

 spawn_sdk

 v1.4.3

 Table of contents

 	Spawn Elixir SDK

 	

 	Modules

 	SpawnSdk

 	SpawnSdk.Actor

 	SpawnSdk.ActorChannel

 	SpawnSdk.ActorGroupRef

 	SpawnSdk.ActorRef

 	SpawnSdk.Channel.Subscriber

 	SpawnSdk.Context

 	SpawnSdk.Defact

 	SpawnSdk.Flow

 	SpawnSdk.Flow.Broadcast

 	SpawnSdk.Flow.Forward

 	SpawnSdk.Flow.Pipe

 	SpawnSdk.Flow.SideEffect

 	SpawnSdk.Interface

 	SpawnSdk.System

 	SpawnSdk.System.SpawnSystem

 	SpawnSdk.System.Supervisor

 	SpawnSdk.Value

 	Exceptions

 	SpawnSdk.Actor.MalformedActor

Spawn Elixir SDK

Spawn Elixir SDK is the support library for the Spawn Actors System.
Spawn is a Stateful Serverless Platform for providing the multi-language Actor Model. For a broader understanding of Spawn, please consult its official repository.
The advantage of the Elixir SDK over other SDKs is in Elixir's native ability to connect directly to an Erlang network. For this reason, the Elixir SDK allows any valid Elixir application to be part of a Spawn network without needing a sidecar attached.

 Installation

Available in Hex, the package can be installed
by adding spawn_sdk and spawn_statestores_* to your list of dependencies in mix.exs:
def deps do
 [
 {:spawn_sdk, "~> 1.4.3"},

 # You can uncomment one of those dependencies if you are going to use Persistent Actors
 #{:spawn_statestores_mariadb, "~> 1.4.3"},
 #{:spawn_statestores_postgres, "~> 1.4.3"},
]
end

 Deploy

Following the steps below, you will have a valid Elixir application to use in a Spawn cluster. However, you will still need to generate a container image with your application to use it together with the Spawn Operator for Kubernetes.

 How to use

After creating an Elixir application project, create the protobuf files for your business domain.
It is common practice to do this under the priv/ folder. Let's demonstrate an example:
syntax = "proto3";

package io.eigr.spawn.example;

message MyState {
 int32 value = 1;
}

message MyBusinessMessage {
 int32 value = 1;
}
It is important to try to separate the type of message that must be stored as the actors' state from the type of messages
that will be exchanged between their actors' operations calls. In other words, the Actor's internal state is also represented
as a protobuf type, and it is a good practice to separate these types of messages from the others in its business domain.
In the above case MyState is the type protobuf that represents the state of the Actor that we will create later
while MyBusiness is the type of message that we will send and receive from this Actor.
Now that we have defined our input and output types as Protobuf types we will need to compile these files to generate their respective Elixir modules. An example of how to do this can be found here
NOTE: You need to have installed the elixir plugin for protoc. More information on how to obtain and install the necessary tools can be found here here

Now that the protobuf types have been created we can proceed with the code. Example definition of an Actor.

 Named Actors

In this example we are creating an actor in a Named way, that is, it is a known actor at compile time.
defmodule SpawnSdkExample.Actors.MyActor do
 use SpawnSdk.Actor,
 name: "jose", # Default is Full Qualified Module name a.k.a __MODULE__
 kind: :named, # Default is already :named. Valid are :named | :unnamed
 stateful: true, # Default is already true
 state_type: Io.Eigr.Spawn.Example.MyState, # or :json if you don't care about protobuf types
 deactivate_timeout: 30_000,
 snapshot_timeout: 2_000

 require Logger

 alias Io.Eigr.Spawn.Example.{MyState, MyBusinessMessage}

 # The callback could also be referenced to an existing function:
 # action "SomeAction", &some_defp_handler/0
 # action "SomeAction", &SomeModule.handler/1
 # action "SomeAction", &SomeModule.handler/2

 init fn %Context{state: state} = ctx ->
 Logger.info("[joe] Received InitRequest. Context: #{inspect(ctx)}")

 Value.of()
 |> Value.state(state)
 end

 action "Sum", fn %Context{state: state} = ctx, %MyBusinessMessage{value: value} = data ->
 Logger.info("Received Request: #{inspect(data)}. Context: #{inspect(ctx)}")

 new_value = if is_nil(state), do: value, else: (state.value || 0) + value

 Value.of(%MyBusinessMessage{value: new_value}, %MyState{value: new_value})
 end
end

We declare two actions that the Actor can do. An initialization action that will be called every time an Actor instance is created and an action that will be responsible for performing a simple sum.
Note Keep in mind that any Action that has the names present in the list below will behave as an initialization Action and will be called when the Actor is started (if there is more than one Action with one of these names, only one will be called).
Defaults inicialization Action names: "init", "Init", "setup", "Setup"

 Unnamed Actor

We can also create Unnamed Dynamic/Lazy actors, that is, despite having its unnamed behavior defined at compile time, a Lazy actor will only have a concrete instance when it is associated with an identifier/name at runtime. Below follows the same previous actor being defined as Unnamed.
defmodule SpawnSdkExample.Actors.UnnamedActor do
 use SpawnSdk.Actor,
 name: "unnamed_actor",
 kind: :unnamed,
 state_type: Io.Eigr.Spawn.Example.MyState

 require Logger

 alias Io.Eigr.Spawn.Example.{MyState, MyBusinessMessage}

 action "Sum", fn %Context{state: state} = ctx, %MyBusinessMessage{value: value} = data ->
 Logger.info("Received Request: #{inspect(data)}. Context: #{inspect(ctx)}")

 new_value = if is_nil(state), do: value, else: (state.value || 0) + value

 Value.of(%MyBusinessMessage{value: new_value}, %MyState{value: new_value})
 end
end
Notice that the only thing that has changed is the the kind of actor, in this case the kind is set to :unnamed.
NOTE: Can Elixir programmers think in terms of Named vs Unnamed actors as more or less known at startup vs dynamically supervised/registered? That is, defining your actors directly in the supervision tree or using a Dynamic Supervisor for that.

