

 spark

 v2.4.0

 [image: Logo]

 Table of contents

 	How To

 	Upgrading to 2.0

 	Writing Extensions

 	Splitting Up Large DSLs

 	Using Source Annotations

 	Setting up autocomplete

 	Tutorials

 	Spark

 	
 Modules

 	DSLs and Extensions

 	Spark.Dsl

 	Spark.Dsl.Builder

 	Spark.Dsl.Entity

 	Spark.Dsl.Extension

 	Spark.Dsl.Fragment

 	Spark.Dsl.Patch.AddEntity

 	Spark.Dsl.Section

 	Spark.Dsl.Transformer

 	Spark.Dsl.Verifier

 	Spark.Dsl.Verifiers.VerifyEntityUniqueness

 	Options

 	Spark.Options

 	Spark.Options.Helpers

 	Spark.Options.ValidationError

 	Spark.Options.Validator

 	Spark.OptionsHelpers

 	Errors

 	Spark.Error.DslError

 	Internals

 	Spark

 	Spark.CheatSheet

 	Spark.CodeHelpers

 	Spark.Docs

 	Spark.Formatter

 	Spark.Igniter

 	Spark.InfoGenerator

 	Spark.Regex

 	
 Mix Tasks

 	mix spark.cheat_sheets

 	mix spark.cheat_sheets_in_search

 	mix spark.formatter

 	mix spark.install

 	mix spark.replace_doc_links

 Upgrading to 2.0

A 2.0 release was published with a minor breaking change. We decided to vendor NimbleOptions (copy their code into our codebase) so that we could make some necessary modifications to it. What this means for users is primarily that:
	we no longer depend on NimbleOptions
	if you are matching on NimbleOptions.ValidationError you will need to update your code to match on Spark.Options.ValidationError

 Writing Extensions

Writing extensions generally involves three main components.
The DSL declaration
The DSL is declared as a series of Spark.Dsl.Section, which can contain Spark.Dsl.Entity and further Spark.Dsl.Section structs. See Spark.Dsl.Section and Spark.Dsl.Entity for more information.
Transformers
Extension writing gets a bit more complicated when you get into the world of transformers, but this is also where a lot of the power is. Each transformer can declare other transformers it must go before or after, and then is given the opportunity to modify the entirety of the DSL it is extending up to that point. This allows extensions to make rich modifications to the structure in question. See Spark.Dsl.Transformer for more information
Introspection
Use functions in Spark.Dsl.Extension to retrieve the stored values from the DSL and expose them in a module. The convention is to place functions for something like MyApp.MyExtension in MyApp.MyExtension.Info. Using introspection functions like this allows for a richer introspection API (i.e not just getting and retrieving raw values), and it also allows us to add type specs and documentation, which is helpful when working generically. I.e module_as_variable.table() can't be known by dialyzer, whereas Extension.table(module) can be.
Source Annotations
Spark automatically tracks source location information for all DSL elements. This enables better error messages, IDE integration, and debugging capabilities. See Using Source Annotations for details on accessing and using this information in your extensions.

 Splitting Up Large DSLs

When building large DSLs, we face similar problems as things like large configuration files. It can be hard to find what we're looking for, and we can end up scrolling through a lot of DSL code to find what we're interested in. We generally suggest avoiding splitting up your DSLs by default, but it is important to know how to do so when the need arises.
Fragments
Spark offers a tool called Spark.Dsl.Fragment, which allows you to compose a single DSL from multiple smaller DSL modules. There are a few important properties and caveats to understand:
	Fragments are not designed for sharing code between instances of a spark DSL. They are not dynamic. For creating behavior that extends across multiple instances of a DSL, you should write an extension.

	A DSL has all extensions that any of its fragments has.

	Fragments must express what they are a fragment of.

Example
defmodule MyApp.Accounts.User.Fragments.DataLayer do
 use Spark.Dsl.Fragment,
 of: Ash.Resource,
 data_layer: AshPostgres.DataLayer

 postgres do
 table "users"
 repo MyApp.Repo
 ...
 end
end

defmodule MyApp.Accounts.User do
 use Ash.Resource,
 fragments: [MyApp.Accounts.User.Fragments.DataLayer]

 ...
end

 Using Source Annotations

Spark automatically tracks source location information for all DSL elements
using Erlang's :erl_anno module. This provides comprehensive location tracking
for sections, options, and entities, enabling better error messages, IDE
integration, and debugging capabilities.
Source annotations are only enabled when the Elixir compile option debug_info
is enabled (Code.get_compiler_option(:debug_info) returns true). By default,
debug info is disabled in production and in .exs script files, which means
source annotations won't be available in those contexts.
ExUnit Test Cases
If you're defining modules inside ExUnit test cases (which use .exs files),
source annotations won't be available unless you explicitly enable
debug_info in your tests.
setup do
 debug_info? = Code.get_compiler_option(:debug_info)
 Code.put_compiler_option(:debug_info, true)
 on_exit(fn -> Code.put_compiler_option(:debug_info, debug_info?) end)
 :ok
end
What are Source Annotations?
Source annotations capture metadata about where DSL elements are defined in your
source code, including:
	File path: The source file where the DSL element is declared
	Line number: The exact line where the element starts
	End location: The line where DSL blocks end (available on OTP 28+,
requires Elixir Parser Configuration)

defmodule Acme.MixProject do
 use Mix.Project

 def project do
 [
 app: :acme,
 elixirc_options: [
 parser_options: [
 token_metadata: true,
 parser_columns: true
]
],
 # ...
]
 end
end
Spark tracks annotations for:
	Sections: Location where section blocks are defined (section do ... end)
	Options: Location where individual options are set (option_name "value")
	Entities: Location where entities are declared (entity :name do ... end)

Annotation Introspection
Universal Access via Introspection Functions
Spark provides introspection functions that work regardless of whether entities
define an anno_field. These functions access annotation data stored in the DSL
state:
Get DSL state
dsl_state = MyModule.spark_dsl_config()

Section annotations
section_anno = Spark.Dsl.Extension.get_section_anno(dsl_state, [:my_section])
if section_anno do
 # Extract line number (Spark currently provides line numbers only)
 line = case :erl_anno.location(section_anno) do
 {line_num, _col} -> line_num
 line_num -> line_num
 end
 file = :erl_anno.file(section_anno) |> to_string()
 IO.puts("Section defined at #{file}:#{line}")
end

Option annotations
option_anno = Spark.Dsl.Extension.get_opt_anno(dsl_state, [:my_section], :option_name)
if option_anno do
 line = :erl_anno.location(option_anno)
 file = :erl_anno.file(option_anno) |> to_string()
 IO.puts("Option defined at #{file}:#{line}")
end

Entity annotations
entities = Spark.Dsl.Extension.get_entities(dsl_state, [:my_section])
Enum.each(entities, fn entity ->
 case Spark.Dsl.Entity.anno(entity) do
 nil -> :ok
 anno ->
 line = :erl_anno.location(anno)
 file = :erl_anno.file(anno) |> to_string()
 IO.puts("Entity defined at #{file}:#{line}")
 end
end)
Entity Annotations
For direct access to annotations, entities should include the
__spark_metadata__ field in their struct definition:
defmodule MyEntity do
 defstruct [
 :name,
 :__spark_metadata__ # Required for annotation access
]
end

@my_entity %Spark.Dsl.Entity{
 name: :my_entity,
 target: MyEntity,
 schema: [
 name: [type: :atom, required: true]
]
}

Access annotations
entities = Spark.Dsl.Extension.get_entities(dsl_state, [:my_section])
Enum.each(entities, fn entity ->
 if entity_anno = Spark.Dsl.Entity.anno(entity) do
 line = :erl_anno.location(entity_anno)
 file = :erl_anno.file(entity_anno) |> to_string()
 IO.puts("Entity defined at #{file}:#{line}")
 end

 if name_anno = Spark.Dsl.Entity.property_anno(entity, :name) do
 line = :erl_anno.location(name_anno)
 file = :erl_anno.file(name_anno) |> to_string()
 IO.puts("Entity name property defined at #{file}:#{line}")
 end
end)
Working with Annotations
Annotations use Erlang's :erl_anno module, which provides several utilities:
Check if something is an annotation
:erl_anno.is_anno(anno)

Get the location (line number or {line, column})
Note: Spark currently only provides line numbers, not column information
location = :erl_anno.location(anno)

Helper function to extract line number from location
get_line = fn location ->
 case location do
 {line_num, _column} -> line_num # Future column support
 line_num when is_integer(line_num) -> line_num # Current Spark behavior
 end
end

line = get_line.(location)

Get the file (returns :undefined or a charlist)
file = :erl_anno.file(anno)

Convert charlist to string safely
file_string = case file do
 :undefined -> "unknown"
 charlist -> to_string(charlist)
end

Get the end location (OTP 28+, returns :undefined if not available)
if function_exported?(:erl_anno, :end_location, 1) do
 end_location = :erl_anno.end_location(anno)
end
Use Cases
Enhanced Error Messages in Verifiers
Create precise error messages that point to the exact source location:
defmodule MyLibrary.Verifiers.UniqueNames do
 use Spark.Dsl.Verifier

 def verify(dsl_state) do
 entities = Spark.Dsl.Extension.get_entities(dsl_state, [:my_section])

 case find_duplicate(entities) do
 nil -> :ok
 {duplicate_name, duplicate_entity} ->
 location = Spark.Dsl.Entity.anno(duplicate_entity)

 {:error,
 Spark.Error.DslError.exception(
 message: "Duplicate entity name: #{duplicate_name}",
 path: [:my_section, duplicate_name],
 module: Spark.Dsl.Verifier.get_persisted(dsl_state, :module),
 location: location
)}
 end
 end
end
Enhanced Error Messages in Transformers
defmodule MyLibrary.Transformers.ValidateEntity do
 use Spark.Dsl.Transformer

 def transform(dsl_state) do
 entities = Spark.Dsl.Extension.get_entities(dsl_state, [:my_section])

 entities
 |> Enum.each(fn entity ->
 if invalid?(entity) do
 location = Spark.Dsl.Entity.anno(entity)

 raise Spark.Error.DslError,
 message: "Invalid configuration for #{entity.name}",
 path: [:my_section, entity.name],
 location: location
 end
 end)

 {:ok, dsl_state}
 end
end
IDE Integration and Language Servers
Language servers can provide enhanced features using annotation data:
defmodule MyLanguageServer do
 def find_definition(file, line, column) do
 # Find modules that might contain DSL at this location
 modules = find_modules_in_file(file)

 Enum.find_value(modules, fn module ->
 dsl_state = module.spark_dsl_config()

 # Check section annotations
 Enum.find_value(dsl_state, fn {path, config} ->
 if match_location?(config.section_anno, line) do
 {:section, path, config.section_anno}
 end
 end) ||

 # Check entity annotations
 find_entity_at_location(dsl_state, line)
 end)
 end
end
Debugging and Development Tools
Create debugging utilities that show DSL source locations:
defmodule MyLibrary.Debug do
 def inspect_dsl_sources(module) do
 dsl_state = module.spark_dsl_config()

 # Show all DSL elements with their locations
 Enum.each(dsl_state, fn {path, config} ->
 IO.puts("Section #{inspect(path)}:")

 if config.section_anno do
 print_location(" Section", config.section_anno)
 end

 # Show options
 Enum.each(config.opts_anno, fn {opt_name, anno} ->
 print_location(" Option #{opt_name}", anno)
 end)

 # Show entities
 Enum.each(config.entities, fn entity ->
 anno = Spark.Dsl.Entity.anno(entity)
 print_location(" Entity #{entity.name}", anno)
 end)
 end)
 end

 defp print_location(label, anno)
 defp print_location(label, nil), do: nil
 defp print_location(label, anno) do
 line = :erl_anno.location(anno)
 file = :erl_anno.file(anno) |> to_string() |> Path.relative_to_cwd()
 IO.puts(" #{label}: #{file}:#{line}")
 end
end
Best Practices
1. Always Include Location in DslErrors
When creating DslErrors, include location information whenever available:
Get the appropriate annotation for your error context
location = case error_type do
 :section_error ->
 Spark.Dsl.Transformer.get_section_anno(dsl_state, path)
 :option_error ->
 Spark.Dsl.Transformer.get_opt_anno(dsl_state, path, option_name)
 :entity_error ->
 entity = Enum.at(entities, entity_index)
 Spark.Dsl.Entity.anno(entity)
end

