 @spec decode(encoded :: binary()) :: {:ok, t()} | {:error, binary()}

decodes a base58-encoded key and returns it in a tuple.
If it fails, return an error tuple.

 decode!(encoded)

 @spec decode!(encoded :: binary()) :: t()

decodes a base58-encoded key and returns it.
Throws an ArgumentError if it fails.

 derive_address(seeds, program_id)

 @spec derive_address(seeds :: [binary()], program_id :: t()) ::
 {:ok, t()} | {:error, term()}

Derives a program address from seeds and a program ID.

 find_address(seeds, program_id)

 @spec find_address(seeds :: [binary()], program_id :: t()) ::
 {:ok, t(), nonce :: byte()} | {:error, :no_nonce}

Finds a valid program address.
Valid addresses must fall off the ed25519 curve; generate a series of nonces,
then combine each one with the given seeds and program ID until a valid
address is found. If a valid address is found, return the address and the
nonce in a tuple. Otherwise, return an error tuple.

 pair()

 @spec pair() :: pair()

Generates a public/private key pair in the format {private_key, public_key}

 pair_from_file(path)

 @spec pair_from_file(String.t()) :: {:ok, pair()} | {:error, term()}

Reads a public/private key pair from a file system
wallet in the format
{private_key, public_key}. Returns {:ok, pair} if successful, or {:error, reason} if not.

 with_seed(base, seed, program_id)

 @spec with_seed(base :: t(), seed :: binary(), program_id :: t()) ::
 {:ok, t()} | {:error, binary()}

Derive a public key from another key, a seed, and a program ID.
The program ID will also serve as the owner of the public key, giving it
permission to write data to the account.

Solana.Transaction

Functions for building and encoding Solana
transactions

 Summary

 Types

 encoding_err()

 The possible errors encountered when encoding a transaction.

 t()

 All the details needed to encode a transaction.

 Functions

 check(signature)

 Checks to see if a transaction's signature is valid.

 decode(encoded)

 decodes a base58-encoded signature and returns it in a tuple.

 decode!(encoded)

 decodes a base58-encoded signature and returns it.

 encode_message(tx)

 parse(encoded)

 Parses a Solana.Transaction.t/0 from data encoded in Solana's binary
format

 to_binary(tx)

 Encodes a Solana.Transaction.t/0 into a binary
format

 Types

 encoding_err()

 @type encoding_err() ::
 :no_payer
 | :no_blockhash
 | :no_program
 | :no_instructions
 | :mismatched_signers

The possible errors encountered when encoding a transaction.

 t()

 @type t() :: %Solana.Transaction{
 blockhash: binary() | nil,
 instructions: [Solana.Instruction.t()],
 payer: Solana.key() | nil,
 signers: [Solana.keypair()]
}

All the details needed to encode a transaction.

 Functions

 check(signature)

 @spec check(binary()) :: {:ok, binary()} | {:error, :invalid_signature}

Checks to see if a transaction's signature is valid.
Returns {:ok, signature} if it is, and an error tuple if it isn't.

 decode(encoded)

 @spec decode(encoded :: binary()) :: {:ok, binary()} | {:error, binary()}

decodes a base58-encoded signature and returns it in a tuple.
If it fails, return an error tuple.

 decode!(encoded)

 @spec decode!(encoded :: binary()) :: binary()

decodes a base58-encoded signature and returns it.
Throws an ArgumentError if it fails.

 encode_message(tx)

 @spec encode_message(tx :: t()) :: binary() | {:error, encoding_err()}

 parse(encoded)

 @spec parse(encoded :: binary()) :: {t(), keyword()} | :error

Parses a Solana.Transaction.t/0 from data encoded in Solana's binary
format
Returns {transaction, extras} if the transaction was successfully
parsed, or :error if the provided binary could not be parsed. extras
is a keyword list containing information about the encoded transaction,
namely:
	:header - the transaction message
header
	:accounts - an ordered array of
accounts
	:signatures - a list of signed copies of the transaction
message

 to_binary(tx)

 @spec to_binary(tx :: t()) :: {:ok, binary()} | {:error, encoding_err()}

Encodes a Solana.Transaction.t/0 into a binary
format
Returns {:ok, encoded_transaction} if the transaction was successfully
encoded, or an error tuple if the encoding failed -- plus more error details
via Logger.error/1.