 Side Effects

Actors can also emit side effects to other Actors as part of their response. See an example:
defmodule SpawnSdkExample.Actors.UnnamedActor do
 use SpawnSdk.Actor,
 kind: :unnamed,
 stateful: false,
 state_type: Io.Eigr.Spawn.Example.MyState

 require Logger

 alias Io.Eigr.Spawn.Example.{MyState, MyBusinessMessage}

 alias SpawnSdk.Flow.SideEffect

 action "Sum", fn %MyBusinessMessage{value: value} = data, %Context{state: state} = ctx ->
 Logger.info("Received Request: #{inspect(data)}. Context: #{inspect(ctx)}")

 new_value = if is_nil(state), do: value, else: (state.value || 0) + value

 result = %MyBusinessMessage{value: new_value}
 new_state = %MyState{value: new_value}

 Value.of()
 |> Value.response(result)
 |> Value.state(new_state)
 |> Value.effects(
 # This returns a list of side effects. In this case containing only one effect. However, multiple effects can be chained together,
 # just by calling the effect function as shown here.
 # The delay means that it will be fired asynchronously after 5000 milliseconds (5 seconds)
 # If only one effect is desired, you can also choose to use the to/3 function together with Value.effect().
 # Example: Values.effect(SideEffect.to(name, func, payload))
 SideEffect.of()
 |> SideEffect.effect("joe", :sum, result, delay: 5_000, scheduled_to: ~U[2020-01-01 10:00:00.145Z])
 # use delay or scheduled_to, not both
)
 end
end

In the example above we see that the Actor joe will receive a request as a side effect from the Actor who issued this effect.
Side effects do not interfere with an actor's request-response flow. They will "always" be processed asynchronously and any response sent back from the Actor receiving the effect will be ignored by the effector.

 Pipe and Forward

Actors can also route some actions to other actors as part of their response. See an example:
defmodule SpawnSdkExample.Actors.ForwardPipeActor do
 use SpawnSdk.Actor,
 name: "pipeforward",
 kind: :named,
 stateful: false

 require Logger

 alias Io.Eigr.Spawn.Example.MyBusinessMessage

 action "ForwardExampleAction", fn _ctx, %MyBusinessMessage{} = msg ->
 Logger.info("Received request with #{msg.value}")

 Value.of()
 |> Value.forward(
 Forward.to("second_actor", "sum_plus_one")
)
 |> Value.void()
 end

 action "PipeExampleAction", fn _ctx, %MyBusinessMessage{} = msg ->
 Logger.info("Received request with #{msg.value}")

 Value.of()
 |> Value.response(MyBusinessMessage.new(value: 999))
 |> Value.pipe(
 Pipe.to("second_actor", "sum_plus_one")
)
 |> Value.void()
 end
end

defmodule SpawnSdkExample.Actors.SecondActorExample do
 use SpawnSdk.Actor,
 name: "second_actor",
 stateful: false

 require Logger

 alias Io.Eigr.Spawn.Example.MyBusinessMessage

 action "SumPlusOne", fn _ctx, %MyBusinessMessage{} = msg ->
 Logger.info("Received request with #{msg.value}")

 Value.of()
 |> Value.response(MyBusinessMessage.new(value: msg.value + 1))
 |> Value.void()
 end
end

We are returning void in both examples so we dont care about what is being stored in the actor state.
In the case above, every time you call the forward_example the second_actor's sum_plus_one function will receive the value forwarded originally in the invocation as its input. The end result will be:
iex> SpawnSdk.invoke("pipeforward", system: "spawn-system", action: "forward_example", payload: %Io.Eigr.Spawn.Example.MyBusinessMessage{value: 1})
{:ok, %Io.Eigr.Spawn.Example.MyBusinessMessage{value: 2}}
For the Pipe example, the the second_actor's sum_plus_one function will always receive %MyBusinessMessage{value: 999} due to getting the value from the previous specification in the pipe_example action, the end result will be:
iex> SpawnSdk.invoke("pipeforward", system: "spawn-system", action: "pipe_example", payload: %Io.Eigr.Spawn.Example.MyBusinessMessage{value: 1})
{:ok, %Io.Eigr.Spawn.Example.MyBusinessMessage{value: 1000}}

 Broadcast

Actors can also send messages to a group of actors at once as an action callback. See the example below:
defmodule Fleet.Actors.Driver do
 use SpawnSdk.Actor,
 kind: :unnamed,
 state_type: Fleet.Domain.Driver

 alias Fleet.Domain.{
 Driver,
 OfferRequest,
 OfferResponse,
 Point
 }

 require Logger

 @brain_actor_channel "fleet.controllers.topic"

 action "UpdatePosition", fn %Context{state: %Driver{id: name} = driver} = ctx, %Point{} = position ->
 Logger.info(
 "Received Update Position Event. Position: [{inspect(position)}]. Context: #{inspect(ctx)}"
)

 driver_state = %Driver{driver | position: position}

 %Value{}
 |> Value.of(driver_state, driver_state)
 |> Value.broadcast(
 Broadcast.to(
 @brain_actor_channel,
 driver_state
)
)
 end
end

defmodule Fleet.Actors.FleetControllersActor do
 use SpawnSdk.Actor,
 kind: :unnamed,
 channels: [
 {"fleet.controllers.topic", "update_position_receive"}
] # or just ["fleet.controllers.topic"] and it will forward to a action called receive

 alias Fleet.Domain.Point

 action "UpdatePositionReceive", fn _ctx, %Point{} = position ->
 Logger.info(
 "Driver [#{name}] Received Update Position Event. Position: [#{inspect(position)}]"
)

 Value.of()
 end
end
In the case above, every time an Actor "driver" executes the update_position action it will send a message to all the actors participating in the channel called "fleet-controllers".