{:error,
 Spark.Error.DslError.exception(
 message: "Clear error description",
 path: path,
 module: module,
 location: location
)}
2. Handle Missing Annotations Gracefully
Not all annotations may be available (e.g., programmatically generated DSL
elements):
location_info = if anno do
 line = :erl_anno.location(anno)
 file = :erl_anno.file(anno) |> to_string()
 " at #{file}:#{line}"
else
 ""
end

IO.puts("Error in entity#{location_info}")
3. Use Both Introspection and Anno Fields
	Use introspection functions for universal access in verifiers and
transformers
	Use anno fields in entity structs for convenient access in application
code

4. Check OTP Version for End Location
End location tracking requires OTP 28+:
if function_exported?(:erl_anno, :end_location, 1) do
 end_location = :erl_anno.end_location(anno)
 # Use end location for precise span information
end
Current Limitations
	Column information is not currently tracked (only line numbers)
	End Location is only tracked for OTP28+
	End Location is not available for multiline options

 Setting up autocomplete

Compatibility
Autocomplete is enhanced by a plugin to ElixirSense, and therefore it only works for those who are using ElixirLS. We may consider adding the same extension to other language servers in the future.
Setting it up
DSL Modules
Inside of DSL modules, there is nothing you need to do! Autocomplete "just works" because ElixirSense finds the extension present inside of the Spark dependency.
Options to functions using Spark.Options
To get autocomplete with documentation for the options to your functions, you need to add an @doc metadata that contains the index of the argument that this applies to, and the schema. Here is a complete example:
@schema [
 verbose?: [
 type: :boolean,
 doc: "Whether or not to log verbose messages to the console",
 default: false
]
]

@doc spark_opts: [{1, @schema}]
def do_something(arg, opts \\ []) do
 opts = Spark.Options.validate!(opts, @schema)

 ...
end

 Spark

Spark helps you build powerful and well documented DSLs that come with useful tooling out of the box. DSLs are declared using simple structs, and every DSL has the ability to be extended by the end user. Spark powers all of the DSLs in Ash Framework.
What you get for your DSL when you implement it with Spark:
	Extensibility. Anyone can write extensions for your DSL.
	Autocomplete and in-line documentation: An elixir_sense plugin that "Just Works" for any DSL implemented with Spark.
	Tools to generate documentation for your DSL automatically.
	A mix task to add every part of the DSL to the locals_without_parens of your library automatically.

This library still needs a lot of documentation. It is very stable as it is used for all of the Ash packages,
but PRs are very welcome for more documentation and examples.
Dependency
{:spark, "~> 2.4.0"}
Your First DSL
Lets define a simple DSL that can be used to define data validators. We will call it MyLibrary.Validator.
You will be able to use it like so:
defmodule MyApp.PersonValidator do
 use MyLibrary.Validator

 fields do
 required [:name]
 field :name, :string

 field :email, :string do
 check &String.contains?(&1, "@")
 transform &String.trim/1
 end

 # This syntax is also supported
 # field :email, :string, check: &String.contains?(&1, "@"), transform: &String.trim/1
 end
end

MyApp.PersonValidator.validate(%{name: "Zach", email: " foo@example.com "})
{:ok, %{name: "Zach", email: "foo@example.com"}}

MyApp.PersonValidator.validate(%{name: "Zach", email: " blank "})
:error
There are many ways you can enhance this data validator, but we are using this only as a simple realistic example.
Defining the DSL extension
We define our DSL as a Spark.Dsl.Extension. All DSLs are defined in extensions, but you can define DSLs that use
certain extensions by default, which is what we will do here.
Here we are building up one big nested data structure of a %Spark.Dsl.Section{}, which spark
uses under the hood to allow users to write in the DSL syntax described above.
defmodule MyLibrary.Validator.Dsl do
 defmodule Field do
 # The __spark_metadata__ field is required for Spark entities
 # It stores source location information for better error messages and tooling
 defstruct [:name, :type, :transform, :check, :__spark_metadata__]
 end

 @field %Spark.Dsl.Entity{
 name: :field,
 args: [:name, :type],
 target: Field,
 describe: "A field that is accepted by the validator",
 # you can include nested entities here, but
 # note that you provide a keyword list like below
 # we need to know which struct key to place the nested entities in
 # entities: [
 # key: [...]
 #],
 schema: [
 name: [
 type: :atom,
 required: true,
 doc: "The name of the field"
],
 type: [
 type: {:one_of, [:integer, :string]},
 required: true,
 doc: "The type of the field"
],
 check: [
 type: {:fun, 1},
 doc: "A function that can be used to check if the value is valid after type validation."
],
 transform: [
 type: {:fun, 1},
 doc: "A function that will be used to transform the value after successful validation"
]
]
 }

 @fields %Spark.Dsl.Section{
 name: :fields,
 schema: [
 required: [
 type: {:list, :atom},
 doc: "The fields that must be provided for validation to succeed"
]
],
 entities: [
 @field
],
 describe: "Configure the fields that are supported and required"
 }

 use Spark.Dsl.Extension, sections: [@fields]
end
Defining the DSL module
Now lets define our actual DSL module. This is what people will use when they want to define a module that uses our DSL.
defmodule MyLibrary.Validator do
 use Spark.Dsl,
 default_extensions: [
 extensions: [MyLibrary.Validator.Dsl]
]
end
Now, we can define something using this DSL!
defmodule MyApp.PersonValidator do
 use MyLibrary.Validator

 fields do
 required [:name]
 field :name, :string

 field :email, :string do
 check &String.contains?(&1, "@")
 transform &String.trim/1
 end

 # This syntax is also supported
 # field :email, :string, check: &String.contains?(&1, "@"), transform: &String.trim/1
 end
end
Getting information out of our DSL
For this, we can use various functions in Spark.Dsl.Extension. For example:
iex(1)> Spark.Dsl.Extension.get_entities(MyApp.PersonValidator, :fields)
iex(2)> Spark.Dsl.Extension.get_entities(MyApp.PersonValidator, :fields)
[
 %MyLibrary.Validator.Dsl.Field{
 name: :name,
 type: :string,
 transform: nil,
 check: nil
 },
 %MyLibrary.Validator.Dsl.Field{
 name: :email,
 type: :string,
 transform: &String.trim/1,
 # This is an example of some under the hood magic that spark does
 # to allow you to define a function inside your DSL. This sort of thing
 # is quite difficult to do with hand-rolled DSLs.
 check: &MyApp.PersonValidator.check_0_generated_18E6D5D8C34DFA0EDA8E926DAAEE7E52/1
 }
]
Getting a nice interface to your DSL
Spark provides a nice tool called InfoGenerator which defines functions for you automatically
corresponding to your DSL. Lets give it a whirl. The general pattern is to define a module called
YourDsl.Info for this.
defmodule MyLibrary.Validator.Info do
 use Spark.InfoGenerator, extension: MyLibrary.Validator.Dsl, sections: [:fields]
end
Which can be used like so:
iex(1)> MyLibrary.Validator.Info.fields(MyApp.PersonValidator)
[
 %MyLibrary.Validator.Dsl.Field{
 name: :name,
 type: :string,
 transform: nil,
 check: nil
 },
 %MyLibrary.Validator.Dsl.Field{
 name: :email,
 type: :string,
 transform: &String.trim/1,
 check: &MyApp.PersonValidator.check_0_generated_18E6D5D8C34DFA0EDA8E926DAAEE7E52/1
 }
]
Returns `:error` for fields not specified
iex(2)> MyLibrary.Validator.Info.fields_required(MyApp.PersonValidator)
{:ok, [:name]}
The `!` version can be used for fields you know will always be set
iex(3)> MyLibrary.Validator.Info.fields_required!(MyApp.PersonValidator)
[:name]
Transformers
Transformers are an extremely powerful concept in Spark. They allow for arbitrary transformations
of the data structure backing our Dsl at compile time. This actually allows us to avoid a lot of
magic that you see in macro-based DSLs. We can write simple, regular Elixir code! For instance,
lets say we want to add an :id field to all validators.
defmodule MyLibrary.Validator.Transformers.AddId do
 use Spark.Dsl.Transformer

 # dsl_state here is a map of the underlying DSL data
 def transform(dsl_state) do
 {:ok,
 Spark.Dsl.Transformer.add_entity(dsl_state, [:fields], %MyLibrary.Validator.Dsl.Field{
 name: :id,
 type: :string
 })
 }
 end
end
Now, we can add this transformer to our DSL extension. Modify your extension like so
use Spark.Dsl.Extension, sections: [@fields], transformers: [
 MyLibrary.Validator.Transformers.AddId
]
Now our DSLs will all have an :id field automatically. If we recompile, we can see this in action:
iex(1)> MyLibrary.Validator.Info.fields(MyApp.PersonValidator)
[
 %MyLibrary.Validator.Dsl.Field{
 name: :id,
 type: :string,
 transform: nil,
 check: nil
 },
 %MyLibrary.Validator.Dsl.Field{
 name: :name,
 type: :string,
 transform: nil,
 check: nil
 },
 %MyLibrary.Validator.Dsl.Field{
 name: :email,
 type: :string,
 transform: &String.trim/1,
 check: &MyApp.PersonValidator.check_0_generated_18E6D5D8C34DFA0EDA8E926DAAEE7E52/1
 }
]
Verifiers
Verifiers are similar to transformers, except that they cannot modify the structure. They can
only return :ok or {:error, error}. This is important because when verifiers are running
you know that you are looking at the final structure of the DSL. Prefer to write verifiers
over transformers if you are only doing some kind of validation.
Lets make a verifier that says that all fields in required must also be in fields.
defmodule MyLibrary.Validator.Verifiers.VerifyRequired do
 use Spark.Dsl.Verifier

 # dsl_state here is a map of the underlying DSL data
 def verify(dsl_state) do
 # we can use our info module here, even though we are passing in a
 # map of data and not a module! Very handy.

 required = MyLibrary.Validator.Info.fields_required!(dsl_state)
 fields = Enum.map(MyLibrary.Validator.Info.fields(dsl_state), &(&1.name))

 if Enum.all?(required, &Enum.member?(fields, &1)) do
 :ok
 else
 {:error,
 Spark.Error.DslError.exception(
 message: "All required fields must be specified in fields",
 path: [:fields, :required],
 # this is how you get the original module out.
 # only do this for display purposes.
 # the module is not yet compiled (we're compiling it right now!), so if you
 # try to call functions on it, you will deadlock the compiler
 # and get an error
 module: Spark.Dsl.Verifier.get_persisted(dsl_state, :module)
)}
 end
 end
end
Now we can include this in our DSL extension as well!
use Spark.Dsl.Extension,
 sections: [@fields],
 transformers: [
 MyLibrary.Validator.Transformers.AddId
],
 verifiers: [
 MyLibrary.Validator.Verifiers.VerifyRequired
]
Now if someone tries to define an invalid validator (yo dawg I heard you like validation),
they will get a nice error message:
defmodule MyApp.BadValidator do
 use MyLibrary.Validator

 fields do
 required [:name, :email]
 field :name, :string
 end
end
produces
** (Spark.Error.DslError) [MyApp.BadValidator]
fields -> required:
 All required fields must be specified in fields
 (elixir 1.17.2) lib/process.ex:864: Process.info/2
 (spark 2.2.35) lib/spark/error/dsl_error.ex:30: Spark.Error.DslError.exception/1
 iex:54: MyLibrary.Validator.Verifiers.VerifyRequired.verify/1
 iex:40: anonymous fn/1 in MyApp.BadValidator.__verify_spark_dsl__/1
 (elixir 1.17.2) lib/enum.ex:4353: Enum.flat_map_list/2
 (elixir 1.17.2) lib/enum.ex:4354: Enum.flat_map_list/2
 iex:40: MyApp.BadValidator.__verify_spark_dsl__/1
 (elixir 1.17.2) lib/enum.ex:987: Enum."-each/2-lists^foreach/1-0-"/2
In the future we will add support for including location information in these errors,
by allowing you to look up where a given entity/option was defined in the source code,
so the user gets nice squiggly lines in their editor.
Generating code into the module
We want each validator to have a validate function, so we need to generate some code.
The best way to do that is with another transformer.
defmodule MyLibrary.Validator.Transformers.GenerateValidate do
 use Spark.Dsl.Transformer

 def transform(dsl_state) do

 validate = quote do
 def validate(data) do
 # Our generated code can be very simple
 # because we can get all the info we need from the module
 # in our regular ELixir code.
 MyLibrary.Validator.validate(__MODULE__, data)
 end
 end

