

    

        specter

        v0.5.0



    


  

    Table of contents

    
      



      	Specter





    	Guides
      


      	Lifecycle



      

    




    	Internal docs
      


      	README


      	Architecture



      

    




        	
          Modules
          


      	Specter


      	Specter.Config


      	Specter.PeerConnection


      	Specter.RtpCodecCapability


      	Specter.TrackLocalStaticSample





        



      

    

  

    
Specter
    

Specter is a wrapper for webrtc.rs as an Elixir NIF, using Rustler.
This library is a low-level interface to the data structures and entities provided by Rust, with a
minimal set of opinions.

  
    
  
  Installation


def deps do
  [
    {:specter, "~> 0.1"}
  ]
end

  
    
  
  Checklist


	[x] Specter.init/1 takes (opts)	opts: (ice_servers)


	[x] Specter.config/1 (ref), returning Specter.Config.t()
	[x] Specter.new_media_engine/1 (ref), returning UUID
	[x] Specter.new_registry/2 (ref, uuid), returning UUID
	[x] Specter.new_api/3 (ref, uuid, uuid), returning UUID	arg1: media engine uuid
	arg2: registry uuid


	[x] Specter.PeerConnection.new/2 (ref, uuid), returning UUID	arg1: api builder uuid


	[x] Specter.PeerConnection.close/2 (ref, uuid)
	[x] Specter.PeerConnection.set_remote_description/3 (ref, uuid, json)
	[x] Specter.PeerConnection.create_offer/3 (ref, uuid, opts)	opts: (voice_activity_detection: bool, ice_restart: bool)


	[x] Specter.PeerConnection.create_data_channel/3 (ref, uuid, label)
	[x] Specter.PeerConnection.create_answer/3 (ref, uuid, opts)	opts: (voice_activity_detection: bool)


	[x] Specter.PeerConnection.set_local_description/3 (ref, uuid, json)
	[x] Specter.PeerConnection.current_local_description/2
	[x] Specter.PeerConnection.pending_local_description/2
	[x] Specter.PeerConnection.local_description/2
	[x] pc.on_ice_candidate sends candidate to callback process
	[x] Specter.PeerConnection.add_ice_candidate/3 (ref, uuid, string)
	[x] Specter.PeerConnection.current_remote_description/2
	[x] Specter.PeerConnection.pending_remote_description/2
	[x] Specter.PeerConnection.remote_description/2
	[x] Specter.PeerConnection.ice_connection_state/2
	[x] Specter.PeerConnection.ice_gathering_state/2
	[x] Specter.PeerConnection.signaling_state/2
	[x] Specter.PeerConnection.connection_state/2
	[x] Specter.PeerConnection.get_stats/2
	[ ] pc state changes sent to Elixir pid
	[ ] pc.gathering_complete_promise sends message to callback process	might not want to impement this


	[ ] Specter.close (ref, uuid)
	[ ] RTC metrics sent to Elixir
	[ ] Specter.add_track (ref, uuid, ?)
	[ ] Specter.remove_track (ref, uuid, ?)


  
    
  
  Development


Development of Specter depends on Elixir, Erlang, and Rust being available in the environment.
Suggested setup:
asdf plugin-add erlang
asdf plugin-add elixir
asdf plugin-add rust

bin/dev/doctor

CI will run tests and audit the repository, but to make sure all checks locally, the following
commands can be run:
bin/dev/audit
bin/dev/test

The following script is encouraged to run all checks as a part of pushing commits:
bin/dev/shipit


  
    
  
  References / Thank yous


This project is indebted to the following sites and references (at the very least).
	https://github.com/scrogson/franz
	https://webrtc.rs



  

    
Lifecycle
    

	Initialize the library. Register messages to the current pid.	Specter.init/1



iex> {:ok, specter} = Specter.init(ice_servers: ["stun:stun.l.google.com:19302"])
	Create a peer connection's dependencies. Creating an API consumes its MediaEngine and Registry,
making them unavailable for future API instances.	Specter.new_media_engine/1
	Specter.new_registry/2
	Specter.new_api/3
	Specter.media_engine_exists?/2
	Specter.registry_exists?/2



iex> {:ok, media_engine} = Specter.new_media_engine(specter)
iex> {:ok, registry} = Specter.new_registry(specter, media_engine)

iex> true = Specter.media_engine_exists?(specter, media_engine)
iex> true = Specter.registry_exists?(specter, registry)

iex> {:ok, api} = Specter.new_api(specter, media_engine, registry)

iex> false = Specter.media_engine_exists?(specter, media_engine)
iex> false = Specter.registry_exists?(specter, registry)
	Create a peer connection	Specter.PeerConnection.new/2
	Specter.PeerConnection.exists?/2



iex> {:ok, pc_1} = Specter.PeerConnection.new(specter, api)
iex> :ok = receive do: ({:peer_connection_ready, ^pc_1} -> :ok),
...>    after: (100 -> {:error, :timeout})

iex> true = Specter.PeerConnection.exists?(specter, pc_1)
	Add a thing to be negotiated	Specter.PeerConnection.create_data_channel/3



iex> :ok = Specter.PeerConnection.create_data_channel(specter, pc_1, "data")
iex> :ok = receive do: ({:data_channel_created, ^pc_1} -> :ok),
...>    after: (100 -> {:error, :timeout})
	Create an offer	Specter.PeerConnection.create_offer/2
	Specter.PeerConnection.set_local_description/3



iex> :ok = Specter.PeerConnection.create_offer(specter, pc_1)
iex> {:ok, offer} = receive do: ({:offer, ^pc_1, offer} -> {:ok, offer}),
...>    after: (100 -> {:error, :timeout})

iex> :ok = Specter.PeerConnection.set_local_description(specter, pc_1, offer)
iex> :ok = receive do: ({:ok, ^pc_1, :set_local_description} -> :ok),
...>    after: (100 -> {:error, :timeout})
	Create a second peer connection, to answer back

iex> {:ok, media_engine} = Specter.new_media_engine(specter)
iex> {:ok, registry} = Specter.new_registry(specter, media_engine)
iex> {:ok, api} = Specter.new_api(specter, media_engine, registry)
iex> {:ok, pc_2} = Specter.PeerConnection.new(specter, api)
iex> :ok = receive do: ({:peer_connection_ready, ^pc_2} -> :ok),
...>    after: (100 -> {:error, :timeout})
	Begin negotiating offer/answer	Specter.PeerConnection.set_remote_description/3
	Specter.PeerConnection.create_answer/2
	Specter.PeerConnection.set_local_description/3



##  give the offer to the second peer connection
iex> :ok = Specter.PeerConnection.set_remote_description(specter, pc_2, offer)
iex> :ok = receive do: ({:ok, ^pc_2, :set_remote_description} -> :ok),
...>    after: (100 -> {:error, :timeout})