 Broadcast to External Subscribers

Sometimes you may want to send events out of ActorSystem using Phoenix.PubSub.
One way to do this is to take advantage of the same Broadcast infrastructure that Spawn offers you but indicating an external channel. Below is an example:
	Create a Listener to receive the events using the SpawnSdk.Channel.Subscriber helper module.

defmodule SpawnSdkExample.Subscriber do
 @moduledoc """
 This module exemplifies how to listen for pubsub events that were emitted by actors but that will be treated not by actors but as normal pubsub events.
 This is particularly useful for integrations between Spawn and Phoenix LiveView.
 """
 use GenServer
 require logger

 alias SpawnSdk.Channel.Subscriber

 @impl true
 define init(state) do
 Subscriber.subscribe("external.channel")
 {:ok, state}
 end

 @impl true
 def handle_info({:receive, payload}, state) do
 Logger.info("Received pubsub event #{inspect(payload)}")
 {:noreply, state}
 end

 def start_link(args) do
 GenServer.start_link(__MODULE__, args)
 end
end
You need to match using the {:receive, payload} tuple in your handle_info.
NOTE: By default SpawnSdk.Channel.Subscriber will subscribe to pubsub using the atom :actor_channel as an argument.

If you need to change this, just configure your configuration as follows:
config.exs
config :spawn,
 pubsub_group: :your_channel_group_here
	SpawnSdk.System.Supervisor.

defmodule SpawnSdkExample.Application do
 @moduledoc false
 use Application

 @impl true
 def start(_type, _args) do
 children = [
 {
 SpawnSdk.System.Supervisor,
 system: "spawn-system",
 actors: [
 SpawnSdkExample.Actors.JoeActor
],
 extenal_subscribers: [
 {SpawnSdkExample.Subscriber, []}
]
 }
]

 opts = [strategy: :one_for_one, name: SpawnSdkExample.Supervisor]
 Supervisor.start_link(children, opts)
 end
end
The important thing here is to use the external_subscribers attribute. As seen above :external_subscribers accepts a list of specs as a parameter.
	Set your actor as you normally would and emit your broadcast events using Broadcast.to(channel, payload).

defmodule SpawnSdkExample.Actors.JoeActor do
 use SpawnSdk.Actor,
 name: "joe",
 state_type: Io.Eigr.Spawn.Example.MyState

 require Logger
 alias Io.Eigr.Spawn.Example.{MyState, MyBusinessMessage}

 action "Sum", fn %Context{state: state} = ctx, %MyBusinessMessage{value: value} = data ->
 Logger.info("[joe] Received Request: #{inspect(data)}. Context: #{inspect(ctx)}")

 new_value =
 if is_nil(state) do
 0 + value
 else
 (state.value || 0) + value
 end

 response = %MyBusinessMessage{value: new_value}

 %Value{}
 |> Value.of(response, %MyState{value: new_value})
 |> Value.broadcast(Broadcast.to("my.channel", response))
 end
end

 Timers

Actors can also declare Actions that act recursively as timers. See an example below:
defmodule SpawnSdkExample.Actors.ClockActor do
 use SpawnSdk.Actor,
 name: "clock_actor",
 state_type: Io.Eigr.Spawn.Example.MyState,
 deactivate_timeout: 86_400_000

 require Logger

 alias Io.Eigr.Spawn.Example.MyState

 action "Clock", [timer: 15_000], fn %Context{state: state} = ctx ->
 Logger.info("[clock] Clock Actor Received Request. Context: #{inspect(ctx)}")

 new_value = if is_nil(state), do: 0, else: state.value + 1
 new_state = MyState.new(value: new_value)

 Value.of()
 |> Value.state(new_state)
 end
end
NOTE: Timers Actions are recorded as Actor metadata. Where in turn we use a synchronization mechanism via CRDTs to keep the metadata alive in the cluster while there is an active Spawn VM. That is, Timers Actions are ephemeral and therefore only exist while there is at least one active VM in the cluster.

In the example above the ´clock´ action will be called every 15 seconds.

 Declaring the supervision tree

Once we define our actors we can now declare our supervision tree:
defmodule SpawnSdkExample.Application do
 @moduledoc false
 use Application

 @impl true
 def start(_type, _args) do
 children = [
 {
 SpawnSdk.System.Supervisor,
 system: "spawn-system",
 actors: [
 SpawnSdkExample.Actors.MyActor,
 SpawnSdkExample.Actors.UnnamedActor,
 SpawnSdkExample.Actors.ClockActor,
 SpawnSdkExample.Actors.PooledActor
]
 }
]

 opts = [strategy: :one_for_one, name: SpawnSdkExample.Supervisor]
 Supervisor.start_link(children, opts)
 end
end

 Default Actions

Actors also have some standard actions that are not implemented by the user and that can be used as a way to get the state of an actor without the invocation requiring an extra trip to the host functions. You can think of them as a cache of their state, every time you invoke a default action on an actor it will return the value directly from the Sidecar process without this target process needing to invoke its equivalent host function.
Let's take an example. Suppose Actor Joe wants to know the current state of Actor Robert. What Joe can do is invoke Actor Robert's default action called get_state. This will make Actor Joe's sidecar find Actor Robert's sidecar somewhere in the cluster and Actor Robert's sidecar will return its own state directly to Joe without having to resort to your host function, this in turn will save you a called over the network and therefore this type of invocation is faster than invocations of user-defined actions usually are.
Any invocations to actions with the following names will follow this rule: "get",
"Get",
"get_state",
"getState",
"GetState"
NOTE: You can override this behavior by defining your actor as an action with the same name as the default actions. In this case it will be the Action defined by you that will be called, implying perhaps another network roundtrip

 Running

To deploy your actors in a cluster you need to use our Controller for Kubernetes. Detailed information on how to proceed can be found here and here.
But you can also run your Elixir application in the traditional way as follows:
MIX_ENV=prod USER_FUNCTION_PORT=8092 PROXY_DATABASE_TYPE=mysql SPAWN_STATESTORE_KEY=3Jnb0hZiHIzHTOih7t2cTEPEpY98Tu1wvQkPfq/XwqE= iex --name spawn_a2@127.0.0.1 -S mix
NOTE: For reasons of compatibility with our controller, it is necessary to configure your Spawn application using environment variables instead of the traditional Elixir configuration mechanism.