 {:ok, Spark.Dsl.Transformer.eval(dsl_state, [], validate)}
 end
end
Now we can include this in our DSL, and then define validate/2,
and we're done!
use Spark.Dsl.Extension,
 sections: [@fields],
 transformers: [
 MyLibrary.Validator.Transformers.AddId,
 MyLibrary.Validator.Transformers.GenerateValidate
],
 verifiers: [
 MyLibrary.Validator.Verifiers.VerifyRequired
]
Now we can define our validation implementation:
defmodule MyLibrary.Validator do
 use Spark.Dsl,
 default_extensions: [
 extensions: [MyLibrary.Validator.Dsl]
]

 def validate(module, data) do
 fields = MyLibrary.Validator.Info.fields(module)
 required = MyLibrary.Validator.Info.fields_required!(module)

 case Enum.reject(required, &Map.has_key?(data, &1)) do
 [] ->
 validate_fields(fields, data)
 missing_required_fields ->
 {:error, :missing_required_fields, missing_required_fields}
 end
 end

 defp validate_fields(fields, data) do
 Enum.reduce_while(fields, {:ok, %{}}, fn field, {:ok, acc} ->
 case Map.fetch(data, field.name) do
 {:ok, value} ->
 case validate_value(field, value) do
 {:ok, value} ->
 {:cont, {:ok, Map.put(acc, field.name, value)}}
 :error ->
 {:halt, {:error, :invalid, field.name}}
 end

 :error ->
 {:cont, {:ok, acc}}
 end
 end)
 end

 defp validate_value(field, value) do
 with true <- type_check(field, value),
 true <- check(field, value) do
 {:ok, transform(field, value)}
 else
 _ ->
 :error
 end
 end

 defp type_check(%{type: :string}, value) when is_binary(value) do
 true
 end

 defp type_check(%{type: :integer}, value) when is_integer(value) do
 true
 end

 defp type_check(_, _), do: false

 defp check(%{check: check}, value) when is_function(check, 1) do
 check.(value)
 end

 defp check(_, _), do: true

 defp transform(%{transform: transform}, value) when is_function(transform, 1) do
 transform.(value)
 end

 defp transform(_, value), do: value
end
Conclusion
There is a lot more to spark, but this example shows you the kinds of things that you can build,
as well as the "programming model" around spark. Specify a DSL, define instances of that DSL,
inspect those instances to do things like generate code or write functions like validate/2 above!

Spark.Dsl behaviour

The primary entry point for defining a DSL.
To define a DSL, add use Spark.Dsl, ...options. The options supported with use Spark.Dsl are:
	:single_extension_kinds (list of atom/0) - The extension kinds that are allowed to have a single value. For example: [:data_layer] The default value is [].

	:many_extension_kinds (list of atom/0) - The extension kinds that can have multiple values. e.g [notifiers: [Notifier1, Notifier2]] The default value is [].

	:untyped_extensions? (boolean/0) - Whether or not to support an extensions key which contains untyped extensions The default value is true.

	:extension_kind_types (keyword/0) - A keyword list of extension kinds and their types, e.g [authorizers: {:list, {:behaviour, Ash.Authorizer}}] The default value is [].

	:extension_kind_docs (keyword/0) - A keyword list of extension kinds and a short documentation snippet to be used when autocompleting that option The default value is [].

	:default_extensions (keyword/0) - The extensions that are included by default. e.g [data_layer: Default, notifiers: [Notifier1]]
Default values for single extension kinds are overwritten if specified by the implementor, while many extension
kinds are appended to if specified by the implementor. The default value is [].

	:opt_schema (keyword/0) - A schema for additional options to accept when calling use YourSpark The default value is [].

	:opts_to_document - A list of atom/0 or :all. Spark automatically detects options and documents them in @moduledoc.
You can instruct Spark to use only a subset of options, e.g. opts_to_document: [:fragments]. The default value is :all.

See the callbacks defined in this module to augment the behavior/compilation of the module getting a Dsl.
Schemas/Data Types
For more information, see Spark.Options.

 Summary

 Types

 entity()

 opts()

 section()

 t()

 Callbacks

 explain(t, opts)

 Validate/add options. Those options will be passed to handle_opts and handle_before_compile

 handle_before_compile(keyword)

 Handle options in the context of the module, after all extensions have been processed. Must return a quote block.

 handle_opts(keyword)

 Handle options in the context of the module. Must return a quote block.

 init(opts)

 Validate/add options. Those options will be passed to handle_opts and handle_before_compile

 verify(module, keyword)

 A callback that is called in the after_verify hook. Only runs on versions of Elixir >= 1.14.0

 Functions

 handle_fragments(dsl_config, fragments)

 is?(module, type)

 Types

 entity()

 @type entity() :: %Spark.Dsl.Entity{
 args: term(),
 auto_set_fields: term(),
 deprecations: term(),
 describe: term(),
 docs: term(),
 entities: term(),
 examples: term(),
 hide: term(),
 identifier: term(),
 imports: term(),
 links: term(),
 modules: term(),
 name: term(),
 no_depend_modules: term(),
 recursive_as: term(),
 schema: term(),
 singleton_entity_keys: term(),
 snippet: term(),
 target: term(),
 transform: term()
}

 opts()

 @type opts() :: keyword()

 section()

 @type section() :: %Spark.Dsl.Section{
 after_define: term(),
 auto_set_fields: term(),
 deprecations: term(),
 describe: term(),
 docs: term(),
 entities: term(),
 examples: term(),
 imports: term(),
 links: term(),
 modules: term(),
 name: term(),
 no_depend_modules: term(),
 patchable?: term(),
 schema: term(),
 sections: term(),
 snippet: term(),
 top_level?: term()
}

 t()

 @type t() :: map()

 Callbacks

 explain(t, opts)

 @callback explain(t(), opts()) :: String.t() | nil

Validate/add options. Those options will be passed to handle_opts and handle_before_compile

 handle_before_compile(keyword)

 @callback handle_before_compile(keyword()) :: Macro.t()

Handle options in the context of the module, after all extensions have been processed. Must return a quote block.

 handle_opts(keyword)

 @callback handle_opts(keyword()) :: Macro.t()

Handle options in the context of the module. Must return a quote block.
If you want to persist anything in the DSL persistence layer,
use @persist {:key, value}. It can be called multiple times to
persist multiple times.

 init(opts)

 @callback init(opts()) :: {:ok, opts()} | {:error, String.t() | term()}

Validate/add options. Those options will be passed to handle_opts and handle_before_compile

 verify(module, keyword)

 @callback verify(
 module(),
 keyword()
) :: term()

A callback that is called in the after_verify hook. Only runs on versions of Elixir >= 1.14.0

 Functions

 handle_fragments(dsl_config, fragments)

 is?(module, type)

Spark.Dsl.Builder

Utilities for building DSL objects programatically, generally used in transformers.

 Summary

 Types

 input()

 result()

 Functions

 defbuilder(arg, list)

 defbuilderp(arg, list)

 handle_nested_builders(opts, nested)

 Handles nested values that may be {:ok, result} or {:error, term}, returning any errors and unwrapping any ok values

 Types

 input()

 @type input() :: {:ok, Spark.Dsl.t()} | {:error, term()} | Spark.Dsl.t()

 result()

 @type result() :: {:ok, Spark.Dsl.t()} | {:error, term()}

 Functions

 defbuilder(arg, list)

 (macro)

 defbuilderp(arg, list)

 (macro)

 handle_nested_builders(opts, nested)

Handles nested values that may be {:ok, result} or {:error, term}, returning any errors and unwrapping any ok values
This allows users of builders to do things like:
dsl_state
|> Ash.Resource.Builder.add_new_action(:update, :publish,
 changes: [
 Ash.Resource.Builder.build_action_change(
 Ash.Resource.Change.Builtins.set_attribute(:state, :published)
)
]
)
If your builder function calls handle_nested_builders/2 with their input before building the thing its building.

Spark.Dsl.Entity

Declares a DSL entity.
A dsl entity represents a dsl constructor who's resulting value is a struct.
This lets the user create complex objects with arbitrary(mostly) validation rules.
The lifecycle of creating entities is complex, happening as Elixir is compiling
the modules in question. Some of the patterns around validating/transforming entities
have not yet solidified. If you aren't careful and don't follow the guidelines listed
here, you can have subtle and strange bugs during compilation. Anything not isolated to
simple value validations should be done in transformers. See Spark.Dsl.Transformer.
An entity has a target indicating which struct will ultimately be built. An entity
also has a schema. This schema is used for documentation, and the options are validated
against it before continuing on with the DSL.
To create positional arguments to the builder, use args. The values provided to
args need to be in the provided schema as well. They will be positional arguments
in the same order that they are provided in the args key.
auto_set_fields will set the provided values into the produced struct (they do not need
to be included in the schema).
transform is a function that takes a created struct and can alter it. This happens immediately
after handling the DSL options, and can be useful for setting field values on a struct based on
other values in that struct. If you need things that aren't contained in that struct, use an
Spark.Dsl.Transformer. This function returns {:ok, new_entity} or {:error, error}, so this can
also be used to validate the entity.
entities allows you to specify a keyword list of nested entities. Nested entities are stored
on the struct in the corresponding key, and are used in the same way entities are otherwise.
singleton_entity_keys specifies a set of entity keys (specified above) that should only have a
single value. This will be validated and unwrapped into nil | single_value on success.
identifier expresses that a given entity is unique by that field, validated by the DSL.
Example
@my_entity %Spark.Dsl.Entity{
 name: :my_entity,
 target: MyStruct,
 schema: [my_field: [type: :atom, required: false]]
}
Once compiled by Spark, entities can be invoked with a keyword list:
my_entity my_field: :value
Or with a do block:
my_entity do
 my_field :value
end
For a full example, see Spark.Dsl.Extension.

 Summary

 Types

 args()

 Specifies positional arguments for an Entity.

 auto_set_fields()

 Set the provided key value pairs in the produced struct. These fields do not need to be included in the Entity's schema.

 deprecations()

 describe()

 User provided documentation.

 docs()

 Internal field. Not set by user.

 entities()

 A keyword list of nested entities.

 entity()

 examples()

 hide()

 id()

 imports()

 links()

 modules()

 name()

 no_depend_modules()

 recursive_as()

 singleton_entity_keys()

 snippet()

 spark_meta()

 t()

 target()

 Defines the struct that will be built from this entity definition.

 transform()

 Specifies a function that will run on the target struct after building.

 Functions

 anno(entity)

 Get the annotation for an entity.

 property_anno(entity, property)

 Get the annotation for a specific property of an entity.

