

 Spector

 v0.6.0

 Table of contents

 	Spector

 	Guides

 	Building an AI Chat Log with Spector

 	Building a Basic Chat with Spector

 	Event Links Guide

 	
 Modules

 	Spector

 	Spector.Evented

 	Spector.Events

 	Spector.Integrity

 	Spector.Migration

 	Exceptions

 	Spector.Integrity.HashMismatch

 	Spector.Integrity.SavepointFailure

 Spector

CQRS-style event sourcing for Ecto schemas.
Spector records all changes to your Ecto schemas as events in a separate event log table. This enables full audit trails, temporal queries, and the ability to replay history. For tamper-evident logs, enable optional hash chain integrity.
Installation
Add spector to your list of dependencies in mix.exs:
def deps do
 [
 {:spector, "~> 0.6.0"}
]
end
Quick Start
1. Define an Events Table
defmodule MyApp.Events do
 use Spector.Events,
 table: "events",
 schemas: [MyApp.User, MyApp.Post],
 repo: MyApp.Repo
end
2. Mark Schemas as Evented
defmodule MyApp.User do
 use Spector.Evented, events: MyApp.Events
 use Ecto.Schema

 schema "users" do
 field :name, :string
 field :email, :string
 timestamps()
 end

 def changeset(changeset, attrs) do
 changeset
 |> Ecto.Changeset.cast(attrs, [:name, :email, :inserted_at, :updated_at])
 |> Ecto.Changeset.validate_required([:name, :email])
 end
end
3. Create Migrations
For the events table
defmodule MyApp.Repo.Migrations.CreateEvents do
 use Ecto.Migration

 def up, do: Spector.Migration.up(table: "events")
 def down, do: Spector.Migration.down(table: "events")
end
4. Use Spector Instead of Repo
Insert
{:ok, user} = Spector.insert(MyApp.User, %{name: "Alice", email: "alice@example.com"})

Update
{:ok, user} = Spector.update(user, %{name: "Alice Smith"})

Delete
{:ok, user} = Spector.delete(user)
How It Works
When you update or execute an action on a record, Spector "rolls forward" by replaying all stored events through your schema's changeset/2 function. This means:
	Your changeset function handles both new operations AND historical replay
	Schema migrations happen automatically during replay (using version guards)
	The current state is always reconstructed from the event log
	Stale in-memory records are never a problem

This design lets you evolve your schema over time while maintaining full compatibility with historical events.
Features
Custom Actions
Define domain-specific actions beyond insert/update/delete:
defmodule MyApp.Item do
 use Spector.Evented, events: MyApp.Events, actions: [:archive]
 use Ecto.Schema

 schema "items" do
 field :name, :string
 field :value, :integer
 field :archived_at, :utc_datetime_usec
 timestamps()
 end

 def changeset(changeset, attrs) when changeset.action == :archive do
 Ecto.Changeset.change(changeset, archived_at: attrs[:archived_at])
 end

 def changeset(changeset, attrs) do
 Ecto.Changeset.cast(changeset, attrs, [:name, :value, :inserted_at, :updated_at])
 end
end

Execute custom action
{:ok, item} = Spector.execute(item, :archive, %{archived_at: DateTime.utc_now()})
Schema Versioning
Handle schema migrations with version guards:
defmodule MyApp.User do
 use Spector.Evented, events: MyApp.Events, version: 1
 use Ecto.Schema

 schema "users" do
 field :name, :string
 timestamps()
 end

 # Migrate v0 events (with :title) to v1 (with :name)
 def changeset(changeset, attrs) when version_is(attrs, 0) do
 attrs = Map.put(attrs, "name", attrs["title"])
 do_changeset(changeset, attrs)
 end

 def changeset(changeset, attrs), do: do_changeset(changeset, attrs)

 defp do_changeset(changeset, attrs) do
 Ecto.Changeset.cast(changeset, attrs, [:name, :inserted_at, :updated_at])
 end
end
Savepoints
Capture full record state at specific points for faster replay:
defmodule MyApp.User do
 @behaviour Spector.Evented
 use Spector.Evented, events: MyApp.Events

 @impl true
 def savepoint(record, _version) do
 %{name: record.name, email: record.email}
 end
end