WARNING: This example uses the MySQL database as persistent storage for its actors. And it is also expected that you have previously created a database called eigr-functions-db in the MySQL instance.

The full example of this application can be found here.
And links to other examples can be found in our github readme page.

 Client API Examples

To invoke Actors, use:
iex> SpawnSdk.invoke("joe", system: "spawn-system", action: "Sum", payload: %Io.Eigr.Spawn.Example.MyBusinessMessage{value: 1})
{:ok, %Io.Eigr.Spawn.Example.MyBusinessMessage{value: 12}}
You can invoke actor default functions like "get" to get its current state
SpawnSdk.invoke("joe", system: "spawn-system", action: "get")
Spawning Actors:
iex> SpawnSdk.spawn_actor("robert", system: "spawn-system", actor: "unnamed_actor")
:ok
You can also create Actors so that they are initialized from a certain revision number, that is, initialize actors from a specific point in time.
iex> SpawnSdk.spawn_actor("robert", system: "spawn-system", actor: "unnamed_actor", revision: 2)
:ok
In the above case the actor will be initialized with its state restored from the state as it was in revision 2 of its previous lifetime.
Invoke Spawned Actors:
iex> SpawnSdk.invoke("robert", system: "spawn-system", action: "sum", payload: %Io.Eigr.Spawn.Example.MyBusinessMessage{value: 1})
{:ok, %Io.Eigr.Spawn.Example.MyBusinessMessage{value: 16}}
Invoke Actors in a lazy way without having to spawn them before:
iex> SpawnSdk.invoke("robert_lazy", ref: SpawnSdkExample.Actors.UnnamedActor, system: "spawn-system", action: "sum", payload: %Io.Eigr.Spawn.Example.MyBusinessMessage{value: 1})
{:ok, %Io.Eigr.Spawn.Example.MyBusinessMessage{value: 1}}
Invoke Actors with a delay set in milliseconds:
iex> SpawnSdk.invoke("joe", system: "spawn-system", action: "ping", delay: 5_000)
{:ok, :async}
Invoke Actors scheduled to a specific DateTime:
iex> SpawnSdk.invoke("joe", system: "spawn-system", action: "ping", scheduled_to: ~U[2023-01-01 00:32:00.145Z])
{:ok, :async}
Invoke Pooled Actors:
iex> SpawnSdk.invoke("pooled_actor", system: "spawn-system", action: "ping", pooled: true)
{:ok, nil}

SpawnSdk

Spawn Elixir SDK is the support library for the Spawn Actors System.
Spawn is a Stateful Serverless Platform for providing the multi-language Actor Model. For a broader understanding of Spawn, please consult its official repository.
The advantage of the Elixir SDK over other SDKs is in Elixir's native ability to connect directly to an Erlang network. For this reason, the Elixir SDK allows any valid Elixir application to be part of a Spawn network without needing a sidecar attached.

 Installation

Available in Hex, the package can be installed
by adding spawn_sdk and spawn_statestores_* to your list of dependencies in mix.exs:
def deps do
 [
 {:spawn_sdk, "~> 1.4.0"},

 # You can uncomment one of those dependencies if you are going to use Persistent Actors
 #{:spawn_statestores_mariadb, "~> 1.4.0"},
 #{:spawn_statestores_mysql, "~> 1.4.0"},
 #{:spawn_statestores_postgres, "~> 1.4.0"},
 #{:spawn_statestores_mssql, "~> 1.4.0"},
 #{:spawn_statestores_cockroachdb, "~> 1.4.0"},
 #{:spawn_statestores_sqlite, "~> 1.4.0"},
]
end

 Deploy

Following the steps below, you will have a valid Elixir application to use in a Spawn cluster. However, you will still need to generate a container image with your application to use it together with the Spawn Operator for Kubernetes.

 How to use

After creating an Elixir application project, create the protobuf files for your business domain.
It is common practice to do this under the priv/ folder. Let's demonstrate an example:
syntax = "proto3";

package io.eigr.spawn.example;

message MyState {
 int32 value = 1;
}

message MyBusinessMessage {
 int32 value = 1;
}
It is important to try to separate the type of message that must be stored as the actors' state from the type of messages
that will be exchanged between their actors' operations calls. In other words, the Actor's internal state is also represented
as a protobuf type, and it is a good practice to separate these types of messages from the others in its business domain.
In the above case MyState is the type protobuf that represents the state of the Actor that we will create later
while MyBusiness is the type of message that we will send and receive from this Actor.
Now that we have defined our input and output types as Protobuf types we will need to compile these files to generate their respective Elixir modules. An example of how to do this can be found here
NOTE: You need to have installed the elixir plugin for protoc. More information on how to obtain and install the necessary tools can be found here here

Now that the protobuf types have been created we can proceed with the code. Example definition of an Actor.