 Types

 args()

 @type args() :: [atom() | {:optional, atom()} | {:optional, atom(), any()}]

Specifies positional arguments for an Entity.
An entity declared like this:
@entity %Spark.Dsl.Entity{
 name: :entity,
 target: Entity,
 schema: [
 positional: [type: :atom, required: true],
 other: [type: :atom, required: false],
],
 args: [:positional]
}
Can be instantiated like this:
entity :positional_argument do
 other :other_argument
end

 auto_set_fields()

 @type auto_set_fields() :: keyword(any())

Set the provided key value pairs in the produced struct. These fields do not need to be included in the Entity's schema.

 deprecations()

 @type deprecations() :: keyword(String.t())

 describe()

 @type describe() :: String.t()

User provided documentation.
Documentation provided in a Entity's describe field will be included by Spark in any generated documentation that includes the Entity.

 docs()

 @type docs() :: String.t()

Internal field. Not set by user.

 entities()

 @type entities() :: keyword(t())

A keyword list of nested entities.

 entity()

 @type entity() :: %{
 :__struct__ => module(),
 :__spark_metadata__ => spark_meta() | nil,
 optional(:__identifier__) => term(),
 optional(atom()) => term()
}

 examples()

 @type examples() :: [String.t()]

 hide()

 @type hide() :: [atom()]

 id()

 @type id() :: term()

 imports()

 @type imports() :: [module()]

 links()

 @type links() :: keyword([String.t()]) | nil

 modules()

 @type modules() :: [atom()]

 name()

 @type name() :: atom() | nil

 no_depend_modules()

 @type no_depend_modules() :: [atom()]

 recursive_as()

 @type recursive_as() :: atom() | nil

 singleton_entity_keys()

 @type singleton_entity_keys() :: [atom()]

 snippet()

 @type snippet() :: String.t()

 spark_meta()

 @opaque spark_meta()

 t()

 @type t() :: %Spark.Dsl.Entity{
 args: args(),
 auto_set_fields: auto_set_fields(),
 deprecations: deprecations(),
 describe: describe(),
 docs: docs(),
 entities: entities(),
 examples: examples(),
 hide: hide(),
 identifier: id(),
 imports: imports(),
 links: links(),
 modules: modules(),
 name: name(),
 no_depend_modules: no_depend_modules(),
 recursive_as: recursive_as(),
 schema: Spark.Options.schema(),
 singleton_entity_keys: singleton_entity_keys(),
 snippet: snippet(),
 target: target(),
 transform: transform()
}

 target()

 @type target() :: module() | nil

Defines the struct that will be built from this entity definition.
The struct will need to have fields for all entities, t:schema/0 fields, and auto_set_fields/0.

 transform()

 @type transform() :: {module(), function :: atom(), args :: [any()]} | nil

Specifies a function that will run on the target struct after building.
@my_entity %Spark.Dsl.Entity{
 name: :my_entity,
 target: MyEntity,
 schema: [
 my_field: [type: :list, required: true]
],
 transform: {MyModule, :max_three_items, []}
}

def max_three_items(my_entity) do
 if length(my_entity.my_field) > 3 do
 {:error, "Can't have more than three items"}
 else
 {:ok, my_entity}
 end
end

 Functions

 anno(entity)

 @spec anno(entity()) :: :erl_anno.anno() | nil

Get the annotation for an entity.
Returns the annotation that was captured when the entity was defined,
or nil if no annotation is available or the entity doesn't have the
:__spark_metadata__ field.

 property_anno(entity, property)

 @spec property_anno(entity(), atom()) :: :erl_anno.anno() | nil

Get the annotation for a specific property of an entity.
Returns the annotation that was captured when the property was set on the entity,
or nil if no annotation is available for that property or the entity doesn't have
the :__spark_metadata__ field.

Spark.Dsl.Extension behaviour

An extension to the Spark DSL.
This allows configuring custom DSL components, whose configurations
can then be read back. This guide is still a work in progress, but should
serve as a decent example of what is possible. Open issues on Github if you
have any issues/something is unclear.
The example at the bottom shows how you might build a (not very contextually
relevant) DSL extension that would be used like so:
defmodule MyApp.Vehicle do
 use Spark.Dsl
end

defmodule MyApp.MyResource do
 use MyApp.Vehicle,
 extensions: [MyApp.CarExtension]

 cars do
 car :ford, :focus, trim: :sedan
 car :toyota, :corolla
 end
end
The extension:
defmodule MyApp.CarExtension do
 @car_schema [
 make: [
 type: :atom,
 required: true,
 doc: "The make of the car"
],
 model: [
 type: :atom,
 required: true,
 doc: "The model of the car"
],
 type: [
 type: :atom,
 required: true,
 doc: "The type of the car",
 default: :sedan
]
]

 @car %Spark.Dsl.Entity{
 name: :car,
 describe: "Adds a car",
 examples: [
 "car :ford, :focus"
],
 target: MyApp.Car,
 args: [:make, :model],
 schema: @car_schema
 }

 @cars %Spark.Dsl.Section{
 name: :cars, # The DSL constructor will be `cars`
 describe: """
 Configure what cars are available.

 More, deeper explanation. Always have a short one liner explanation,
 an empty line, and then a longer explanation.
 """,
 entities: [
 @car # See `Spark.Dsl.Entity` docs
],
 schema: [
 default_manufacturer: [
 type: :atom,
 doc: "The default manufacturer"
]
]
 }

 use Spark.Dsl.Extension, sections: [@cars]
end
Often, we will need to do complex validation/validate based on the configuration
of other resources. Due to the nature of building compile time DSLs, there are
many restrictions around that process. To support these complex use cases, extensions
can include transformers which can validate/transform the DSL state after all basic
sections/entities have been created. See Spark.Dsl.Transformer for more information.
Transformers are provided as an option to use, like so:
use Spark.Dsl.Extension, sections: [@cars], transformers: [
 MyApp.Transformers.ValidateNoOverlappingMakesAndModels
]
By default, the generated modules will have names like __MODULE__.SectionName.EntityName, and that could
potentially conflict with modules you are defining, so you can specify the module_prefix option, which would allow
you to prefix the modules with something like __MODULE__.Dsl, so that the module path generated might be something like
__MODULE__.Dsl.SectionName.EntityName, and you could then have the entity struct be __MODULE__.SectionName.EntityName
without conflicts.
To expose the configuration of your DSL, define functions that use the
helpers like get_entities/2 and get_opt/3. For example:
defmodule MyApp.Cars do
 def cars(resource) do
 Spark.Dsl.Extension.get_entities(resource, [:cars])
 end
end

MyApp.Cars.cars(MyResource)
[%MyApp.Car{...}, %MyApp.Car{...}]
See the documentation for Spark.Dsl.Section and Spark.Dsl.Entity for more information

 Summary

 Types

 t()

 Callbacks

 add_extensions()

 explain(map)

 module_imports()

 persisters()

 sections()

 transformers()

 verifiers()

 Functions

 default_section_config()

 doc(sections, depth \\ 1)

 See Spark.CheatSheet.doc/2.

 doc_index(sections, depth \\ 1)

 See Spark.CheatSheet.doc_index/2.

 expand_alias(ast, env)

 expand_alias_no_require(ast, env)

 expand_literals(ast, acc, fun)

 fetch_opt(resource, path, value, configurable? \\ false)

 fetch_persisted(map, key)

 Fetch a value that was persisted while transforming or compiling the resource, e.g :primary_key

 get_entities(map, path)

 Get the entities configured for a given section

 get_entity_dsl_patches(extensions, section_path)

 get_opt(resource, path, value, default \\ nil, configurable? \\ false)

 Get an option value for a section at a given path.

 get_opt_anno(dsl_state, path, opt_name)

 Get the annotation for a specific option in a section.

 get_opt_config(resource, path, value)

 get_persisted(resource, key, default \\ nil)

 Get a value that was persisted while transforming or compiling the resource, e.g :primary_key

 get_recursive_entities_for_path(sections, list)

 get_section_anno(dsl_state, path)

 Get the annotation for a section at the given path.

 macro_env_anno(env, do_block)

 module_concat(values)

 monotonic_number(key)

 run_transformers(mod, transformers, spark_dsl_config, env)

 set_docs(items)

 shuffle_opts_to_end(keyword, entity_args, schema, entities, opts)

 spark_function_info(arg1)

 validate_and_transform_dsl_patches(dsl_patches, module \\ nil)

 validate_and_transform_entity(entity, path \\ [], module \\ nil)

 Validates and transforms an entity structure, ensuring nested entities are properly formatted.

 Types

 t()

 @type t() :: module()

 Callbacks

 add_extensions()

 @callback add_extensions() :: [module()]

 explain(map)

 (optional)

 @callback explain(map()) :: String.t() | nil

 module_imports()

 @callback module_imports() :: [module()]

 persisters()

 @callback persisters() :: [module()]

 sections()

 @callback sections() :: [Spark.Dsl.section()]

 transformers()

 @callback transformers() :: [module()]

 verifiers()

 @callback verifiers() :: [module()]

 Functions

 default_section_config()

 @spec default_section_config() :: %{
 section_anno: :erl_anno.anno() | nil,
 entities: list(),
 opts: Keyword.t(),
 opts_anno: Keyword.t(:erl_anno.anno() | nil)
}

 doc(sections, depth \\ 1)

See Spark.CheatSheet.doc/2.

 doc_index(sections, depth \\ 1)

See Spark.CheatSheet.doc_index/2.

 expand_alias(ast, env)

 expand_alias_no_require(ast, env)

 expand_literals(ast, acc, fun)

 fetch_opt(resource, path, value, configurable? \\ false)

 fetch_persisted(map, key)

Fetch a value that was persisted while transforming or compiling the resource, e.g :primary_key

 get_entities(map, path)

Get the entities configured for a given section

 get_entity_dsl_patches(extensions, section_path)

 get_opt(resource, path, value, default \\ nil, configurable? \\ false)

Get an option value for a section at a given path.
Checks to see if it has been overridden via configuration.

 get_opt_anno(dsl_state, path, opt_name)

 @spec get_opt_anno(map() | module(), atom() | [atom()], atom()) ::
 :erl_anno.anno() | nil

Get the annotation for a specific option in a section.

 get_opt_config(resource, path, value)

 get_persisted(resource, key, default \\ nil)

Get a value that was persisted while transforming or compiling the resource, e.g :primary_key

 get_recursive_entities_for_path(sections, list)

 get_section_anno(dsl_state, path)

 @spec get_section_anno(map() | module(), atom() | [atom()]) :: :erl_anno.anno() | nil

Get the annotation for a section at the given path.

 macro_env_anno(env, do_block)

 @spec macro_env_anno(env :: Macro.Env.t(), do_block :: Macro.t()) :: :erl_anno.anno()

 module_concat(values)

 monotonic_number(key)

 run_transformers(mod, transformers, spark_dsl_config, env)

 set_docs(items)

 shuffle_opts_to_end(keyword, entity_args, schema, entities, opts)

 spark_function_info(arg1)

 validate_and_transform_dsl_patches(dsl_patches, module \\ nil)

 validate_and_transform_entity(entity, path \\ [], module \\ nil)

Validates and transforms an entity structure, ensuring nested entities are properly formatted.
This function recursively processes a DSL entity and its nested entities, converting
single entity values to lists where needed and validating the structure.
Parameters
	entity - The entity to validate and transform
	path - The current path in the DSL structure (for error reporting)
	module - The module context (for error reporting)

Returns
Returns the transformed entity with normalized nested entity structures.

Spark.Dsl.Fragment

Allows splitting up a DSL into multiple modules, potentially organizing large DSLs
Use the of option to expression what your fragment is a fragment of. You can add
extensions as you would normally to that resource, and they will be added to the
parent resource.
defmodule MyApp.Resource.Graphql do
 use Spark.Dsl.Fragment, of: Ash.Resource, extensions: AshGraphql.Resource

 graphql do
 ...
 end
end
Then add the fragment to the parent resource.
defmodule MyApp.Resource do
 use Ash.Resource, fragments: [MyApp.Resource.Graphql], ...
end

Spark.Dsl.Patch.AddEntity

Supply this when defining an extension to add entity builders to another extension's section.
For example
@entity %Spark.Dsl.Entity{
 ...
}

@dsl_patch %Spark.Dsl.Patch.AddEntity{section_path: [:foo, :bar], entity: @entity}

use Spark.Dsl.Extension, dsl_patches: [@dsl_patch]

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Spark.Dsl.Patch.AddEntity{
 entity: Spark.Dsl.Entity.t(),
 section_path: [atom()]
}

Spark.Dsl.Section

Declares a DSL section.
A dsl section allows you to organize related configurations. All extensions
configure sections, they cannot add DSL builders to the top level. This
keeps things organized, and concerns separated.
A section may have nested sections, which will be configured the same as other sections.
Getting the options/entities of a section is done by providing a path, so you would
use the nested path to retrieve that configuration. See Spark.Dsl.Extension.get_entities/2
and Spark.Dsl.Extension.get_opt/4.
A section may have entities, which are constructors that produce instances of structs.
For more on entities, see Spark.Dsl.Entity.
A section may also have a schema, which you can learn more about in Spark.Options. Spark will produce
builders for those options, so that they may be configured. They are retrieved with
Spark.Dsl.Extension.get_opt/4.
To create a section that is available at the top level (i.e not nested inside of its own name), use
top_level?: true. Remember, however, that this has no effect on sections nested inside of other sections.
For a full example, see Spark.Dsl.Extension.