Solana.SystemProgram

Functions for interacting with Solana's System
Program

 Summary

 Functions

 allocate(opts)

 Generates instructions to allocate space to an account.

 assign(opts)

 Generates instructions to assign account ownership to a program.

 create_account(opts)

 Generates instructions to create a new account.

 id()

 The System Program's program ID.

 transfer(opts)

 Generates instructions to transfer lamports from one account to another.

 Functions

 allocate(opts)

Generates instructions to allocate space to an account.
Accepts an account address generated via Solana.Key.with_seed/3, as long
as the base key, program_id, and seed used to generate that address are
provided.
Options
	:account - Required. Public key for the account to allocate

	:space (non_neg_integer/0) - Required. Amount of space in bytes to allocate

	:program_id - Program ID to assign as the owner of the allocated account

	:base - Base public key to use to derive the allocated account address

	:seed (String.t/0) - Seed to use to derive the allocated account address

 assign(opts)

Generates instructions to assign account ownership to a program.
Accepts an account address generated via Solana.Key.with_seed/3, as long
as the base key and seed used to generate that address are provided.
Options
	:account - Required. Public key for the account which will receive a new owner

	:program_id - Required. Program ID to assign as the owner

	:base - Base public key to use to derive the assigned account address

	:seed (String.t/0) - Seed to use to derive the assigned account address

 create_account(opts)

Generates instructions to create a new account.
Accepts a new address generated via Solana.Key.with_seed/3, as long as the
base key and seed used to generate that address are provided.
Options
	:lamports (pos_integer/0) - Required. Amount of lamports to transfer to the created account

	:space (non_neg_integer/0) - Required. Amount of space in bytes to allocate to the created account

	:from - Required. The account that will transfer lamports to the created account

	:new - Required. Public key of the created account

	:program_id - Required. Public key of the program which will own the created account

	:base - Base public key to use to derive the created account's address

	:seed (String.t/0) - Seed to use to derive the created account's address

 id()

The System Program's program ID.

 transfer(opts)

Generates instructions to transfer lamports from one account to another.
Accepts a from address generated via Solana.Key.with_seed/3, as long as the
base key, program_id, and seed used to generate that address are
provided.
Options
	:lamports (pos_integer/0) - Required. Amount of lamports to transfer

	:from - Required. Account that will transfer lamports

	:to - Required. Account that will receive the transferred lamports

	:base - Base public key to use to derive the funding account address

	:seed (String.t/0) - Seed to use to derive the funding account address

	:program_id - Program ID to use to derive the funding account address

Solana.SystemProgram.Nonce

Functions for interacting with the System
Program's
nonce accounts, required for durable transaction
nonces.
These accounts can be useful for offline transactions, as well as transactions
that require more time to generate a transaction signature than the normal
recent_blockhash transaction mechanism gives them (~2 minutes).

 Summary

 Functions

 advance(opts)

 Generates the instructions for advancing a nonce account's stored nonce value.

 authorize(opts)

 Generates the instructions for re-assigning the authority of a nonce account.

 byte_size()

 The size of a serialized nonce account.

 from_account_info(info)

 Translates the result of a Solana.RPC.Request.get_account_info/2 into a
nonce account's information.

 init(opts)

 Generates the instructions for initializing a nonce account.

 withdraw(opts)

 Generates the instructions for withdrawing funds form a nonce account.