 Named Actors

In this example we are creating an actor in a Named way, that is, it is a known actor at compile time.
defmodule SpawnSdkExample.Actors.MyActor do
 use SpawnSdk.Actor,
 name: "jose", # Default is Full Qualified Module name a.k.a __MODULE__
 kind: :named, # Default is already :named. Valid are :named | :unnamed
 stateful: true, # Default is already true
 state_type: Io.Eigr.Spawn.Example.MyState, # or :json if you don't care about protobuf types
 deactivate_timeout: 30_000,
 snapshot_timeout: 2_000

 require Logger

 alias Io.Eigr.Spawn.Example.{MyState, MyBusinessMessage}

 # The callback could also be referenced to an existing function:
 # action "SomeAction", &some_defp_handler/0
 # action "SomeAction", &SomeModule.handler/1
 # action "SomeAction", &SomeModule.handler/2

 init fn %Context{state: state} = ctx ->
 Logger.info("[joe] Received InitRequest. Context: #{inspect(ctx)}")

 Value.of()
 |> Value.state(state)
 end

 action "Sum", fn %Context{state: state} = ctx, %MyBusinessMessage{value: value} = data ->
 Logger.info("Received Request: #{inspect(data)}. Context: #{inspect(ctx)}")

 new_value = if is_nil(state), do: value, else: (state.value || 0) + value

 Value.of(%MyBusinessMessage{value: new_value}, %MyState{value: new_value})
 end
end

We declare two actions that the Actor can do. An initialization action that will be called every time an Actor instance is created and an action that will be responsible for performing a simple sum.
Note Keep in mind that any Action that has the names present in the list below will behave as an initialization Action and will be called when the Actor is started (if there is more than one Action with one of these names, only one will be called).
Defaults inicialization Action names: "init", "Init", "setup", "Setup"

 Unnamed Actor

We can also create Unnamed Dynamic/Lazy actors, that is, despite having its unnamed behavior defined at compile time, a Lazy actor will only have a concrete instance when it is associated with an identifier/name at runtime. Below follows the same previous actor being defined as Unnamed.
defmodule SpawnSdkExample.Actors.UnnamedActor do
 use SpawnSdk.Actor,
 name: "unnamed_actor",
 kind: :unnamed,
 state_type: Io.Eigr.Spawn.Example.MyState

 require Logger

 alias Io.Eigr.Spawn.Example.{MyState, MyBusinessMessage}

 action "Sum", fn %Context{state: state} = ctx, %MyBusinessMessage{value: value} = data ->
 Logger.info("Received Request: #{inspect(data)}. Context: #{inspect(ctx)}")

 new_value = if is_nil(state), do: value, else: (state.value || 0) + value

 Value.of(%MyBusinessMessage{value: new_value}, %MyState{value: new_value})
 end
end
Notice that the only thing that has changed is the the kind of actor, in this case the kind is set to :unnamed.
NOTE: Can Elixir programmers think in terms of Named vs Unnamed actors as more or less known at startup vs dynamically supervised/registered? That is, defining your actors directly in the supervision tree or using a Dynamic Supervisor for that.

 Side Effects

Actors can also emit side effects to other Actors as part of their response. See an example:
defmodule SpawnSdkExample.Actors.UnnamedActor do
 use SpawnSdk.Actor,
 kind: :unnamed,
 stateful: false,
 state_type: Io.Eigr.Spawn.Example.MyState

 require Logger

 alias Io.Eigr.Spawn.Example.{MyState, MyBusinessMessage}

 alias SpawnSdk.Flow.SideEffect

 action "Sum", fn %MyBusinessMessage{value: value} = data, %Context{state: state} = ctx ->
 Logger.info("Received Request: #{inspect(data)}. Context: #{inspect(ctx)}")

 new_value = if is_nil(state), do: value, else: (state.value || 0) + value

 result = %MyBusinessMessage{value: new_value}
 new_state = %MyState{value: new_value}

 Value.of()
 |> Value.response(result)
 |> Value.state(new_state)
 |> Value.effects(
 # This returns a list of side effects. In this case containing only one effect. However, multiple effects can be chained together,
 # just by calling the effect function as shown here.
 # The delay means that it will be fired asynchronously after 5000 milliseconds (5 seconds)
 # If only one effect is desired, you can also choose to use the to/3 function together with Value.effect().
 # Example: Values.effect(SideEffect.to(name, func, payload))
 SideEffect.of()
 |> SideEffect.effect("joe", :sum, result, delay: 5_000, scheduled_to: ~U[2020-01-01 10:00:00.145Z])
 # use delay or scheduled_to, not both
)
 end
end

In the example above we see that the Actor joe will receive a request as a side effect from the Actor who issued this effect.
Side effects do not interfere with an actor's request-response flow. They will "always" be processed asynchronously and any response sent back from the Actor receiving the effect will be ignored by the effector.

 Pipe and Forward

Actors can also route some actions to other actors as part of their response. See an example:
defmodule SpawnSdkExample.Actors.ForwardPipeActor do
 use SpawnSdk.Actor,
 name: "pipeforward",
 kind: :named,
 stateful: false

 require Logger

 alias Io.Eigr.Spawn.Example.MyBusinessMessage

 action "ForwardExampleAction", fn _ctx, %MyBusinessMessage{} = msg ->
 Logger.info("Received request with #{msg.value}")

 Value.of()
 |> Value.forward(
 Forward.to("second_actor", "sum_plus_one")
)
 |> Value.void()
 end

 action "PipeExampleAction", fn _ctx, %MyBusinessMessage{} = msg ->
 Logger.info("Received request with #{msg.value}")

 Value.of()
 |> Value.response(MyBusinessMessage.new(value: 999))
 |> Value.pipe(
 Pipe.to("second_actor", "sum_plus_one")
)
 |> Value.void()
 end
end

defmodule SpawnSdkExample.Actors.SecondActorExample do
 use SpawnSdk.Actor,
 name: "second_actor",
 stateful: false

 require Logger

 alias Io.Eigr.Spawn.Example.MyBusinessMessage

 action "SumPlusOne", fn _ctx, %MyBusinessMessage{} = msg ->
 Logger.info("Received request with #{msg.value}")

 Value.of()
 |> Value.response(MyBusinessMessage.new(value: msg.value + 1))
 |> Value.void()
 end
end