 Summary

 Types

 auto_set_fields()

 describe()

 User provided documentation.

 docs()

 Internal field. Not set by user.

 entities()

 examples()

 imports()

 links()

 modules()

 name()

 no_depend_modules()

 patchable?()

 sections()

 snippet()

 t()

 top_level?()

 Determines whether a section can be declared directly in a module.

 Types

 auto_set_fields()

 @type auto_set_fields() :: keyword(any())

 describe()

 @type describe() :: String.t()

User provided documentation.
Documentation provided in a Section's describe field will be included by Spark in any generated documentation that includes the Section.

 docs()

 @type docs() :: String.t()

Internal field. Not set by user.

 entities()

 @type entities() :: [Spark.Dsl.Entity.t()]

 examples()

 @type examples() :: [String.t()]

 imports()

 @type imports() :: [module()]

 links()

 @type links() :: nil | keyword([String.t()])

 modules()

 @type modules() :: [atom()]

 name()

 @type name() :: atom()

 no_depend_modules()

 @type no_depend_modules() :: [atom()]

 patchable?()

 @type patchable?() :: boolean()

 sections()

 @type sections() :: [t()]

 snippet()

 @type snippet() :: String.t()

 t()

 @type t() :: %Spark.Dsl.Section{
 after_define: term(),
 auto_set_fields: auto_set_fields(),
 deprecations: term(),
 describe: describe(),
 docs: docs(),
 entities: entities(),
 examples: examples(),
 imports: imports(),
 links: links(),
 modules: modules(),
 name: name(),
 no_depend_modules: no_depend_modules(),
 patchable?: patchable?(),
 schema: Spark.Options.schema(),
 sections: sections(),
 snippet: snippet(),
 top_level?: top_level?()
}

 top_level?()

 @type top_level?() :: boolean()

Determines whether a section can be declared directly in a module.
When top_level?: true, that Section's DSL can be declared outside of a do block in a module.
Example
A Section declared with top_level?: true:
@my_section %Spark.Dsl.Section{
 top_level?: true,
 name: :my_section,
 schema: [my_field: [type: :atom, required: true]]
}
Can be declared like this:
defmodule MyDslModule do
 my_field :value
end
With top_level?: false, the DSL section would need to be declared explicitly/:
defmodule MyDslModule do
 my_section do
 my_field :value
 end
end

Spark.Dsl.Transformer behaviour

A transformer manipulates and/or validates the entire DSL state of a resource.
It's transform/1 takes a map, which is just the values/configurations at each point
of the DSL. Don't manipulate it directly, if possible, instead use functions like
get_entities/3 and replace_entity/4 to manipulate it.
Use the after?/1 and before?/1 callbacks to ensure that your transformer
runs either before or after some other transformer.
Return true in after_compile/0 to have the transformer run in an after_compile hook,
but keep in mind that no modifications to the dsl structure will be retained, so there is no
real point in modifying the dsl that you return.

 Summary

 Types

 warning()

 Callbacks

 after?(module)

 after_compile?()

 before?(module)

 transform(map)

 Functions

 add_entity(dsl_state, path, entity, opts \\ [])

 async_compile(dsl, fun)

 Runs the function in an async compiler.

 build_entity(extension, path, name, opts)

 build_entity!(extension, path, name, opts)

 eval(dsl, bindings, block)

 Add a quoted expression to be evaluated in the DSL module's context.

 fetch_option(dsl_state, path, option)

 fetch_persisted(dsl, key)

 get_entities(dsl_state, path)

 get_opt_anno(dsl_state, path, option)

 get_option(dsl_state, path, option, default \\ nil)

 get_persisted(dsl, key, default \\ nil)

 get_section_anno(dsl_state, path)

 persist(dsl, key, value)

 Saves a value into the dsl config with the given key.

 remove_entity(dsl_state, path, func)

 replace_entity(dsl_state, path, replacement, matcher \\ nil)

 set_option(dsl_state, path, option, value)

 sort(transformers)

 Types

 warning()

 @type warning() :: String.t() | {String.t(), :erl_anno.anno()}

 Callbacks

 after?(module)

 @callback after?(module()) :: boolean()

 after_compile?()

 @callback after_compile?() :: boolean()

 before?(module)

 @callback before?(module()) :: boolean()

 transform(map)

 @callback transform(map()) ::
 :ok
 | {:ok, map()}
 | {:error, term()}
 | {:warn, map(), warning() | [warning()]}
 | :halt

 Functions

 add_entity(dsl_state, path, entity, opts \\ [])

 async_compile(dsl, fun)

Runs the function in an async compiler.
Use this for compiling new modules and having them compiled
efficiently asynchronously.

 build_entity(extension, path, name, opts)

 build_entity!(extension, path, name, opts)

 eval(dsl, bindings, block)

Add a quoted expression to be evaluated in the DSL module's context.
Use this extremely sparingly. It should almost never be necessary, unless building certain
extensions that require the module in question to define a given function.
What you likely want is either one of the DSL introspection functions, like Spark.Dsl.Extension.get_entities/2
or Spark.Dsl.Extension.get_opt/5). If you simply want to store a custom value that can be retrieved easily, or
cache some precomputed information onto the resource, use persist/3.
Provide the dsl state, bindings that should be unquote-able, and the quoted block
to evaluate in the module. For example, if we wanted to support a resource.primary_key() function
that would return the primary key (this is unnecessary, just an example), we might do this:
fields = the_primary_key_fields

dsl_state =
 Spark.Dsl.Transformer.eval(
 dsl_state,
 [fields: fields],
 quote do
 def primary_key() do
 unquote(fields)
 end
 end
)

 fetch_option(dsl_state, path, option)

 fetch_persisted(dsl, key)

 get_entities(dsl_state, path)

 get_opt_anno(dsl_state, path, option)

 @spec get_opt_anno(map(), [atom()], atom()) :: :erl_anno.anno() | nil

 get_option(dsl_state, path, option, default \\ nil)

 get_persisted(dsl, key, default \\ nil)

 get_section_anno(dsl_state, path)

 @spec get_section_anno(map(), [atom()]) :: :erl_anno.anno() | nil

 persist(dsl, key, value)

Saves a value into the dsl config with the given key.
This can be used to precompute some information and cache it onto the resource,
or simply store a computed value. It can later be retrieved with Spark.Dsl.Extension.get_persisted/3.

 remove_entity(dsl_state, path, func)

 replace_entity(dsl_state, path, replacement, matcher \\ nil)

 set_option(dsl_state, path, option, value)

 sort(transformers)

Spark.Dsl.Verifier behaviour

A verifier gets the dsl state and can return :ok or :error.
In a verifier, you can reference and depend on other modules without causing compile time dependencies.

 Summary

 Types

 warning()

 Callbacks

 verify(map)

 Functions

 fetch_option(dsl_state, path, option)

 See Spark.Dsl.Transformer.fetch_option/3.

 get_entities(dsl_state, path)

 See Spark.Dsl.Transformer.get_entities/2.

 get_option(dsl_state, path, option)

 See Spark.Dsl.Transformer.get_option/3.

 get_option(dsl_state, path, option, default)

 See Spark.Dsl.Transformer.get_option/4.

 get_persisted(dsl, key)

 See Spark.Dsl.Transformer.get_persisted/2.

 get_persisted(dsl, key, default)

 See Spark.Dsl.Transformer.get_persisted/3.

 Types

 warning()

 @type warning() :: String.t() | {String.t(), :erl_anno.anno()}

 Callbacks

 verify(map)

 @callback verify(map()) :: :ok | {:error, term()} | {:warn, warning() | [warning()]}

 Functions

 fetch_option(dsl_state, path, option)

See Spark.Dsl.Transformer.fetch_option/3.

 get_entities(dsl_state, path)

See Spark.Dsl.Transformer.get_entities/2.

 get_option(dsl_state, path, option)

See Spark.Dsl.Transformer.get_option/3.

 get_option(dsl_state, path, option, default)

See Spark.Dsl.Transformer.get_option/4.

 get_persisted(dsl, key)

See Spark.Dsl.Transformer.get_persisted/2.

 get_persisted(dsl, key, default)

See Spark.Dsl.Transformer.get_persisted/3.

Spark.Dsl.Verifiers.VerifyEntityUniqueness

Verifies that each entity that has an identifier is unique at each path.

 Summary

 Functions

 verify(dsl_state)

 Callback implementation for Spark.Dsl.Verifier.verify/1.

 Functions

 verify(dsl_state)

Callback implementation for Spark.Dsl.Verifier.verify/1.

Spark.Options

Provides a standard API to handle keyword-list-based options.
This module began its life as a vendored form of NimbleOptions,
meaning that we copied it from NimbleOptions into Spark.
We had various features to add to it, and the spirit of nimble
options is to be as lightweight as possible. With that in mind,
we were advised to vendor it. We would like to thank the authors
of NimbleOptions for their excellent work, and their blessing
to transplant their work into Spark.
Spark.Options allows developers to create schemas using a
pre-defined set of options and types. The main benefits are:
	A single unified way to define simple static options
	Config validation against schemas
	Automatic doc generation
	More types over what is provided by NimbleOptions
	Compile time validators that are highly optimized and produce structs. See Spark.Options.Validator.
	Shared logic between Spark DSLs and options lists.

Schema Options
These are the options supported in a schema. They are what
defines the validation for the items in the given schema.
	:type - The type of the option item. The default value is :any.

	:required (boolean/0) - Defines if the option item is required. The default value is false.

	:default (term/0) - The default value for the option item if that option is not specified. This value
is validated according to the given :type. This means that you cannot
have, for example, type: :integer and use default: "a string".

	:keys (keyword/0) - Available for types :keyword_list, :non_empty_keyword_list, and :map,
it defines which set of keys are accepted for the option item. The value of the
:keys option is a schema itself. For example: keys: [foo: [type: :atom]].
Use :* as the key to allow multiple arbitrary keys and specify their schema:
keys: [*: [type: :integer]].

	:deprecated (String.t/0) - Defines a message to indicate that the option item is deprecated. The message will be displayed as a warning when passing the item.

	:private? (boolean/0) - Defines an option as private, used with Spark.Options.Validator The default value is false.

	:hide (one or a list of atom/0) - A list of keys that should be hidden when generating documentation

	:as (atom/0) - A name to remap the option to when used in DSLs. Not supported in regular option parsing

	:snippet (String.t/0) - A snippet to use when autocompleting DSLs. Not supported in regular option parsing

	:links (term/0) - A keyword list of links to include in DSL documentation for the option item.

	:doc (String.t/0 or false) - The documentation for the option item.

	:subsection (String.t/0) - The title of separate subsection of the options' documentation

	:type_doc (String.t/0 or false) - The type doc to use in the documentation for the option item. If false,
no type documentation is added to the item. If it's a string, it can be
anything. For example, you can use "a list of PIDs", or you can use
a typespec reference that ExDoc can link to the type definition, such as
"`t:binary/0`". You can use Markdown in this documentation. If the
:type_doc option is not present, Spark.Options tries to produce a type
documentation automatically if it can do it unambiguously. For example,
if type: :integer, Spark.Options will use integer/0 as the
auto-generated type doc.

	:type_spec (Macro.t/0) - The quoted spec to use in the typespec for the option item. You should use this
when the auto-generated spec is not specific enough. For example, if you are performing
custom validation on an option (with the {:custom, ...} type), then the
generated type spec for that option will always be term/0, but you can use
this option to customize that. The value for this option must be a quoted Elixir
term. For example, if you have an :exception option that is validated with a
{:custom, ...} type (based on is_exception/1), you can override the type
spec for that option to be quote(do: Exception.t()). Available since v1.1.0.

Types
	:any - Any type.

	:keyword_list - A keyword list.

	:non_empty_keyword_list - A non-empty keyword list.

	{:keyword_list, schema} - A keyword list matching the given options schema.

	:non_empty_keyword_list - A non-empty keyword list.

	{:non_empty_keyword_list, schema} - A non-empty keyword list matching the given options schema.

	:map - A map consisting of :atom keys. Shorthand for {:map, :atom, :any}.
Keys can be specified using the keys option.

	{:map, key_type, value_type} - A map consisting of key_type keys and
value_type values.