Create a savepoint
{:ok, user} = Spector.savepoint(MyApp.User, user_id)
When replaying events, Spector starts from the most recent savepoint instead of the beginning, improving performance for records with long histories.
Hash Chain Integrity
Enable tamper-evident event logs with cryptographic hashing:
defmodule MyApp.Events do
 use Spector.Events,
 table: "events",
 schemas: [MyApp.User],
 repo: MyApp.Repo,
 hashed: true
end
Integrity Verification
Verify the integrity of your event logs:
Verify all savepoints for a record
:ok = Spector.Integrity.verify_savepoints(MyApp.User, user_id)

Verify hash chain for entire events table
:ok = Spector.Integrity.verify_hash_chain(MyApp.Events)
Explicit Schema Indexing
Ensure stability when adding/removing schemas:
schemas: [MyApp.User, MyApp.Post, {MyApp.Comment, 10}]
Action Aliases
Maintain backwards compatibility when renaming actions:
use Spector.Events,
 aliases: [soft_delete: :archive]
Chat and Conversation Logs
Spector includes features specifically designed for chat-log style applications:
	Event links for tracking message ancestry and edit history
	Embedded schemas for state reconstructed purely from events

See the AI Chat Guide for conversation branching and the Basic Chat Guide for edit history tracking.
Database Support
Spector works with any database supported by Ecto for basic functionality.
Note: Hashed event tables (hashed: true) currently require PostgreSQL. The hash chain integrity feature uses LOCK TABLE ... IN EXCLUSIVE MODE which is PostgreSQL-specific.
Documentation
Full documentation is available at HexDocs.
License
MIT License. See LICENSE for details.

 Building an AI Chat Log with Spector

This guide shows how to use Spector to build an AI chat log that supports conversation branching (like ChatGPT's "edit and regenerate" feature).
Overview
AI chat applications often need:
	Full conversation history
	Ability to branch from any point in the conversation
	Reconstruct any conversation path from the event log

Spector's event sourcing with links provides exactly this. Each message becomes an event, and branching is handled by tracking ancestors.
Setup
1. Define the Chat Schema
Since chat state is reconstructed from events, use an embedded schema (no database table):
defmodule MyApp.AIChat do
 use Spector.Evented, events: MyApp.AIChatEvents, actions: [:append]
 use Ecto.Schema
 alias Ecto.Changeset

 defmodule Message do
 use Ecto.Schema

 @primary_key false
 embedded_schema do
 field :id, :binary_id
 field :content, :string
 field :role, Ecto.Enum, values: [:user, :assistant, :system]
 end

 def changeset(message \\ %__MODULE__{}, attrs) do

 message
 |> Changeset.cast(attrs, [:id, :content, :role])
 |> Spector.changeset_put_event_id(attrs)
 |> Changeset.validate_required([:id, :content, :role])
 end
 end

 @primary_key {:id, :binary_id, autogenerate: false}
 embedded_schema do
 embeds_many :messages, Message
 end

 @impl true
 def prepare_event(event_changeset, previous_events, %{to: ancestor_id}) do
 # Find the ancestor event and build the ancestry chain
 previous_events
 |> Enum.find(&(&1.id == ancestor_id))
 |> MyApp.Repo.preload(:ancestors)
 |> then(&[&1 | &1.ancestors])
 |> then(&Changeset.put_assoc(event_changeset, :ancestors, &1))
 end

 def prepare_event(event_changeset, _previous_events, _attrs) do
 # Require :to for append actions (except the first message)
 if Changeset.fetch_field!(event_changeset, :action) == :append do
 raise ArgumentError, "Missing :to attribute for append action"
 else
 event_changeset
 end
 end

 def changeset(changeset \\ %__MODULE__{}, attrs) do
 changeset = Changeset.change(changeset)

 message =
 attrs
 |> Message.changeset()
 |> Changeset.apply_action!(:insert)

 current_messages = Changeset.get_field(changeset, :messages, [])
 Changeset.put_change(changeset, :messages, [message | current_messages])
 end

 def get_branch(tail_id) do
 case get_branch_events(tail_id) do
 [%{parent_id: parent_id} | _] = events ->
 events
 |> Enum.reduce(%__MODULE__{id: parent_id}, fn event, acc ->
 changeset(acc, Map.put(event.payload, "__event_id__", event.id))
 end)
 |> Changeset.apply_action!(:get)
 [] -> nil
 end
 end

 defp get_branch_events(tail_id) do
 import Ecto.Query

 ancestor_ids =
 from(link in "ai_chat_ancestors",
 where: link.event_id == type(^tail_id, :binary_id),
 select: link.ancestor_id
)