We are returning void in both examples so we dont care about what is being stored in the actor state.
In the case above, every time you call the forward_example the second_actor's sum_plus_one function will receive the value forwarded originally in the invocation as its input. The end result will be:
iex> SpawnSdk.invoke("pipeforward", system: "spawn-system", action: "forward_example", payload: %Io.Eigr.Spawn.Example.MyBusinessMessage{value: 1})
{:ok, %Io.Eigr.Spawn.Example.MyBusinessMessage{value: 2}}
For the Pipe example, the the second_actor's sum_plus_one function will always receive %MyBusinessMessage{value: 999} due to getting the value from the previous specification in the pipe_example action, the end result will be:
iex> SpawnSdk.invoke("pipeforward", system: "spawn-system", action: "pipe_example", payload: %Io.Eigr.Spawn.Example.MyBusinessMessage{value: 1})
{:ok, %Io.Eigr.Spawn.Example.MyBusinessMessage{value: 1000}}

 Broadcast

Actors can also send messages to a group of actors at once as an action callback. See the example below:
defmodule Fleet.Actors.Driver do
 use SpawnSdk.Actor,
 kind: :unnamed,
 state_type: Fleet.Domain.Driver

 alias Fleet.Domain.{
 Driver,
 OfferRequest,
 OfferResponse,
 Point
 }

 require Logger

 @brain_actor_channel "fleet.controllers.topic"

 action "UpdatePosition", fn %Context{state: %Driver{id: name} = driver} = ctx, %Point{} = position ->
 Logger.info(
 "Received Update Position Event. Position: [{inspect(position)}]. Context: #{inspect(ctx)}"
)

 driver_state = %Driver{driver | position: position}

 %Value{}
 |> Value.of(driver_state, driver_state)
 |> Value.broadcast(
 Broadcast.to(
 @brain_actor_channel,
 driver_state
)
)
 end
end

defmodule Fleet.Actors.FleetControllersActor do
 use SpawnSdk.Actor,
 kind: :unnamed,
 channels: [
 {"fleet.controllers.topic", "update_position_receive"}
] # or just ["fleet.controllers.topic"] and it will forward to a action called receive

 alias Fleet.Domain.Point

 action "UpdatePositionReceive", fn _ctx, %Point{} = position ->
 Logger.info(
 "Driver [#{name}] Received Update Position Event. Position: [#{inspect(position)}]"
)

 Value.of()
 end
end
In the case above, every time an Actor "driver" executes the update_position action it will send a message to all the actors participating in the channel called "fleet-controllers".

 Broadcast to External Subscribers

Sometimes you may want to send events out of ActorSystem using Phoenix.PubSub.
One way to do this is to take advantage of the same Broadcast infrastructure that Spawn offers you but indicating an external channel. Below is an example:
	Create a Listener to receive the events using the SpawnSdk.Channel.Subscriber helper module.

defmodule SpawnSdkExample.Subscriber do
 @moduledoc """
 This module exemplifies how to listen for pubsub events that were emitted by actors but that will be treated not by actors but as normal pubsub events.
 This is particularly useful for integrations between Spawn and Phoenix LiveView.
 """
 use GenServer
 require logger

 alias SpawnSdk.Channel.Subscriber

 @impl true
 define init(state) do
 Subscriber.subscribe("external.channel")
 {:ok, state}
 end

 @impl true
 def handle_info({:receive, payload}, state) do
 Logger.info("Received pubsub event #{inspect(payload)}")
 {:noreply, state}
 end

 def start_link(args) do
 GenServer.start_link(__MODULE__, args)
 end
end
You need to match using the {:receive, payload} tuple in your handle_info.
NOTE: By default SpawnSdk.Channel.Subscriber will subscribe to pubsub using the atom :actor_channel as an argument.

If you need to change this, just configure your configuration as follows:
config.exs
config :spawn,
 pubsub_group: :your_channel_group_here
	SpawnSdk.System.Supervisor.

defmodule SpawnSdkExample.Application do
 @moduledoc false
 use Application

 @impl true
 def start(_type, _args) do
 children = [
 {
 SpawnSdk.System.Supervisor,
 system: "spawn-system",
 actors: [
 SpawnSdkExample.Actors.JoeActor
],
 extenal_subscribers: [
 {SpawnSdkExample.Subscriber, []}
]
 }
]

 opts = [strategy: :one_for_one, name: SpawnSdkExample.Supervisor]
 Supervisor.start_link(children, opts)
 end
end
The important thing here is to use the external_subscribers attribute. As seen above :external_subscribers accepts a list of specs as a parameter.
	Set your actor as you normally would and emit your broadcast events using Broadcast.to(channel, payload).

defmodule SpawnSdkExample.Actors.JoeActor do
 use SpawnSdk.Actor,
 name: "joe",
 state_type: Io.Eigr.Spawn.Example.MyState

 require Logger
 alias Io.Eigr.Spawn.Example.{MyState, MyBusinessMessage}

 action "Sum", fn %Context{state: state} = ctx, %MyBusinessMessage{value: value} = data ->
 Logger.info("[joe] Received Request: #{inspect(data)}. Context: #{inspect(ctx)}")

 new_value =
 if is_nil(state) do
 0 + value
 else
 (state.value || 0) + value
 end

 response = %MyBusinessMessage{value: new_value}

 %Value{}
 |> Value.of(response, %MyState{value: new_value})
 |> Value.broadcast(Broadcast.to("my.channel", response))
 end
end

 Timers

Actors can also declare Actions that act recursively as timers. See an example below:
defmodule SpawnSdkExample.Actors.ClockActor do
 use SpawnSdk.Actor,
 name: "clock_actor",
 state_type: Io.Eigr.Spawn.Example.MyState,
 deactivate_timeout: 86_400_000

 require Logger

 alias Io.Eigr.Spawn.Example.MyState

 action "Clock", [timer: 15_000], fn %Context{state: state} = ctx ->
 Logger.info("[clock] Clock Actor Received Request. Context: #{inspect(ctx)}")

 new_value = if is_nil(state), do: 0, else: state.value + 1
 new_state = MyState.new(value: new_value)

 Value.of()
 |> Value.state(new_state)
 end
end
NOTE: Timers Actions are recorded as Actor metadata. Where in turn we use a synchronization mechanism via CRDTs to keep the metadata alive in the cluster while there is an active Spawn VM. That is, Timers Actions are ephemeral and therefore only exist while there is at least one active VM in the cluster.