	:atom - An atom.

	:string - A string.

	:boolean - A boolean.

	:integer - An integer.

	:non_neg_integer - A non-negative integer.

	:pos_integer - A positive integer (greater than zero).

	:float - A float.

	:number - An integer or a float.

	:timeout - A non-negative integer or the atom :infinity.

	:pid - A PID (process identifier).

	:reference - A reference (see reference/0).

	nil - The value nil itself. Available since v1.0.0.

	:mfa - A named function in the format {module, function, arity} where
arity is a list of arguments. For example, {MyModule, :my_fun, [arg1, arg2]}.

	:mod_arg - A module along with arguments, such as {MyModule, arguments}.
Usually used for process initialization using start_link and similar. The
second element of the tuple can be any term.

	:regex - A regex

	:regex_as_mfa - A regex pattern that gets converted to an MFA tuple for caching.
Accepts a compiled regex (~r/pattern/flags), a string pattern ("pattern"), or a
tuple of pattern and flags ({"pattern", "flags"}) and converts it to
{Spark.Regex, :cache, [source, opts]} to work around OTP 28's restriction on
compile-time regex creation.

	:fun - Any function.

	{:fun, arity} - Any function with the specified arity.

	{:fun, args_types} - A function with the specified arguments.

	{:fun, args_types, return_type} - A function with the specified arguments and return type.

	{:in, choices} or {:one_of, choices} - A value that is a member of one of the choices. choices
should be a list of terms or a Range. The value is an element in said
list of terms, that is, value in choices is true.

	{:struct, struct_name} - An instance of the struct type given.

	:struct - An instance of any struct

	{:tagged_tuple, tag, inner_type} - maps to {tag, type}

	{:spark_behaviour, behaviour} - expects a module that implements the given behaviour, and can be specified with options, i.e mod or {mod, [opt: :val]}

	{:spark_behaviour, behaviour, builtin_module} - Same as the above, but also accepts a builtin_module. The builtin_module is used to provide additional options for the elixir_sense plugin.

	{:spark_function_behaviour, behaviour, {function_mod, arity}} - expects a module that implements the given behaviour, and can be specified with options, i.e mod or {mod, [opt: :val]}, that also has a special module that supports being provided an anonymous function or MFA as the :fun option.

	{:spark_function_behaviour, behaviour, builtin_module, {function_mod, arity}} - Same as the above, but also accepts a builtin_module. The builtin_module is used to provide additional options for the elixir_sense plugin.

	{:behaviour, behaviour} - expects a module that implements a given behaviour.

	{:protocol, protocol} - expects a value for which the protocol is implemented.

	{:impl, protocol} - expects a module for which the protocol is implemented.

	{:spark, dsl_module} - expects a module that is a Spark.Dsl

	{:mfa_or_fun, arity} - expects a function or MFA of a corresponding arity.

	{:spark_type, module, builtin_function} - a behaviour that defines builtin_function/0 that returns a list of atoms that map to built in variations of that thing.

	{:spark_type, module, builtin_function, templates} - same as the above, but includes additional templates for elixir_sense autocomplete

	:literal -> any literal value. Maps to :any, but is used for documentation.

	{:literal, value} -> exactly the value specified.

	:quoted -> retains the quoted value of the code provided to the option

	{:wrap_list, type} -> Allows a single value or a list of values.

	{:custom, mod, fun, args} - A custom type. The related value must be validated
by mod.fun(values, ...args). The function should return {:ok, value} or
{:error, message}. args allow for passing static arguments to the function. If
the list is empty, the function must have exactly one argument, i.e. {:custom, mod, fun, []}
expects mod.fun/1 to exist.

	{:and, subtypes} - A value that matches all of the given subtypes. The value is
matched against the subtypes in the order specified in the list of subtypes. If
all of the subtypes match then the value is valid. If one of the subtypes matches and updates (casts) a given value, then value is updated and
passed in to any subsequent checks.
If one of the subtypes is a keyword list or map, you won't be able to pass
:keys directly. For this reason :keyword_list, :non_empty_keyword_list,
and :map are special cased and can be used as subtypes with
{:keyword_list, keys}, {:non_empty_keyword_list, keys} or {:map, keys}.

	{:or, subtypes} - A value that matches one of the given subtypes. The value is
matched against the subtypes in the order specified in the list of subtypes. If
one of the subtypes matches and updates (casts) the given value, the updated
value is used. For example: {:or, [:string, :boolean, {:fun, 2}]}. If one of the
subtypes is a keyword list or map, you won't be able to pass :keys directly. For this reason,
:keyword_list, :non_empty_keyword_list, and :map are special cased and can
be used as subtypes with {:keyword_list, keys}, {:non_empty_keyword_list, keys} or {:map, keys}.
For example, a type such as {:or, [:boolean, keyword_list: [enabled: [type: :boolean]]]}
would match either a boolean or a keyword list with the :enabled boolean option in it.

	{:list, subtype} - A list where all elements match subtype. subtype can be any
of the accepted types listed here. Empty lists are allowed. The resulting validated list
contains the validated (and possibly updated) elements, each as returned after validation
through subtype. For example, if subtype is a custom validator function that returns
an updated value, then that updated value is used in the resulting list. Validation
fails at the first element that is invalid according to subtype. If subtype is
a keyword list or map, you won't be able to pass :keys directly. For this reason,
:keyword_list, :non_empty_keyword_list, and :map are special cased and can
be used as the subtype by using {:keyword_list, keys}, {:non_empty_keyword_list, keys}
or {:keyword_list, keys}. For example, a type such as
{:list, {:keyword_list, enabled: [type: :boolean]}} would a list of keyword lists,
where each keyword list in the list could have the :enabled boolean option in it.

	{:tuple, list_of_subtypes} - A tuple as described by tuple_of_subtypes.
list_of_subtypes must be a list with the same length as the expected tuple.
Each of the list's elements must be a subtype that should match the given element in that
same position. For example, to describe 3-element tuples with an atom, a string, and
a list of integers you would use the type {:tuple, [:atom, :string, {:list, :integer}]}.
Available since v0.4.1.

Example
iex> schema = [
...> producer: [
...> type: :non_empty_keyword_list,
...> required: true,
...> keys: [
...> module: [required: true, type: :mod_arg],
...> concurrency: [
...> type: :pos_integer,
...>]
...>]
...>]
...>]
...>
...> config = [
...> producer: [
...> concurrency: 1,
...>]
...>]
...>
...> {:error, %Spark.Options.ValidationError{} = error} = Spark.Options.validate(config, schema)
...> Exception.message(error)
"required :module option not found, received options: [:concurrency] (in options [:producer])"
Nested Option Items
Spark.Options allows option items to be nested so you can recursively validate
any item down the options tree.
Example
iex> schema = [
...> producer: [
...> required: true,
...> type: :non_empty_keyword_list,
...> keys: [
...> rate_limiting: [
...> type: :non_empty_keyword_list,
...> keys: [
...> interval: [required: true, type: :pos_integer]
...>]
...>]
...>]
...>]
...>]
...>
...> config = [
...> producer: [
...> rate_limiting: [
...> interval: :oops!
...>]
...>]
...>]
...>
...> {:error, %Spark.Options.ValidationError{} = error} = Spark.Options.validate(config, schema)
...> Exception.message(error)
"invalid value for :interval option: expected positive integer, got: :oops! (in options [:producer, :rate_limiting])"
Validating Schemas
Each time validate/2 is called, the given schema itself will be validated before validating
the options.
In most applications the schema will never change but validating options will be done
repeatedly.
To avoid the extra cost of validating the schema, it is possible to validate the schema once,
and then use that valid schema directly. This is done by using the new!/1 function first, and
then passing the returned schema to validate/2.
Create the Schema at Compile Time
If your option schema doesn't include any runtime-only terms in it (such as anonymous
functions), you can call new!/1 to validate the schema and returned a compiled schema
at compile time. This is an efficient way to avoid doing any unnecessary work at
runtime. See the example below for more information.
Example
iex> raw_schema = [
...> hostname: [
...> required: true,
...> type: :string
...>]
...>]
...>
...> schema = Spark.Options.new!(raw_schema)
...> Spark.Options.validate([hostname: "elixir-lang.org"], schema)
{:ok, hostname: "elixir-lang.org"}
Calling new!/1 from a function that receives options will still validate the schema each time
that function is called. Declaring the schema as a module attribute is supported:
@options_schema Spark.Options.new!([...])
This schema will be validated at compile time. Calling docs/1 on that schema is also
supported.

 Summary

 Types

 option_schema()

 schema()

 A schema.

 t()

 The Spark.Options struct embedding a validated schema.

 type()

 Functions

 docs(schema, options \\ [])

 Returns documentation for the given schema.

 merge(left, right, section \\ nil)

 Merges two schemas, and sets the subsection option on all options on the right side.

 new!(schema)

 Validates the given schema and returns a wrapped schema to be used with validate/2.

 option_typespec(schema)

 Returns the quoted typespec for any option described by the given schema.

 validate(options, schema)

 Validates the given options with the given schema.

 validate!(options, schema)

 Validates the given options with the given schema and raises if they're not valid.

 Types

 option_schema()

 @type option_schema() :: [
 type: type(),
 required: boolean(),
 default: any(),
 keys: schema(),
 private?: boolean(),
 deprecated: String.t(),
 doc: String.t(),
 subsection: String.t() | nil,
 type_doc: false | String.t(),
 rename_to: atom(),
 hide: [atom()],
 as: atom(),
 snippet: String.t(),
 links: keyword()
]

 schema()

 @type schema() :: [{atom(), option_schema()}]

A schema.
See the module documentation for more information.

 t()

 @type t() :: %Spark.Options{schema: schema()}

The Spark.Options struct embedding a validated schema.
See the Validating Schemas section in
the module documentation.

 type()

 @type type() ::
 :any
 | :keyword_list
 | :non_empty_keyword_list
 | :map
 | {:map, key_type :: type(), value_type :: type()}
 | :atom
 | :string
 | :boolean
 | :integer
 | :non_neg_integer
 | :pos_integer
 | :float
 | :number
 | :timeout
 | :pid
 | :reference
 | :mfa
 | :mod_arg
 | :fun
 | {:fun, arity :: non_neg_integer()}
 | {:fun, [type()]}
 | {:fun, [type()], type()}
 | {:in, [any()] | Range.t()}
 | {:and,
 [
 type()
 | {:keyword_list, schema()}
 | {:non_empty_keyword_list, schema()}
 | {:map, schema()}
]}
 | {:or,
 [
 type()
 | {:keyword_list, schema()}
 | {:non_empty_keyword_list, schema()}
 | {:map, schema()}
]}
 | {:list,
 type()
 | {:keyword_list, schema()}
 | {:non_empty_keyword_list, schema()}
 | {:map, schema()}}
 | {:tuple, [type()]}
 | {:one_of, [any()] | Range.t()}
 | {:tagged_tuple, tag :: atom(), inner_type :: type()}
 | {:spark_behaviour, module()}
 | {:spark_behaviour, module(), module()}
 | {:spark_function_behaviour, module(), {module(), integer()}}
 | {:spark_function_behaviour, module(), module(), {module(), integer()}}
 | {:behaviour, module()}
 | {:protocol, module()}
 | {:impl, module()}
 | {:spark, module()}
 | {:mfa_or_fun, non_neg_integer()}
 | {:spark_type, module(), builtin_function :: atom()}
 | {:spark_type, module(), builtin_function :: atom(),
 templates :: [String.t()]}
 | {:struct, module()}
 | {:wrap_list, type()}
 | :literal
 | {:literal, any()}
 | :quoted
 | {:custom, module(), function :: atom(), args :: [any()]}

 Functions

 docs(schema, options \\ [])

 @spec docs(
 schema() | t(),
 keyword()
) :: String.t()