##  create an answer
iex> :ok = Specter.PeerConnection.create_answer(specter, pc_2)
iex> {:ok, answer} = receive do: ({:answer, ^pc_2, answer} -> {:ok, answer}),
...>    after: (100 -> {:error, :timeout})

iex> :ok = Specter.PeerConnection.set_local_description(specter, pc_2, answer)
iex> :ok = receive do: ({:ok, ^pc_2, :set_local_description} -> :ok),
...>    after: (100 -> {:error, :timeout})

##  give the answer to the first peer connection
iex> :ok = Specter.PeerConnection.set_remote_description(specter, pc_1, answer)
iex> :ok = receive do: ({:ok, ^pc_1, :set_remote_description} -> :ok),
...>    after: (100 -> {:error, :timeout})
	Receive ice candidates	Specter.PeerConnection.add_ice_candidate/3



iex> {:ok, candidate} = receive do: ({:ice_candidate, ^pc_1, c} -> {:ok, c}),
...>    after: (100 -> {:error, :timeout})
iex> :ok = Specter.PeerConnection.add_ice_candidate(specter, pc_2, candidate)

## .... and so on.

iex> {:ok, candidate} = receive do: ({:ice_candidate, ^pc_2, c} -> {:ok, c}),
...>    after: (100 -> {:error, :timeout})
iex>:ok = Specter.PeerConnection.add_ice_candidate(specter, pc_1, candidate)

## .... and so on.
	Shut everything down	Specter.PeerConnection.close/2



iex> :ok = Specter.PeerConnection.close(specter, pc_1)
iex> receive do: ({:peer_connection_closed, ^pc_1} -> :ok),
...>    after: (100 -> {:error, :timeout})
:ok

iex> :ok = Specter.PeerConnection.close(specter, pc_2)
iex> receive do: ({:peer_connection_closed, ^pc_2} -> :ok),
...>    after: (100 -> {:error, :timeout})
:ok


  

    
Internal docs
    

Internal docs are intended for developers. They document library internals i.e. architecture, design
decisions, directory structure etc.
Diagrams are made in diagrams.net.


  

    
Architecture
    

[image: architecture]


  

    
Specter 
    



      
Specter is a method for managing data structures and entities provided by
webrtc.rs. It is intended as a low-level library with some small set of
opinions, which can composed into more complex behaviors by higher-level
libraries and applications.

  
    
  
  Key points


Specter wraps webrtc.rs, which heavily utilizes async Rust. For this reason,
many functions cannot be automatically awaited by the caller—the NIF functions
send messages across channels to separate threads managed by Rust, which send
messages back to Elixir that can be caught by receive or handle_info.

  
    
  
  Usage


A process initializes Specter via the init/1 function, which registers the
current process for callbacks that may be triggered via webrtc entities.
iex> ## Initialize the library. Register messages to the current pid.
iex> {:ok, specter} = Specter.init(ice_servers: ["stun:stun.l.google.com:19302"])
...>
iex> ## Create a peer connection's dependencies
iex> {:ok, media_engine} = Specter.new_media_engine(specter)
iex> {:ok, registry} = Specter.new_registry(specter, media_engine)
...>
iex> Specter.media_engine_exists?(specter, media_engine)
true
iex> Specter.registry_exists?(specter, registry)
true
...>
iex> {:ok, api} = Specter.new_api(specter, media_engine, registry)
...>
iex> Specter.media_engine_exists?(specter, media_engine)
false
iex> Specter.registry_exists?(specter, registry)
false
...>
iex> ## Create a peer connection
iex> {:ok, pc_1} = Specter.PeerConnection.new(specter, api)
iex> assert_receive {:peer_connection_ready, ^pc_1}
iex> Specter.PeerConnection.exists?(specter, pc_1)
true
iex> ## Add a thing to be negotiated
iex> :ok = Specter.PeerConnection.create_data_channel(specter, pc_1, "data")
iex> assert_receive {:data_channel_created, ^pc_1}
...>
iex> ## Create an offer
iex> :ok = Specter.PeerConnection.create_offer(specter, pc_1)
iex> assert_receive {:offer, ^pc_1, offer}
iex> :ok = Specter.PeerConnection.set_local_description(specter, pc_1, offer)
iex> assert_receive {:ok, ^pc_1, :set_local_description}
...>
iex> ## Create a second peer connection, to answer back
iex> {:ok, media_engine} = Specter.new_media_engine(specter)
iex> {:ok, registry} = Specter.new_registry(specter, media_engine)
iex> {:ok, api} = Specter.new_api(specter, media_engine, registry)
iex> {:ok, pc_2} = Specter.PeerConnection.new(specter, api)
iex> assert_receive {:peer_connection_ready, ^pc_2}
...>
iex> ## Begin negotiating offer/answer
iex> :ok = Specter.PeerConnection.set_remote_description(specter, pc_2, offer)
iex> assert_receive {:ok, ^pc_2, :set_remote_description}
iex> :ok = Specter.PeerConnection.create_answer(specter, pc_2)
iex> assert_receive {:answer, ^pc_2, answer}
iex> :ok = Specter.PeerConnection.set_local_description(specter, pc_2, answer)
iex> assert_receive {:ok, ^pc_2, :set_local_description}
...>
iex> ## Receive ice candidates
iex> assert_receive {:ice_candidate, ^pc_1, _candidate}
iex> assert_receive {:ice_candidate, ^pc_2, _candidate}
...>
iex> ## Shut everything down
iex> Specter.PeerConnection.close(specter, pc_1)
:ok
iex> assert_receive {:peer_connection_closed, ^pc_1}
...>
iex> :ok = Specter.PeerConnection.close(specter, pc_2)
iex> assert_receive {:peer_connection_closed, ^pc_2}

  
    
  
  Thoughts


During development of the library, it can be assumed that callers will
implement handle_info/2 function heads appropriate to the underlying
implementation. Once these are more solid, it would be nice to use Specter,
which will inject a handle_info/2 callback, and send the messages to
other callback functions defined by a behaviour. handle_ice_candidate,
and so on.
Some things are returned from the NIF as UUIDs. These are declared as @opaque,
to indicate that users of the library should not rely of them being in a
particular format. They could change later to be references, for instance.

      


      
        Summary


  
    Types
  


    
      
        api_t()

      


        Specter.api_t/0 represent an instantiated API managed in the NIF.



    


    
      
        ice_server()

      


        A uri in the form protocol:host:port, where protocol is either
stun or turn.



    


    
      
        init_options()

      


        Options for initializing RTCPeerConnections. This is set during initialization
of the library, and later used when creating new connections.



    


    
      
        media_engine_t()

      


        Specter.media_engine_t/0 represents an instantiated MediaEngine managed in the NIF.



    


    
      
        native_t()

      


        native_t/0 references are returned from the NIF, and represent state held
in Rust code.