In the example above the ´clock´ action will be called every 15 seconds.

 Declaring the supervision tree

Once we define our actors we can now declare our supervision tree:
defmodule SpawnSdkExample.Application do
 @moduledoc false
 use Application

 @impl true
 def start(_type, _args) do
 children = [
 {
 SpawnSdk.System.Supervisor,
 system: "spawn-system",
 actors: [
 SpawnSdkExample.Actors.MyActor,
 SpawnSdkExample.Actors.UnnamedActor,
 SpawnSdkExample.Actors.ClockActor,
 SpawnSdkExample.Actors.PooledActor
]
 }
]

 opts = [strategy: :one_for_one, name: SpawnSdkExample.Supervisor]
 Supervisor.start_link(children, opts)
 end
end

 Default Actions

Actors also have some standard actions that are not implemented by the user and that can be used as a way to get the state of an actor without the invocation requiring an extra trip to the host functions. You can think of them as a cache of their state, every time you invoke a default action on an actor it will return the value directly from the Sidecar process without this target process needing to invoke its equivalent host function.
Let's take an example. Suppose Actor Joe wants to know the current state of Actor Robert. What Joe can do is invoke Actor Robert's default action called get_state. This will make Actor Joe's sidecar find Actor Robert's sidecar somewhere in the cluster and Actor Robert's sidecar will return its own state directly to Joe without having to resort to your host function, this in turn will save you a called over the network and therefore this type of invocation is faster than invocations of user-defined actions usually are.
Any invocations to actions with the following names will follow this rule: "get",
"Get",
"get_state",
"getState",
"GetState"
NOTE: You can override this behavior by defining your actor as an action with the same name as the default actions. In this case it will be the Action defined by you that will be called, implying perhaps another network roundtrip

 Running

To deploy your actors in a cluster you need to use our Controller for Kubernetes. Detailed information on how to proceed can be found here and here.
But you can also run your Elixir application in the traditional way as follows:
MIX_ENV=prod USER_FUNCTION_PORT=8092 PROXY_DATABASE_TYPE=mysql SPAWN_STATESTORE_KEY=3Jnb0hZiHIzHTOih7t2cTEPEpY98Tu1wvQkPfq/XwqE= iex --name spawn_a2@127.0.0.1 -S mix
NOTE: For reasons of compatibility with our controller, it is necessary to configure your Spawn application using environment variables instead of the traditional Elixir configuration mechanism.

WARNING: This example uses the MySQL database as persistent storage for its actors. And it is also expected that you have previously created a database called eigr-functions-db in the MySQL instance.

The full example of this application can be found here.
And links to other examples can be found in our github readme page.

 Client API Examples

To invoke Actors, use:
iex> SpawnSdk.invoke("joe", system: "spawn-system", action: "Sum", payload: %Io.Eigr.Spawn.Example.MyBusinessMessage{value: 1})
{:ok, %Io.Eigr.Spawn.Example.MyBusinessMessage{value: 12}}
You can invoke actor default functions like "get" to get its current state
SpawnSdk.invoke("joe", system: "spawn-system", action: "get")
Spawning Actors:
iex> SpawnSdk.spawn_actor("robert", system: "spawn-system", actor: "unnamed_actor")
:ok
You can also create Actors so that they are initialized from a certain revision number, that is, initialize actors from a specific point in time.
iex> SpawnSdk.spawn_actor("robert", system: "spawn-system", actor: "unnamed_actor", revision: 2)
:ok
In the above case the actor will be initialized with its state restored from the state as it was in revision 2 of its previous lifetime.
Invoke Spawned Actors:
iex> SpawnSdk.invoke("robert", system: "spawn-system", action: "sum", payload: %Io.Eigr.Spawn.Example.MyBusinessMessage{value: 1})
{:ok, %Io.Eigr.Spawn.Example.MyBusinessMessage{value: 16}}
Invoke Actors in a lazy way without having to spawn them before:
iex> SpawnSdk.invoke("robert_lazy", ref: SpawnSdkExample.Actors.UnnamedActor, system: "spawn-system", action: "sum", payload: %Io.Eigr.Spawn.Example.MyBusinessMessage{value: 1})
{:ok, %Io.Eigr.Spawn.Example.MyBusinessMessage{value: 1}}
Invoke Actors with a delay set in milliseconds:
iex> SpawnSdk.invoke("joe", system: "spawn-system", action: "ping", delay: 5_000)
{:ok, :async}
Invoke Actors scheduled to a specific DateTime:
iex> SpawnSdk.invoke("joe", system: "spawn-system", action: "ping", scheduled_to: ~U[2023-01-01 00:32:00.145Z])
{:ok, :async}
Invoke Pooled Actors:
iex> SpawnSdk.invoke("pooled_actor", system: "spawn-system", action: "ping", pooled: true)
{:ok, nil}

 Summary

 Functions

 SpawnSdk.Actor - spawn_sdk v1.4.3

SpawnSdk.Actor behaviour

Documentation for Actor.
Actor look like this:
 defmodule MyActor do
use SpawnSdk.Actor,
 name: "joe",
 persistent: false,
 state_type: Io.Eigr.Spawn.Example.MyState,
 deactivate_timeout: 5_000,
 snapshot_timeout: 2_000

require Logger
alias Io.Eigr.Spawn.Example.{MyState, MyBusinessMessage}

defact sum(%MyBusinessMessage{value: value} = data}, %Context{state: state} = ctx) do
 Logger.info("Received Request...")