Returns documentation for the given schema.
You can use this to inject documentation in your docstrings. For example,
say you have your schema in a module attribute:
@options_schema [...]
With this, you can use docs/1 to inject documentation:
@doc "Supported options:\n#{Spark.Options.docs(@options_schema)}"
Options
	:nest_level - an integer deciding the "nest level" of the generated
docs. This is useful when, for example, you use docs/2 inside the :doc
option of another schema. For example, if you have the following nested schema:
nested_schema = [
 allowed_messages: [type: :pos_integer, doc: "Allowed messages."],
 interval: [type: :pos_integer, doc: "Interval."]
]
then you can document it inside another schema with its nesting level increased:
schema = [
 producer: [
 type: {:or, [:string, keyword_list: nested_schema]},
 doc:
 "Either a string or a keyword list with the following keys:\n\n" <>
 Spark.Options.docs(nested_schema, nest_level: 1)
],
 other_key: [type: :string]
]

 merge(left, right, section \\ nil)

 @spec merge(schema(), schema(), String.t() | nil) :: schema()

Merges two schemas, and sets the subsection option on all options on the right side.

 new!(schema)

 @spec new!(schema()) :: t()

Validates the given schema and returns a wrapped schema to be used with validate/2.
If the given schema is not valid, raises a Spark.Options.ValidationError.

 option_typespec(schema)

 @spec option_typespec(schema() | t()) :: Macro.t()

Returns the quoted typespec for any option described by the given schema.
The returned quoted code represents the type union for all possible
keys in the schema, alongside their type. Nested keyword lists are
spec'ed as keyword/0.
Usage
Because of how typespecs are treated by the Elixir compiler, you have
to use unquote/1 on the return value of this function to use it
in a typespec:
@type option() :: unquote(Spark.Options.option_typespec(my_schema))
This function returns the type union for a single option: to give you
flexibility to combine it and use it in your own typespecs. For example,
if you only validate part of the options through Spark.Options, you could
write a spec like this:
@type my_option() ::
 {:my_opt1, integer()}
 | {:my_opt2, boolean()}
 | unquote(Spark.Options.option_typespec(my_schema))
If you want to spec a whole schema, you could write something like this:
@type options() :: [unquote(Spark.Options.option_typespec(my_schema))]
Example
schema = [
 int: [type: :integer],
 number: [type: {:or, [:integer, :float]}]
]

@type option() :: unquote(Spark.Options.option_typespec(schema))
The code above would essentially compile to:
@type option() :: {:int, integer()} | {:number, integer() | float()}

 validate(options, schema)

 @spec validate(
 keyword(),
 schema() | t()
) ::
 {:ok, validated_options :: keyword()}
 | {:error, Spark.Options.ValidationError.t()}

Validates the given options with the given schema.
See the module documentation for what a schema is.
If the validation is successful, this function returns {:ok, validated_options}
where validated_options is a keyword list. If the validation fails, this
function returns {:error, validation_error} where validation_error is a
Spark.Options.ValidationError struct explaining what's wrong with the options.
You can use raise/1 with that struct or Exception.message/1 to turn it into a string.
Examples
iex> Spark.Options.validate(
...> [
...> a: 123,
...> b: 4.2,
...> c: :"",
...> d: "a string"
...>],
...> [
...> a: [type: :pos_integer],
...> b: [type: :number],
...> c: [type: :atom],
...> d: [type: :string]
...>]
...>)
{:ok, [a: 123, b: 4.2, c: :"", d: "a string"]}

iex> Spark.Options.validate(
...> [
...> a: 0,
...> b: -13,
...>],
...> [
...> a: [type: :pos_integer],
...> b: [type: :string]
...>]
...>)
{:error,
 %Spark.Options.ValidationError{
 message: "invalid value for :a option: expected positive integer, got: 0",
 key: :a,
 value: 0,
 keys_path: []
 }}

 validate!(options, schema)

 @spec validate!(
 keyword(),
 schema() | t()
) :: validated_options :: keyword()

Validates the given options with the given schema and raises if they're not valid.
This function behaves exactly like validate/2, but returns the options directly
if they're valid or raises a Spark.Options.ValidationError exception otherwise.

Spark.Options.Helpers

Helpers for use with spark options

 Summary

 Functions

 append_doc!(options, field, to_append)

 make_optional!(options, field)

 make_required!(options, field)

 set_default!(options, field, value)

 set_type!(options, field, type)

 Functions

 append_doc!(options, field, to_append)

 make_optional!(options, field)

 make_required!(options, field)

 set_default!(options, field, value)

 set_type!(options, field, type)

Spark.Options.ValidationError exception

An error that is returned (or raised) when options are invalid.
Since this is an exception, you can either raise it directly with raise/1
or turn it into a message string with Exception.message/1.
See %Spark.Options.ValidationError{} for documentation on the fields.

 Summary

 Types

 t()

 Functions

 %Spark.Options.ValidationError{}

 The error struct.

 Types

 t()

 @type t() :: %Spark.Options.ValidationError{
 __exception__: true,
 key: atom(),
 keys_path: [atom()],
 message: term(),
 value: term()
}

 Functions

 %Spark.Options.ValidationError{}

 (struct)

The error struct.
Only the following documented fields are considered public. All other fields are
considered private and should not be referenced:
	:key (atom/0) - The key that did not successfully validate.

	:keys_path (list of atom/0) - If the key is nested, this is the path to the key.

	:value (term/0) - The value that failed to validate. This field is nil if there
was no value provided.

Spark.Options.Validator

Defines a validator module for an option schema.
Validators create structs with keys for each option in their schema,
and an optimized validate, and validate! function on that struct.
Upgrading from options lists
You can pass the option define_deprecated_access?: true to use Spark.Options.Validator,
which will make it such that options[:foo] will still work, but will emit a deprecation warning.
This cane help with smoother upgrades.
Example
Given a module like the following:
defmodule MyOptions do
 use Spark.Options.Validator, schema: [
 foo: [
 type: :string,
 required: true
],
 bar: [
 type: :string
],
 baz: [
 type: :integer,
 default: 10
]
]
end
You can use it like so:
@doc """
Does a thing

Options

#{MyOptions.docs()}
"""
@doc spark_opts: [{1, MyOptions.schema()}]
def your_function(arg, opts \\ []) do
 options = MyOptions.validate!(opts)

 options.foo
 options.bar
end

Spark.OptionsHelpers

Helpers for working with options lists.

 Summary

 Functions

 append_doc!(options, field, to_append)

 deprecated

 docs(schema)

 deprecated

 Creates markdown documentation for a given schema.

 make_optional!(options, field)

 deprecated

 make_required!(options, field)

 deprecated

 merge_schemas(left, right, section \\ nil)

 deprecated

 set_default!(options, field, value)

 deprecated

 set_type!(options, field, type)

 deprecated

 validate(opts, schema)

 deprecated

 validate!(opts, schema)

 deprecated

 Functions

 append_doc!(options, field, to_append)

 This function is deprecated. use `Spark.Options.Helpers.append_doc!/3`.

 docs(schema)

 This function is deprecated. Use `Spark.Options.docs/1` instead.

Creates markdown documentation for a given schema.

 make_optional!(options, field)

 This function is deprecated. use `Spark.Options.Helpers.make_optional!/2`.

 make_required!(options, field)

 This function is deprecated. use `Spark.Options.Helpers.make_required!/2`.

 merge_schemas(left, right, section \\ nil)

 This function is deprecated. Use `Spark.Options.merge/3` instead.

 set_default!(options, field, value)

 This function is deprecated. use `Spark.Options.Helpers.set_default!/3`.

 set_type!(options, field, type)

 This function is deprecated. use `Spark.Options.Helpers.set_type!/3`.

 validate(opts, schema)

 This function is deprecated. Use `Spark.Options.validate/2` instead.

 validate!(opts, schema)

 This function is deprecated. Use `Spark.Options.validate!/2` instead.

Spark.Error.DslError exception

Used when a DSL is incorrectly configured.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Spark.Error.DslError{
 __exception__: true,
 location: :erl_anno.anno() | nil,
 message: String.t() | any(),
 module: nil | module(),
 path: [:atom],
 stacktrace: any()
}

Spark

 [image: Spark Logo]
[image: Spark CI]
[image: License: MIT]
[image: Hex version badge]
[image: Hexdocs badge]
[image: REUSE status]
[image: Ask DeepWiki]
Build powerful, extensible DSLs with exceptional developer experience
Spark is a framework for creating declarative domain-specific languages in
Elixir. It transforms simple struct definitions into rich, extensible DSLs that
come with autocomplete, documentation generation, and sophisticated tooling
built right in.
Quick Example
Here's how you can build a data validator DSL with Spark:
defmodule MyApp.PersonValidator do
 use MyLibrary.Validator

 fields do
 required [:name]
 field :name, :string

 field :email, :string do
 check &String.contains?(&1, "@")
 transform &String.trim/1
 end
 end
end

MyApp.PersonValidator.validate(%{name: "Zach", email: " foo@example.com "})
{:ok, %{name: "Zach", email: "foo@example.com"}}
The DSL definition itself is clean and declarative:
@field %Spark.Dsl.Entity{
 name: :field,
 args: [:name, :type],
 target: Field,
 describe: "A field that is accepted by the validator",
 schema: [
 name: [type: :atom, required: true, doc: "The name of the field"],
 type: [type: {:one_of, [:integer, :string]}, required: true, doc: "The type of the field"],
 check: [type: {:fun, 1}, doc: "A function to validate the value"],
 transform: [type: {:fun, 1}, doc: "A function to transform the value"]
]
}

@fields %Spark.Dsl.Section{
 name: :fields,
 entities: [@field],
 describe: "Configure the fields that are supported and required"
}

use Spark.Dsl.Extension, sections: [@fields]
What You Get Out of the Box
	🔧 Extensible Architecture - Anyone can write extensions for your DSL,
making it infinitely customizable
	🧠 Smart Autocomplete - Built-in ElixirSense integration provides
intelligent code completion and inline documentation in your editor
	📚 Auto Documentation - Generate comprehensive documentation for your DSL
automatically, including all options and usage examples
	⚡ Developer Tools - Mix tasks for formatting, code generation, and
maintaining locals_without_parens automatically
	🔄 Compile-time Processing - Use transformers to modify DSL structure$
during compilation and verifiers to validate correctness
	🎯 Type Safety - Rich schema validation ensures DSL usage is correct at
compile time with helpful error messages
	🔍 Introspection - Built-in tools to inspect and query DSL definitions
programmatically at runtime

Installation
Add spark to your list of dependencies in mix.exs:
def deps do
 [
 {:spark, "~> 2.3"}
]
end
Getting Started
The best way to get started is with our comprehensive tutorial that walks you
through building a complete DSL from scratch:
📖 Get Started with Spark -
Build a data validator DSL step by step
Quick Start Checklist
	Define your DSL structure using Spark.Dsl.Section and Spark.Dsl.Entity
	Create your extension with use Spark.Dsl.Extension
	Build your DSL module that users will import
	Add transformers and verifiers for advanced behavior
	Generate helper functions with Spark.InfoGenerator

Each step is covered in detail in the tutorial above.
Documentation
📚 Guides & Tutorials
	Get Started with Spark -
Complete tutorial building a validator DSL
	Writing Extensions -
Deep dive into extension development
	Setup Autocomplete -
Configure editor integration
	Split Up Large DSLs -
Organize complex DSL definitions
	Use Source Annotations -
Leverage location tracking for better errors

🔧 API Reference
	HexDocs - Complete API documentation
	Core Modules: Spark.Dsl.Extension, Spark.Dsl.Entity,
Spark.Dsl.Section
	Advanced Features: Spark.Dsl.Transformer, Spark.Dsl.Verifier,
Spark.InfoGenerator

Production Ready
Spark is battle-tested and powers all DSLs in the Ash Framework,
handling complex real-world applications with thousands of DSL definitions.
Whether you're building configuration DSLs, workflow orchestrators, or
domain-specific languages for your business logic, Spark provides the foundation
for production-grade solutions.
Links
	GitHub - Source code and issue
tracking
	Hex.pm - Package repository
	HexDocs - API documentation
	Ash Framework - See Spark in action
	Discord - Community chat
	Forum -
Discussion forum

 Summary

 Functions

 extensions(module)

 Returns the extensions a given DSL uses

 implements_behaviour?(module, behaviour)

 Returns true if the module implements the specified behavior

 otp_app(module)

 Returns the configured otp_app of a given DSL instance

 sparks(otp_app, spark)

 Returns all modules that implement the specified behaviour for a given otp_app.