    


    
      
        registry_t()

      


        Specter.registry_t/0 represent an instantiated intercepter Registry managed in the NIF.



    


    
      
        t()

      


        Specter.t/0 wraps the reference returned from init/1. All functions interacting with
NIF state take a Specter.t/0 as their first argument.



    





  
    Functions
  


    
      
        config(specter)

      


        Returns the current configuration for the initialized NIF.



    


    
      
        init(args \\ [])

      


        Initialize the library. This registers the calling process to receive
callback messages to handle_info/2.



    


    
      
        media_engine_exists?(specter, media_engine)

      


        Returns true or false, depending on whether the media engine is available for
consumption, i.e. is initialized and has not been used by a function that takes
ownership of it.



    


    
      
        new_api(specter, media_engine, registry)

      


        An APIBuilder is used to create RTCPeerConnections. This accepts as parameters
the output of init/1, new_media_enine/1, and new_registry/2.



    


    
      
        new_media_engine(specter)

      


        Creates a MediaEngine to be configured and used by later function calls.
Codecs and other high level configuration are done on instances of MediaEngines.
A MediaEngine is combined with a Registry in an entity called an APIBuilder,
which is then used to create RTCPeerConnections.



    


    
      
        new_registry(specter, media_engine)

      


        Creates an intercepter registry. This is a user configurable RTP/RTCP pipeline,
and provides features such as NACKs and RTCP Reports. A registry must be created for
each peer connection.



    


    
      
        registry_exists?(specter, registry)

      


        Returns true or false, depending on whether the registry is available for
consumption, i.e. is initialized and has not been used by a function that takes
ownership of it.



    





      


      
        Types

        


  
    
      
    
    
      api_t()



        
          
        

    

  


  

      

          @opaque api_t()


      


Specter.api_t/0 represent an instantiated API managed in the NIF.

  



  
    
      
    
    
      ice_server()



        
          
        

    

  


  

      

          @type ice_server() :: String.t()


      


A uri in the form protocol:host:port, where protocol is either
stun or turn.
Defaults to stun:stun.l.google.com:19302.

  



  
    
      
    
    
      init_options()



        
          
        

    

  


  

      

          @type init_options() :: [] | [{:ice_servers, [ice_server()]}]


      


Options for initializing RTCPeerConnections. This is set during initialization
of the library, and later used when creating new connections.

  



  
    
      
    
    
      media_engine_t()



        
          
        

    

  


  

      

          @opaque media_engine_t()


      


Specter.media_engine_t/0 represents an instantiated MediaEngine managed in the NIF.

  



  
    
      
    
    
      native_t()



        
          
        

    

  


  

      

          @opaque native_t()


      


native_t/0 references are returned from the NIF, and represent state held
in Rust code.

  



  
    
      
    
    
      registry_t()



        
          
        

    

  


  

      

          @opaque registry_t()


      


Specter.registry_t/0 represent an instantiated intercepter Registry managed in the NIF.

  



  
    
      
    
    
      t()



        
          
        

    

  


  

      

          @type t() :: %Specter{native: native_t()}


      


Specter.t/0 wraps the reference returned from init/1. All functions interacting with
NIF state take a Specter.t/0 as their first argument.

  


        

      

      
        Functions

        


  
    
      
    
    
      config(specter)



        
          
        

    

  


  

      

          @spec config(t()) :: {:ok, Specter.Config.t()} | {:error, term()}


      


Returns the current configuration for the initialized NIF.

  
    
  
  Usage


iex> {:ok, specter} = Specter.init(ice_servers: ["stun:stun.example.com:3478"])
iex> Specter.config(specter)
{:ok, %Specter.Config{ice_servers: ["stun:stun.example.com:3478"]}}

  



    

  
    
      
    
    
      init(args \\ [])



        
          
        

    

  


  

      

          @spec init(init_options()) :: {:ok, t()} | {:error, term()}


      


Initialize the library. This registers the calling process to receive
callback messages to handle_info/2.
	param	type	default
	ice_servers	list(String.t())	["stun:stun.l.google.com:19302"]


  
    
  
  Usage


iex> {:ok, _specter} = Specter.init(ice_servers: ["stun:stun.example.com:3478"])

  



  
    
      
    
    
      media_engine_exists?(specter, media_engine)



        
          
        

    

  


  

      

          @spec media_engine_exists?(t(), media_engine_t()) :: boolean() | no_return()


      


Returns true or false, depending on whether the media engine is available for
consumption, i.e. is initialized and has not been used by a function that takes
ownership of it.

  
    
  
  Usage


iex> {:ok, specter} = Specter.init(ice_servers: ["stun:stun.l.google.com:19302"])
iex> {:ok, media_engine} = Specter.new_media_engine(specter)
iex> Specter.media_engine_exists?(specter, media_engine)
true

iex> {:ok, specter} = Specter.init(ice_servers: ["stun:stun.l.google.com:19302"])
iex> Specter.media_engine_exists?(specter, UUID.uuid4())
false

  



  
    
      
    
    
      new_api(specter, media_engine, registry)



        
          
        

    

  


  

      

          @spec new_api(t(), media_engine_t(), registry_t()) ::
  {:ok, api_t()} | {:error, term()}


      


An APIBuilder is used to create RTCPeerConnections. This accepts as parameters
the output of init/1, new_media_enine/1, and new_registry/2.
Note that this takes ownership of both the media engine and the registry,
effectively consuming them.
	param	type	default
	specter	t()	
	media_engine	opaque	
	registry	opaque	


  
    
  
  Usage


iex> {:ok, specter} = Specter.init(ice_servers: ["stun:stun.l.google.com:19302"])
iex> {:ok, media_engine} = Specter.new_media_engine(specter)
iex> {:ok, registry} = Specter.new_registry(specter, media_engine)
iex> {:ok, _api} = Specter.new_api(specter, media_engine, registry)

  



  
    
      
    
    
      new_media_engine(specter)



        
          
        

    

  


  

      

          @spec new_media_engine(t()) :: {:ok, media_engine_t()} | {:error, term()}


      


Creates a MediaEngine to be configured and used by later function calls.
Codecs and other high level configuration are done on instances of MediaEngines.
A MediaEngine is combined with a Registry in an entity called an APIBuilder,
which is then used to create RTCPeerConnections.

  
    
  
  Usage


iex> {:ok, specter} = Specter.init(ice_servers: ["stun:stun.l.google.com:19302"])
iex> {:ok, _media_engine} = Specter.new_media_engine(specter)

  



  
    
      
    
    
      new_registry(specter, media_engine)



        
          
        

    

  


  

      

          @spec new_registry(t(), media_engine_t()) :: {:ok, registry_t()} | {:error, term()}


      


Creates an intercepter registry. This is a user configurable RTP/RTCP pipeline,
and provides features such as NACKs and RTCP Reports. A registry must be created for
each peer connection.
The registry may be combined with a MediaEngine in an API (consuming both). The API
instance is then used to create RTCPeerConnections.
Note that creating a registry does not take ownership of the media engine.