 new_value = (state.value || 0) + value

 %Value{}
 |> Value.of(%MyBusinessMessage{value: new_value}, %MyState{value: new_value})
 |> Value.reply!()
end

 Summary

 Types

 SpawnSdk.ActorChannel - spawn_sdk v1.4.3

SpawnSdk.ActorChannel

 Summary

 Types

 SpawnSdk.ActorGroupRef - spawn_sdk v1.4.3

SpawnSdk.ActorGroupRef

 Summary

 Types

 SpawnSdk.ActorRef - spawn_sdk v1.4.3

SpawnSdk.ActorRef

 Summary

 Types

 SpawnSdk.Channel.Subscriber - spawn_sdk v1.4.3

SpawnSdk.Channel.Subscriber

Subscriber is a helper module to subscribe Phoenix.PubSub channels

 Summary

 Types

 SpawnSdk.Context - spawn_sdk v1.4.3

SpawnSdk.Context

The context is responsible for sending the State information as well as its metadata
to the Actor and the Proxy and vice versa.

 Summary

 Types

 SpawnSdk.Defact - spawn_sdk v1.4.3

SpawnSdk.Defact

Define actions like a Elixir functions

 Internal :defact_exports metadata saved as

[
 {action_name, %{timer: 10_000}},
 {action_name2, %{timer: nil}}
]

 Summary

 Functions

 SpawnSdk.Flow - spawn_sdk v1.4.3

SpawnSdk.Flow

 SpawnSdk.Flow.Broadcast - spawn_sdk v1.4.3

SpawnSdk.Flow.Broadcast

Actors can also send messages to a group of actors at once as an action callback. This we call Broadcast.

 Example using Elixir SDK:

defmodule Fleet.Actors.Driver do
 use SpawnSdk.Actor,
kind: :abstract,
state_type: Fleet.Domain.Driver
 alias Fleet.Domain.{
Driver,
OfferRequest,
OfferResponse,
Point
 }
 require Logger
 @brain_actor_channel "fleet-controllers"
 defact update_position(%Point{} = position, %Context{state: %Driver{id: name} = driver} = ctx) do
driver_state = %Driver{driver | position: position}

%Value{}
|> Value.of(driver_state, driver_state)
|> Value.broadcast(
 Broadcast.to(
 @brain_actor_channel,
 driver_state
)
)
|> Value.reply!()
 end
end
defmodule Fleet.Actors.FleetControllersActor do
 use SpawnSdk.Actor,
kind: :unnamed,
channels: [
 {"fleet.controllers.topic", "update_position_receive"}
] # or just ["fleet.controllers.topic"] and it will forward to a action called receive
 alias Fleet.Domain.Point
 defact update_position_receive(%Point{} = position, _ctx) do
Logger.info(
 "Received Update Position Event. Position: [{inspect(position)}]"
)

Value.of()
 end
end
In the case above, every time an Actor "driver" executes the update_position action
it will send a message to all the actors participating in the channel called "fleet-controllers".
Broadcasts can also be performed outside the Spawn Actor system,
using the transport mechanism based on Phoenix.PubSub in memory or
Phoenix.PubSub over Nats Broker.

 Summary

 Types

 SpawnSdk.Flow.Forward - spawn_sdk v1.4.3

SpawnSdk.Flow.Forward

Forward allows the Actor to delegate processing of the incoming message to another Actor.
This is done as part of the actor's response flow.
Forwards are detached from the Actor that received the input, that is,
when you forward a message to another actor, the actor that performs the forwarding is free
to process another message and the actor that is receiving the forwarding will respond
to the original caller.

 Summary

 Types

 SpawnSdk.Flow.Pipe - spawn_sdk v1.4.3

SpawnSdk.Flow.Pipe

Pipe allows the Actor to send its output message directly to another Actor,
where the Actor that receives the Pipe will be responsible for following the flow from then on.
This is done as part of the actor's response flow.
Pipes are detached from the Actor that received the input, that is,
when you forward a message to another actor through a Pipe,
the actor that performs the Pipe is free to process another message
and the actor that is receiving the Pipe is the one who will respond to the original caller.

 Summary

 Types

 SpawnSdk.Flow.SideEffect - spawn_sdk v1.4.3

SpawnSdk.Flow.SideEffect

Actors can also emit side effects to other Actors as part of their response.
Side effects do not interfere with an actor's request-response flow.
They will "always" be processed asynchronously and any response sent back from the Actor
receiving the effect will be ignored by the effector.

 Summary

 Types

 SpawnSdk.Interface - spawn_sdk v1.4.3

SpawnSdk.Interface

Implements the communication protocol between Elixir SDK and Sidecar.

 SpawnSdk.System - spawn_sdk v1.4.3

SpawnSdk.System behaviour

System defines the general behavior of the Spawn actor system.
It is through System implementations that the user can register, invoke,
and perform other activities with their Actors.

 Summary

 Types

 SpawnSdk.System.SpawnSystem - spawn_sdk v1.4.3

SpawnSdk.System.SpawnSystem

SpawnSystem

 Summary

 Functions

 SpawnSdk.System.Supervisor - spawn_sdk v1.4.3

SpawnSdk.System.Supervisor

Documentation for System.Supervisor.
Start Supervisor tree like this:
 defmodule MyApp.Application do
use Application

@impl true
def start(_type, _args) do
 children = [
 {
 SpawnSdk.System.Supervisor,
 system: "my-system", actors: [MyActor]
 }
]

 opts = [strategy: :one_for_one, name: MyApp.Supervisor]
 Supervisor.start_link(children, opts)
 end

 Summary

 Functions

 SpawnSdk.Value - spawn_sdk v1.4.3

SpawnSdk.Value

Value is a declarative DSL that provides the Domain Driven aspect of the Spawn technology.
It is through a Va