 MyApp.Repo.all(
 from(e in MyApp.AIChatEvents,
 where: e.id == ^tail_id or e.id in subquery(ancestor_ids),
 order_by: [desc: e.inserted_at]
)
)
 end
end
2. Define the Events Module
defmodule MyApp.AIChatEvents do
 use Spector.Events,
 table: "ai_chat_events",
 links: [ancestors: {"ai_chat_ancestors", :ancestor_id}],
 schemas: [MyApp.AIChat],
 repo: MyApp.Repo
end
The links option creates a many-to-many relationship for tracking message ancestry. Each event can reference its ancestor events, enabling tree-structured conversations.
3. Create the Migration
defmodule MyApp.Repo.Migrations.CreateChatEvents do
 use Ecto.Migration

 def up do
 Spector.Migration.up(
 table: "ai_chat_events",
 links: [{"ai_chat_ancestors", :ancestor_id}]
)
 end

 def down do
 Spector.Migration.down(
 table: "ai_chat_events",
 links: [{"ai_chat_ancestors", :ancestor_id}]
)
 end
end
Usage
Starting a Conversation
assert {:ok, %MyApp.AIChat{messages: [%{role: :user, content: "Hello, how are you?"}]} = chat} =
 Spector.insert(MyApp.AIChat, %{
 role: :user,
 content: "Hello, how are you?"
 })
Adding Messages
To add a message, use Spector.execute/3 with the :append action. The :to attribute specifies which message to append after:
Append assistant response
assert {:ok, %{messages: [%{role: :assistant, content: "I'm doing well, thank you!"}, _]} = chat} =
 Spector.execute(chat, :append, %{
 to: chat.id,
 role: :assistant,
 content: "I'm doing well, thank you!"
 })
Branching a Conversation
To branch from an earlier point, specify the :to attribute pointing to the message you want to branch from:
branch from the first message
{:ok, %{messages: [%{id: branch_id}, %{id: base_id}, _]}} = Spector.execute(chat, :append, %{
 to: chat.id,
 role: :user,
 content: "Actually, let me rephrase that..."
})
Reconstructing a Conversation Branch
Use get_branch/1 (defined in the Chat module above) to retrieve the chat state at a specific branch point. Note that messages are prepended in our implementation above, so the most recent message appears first:
Get the assistant's branch (original user message + assistant response)
assert %{messages: [
 %{role: :user, content: "Hello, how are you?"},
 %{role: :assistant, content: "I'm doing well, thank you!"}]} = MyApp.AIChat.get_branch(base_id)

Get the new branch (original user message + rephrased user message)
assert %{messages: [
 %{role: :user, content: "Hello, how are you?"},
 %{role: :user, content: "Actually, let me rephrase that..."}]} = MyApp.AIChat.get_branch(branch_id)
How It Works
	Insert: Creates the first event with the initial message. The event id and parent_id are the same (this is the conversation root).

	Append: Creates a new event linked to the conversation (parent_id) with ancestry tracking to the specified message (to).

	Branching: When you append with a :to pointing to an earlier message, prepare_event/3 builds the ancestry chain from that point. This creates a new branch in the conversation tree.

	Reconstruction: The ancestors association lets you traverse back through any branch to reconstruct the full conversation path.