  
    
  
  Usage


iex> {:ok, specter} = Specter.init(ice_servers: ["stun:stun.l.google.com:19302"])
iex> {:ok, media_engine} = Specter.new_media_engine(specter)
iex> {:ok, _registry} = Specter.new_registry(specter, media_engine)
...>
iex> Specter.media_engine_exists?(specter, media_engine)
true

  



  
    
      
    
    
      registry_exists?(specter, registry)



        
          
        

    

  


  

      

          @spec registry_exists?(t(), registry_t()) :: boolean() | no_return()


      


Returns true or false, depending on whether the registry is available for
consumption, i.e. is initialized and has not been used by a function that takes
ownership of it.

  
    
  
  Usage


iex> {:ok, specter} = Specter.init(ice_servers: ["stun:stun.l.google.com:19302"])
iex> {:ok, media_engine} = Specter.new_media_engine(specter)
iex> {:ok, registry} = Specter.new_registry(specter, media_engine)
iex> Specter.registry_exists?(specter, registry)
true

iex> {:ok, specter} = Specter.init(ice_servers: ["stun:stun.l.google.com:19302"])
iex> Specter.registry_exists?(specter, UUID.uuid4())
false

  


        

      


  

    
Specter.Config 
    



      
A representation of configuration kept in the initialized NIF.

      


      
        Summary


  
    Types
  


    
      
        t()

      


        A representation of the configuration kept by the initialized NIF.
Note that this does not map 1:1 to actual webrtc.rs data structures, but
is an Elixir data structure into which the NIF can encode its config.



    





      


      
        Types

        


  
    
      
    
    
      t()



        
          
        

    

  


  

      

          @type t() :: %Specter.Config{ice_servers: [Specter.ice_server()]}


      


A representation of the configuration kept by the initialized NIF.
Note that this does not map 1:1 to actual webrtc.rs data structures, but
is an Elixir data structure into which the NIF can encode its config.

  


        

      


  

    
Specter.PeerConnection 
    



      
Represents an RTCPeerConnection managed in the NIF. A running Specter instance may
have 0 or more peer connections at any time.
Users of Specter might choose between different topologies based on their use cases:
a Specter might be initialized per connection, and signaling messages passed between
different instances of the NIF; a Specter may be initialized per "room," and all peer
connections for that room created within the single NIF instance; a "room" may be split
across Erlang nodes, with tracks forwarded between the nodes.

      


      
        Summary


  
    Types
  


    
      
        answer_options_t()

      


        Options for creating a webrtc answer. Values default to false.



    


    
      
        connection_state_msg_t()

      


        Message sent as a result of a call to connection_state/2.



    


    
      
        connection_state_t()

      


        Possible states of peer connection.



    


    
      
        ice_candidate_t()

      


        An ICE candidate as JSON.



    


    
      
        ice_connection_state_msg_t()

      


        Message sent as a result of a call to ice_connection_state/2.



    


    
      
        ice_connection_state_t()

      


        Possible states of ICE connection.



    


    
      
        ice_gathering_state_msg_t()

      


        Message sent as a result of a call to ice_gathering_state/2.



    


    
      
        ice_gathering_state_t()

      


        Possible states of ICE gathering process.



    


    
      
        offer_options_t()

      


        Options for creating a webrtc offer. Values default to false.



    


    
      
        rtp_sender_t()

      


        Message sent as a result of a call to add_track/3.



    


    
      
        sdp_t()

      


        A UTF-8 encoded string encapsulating either an offer or an answer.



    


    
      
        sdp_type_t()

      


        The type of an SDP message, either an :offer or an :answer.



    


    
      
        session_description_t()

      


        A UTF-8 encoded string encapsulating an Offer or an Answer in JSON. The keys are as
follows



    


    
      
        signaling_state_msg_t()

      


        Message sent as a result of a call to signaling_state/2.



    


    
      
        signaling_state_t()

      


        Possible states of session parameters negotiation.



    


    
      
        t()

      


        Specter.PeerConnection.t/0 represents an instantiated RTCPeerConnection managed in the NIF.



    





  
    Functions
  


    
      
        add_ice_candidate(specter, pc, candidate)

      


        Given an ICE candidate, add it to the given peer connection. Assumes trickle ICE.
Candidates must be JSON, with the keys candidate, sdp_mid, sdp_mline_index, and
username_fragment.



    


    
      
        add_track(specter, pc, track)

      


        Adds track to peer connection.



    


    
      
        close(specter, pc)

      


        Closes an open instance of an RTCPeerConnection.



    


    
      
        connection_state(specter, pc)

      


        Sends back state of peer connection.
This will send message connection_state_msg_t/0.



    


    
      
        create_answer(specter, pc, opts \\ [])

      


        Given an RTCPeerConnection where the remote description has been assigned via
set_remote_description/4, create an answer that can be passed to another connection.



    


    
      
        create_data_channel(specter, pc, label)

      


        Creates a data channel on an RTCPeerConnection.



    


    
      
        create_offer(specter, pc, opts \\ [])

      


        Given an RTCPeerConnection, create an offer that can be passed to another connection.



    


    
      
        current_local_description(specter, pc)

      


        Sends back the value of the current session description on a peer connection. This will
send back JSON representing an offer or an answer when the peer connection has had
set_local_description/3 called and has successfully negotiated ICE. In all other cases,
nil will be sent.



    


    
      
        current_remote_description(specter, pc)

      


        Sends back the value of the current remote session description on a peer connection. This will
send back JSON representing an offer or an answer when the peer connection has had
set_remote_description/3 called and has successfully negotiated ICE. In all other cases,
nil will be sent.



    


    
      
        exists?(specter, peer_connection)

      


        Returns true or false, depending on whether the RTCPeerConnection is initialized.



    


    
      
        get_stats(specter, pc)

      


        Sends back a JSON encoded string representing the current stats of a peer connection.



    


    
      
        ice_connection_state(specter, pc)

      


        Sends back state of ICE connection for given peer connection.
This will send message ice_connection_state_msg_t/0



    


    
      
        ice_gathering_state(specter, pc)

      


        Sends back state of ICE gathering process.
This will send message ice_gathering_state_t/0.



    


    
      
        local_description(specter, pc)

      


        Sends back the value of the local session description on a peer connection. This will
send back JSON representing an offer or an answer when the peer connection has had
set_local_description/3 called. If ICE has been successfully negotated, the current
local description will be sent back, otherwise the caller will receive the pending
local description.



    


    
      
        new(specter, api)

      


        Creates a new RTCPeerConnection, using an API reference created with new_api/3. The
functionality wrapped by this function is async, so :ok is returned immediately.
Callers should listen for the {:peer_connection_ready, peer_connection_t()} message
to receive the results of this function.