 Functions

 advance(opts)

Generates the instructions for advancing a nonce account's stored nonce value.
Options
	:nonce - Required. Public key of the nonce account

	:authority - Required. Public key of the nonce authority

 authorize(opts)

Generates the instructions for re-assigning the authority of a nonce account.
Options
	:nonce - Required. Public key of the nonce account

	:authority - Required. Public key of the nonce authority

	:new_authority - Required. Public key to set as the new nonce authority

 byte_size()

The size of a serialized nonce account.

 from_account_info(info)

 @spec from_account_info(info :: map()) :: map() | :error

Translates the result of a Solana.RPC.Request.get_account_info/2 into a
nonce account's information.

 init(opts)

Generates the instructions for initializing a nonce account.
Options
	:nonce - Required. Public key of the nonce account

	:authority - Required. Public key of the nonce authority

 withdraw(opts)

Generates the instructions for withdrawing funds form a nonce account.
Options
	:nonce - Required. Public key of the nonce account

	:authority - Required. Public key of the nonce authority

	:to - Required. Public key of the account which will get the withdrawn lamports

	:lamports (pos_integer/0) - Required. Amount of lamports to transfer to the created account

Solana.TestValidator

A Solana Test Validator
managed by an Elixir process. This allows you to run unit tests as if you had
the solana-test-validator tool running in another process.
Requirements
Since Solana.TestValidator uses the solana-test-validator binary, you'll
need to have the Solana tool
suite installed.
How to Use
You can use the Solana.TestValidator directly or in a supervision tree.
To use it directly, add the following lines to the beginning of your
test/test_helper.exs file:
alias Solana.TestValidator
{:ok, validator} = TestValidator.start_link(ledger: "/tmp/test-ledger")
ExUnit.after_suite(fn _ -> TestValidator.stop(validator) end)
This will start and stop the solana-test-validator before and after your
tests run.
In a supervision tree
Alternatively, you can add it to your application's supervision tree during
tests. Modify your mix.exs file to make the current environment available to
your application:
def application do
 [mod: {MyApp, env: Mix.env()}]
end
Then, adjust your application's children depending on the environment:
defmodule MyApp do
 use Application

 def start(_type, env: env) do
 Supervisor.start_link(children(env), strategy: :one_for_one)
 end

 defp children(:test) do
 [
 {Solana.TestValidator, ledger: "/tmp/test_ledger"},
 # ... other children
]
 end

 defp children(_) do
 # ...other children
 end
end
Options
You can pass any of the long-form options you would pass to a
solana-test-validator here.
For example, to add your own program to the validator, set the bpf_program
option as the path to your program's build
artifact.
See Solana.TestValidator.start_link/1 for more details.

 Summary

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 get_state(validator)

 Gets the state of a Solana.TestValidator process.

 start_link(config)

 Starts a Solana.TestValidator process linked to the current process.

 stop(validator)

 Stops a Solana.TestValidator process.

 Functions

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 get_state(validator)

Gets the state of a Solana.TestValidator process.
This is useful when you want to check the latest output of the
solana-test-validator.

 start_link(config)

Starts a Solana.TestValidator process linked to the current process.
This process runs and monitors a solana-test-validator in the background.
Options
	:bind_address (String.t/0) - The default value is "0.0.0.0".

	:bpf_program

	:clone

	:config (String.t/0) - The default value is "/home/ayrat/.config/solana/cli/config.yml".

	:dynamic_port_range (String.t/0) - The default value is "1024-65535".

	:faucet_port (pos_integer/0) - The default value is 9900.

	:faucet_sol (pos_integer/0) - The default value is 1000000.

	:gossip_host (String.t/0) - The default value is "127.0.0.1".

	:gossip_port (pos_integer/0)

	:url (String.t/0)

	:ledger (String.t/0) - The default value is "test-ledger".

	:limit_ledger_size (pos_integer/0) - The default value is 10000.

	:mint

	:rpc_port (pos_integer/0) - The default value is 8899.

	:slots_per_epoch (pos_integer/0)

	:warp_slot (String.t/0)

 stop(validator)

Stops a Solana.TestValidator process.
Should be called when you want to stop the solana-test-validator.

 OEBPS/dist/epub-4WIP524F.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);function r(e){document.readyState!=="loading"?e():document.addEventListener("DOMContentLoaded",e)}var l="hll";window.addEventListener("exdoc:loaded",t);function t(){o("[data-group-id]").forEach(e=>{e.addEventListener("mouseenter",i),e.addEventListener("mouseleave",i)})}function i(e){let n=e.currentTarget,a=e.type==="mouseenter",c=n.getAttribute("data-group-id");n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach(u=>{u.classList.toggle(l,a)})}r(()=>{t()});})();