 Functions

 extensions(module)

Returns the extensions a given DSL uses

 implements_behaviour?(module, behaviour)

Returns true if the module implements the specified behavior

 otp_app(module)

Returns the configured otp_app of a given DSL instance

 sparks(otp_app, spark)

Returns all modules that implement the specified behaviour for a given otp_app.
Should only be called at runtime, not at compile time, as it will have
inconsistent results at compile time.

Spark.CheatSheet

Tools to generate cheat sheets for spark DSLs

 Summary

 Functions

 cheat_sheet(extension)

 Generate a cheat sheet for a given DSL

 doc(sections, depth \\ 1)

 Generate a markdown bullet list documentation for a list of sections

 doc_index(sections, depth \\ 0, prefix \\ "module")

 Generate a table of contents for a list of sections

 section_cheat_sheet(section, path \\ [])

 Functions

 cheat_sheet(extension)

Generate a cheat sheet for a given DSL

 doc(sections, depth \\ 1)

Generate a markdown bullet list documentation for a list of sections

 doc_index(sections, depth \\ 0, prefix \\ "module")

Generate a table of contents for a list of sections

 section_cheat_sheet(section, path \\ [])

Spark.CodeHelpers

Helpers for meta programming around code and code snippets

 Summary

 Functions

 code_identifier(code)

 Given a section of Elixir AST, generate a hash of the code to help with
generating unique names.

 lift_functions(value, key, caller)

 Lift anonymous and captured functions.

 prewalk(ast, fun)

 Copy of Macro.prewalk/2 w/ a branch accumulator

 prewalk(ast, acc, branch_acc, fun)

 Copy of Macro.prewalk/3 w/ a branch accumulator

 traverse(ast, acc, branch_acc, pre, post)

 A copy of the corresponding Macro.traverse function that has a separate accumulator that only goes down each branch, only for pre

 Functions

 code_identifier(code)

 @spec code_identifier(Macro.t()) :: binary()

Given a section of Elixir AST, generate a hash of the code to help with
generating unique names.

 lift_functions(value, key, caller)

 @spec lift_functions(Macro.t(), atom(), Macro.Env.t()) :: Macro.t()

Lift anonymous and captured functions.
Acts as an AST transformer to allow these kinds of functions to be added in
the AST:
In the case of captured functions, it ensures they are all captured remote
functions (ie calls with both the module and function name present) - this
often requires the definition of a new public function on the target module.
In the case of anonymous functions, it converts them into a new public
function on the module and returns a (remote) function capture much like that
of above.

 prewalk(ast, fun)

Copy of Macro.prewalk/2 w/ a branch accumulator

 prewalk(ast, acc, branch_acc, fun)

Copy of Macro.prewalk/3 w/ a branch accumulator

 traverse(ast, acc, branch_acc, pre, post)

A copy of the corresponding Macro.traverse function that has a separate accumulator that only goes down each branch, only for pre

Spark.Docs

Tools for generating docs & search data for extras.

 Summary

 Functions

 redirects_for(dsls, existing_redirects \\ %{})

 Builds a redirects map for a DSL from mod/funs to their respective DSL docs.

 search_data_for(dsl)

 Generates searchable documentation suitable for ex_doc

 Functions

 redirects_for(dsls, existing_redirects \\ %{})

Builds a redirects map for a DSL from mod/funs to their respective DSL docs.
This is useful for redirecting links to private DSL modules (like Ash.Resource.Dsl.Actions.Create)
to their corresponding documentation pages (like dsl-ash-resource#actions-create).
Example
redirects_for([Ash.Resource.Dsl])
=> %{
"Ash.Resource.Dsl.Actions.Create" => "dsl-ash-resource#actions-create",
...
}
These redirects can be passed to ex_doc's :redirects option to handle links
to private DSL modules.

 search_data_for(dsl)

Generates searchable documentation suitable for ex_doc

Spark.Formatter

Formats Spark modules.
Currently, it is very simple, and will only reorder the outermost sections according to some rules.
Plugin
Include the plugin into your .formatter.exs like so plugins: [Spark.Formatter].
If no configuration is provided, it will sort all top level DSL sections alphabetically.
Section Order
To provide a custom section order, add configuration to your app, for example:
config :spark, :formatter,
 remove_parens?: true,
 "Ash.Resource": [
 section_order: [
 :resource,
 :postgres,
 :attributes,
 :relationships,
 :aggregates,
 :calculations
]
],
 "MyApp.Resource": [
 # Use this if you use a module that is not the spark DSL itself.
 # For example, you might have a "base" that you use instead that sets some simple defaults.

 # This tells us what the actual thing is so we know what extensions are included automatically.
 type: Ash.Resource,

 # Tell us what extensions might be added under the hood
 extensions: [MyApp.ResourceExtension],
 section_order: [...]
]
Any sections found that aren't in that list will be left in the order that they were in, the sections
in the list will be sorted "around" those sections. E.g the following list: [:code_interface, :attributes] can be interpreted as
"ensure that code_interface comes before attributes, and don't change the rest".

 Summary

 Functions

 entity_builders(entity)

 features(opts)

 Callback implementation for Mix.Tasks.Format.features/1.

 format(contents, opts)

 Callback implementation for Mix.Tasks.Format.format/2.

 Functions

 entity_builders(entity)

 features(opts)

Callback implementation for Mix.Tasks.Format.features/1.

 format(contents, opts)

Callback implementation for Mix.Tasks.Format.format/2.

Spark.Igniter

Helpers for patching Spark DSLs.

 Summary

 Functions

 add_extension(igniter, module, type, key, extension, singleton? \\ false)

 Adds an extension to a DSL module.

 find(igniter, module, callback)

 Searches for a match to a zipper function inside a DSL and all of its fragments.

 get_option(igniter, module, path)

 Gets an option at a given path within a DSL.
We will attempt to expand literals using the environment at the path
but this is only guaranteed to return the AST at that option, not necessarily a value.

 has_extension(igniter, module, type, key, extension)

 Returns {igniter, true} if the module has the extension, or {igniter, false} otherwise.

 prepend_to_section_order(igniter, type, sections)

 Prepends a new section or list of sections to the section order in a formatter configuration.

 remove_extension(igniter, module, type, key, extension, singleton? \\ false)

 Removes an extension from a DSL module.

 set_option(igniter, module, path, value, updater \\ &{:ok, &1})

 Sets an option at a given path within in a DSL.

 update_dsl(igniter, module, path, value, func)

 Functions

 add_extension(igniter, module, type, key, extension, singleton? \\ false)

 @spec add_extension(Igniter.t(), module(), module(), atom(), module(), boolean()) ::
 Igniter.t()

Adds an extension to a DSL module.

 find(igniter, module, callback)

 @spec find(Igniter.t(), module(), (module(), Sourceror.Zipper.t() ->
 {:ok, value} | :error)) ::
 {:ok, Igniter.t(), module(), value} | {:error, Igniter.t()}
when value: term()

Searches for a match to a zipper function inside a DSL and all of its fragments.

 get_option(igniter, module, path)

 @spec get_option(Igniter.t(), module(), [atom()]) ::
 {Igniter.t(), {:ok, Macro.t()} | :error}

Gets an option at a given path within a DSL.
We will attempt to expand literals using the environment at the path
but this is only guaranteed to return the AST at that option, not necessarily a value.
Additionally, this only finds options set explicitly in the body of the resource, not by an extension.

 has_extension(igniter, module, type, key, extension)

 @spec has_extension(Igniter.t(), module(), module(), atom(), module()) ::
 {Igniter.t(), boolean()}

Returns {igniter, true} if the module has the extension, or {igniter, false} otherwise.

 prepend_to_section_order(igniter, type, sections)

Prepends a new section or list of sections to the section order in a formatter configuration.

 remove_extension(igniter, module, type, key, extension, singleton? \\ false)

 @spec remove_extension(Igniter.t(), module(), module(), atom(), module(), boolean()) ::
 Igniter.t()

Removes an extension from a DSL module.

 set_option(igniter, module, path, value, updater \\ &{:ok, &1})

 @spec set_option(
 Igniter.t(),
 module(),
 dsl_path :: [atom()],
 value :: term(),
 (Sourceror.Zipper.t() ->
 {:ok, Sourceror.Zipper.t()} | {:error, term() | [term()]} | :error)
) :: Igniter.t()

Sets an option at a given path within in a DSL.

 update_dsl(igniter, module, path, value, func)

Spark.InfoGenerator

Used to dynamically generate configuration functions for Spark extensions
based on their DSL.
Usage
defmodule MyConfig do
 use Spark.InfoGenerator, extension: MyDslExtension, sections: [:my_section]
end

 Summary

 Types

 options()

 Functions

 generate_config_functions(extension, sections)

 Given an extension and a list of DSL sections generate individual config
functions for each option.

 generate_entity_functions(extension, sections)

 Given an extension and a list of DSL sections, generate an entities function
which returns a list of entities.

 generate_options_functions(extension, sections)

 Given an extension and a list of DSL sections, generate an options function
which returns a map of all configured options for a resource (including
defaults).

 spec_for_type(terminal, opts)

 Types

 options()

 @type options() :: [extension: module(), sections: [atom()]]

 Functions

 generate_config_functions(extension, sections)

 (macro)

 @spec generate_config_functions(module(), [atom()]) :: Macro.t()

Given an extension and a list of DSL sections generate individual config
functions for each option.

 generate_entity_functions(extension, sections)

 (macro)

 @spec generate_entity_functions(module(), [atom()]) :: Macro.t()

Given an extension and a list of DSL sections, generate an entities function
which returns a list of entities.

 generate_options_functions(extension, sections)

 (macro)

 @spec generate_options_functions(module(), [atom()]) :: Macro.t()

Given an extension and a list of DSL sections, generate an options function
which returns a map of all configured options for a resource (including
defaults).

 spec_for_type(terminal, opts)

Spark.Regex

Utilities for caching compiled regular expressions.
This module provides a way to cache compiled regular expressions in persistent_term
to work around OTP 28's restriction on compile-time regex creation.

 Summary

 Functions

 cache(source, opts)

 Retrieves a cached regex or compiles and caches it if not found.

 Functions

 cache(source, opts)

Retrieves a cached regex or compiles and caches it if not found.
Parameters
	source - The regex source string
	opts - The regex compilation options (e.g., "ims", "u", etc.)

Returns
The compiled Regex struct.
Examples
iex> Spark.Regex.cache("foo.*bar", "i")
~r/foo.*bar/i

mix spark.cheat_sheets

Creates cheat sheets for each Extension provided. Useful for CI with --check flag.
Example
mix spark.cheat_sheets --extensions MyApp.Foo,MyApp.Bar

Options
	--extensions - The list of extensions to generate cheat sheets for

mix spark.cheat_sheets_in_search

Includes generated cheat sheets in the search bar

 Summary

 Functions

 run(opts)

 Callback implementation for Mix.Task.run/1.

 Functions

 run(opts)

Callback implementation for Mix.Task.run/1.

mix spark.formatter

Manages a variable called spark_locals_without_parens in the .formatter.exs from a list of DSL extensions.

 Summary

 Functions

 all_entity_builders_everywhere(sections, dsl_patches, extensions, path \\ [])

 run(opts)

 Callback implementation for Mix.Task.run/1.

 Functions

 all_entity_builders_everywhere(sections, dsl_patches, extensions, path \\ [])

 run(opts)

 @spec run(term()) :: no_return()

Callback implementation for Mix.Task.run/1.

mix spark.install

Installs spark by adding the Spark.Formatter plugin, and providing a basic configuration for it in config.exs.

mix spark.replace_doc_links

Replaces any documentation links with text appropriate for hex docs.
This makes projects support

 Summary

 Functions

 run(argv)

 Callback implementation for Mix.Task.run/1.

 Functions

 run(argv)

Callback implementation for Mix.Task.run/1.

 OEBPS/dist/epub-4WIP524F.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);function r(e){document.readyState!=="loading"?e():document.addEventListener("DOMContentLoaded",e)}var l="hll";window.addEventListener("exdoc:loaded",t);function t(){o("[data-group-id]").forEach(e=>{e.addEventListener("mouseenter",i),e.addEventListener("mouseleave",i)})}function i(e){let n=e.currentTarget,a=e.type==="mouseenter",c=n.getAttribute("data-group-id");n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach(u=>{u.classList.toggle(l,a)})}r(()=>{t()});})();