    


    
      
        pending_local_description(specter, pc)

      


        Sends back the value of the session description on a peer connection that is pending
connection, or nil.



    


    
      
        pending_remote_description(specter, pc)

      


        Sends back the value of the remote session description on a peer connection on a peer
that is pending connection, or nil.



    


    
      
        remote_description(specter, pc)

      


        Sends back the value of the remote session description on a peer connection. This will
send back JSON representing an offer or an answer when the peer connection has had
set_remote_description/3 called. If ICE has been successfully negotated, the current
remote description will be sent back, otherwise the caller will receive the pending
remote description.



    


    
      
        set_local_description(specter, pc, description)

      


        Given an offer or an answer session description, sets the local description on
a peer connection. The description should be in the form of JSON with the keys
type and sdp.



    


    
      
        set_remote_description(specter, pc, description)

      


        Given an offer or an answer in the form of SDP generated by a remote party, sets
the remote description on a peer connection. Expects a session description in the
form of JSON with the keys type and sdp.



    


    
      
        signaling_state(specter, pc)

      


        Sends back state of session parameters negotiation.
This will send message signaling_state_msg_t/0.



    





      


      
        Types

        


  
    
      
    
    
      answer_options_t()



        
          
        

    

  


  

      

          @type answer_options_t() :: [] | [{:voice_activity_detection, bool()}]


      


Options for creating a webrtc answer. Values default to false.

  



  
    
      
    
    
      connection_state_msg_t()



        
          
        

    

  


  

      

          @type connection_state_msg_t() :: {:connection_state, t(), connection_state_t()}


      


Message sent as a result of a call to connection_state/2.

  



  
    
      
    
    
      connection_state_t()



        
          
        

    

  


  

      

          @type connection_state_t() ::
  :closed
  | :connected
  | :connecting
  | :disconnected
  | :failed
  | :new
  | :unspecified


      


Possible states of peer connection.

  



  
    
      
    
    
      ice_candidate_t()



        
          
        

    

  


  

      

          @type ice_candidate_t() :: String.t()


      


An ICE candidate as JSON.

  



  
    
      
    
    
      ice_connection_state_msg_t()



        
          
        

    

  


  

      

          @type ice_connection_state_msg_t() ::
  {:ice_connection_state, t(), ice_connection_state_t()}


      


Message sent as a result of a call to ice_connection_state/2.

  



  
    
      
    
    
      ice_connection_state_t()



        
          
        

    

  


  

      

          @type ice_connection_state_t() ::
  :unspecified
  | :new
  | :checking
  | :connected
  | :completed
  | :disconnected
  | :failed
  | :closed


      


Possible states of ICE connection.

  



  
    
      
    
    
      ice_gathering_state_msg_t()



        
          
        

    

  


  

      

          @type ice_gathering_state_msg_t() ::
  {:ice_gathering_state, t(), ice_connection_state_t()}


      


Message sent as a result of a call to ice_gathering_state/2.

  



  
    
      
    
    
      ice_gathering_state_t()



        
          
        

    

  


  

      

          @type ice_gathering_state_t() :: :complete | :gathering | :new | :unspecified


      


Possible states of ICE gathering process.

  



  
    
      
    
    
      offer_options_t()



        
          
        

    

  


  

      

          @type offer_options_t() ::
  [] | [voice_activity_detection: bool(), ice_restart: bool()]


      


Options for creating a webrtc offer. Values default to false.

  



  
    
      
    
    
      rtp_sender_t()



        
          
        

    

  


  

      

          @type rtp_sender_t() ::
  {:rtp_sender, t(), Specter.TrackLocalStaticSample.t(), String.t()}


      


Message sent as a result of a call to add_track/3.

  



  
    
      
    
    
      sdp_t()



        
          
        

    

  


  

      

          @type sdp_t() :: String.t()


      


A UTF-8 encoded string encapsulating either an offer or an answer.

  



  
    
      
    
    
      sdp_type_t()



        
          
        

    

  


  

      

          @type sdp_type_t() :: :offer | :answer


      


The type of an SDP message, either an :offer or an :answer.

  



  
    
      
    
    
      session_description_t()



        
          
        

    

  


  

      

          @type session_description_t() :: String.t()


      


A UTF-8 encoded string encapsulating an Offer or an Answer in JSON. The keys are as
follows:
	key	type
	type	offer, answer
	sdp	`sdp_t()


  



  
    
      
    
    
      signaling_state_msg_t()



        
          
        

    

  


  

      

          @type signaling_state_msg_t() :: {:signaling_state, t(), signaling_state_t()}


      


Message sent as a result of a call to signaling_state/2.

  



  
    
      
    
    
      signaling_state_t()



        
          
        

    

  


  

      

          @type signaling_state_t() ::
  :closed
  | :have_local_offer
  | :have_local_pranswer
  | :have_remote_offer
  | :have_remote_pranswer
  | :stable
  | :unspecified


      


Possible states of session parameters negotiation.

  



  
    
      
    
    
      t()



        
          
        

    

  


  

      

          @opaque t()


      


Specter.PeerConnection.t/0 represents an instantiated RTCPeerConnection managed in the NIF.

  


        

      

      
        Functions

        


  
    
      
    
    
      add_ice_candidate(specter, pc, candidate)



        
          
        

    

  


  

      

          @spec add_ice_candidate(Specter.t(), t(), ice_candidate_t()) :: :ok | {:error, term()}


      


Given an ICE candidate, add it to the given peer connection. Assumes trickle ICE.
Candidates must be JSON, with the keys candidate, sdp_mid, sdp_mline_index, and
username_fragment.

  



  
    
      
    
    
      add_track(specter, pc, track)



        
          
        

    

  


  

      

          @spec add_track(Specter.t(), t(), Specter.TrackLocalStaticSample.t()) ::
  :ok | {:error | term()}


      


Adds track to peer connection.
Sends back uuid of newly created rtp sender.
This will send message t:rtp_sender_msg_t/0.

  
    
  
  Usage


iex> {:ok, specter} = Specter.init()
iex> {:ok, media_engine} = Specter.new_media_engine(specter)
iex> {:ok, registry} = Specter.new_registry(specter, media_engine)
iex> {:ok, api} = Specter.new_api(specter, media_engine, registry)
iex> {:ok, pc} = Specter.PeerConnection.new(specter, api)
iex> assert_receive {:peer_connection_ready, ^pc}
iex> codec = %Specter.RtpCodecCapability{mime_type: "audio"}
iex> {:ok, track} = Specter.TrackLocalStaticSample.new(specter, codec, "audio", "specter")
iex> :ok = Specter.PeerConnection.add_track(specter, pc, track)
iex> assert_receive {:rtp_sender, ^pc, ^track, _rtp_sender}
...>
iex> {:error, :invalid_track} = Specter.PeerConnection.add_track(specter, pc, "invalid_track")

  



  
    
      
    
    
      close(specter, pc)



        
          
        

    

  


  

      

          @spec close(Specter.t(), t()) :: :ok | {:error, term()}


      


Closes an open instance of an RTCPeerConnection.

  
    
  
  Usage


iex> {:ok, specter} = Specter.init(ice_servers: ["stun:stun.l.google.com:19302"])
iex> {:ok, media_engine} = Specter.new_media_engine(specter)
iex> {:ok, registry} = Specter.new_registry(specter, media_engine)
iex> {:ok, api} = Specter.new_api(specter, media_engine, registry)
iex> {:ok, pc} = Specter.PeerConnection.new(specter, api)
iex> assert_receive {:peer_connection_ready, ^pc}
...>
iex> Specter.PeerConnection.close(specter, pc)
:ok
iex> {:ok, _pc} =
...>     receive do
...>       {:peer_connection_closed, ^pc} -> {:ok, pc}
...>     after
...>       500 -> {:error, :timeout}
...>     end
...>
iex> Specter.PeerConnection.exists?(specter, pc)
false

  



  
    
      
    
    
      connection_state(specter, pc)



        
          
        

    

  


  

      

          @spec connection_state(Specter.t(), t()) :: :ok | {:error, term()}


      


Sends back state of peer connection.
This will send message connection_state_msg_t/0.

  



    

  
    
      
    
    
      create_answer(specter, pc, opts \\ [])



        
          
        

    

  


  

      

          @spec create_answer(Specter.t(), t(), answer_options_t()) :: :ok | {:error, term()}


      


Given an RTCPeerConnection where the remote description has been assigned via
set_remote_description/4, create an answer that can be passed to another connection.
	param	type	default
	specter	t()	
	peer_connection	opaque	
	options	answer_options_t()	voice_activity_detection: false


  



  
    
      
    
    
      create_data_channel(specter, pc, label)



        
          
        

    

  


  

      

          @spec create_data_channel(Specter.t(), t(), String.t()) :: :ok | {:error, term()}


      


Creates a data channel on an RTCPeerConnection.
Note: this can be useful when attempting to generate a valid offer, but where no media
tracks are expected to be sent or received. Callbacks from data channels have not yet
been implemented.

  



    

  
    
      
    
    
      create_offer(specter, pc, opts \\ [])



        
          
        

    

  


  

      

          @spec create_offer(Specter.t(), t(), offer_options_t()) :: :ok | {:error, term()}


      


Given an RTCPeerConnection, create an offer that can be passed to another connection.
	param	type	default
	specter	t()	
	peer_connection	opaque	
	options	offer_options_t()	voice_activity_detection: false
			ice_restart: false


  



  
    
      
    
    
      current_local_description(specter, pc)



        
          
        

    

  


  

      

          @spec current_local_description(Specter.t(), t()) :: :ok | {:error, term()}


      


Sends back the value of the current session description on a peer connection. This will
send back JSON representing an offer or an answer when the peer connection has had
set_local_description/3 called and has successfully negotiated ICE. In all other cases,
nil will be sent.
See pending_local_description/2 and local_description/2.

  
    
  
  Usage


iex> {:ok, specter} = Specter.init()
iex> {:ok, media_engine} = Specter.new_media_engine(specter)
iex> {:ok, registry} = Specter.new_registry(specter, media_engine)
iex> {:ok, api} = Specter.new_api(specter, media_engine, registry)
iex> {:ok, pc} = Specter.PeerConnection.new(specter, api)
iex> assert_receive {:peer_connection_ready, ^pc}
iex> Specter.PeerConnection.current_local_description(specter, pc)
:ok
iex> assert_receive {:current_local_description, ^pc, nil}

  



  
    
      
    
    
      current_remote_description(specter, pc)



        
          
        

    

  


  

      

          @spec current_remote_description(Specter.t(), t()) :: :ok | {:error, term()}


      


Sends back the value of the current remote session description on a peer connection. This will
send back JSON representing an offer or an answer when the peer connection has had
set_remote_description/3 called and has successfully negotiated ICE. In all other cases,
nil will be sent.
See current_remote_description/2 and remote_description/2.

  
    
  
  Usage


iex> {:ok, specter} = Specter.init()
iex> {:ok, media_engine} = Specter.new_media_engine(specter)
iex> {:ok, registry} = Specter.new_registry(specter, media_engine)
iex> {:ok, api} = Specter.new_api(specter, media_engine, registry)
iex> {:ok, pc} = Specter.PeerConnection.new(specter, api)
iex> assert_receive {:peer_connection_ready, ^pc}
iex> Specter.PeerConnection.current_remote_description(specter, pc)
:ok
iex> assert_receive {:current_remote_description, ^pc, nil}

  



  
    
      
    
    
      exists?(specter, peer_connection)



        
          
        

    

  


  

      

          @spec exists?(Specter.t(), t()) :: boolean() | no_return()


      


Returns true or false, depending on whether the RTCPeerConnection is initialized.

  
    
  
  Usage


iex> {:ok, specter} = Specter.init(ice_servers: ["stun:stun.l.google.com:19302"])
iex> {:ok, media_engine} = Specter.new_media_engine(specter)
iex> {:ok, registry} = Specter.new_registry(specter, media_engine)
iex> {:ok, api} = Specter.new_api(specter, media_engine, registry)
iex> {:ok, pc} = Specter.PeerConnection.new(specter, api)
iex> assert_receive {:peer_connection_ready, ^pc}
iex> Specter.PeerConnection.exists?(specter, pc)
true

iex> {:ok, specter} = Specter.init(ice_servers: ["stun:stun.l.google.com:19302"])
iex> Specter.PeerConnection.exists?(specter, UUID.uuid4())
false

  



  
    
      
    
    
      get_stats(specter, pc)



        
          
        

    

  


  

      

          @spec get_stats(Specter.t(), t()) :: :ok | {:error, term()}


      


Sends back a JSON encoded string representing the current stats of a peer connection.

  
    
  
  Usage


iex> {:ok, specter} = Specter.init()
iex> {:ok, media_engine} = Specter.new_media_engine(specter)
iex> {:ok, registry} = Specter.new_registry(specter, media_engine)
iex> {:ok, api} = Specter.new_api(specter, media_engine, registry)
iex> {:ok, pc} = Specter.PeerConnection.new(specter, api)
iex> assert_receive {:peer_connection_ready, ^pc}
...>
iex> Specter.PeerConnection.get_stats(specter, pc)
:ok
iex> assert_receive {:stats, ^pc, json}
iex> {:ok, _stats} = Jason.decode(json)

  



  
    
      
    
    
      ice_connection_state(specter, pc)



        
          
        

    

  


  

      

          @spec ice_connection_state(Specter.t(), t()) :: :ok | {:error, term()}


      


Sends back state of ICE connection for given peer connection.
This will send message ice_connection_state_msg_t/0

  



  
    
      
    
    
      ice_gathering_state(specter, pc)



        
          
        

    

  


  

      

          @spec ice_gathering_state(Specter.t(), t()) :: :ok | {:error, term()}


      


Sends back state of ICE gathering process.
This will send message ice_gathering_state_t/0.

  



  
    
      
    
    
      local_description(specter, pc)



        
          
        

    

  


  

      

          @spec local_description(Specter.t(), t()) :: :ok | {:error, term()}


      


Sends back the value of the local session description on a peer connection. This will
send back JSON representing an offer or an answer when the peer connection has had
set_local_description/3 called. If ICE has been successfully negotated, the current
local description will be sent back, otherwise the caller will receive the pending
local description.
See current_local_description/2 and pending_local_description/2.

  
    
  
  Usage


iex> {:ok, specter} = Specter.init()
iex> {:ok, media_engine} = Specter.new_media_engine(specter)
iex> {:ok, registry} = Specter.new_registry(specter, media_engine)
iex> {:ok, api} = Specter.new_api(specter, media_engine, registry)
iex> {:ok, pc} = Specter.PeerConnection.new(specter, api)
iex> assert_receive {:peer_connection_ready, ^pc}
...>
iex> Specter.PeerConnection.local_description(specter, pc)
:ok
iex> assert_receive {:local_description, ^pc, nil}
...>
iex> :ok = Specter.PeerConnection.create_offer(specter, pc)
iex> assert_receive {:offer, ^pc, offer}
iex> :ok = Specter.PeerConnection.set_local_description(specter, pc, offer)
iex> assert_receive {:ok, ^pc, :set_local_description}
...>
iex> Specter.PeerConnection.local_description(specter, pc)
:ok
iex> assert_receive {:local_description, ^pc, ^offer}

  



  
    
      
    
    
      new(specter, api)



        
          
        

    

  


  

      

          @spec new(Specter.t(), Specter.api_t()) :: {:ok, t()} | {:error, term()}


      


Creates a new RTCPeerConnection, using an API reference created with new_api/3. The
functionality wrapped by this function is async, so :ok is returned immediately.
Callers should listen for the {:peer_connection_ready, peer_connection_t()} message
to receive the results of this function.
	param	type	default
	specter	t()	
	api	opaque	


  
    
  
  Usage


iex> {:ok, specter} = Specter.init(ice_servers: ["stun:stun.l.google.com:19302"])
iex> {:ok, media_engine} = Specter.new_media_engine(specter)
iex> {:ok, registry} = Specter.new_registry(specter, media_engine)
iex> {:ok, api} = Specter.new_api(specter, media_engine, registry)
iex> {:ok, pc} = Specter.PeerConnection.new(specter, api)
...>
iex> {:ok, _pc} =
...>     receive do
...>       {:peer_connection_ready, ^pc} -> {:ok, pc}
...>     after
...>       500 -> {:error, :timeout}
...>     end

  



  
    
      
    
    
      pending_local_description(specter, pc)



        
          
        

    

  


  

      

          @spec pending_local_description(Specter.t(), t()) :: :ok | {:error, term()}


      


Sends back the value of the session description on a peer connection that is pending
connection, or nil.

  
    
  
  Usage


iex> {:ok, specter} = Specter.init()
iex> {:ok, media_engine} = Specter.new_media_engine(specter)
iex> {:ok, registry} = Specter.new_registry(specter, media_engine)
iex> {:ok, api} = Specter.new_api(specter, media_engine, registry)
iex> {:ok, pc} = Specter.PeerConnection.new(specter, api)
iex> assert_receive {:peer_connection_ready, ^pc}
...>
iex> Specter.PeerConnection.pending_local_description(specter, pc)
:ok
iex> assert_receive {:pending_local_description, ^pc, nil}
...>
iex> :ok = Specter.PeerConnection.create_offer(specter, pc)
iex> assert_receive {:offer, ^pc, offer}
iex> :ok = Specter.PeerConnection.set_local_description(specter, pc, offer)
iex> assert_receive {:ok, ^pc, :set_local_description}
...>
iex> Specter.PeerConnection.pending_local_description(specter, pc)
:ok
iex> assert_receive {:pending_local_description, ^pc, ^offer}

  



  
    
      
    
    
      pending_remote_description(specter, pc)



        
          
        

    

  


  

      

          @spec pending_remote_description(Specter.t(), t()) :: :ok | {:error, term()}


      


Sends back the value of the remote session description on a peer connection on a peer
that is pending connection, or nil.
See current_remote_description/2 and pending_remote_description/2.

  
    
  
  Usage


iex> {:ok, specter} = Specter.init()
iex> {:ok, media_engine} = Specter.new_media_engine(specter)
iex> {:ok, registry} = Specter.new_registry(specter, media_engine)
iex> {:ok, api} = Specter.new_api(specter, media_engine, registry)
iex> {:ok, pc_offer} = Specter.PeerConnection.new(specter, api)
iex> assert_receive {:peer_connection_ready, ^pc_offer}
iex> :ok = Specter.PeerConnection.create_data_channel(specter, pc_offer, "foo")
iex> assert_receive {:data_channel_created, ^pc_offer}
iex> :ok = Specter.PeerConnection.create_offer(specter, pc_offer)
iex> assert_receive {:offer, ^pc_offer, offer}
...>
iex> {:ok, media_engine} = Specter.new_media_engine(specter)
iex> {:ok, registry} = Specter.new_registry(specter, media_engine)
iex> {:ok, api} = Specter.new_api(specter, media_engine, registry)
iex> {:ok, pc_answer} = Specter.PeerConnection.new(specter, api)
iex> assert_receive {:peer_connection_ready, ^pc_answer}
...>
iex> Specter.PeerConnection.pending_remote_description(specter, pc_answer)
:ok
iex> assert_receive {:pending_remote_description, ^pc_answer, nil}
...>
iex> :ok = Specter.PeerConnection.set_remote_description(specter, pc_answer, offer)
iex> assert_receive {:ok, ^pc_answer, :set_remote_description}
...>
iex> Specter.PeerConnection.pending_remote_description(specter, pc_answer)
:ok
iex> assert_receive {:pending_remote_description, ^pc_answer, ^offer}

  



  
    
      
    
    
      remote_description(specter, pc)



        
          
        

    

  


  

      

          @spec remote_description(Specter.t(), t()) :: :ok | {:error, term()}


      


Sends back the value of the remote session description on a peer connection. This will
send back JSON representing an offer or an answer when the peer connection has had
set_remote_description/3 called. If ICE has been successfully negotated, the current
remote description will be sent back, otherwise the caller will receive the pending
remote description.
See current_remote_description/2 and remote_description/2.

  
    
  
  Usage


iex> {:ok, specter} = Specter.init()
iex> {:ok, media_engine} = Specter.new_media_engine(specter)
iex> {:ok, registry} = Specter.new_registry(specter, media_engine)
iex> {:ok, api} = Specter.new_api(specter, media_engine, registry)
iex> {:ok, pc_offer} = Specter.PeerConnection.new(specter, api)
iex> assert_receive {:peer_connection_ready, ^pc_offer}
iex> :ok = Specter.PeerConnection.create_data_channel(specter, pc_offer, "foo")
iex> assert_receive {:data_channel_created, ^pc_offer}
iex> :ok = Specter.PeerConnection.create_offer(specter, pc_offer)
iex> assert_receive {:offer, ^pc_offer, offer}
...>
iex> {:ok, media_engine} = Specter.new_media_engine(specter)
iex> {:ok, registry} = Specter.new_registry(specter, media_engine)
iex> {:ok, api} = Specter.new_api(specter, media_engine, registry)
iex> {:ok, pc_answer} = Specter.PeerConnection.new(specter, api)
iex> assert_receive {:peer_connection_ready, ^pc_answer}
...>
iex> Specter.PeerConnection.remote_description(specter, pc_answer)
:ok
iex> assert_receive {:remote_description, ^pc_answer, nil}
...>
iex> :ok = Specter.PeerConnection.set_remote_description(specter, pc_answer, offer)
iex> assert_receive {:ok, ^pc_answer, :set_remote_description}
...>
iex> Specter.PeerConnection.remote_description(specter, pc_answer)
:ok
iex> assert_receive {:remote_description, ^pc_answer, ^offer}

  



  
    
      
    
    
      set_local_description(specter, pc, description)



        
          
        

    

  


  

      

          @spec set_local_description(Specter.t(), t(), session_description_t()) ::
  :ok | {:error, term()}


      


Given an offer or an answer session description, sets the local description on
a peer connection. The description should be in the form of JSON with the keys
type and sdp.
	param	type	default
	specter	t/0	
	peer_connection	opaque	
	description	t:session_description_t()	


  



  
    
      
    
    
      set_remote_description(specter, pc, description)



        
          
        

    

  


  

      

          @spec set_remote_description(Specter.t(), t(), session_description_t()) ::
  :ok | {:error, term()}


      


Given an offer or an answer in the form of SDP generated by a remote party, sets
the remote description on a peer connection. Expects a session description in the
form of JSON with the keys type and sdp.
	param	type	default
	specter	t/0	
	peer_connection	opaque	
	description	session_description_t/0	


  



  
    
      
    
    
      signaling_state(specter, pc)



        
          
        

    

  


  

      

          @spec signaling_state(Specter.t(), t()) :: :ok | {:error, term()}


      


Sends back state of session parameters negotiation.
This will send message signaling_state_msg_t/0.

  


        

      


  

    
Specter.RtpCodecCapability 
    



      
A representation of webrtc.rs RTCRtpCodecCapability.

      


      
        Summary


  
    Types
  


    
      
        t()

      


        For the meaning of specific fields refer to
https://w3c.github.io/webrtc-pc/#rtcrtpcodeccapability



    





      


      
        Types

        


  
    
      
    
    
      t()



        
          
        

    

  


  

      

          @type t() :: %Specter.RtpCodecCapability{
  channels: non_neg_integer(),
  clock_rate: non_neg_integer(),
  mime_type: String.t(),
  sdp_fmtp_line: String.t()
}


      


For the meaning of specific fields refer to
https://w3c.github.io/webrtc-pc/#rtcrtpcodeccapability
Additionaly, webrtc.rs allows to specify extra RTCP packet types.
However, this is not implemented yet (and also not included in w3c standard).

  


        

      


  

    
Specter.TrackLocalStaticSample 
    



      
A representation of webrtc.rs TrackLocalStaticSample.
In general, a track in WebRTC represents a single audio or video
and its main purpose is to provide user with API for
sending and receiving media data/packets.
Therefore, webrtc.rs has multiple implementations of the track depending on
what user want to do.
Local tracks are outbound tracks i.e. they are used when user wants to
send media to the other end of a peer connection.
User must instantiate local track explicitly.
At the moment, there are two types of local track: TrackLocalStaticSample
and TrackLocalStaticRtp.
The former is used when user wants RTP encapsulation to be performed under the hood.
The latter, when user has already prepared RTP packets.
Remote tracks are inbound tracks i.e. they represent incoming media.
User does not create remote track explicitly.
Instead, it announces willingness to receive track by creating a rtp transceiver
and then, when there are some remote packets, webrtc.rs creates a new
remote track internally and notifies user.

      


      
        Summary


  
    Types
  


    
      
        t()

      


        Represents an instantiated TrackLocalStaticSample stored in the NIF.



    





  
    Functions
  


    
      
        new(specter, codec, id, stream_id)

      


        Creates new TrackLocalStaticSample.



    


    
      
        play_from_file_h264(specter, track, path)

      


        Reads H264 file and writes it to the track.



    





      


      
        Types

        


  
    
      
    
    
      t()



        
          
        

    

  


  

      

          @opaque t()


      


Represents an instantiated TrackLocalStaticSample stored in the NIF.

  


        

      

      
        Functions

        


  
    
      
    
    
      new(specter, codec, id, stream_id)



        
          
        

    

  


  

      

          @spec new(Specter.t(), Specter.RtpCodecCapability.t(), String.t(), String.t()) ::
  {:ok, t()} | {:error, term()}


      


Creates new TrackLocalStaticSample.

  
    
  
  Usage


iex> {:ok, specter} = Specter.init()
iex> codec = %Specter.RtpCodecCapability{mime_type: "audio"}
iex> {:ok, _track} = Specter.TrackLocalStaticSample.new(specter, codec, "audio", "specter")

  



  
    
      
    
    
      play_from_file_h264(specter, track, path)



        
          
        

    

  


  

      

          @spec play_from_file_h264(Specter.t(), t(), Path.t()) :: :ok | {:error | term()}


      


Reads H264 file and writes it to the track.

  


        

      


  OEBPS/dist/epub-4WIP524F.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);function r(e){document.readyState!=="loading"?e():document.addEventListener("DOMContentLoaded",e)}var l="hll";window.addEventListener("exdoc:loaded",t);function t(){o("[data-group-id]").forEach(e=>{e.addEventListener("mouseenter",i),e.addEventListener("mouseleave",i)})}function i(e){let n=e.currentTarget,a=e.type==="mouseenter",c=n.getAttribute("data-group-id");n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach(u=>{u.classList.toggle(l,a)})}r(()=>{t()});})();




OEBPS/assets/architecture.drawio.png
BEAM process

Native
module

Rust channel

Specter
module

callNIF
function

ppe————e

unction |

send response
via erlang message

RTC Peer Connection
Rust thread