Tips
	The role enum (:user, :assistant, :system) matches common AI API conventions
	Consider adding timestamps to message payloads for display purposes
	The parent_id groups all events for a conversation; use it to list all branches
	Use get_branch/1 for reconstructing a single path through the conversation tree

 Building a Basic Chat with Spector

This guide shows how to use Spector to build a simple chat with edit history tracking using event links.
Overview
Basic chat applications need:
	Message history with user identification
	Ability to edit messages while preserving previous versions
	Simple linear conversation flow (no branching)

Spector's event sourcing with links tracks every edit as a linked event chain.
Setup
1. Define the Chat Schema
defmodule MyApp.BasicChat do
 use Spector.Evented, events: MyApp.BasicChatEvents, actions: [:edit]
 use Ecto.Schema
 alias Ecto.Changeset
 import Ecto.Query

 defmodule Message do
 use Ecto.Schema

 @primary_key false
 embedded_schema do
 field :id, :binary_id
 field :user_id, :binary_id
 field :content, :string
 end

 def changeset(message \\ %__MODULE__{}, attrs) do
 message
 |> Changeset.cast(attrs, [:user_id, :content])
 |> Spector.changeset_put_event_id(attrs)
 |> Changeset.validate_required([:id, :user_id, :content])
 end
 end

 @primary_key {:id, :binary_id, autogenerate: false}
 embedded_schema do
 embeds_many :messages, Message
 end

 @impl true
 def prepare_event(event_changeset, previous_events, %{edits: previous_id}) do
 previous_events
 |> Enum.find(&(&1.id == previous_id))
 |> then(&Changeset.put_assoc(event_changeset, :edits, [&1]))
 end

 def prepare_event(event_changeset, _previous_events, _attrs) do
 event_changeset
 end

 def changeset(chat, %{edits: message_id, content: new_content}) when chat.action == :edit do
 chat = Changeset.change(chat)
 current_messages = Changeset.get_field(chat, :messages, [])

 updated_messages =
 Enum.map(current_messages, fn message ->
 if message.id == message_id do
 %{message | content: new_content}
 else
 message
 end
 end)

 Changeset.put_change(chat, :messages, updated_messages)
 end

 def changeset(chat \\ %__MODULE__{}, attrs) do
 chat = Changeset.change(chat)

 message =
 attrs
 |> Message.changeset()
 |> Changeset.apply_action!(:insert)

 current_messages = Changeset.get_field(chat, :messages, [])
 Changeset.put_change(chat, :messages, [message | current_messages])
 end

 def list_messages(chat_id) do
 edited_ids =
 from(link in "basic_chat_edits", select: link.previous_id)
 |> MyApp.Repo.all()

 Spector.all_events(__MODULE__, chat_id)
 |> Enum.reject(&(&1.id in edited_ids))
 end

 def get_edit_history(message_id) do
 previous_ids =
 from(link in "basic_chat_edits",
 where: link.event_id == type(^message_id, :binary_id),
 select: link.previous_id
)

 MyApp.Repo.all(
 from(e in MyApp.BasicChatEvents,
 where: e.id == ^message_id or e.id in subquery(previous_ids),
 order_by: [asc: e.inserted_at]
)
)
 end
end
2. Define the Events Module
defmodule MyApp.BasicChatEvents do
 use Spector.Events,
 table: "basic_chat_events",
 links: [edits: {"basic_chat_edits", :previous_id}],
 schemas: [MyApp.BasicChat],
 repo: MyApp.Repo
end
The edits link creates a relationship from the edited message to its previous version.
3. Create the Migration
defmodule MyApp.Repo.Migrations.CreateBasicChatEvents do
 use Ecto.Migration

 def up do
 Spector.Migration.up(
 table: "basic_chat_events",
 links: [{"basic_chat_edits", :previous_id}]
)
 end

 def down do
 Spector.Migration.down(
 table: "basic_chat_events",
 links: [{"basic_chat_edits", :previous_id}]
)
 end
end
Usage
Starting a Conversation
user_id = Ecto.UUID.generate()

assert {:ok, %MyApp.BasicChat{messages: [%{user_id: ^user_id, content: "Hello everyone!"}]} = chat} =
 Spector.insert(MyApp.BasicChat, %{
 user_id: user_id,
 content: "Hello everyone!"
 })
Adding Messages
Note that messages are prepended, so the most recent message appears first:
other_user_id = Ecto.UUID.generate()

assert {:ok, %{messages: [%{user_id: ^other_user_id, content: "Hi there!"}, %{content: "Hello everyone!"}]} = chat} =
 Spector.update(chat, %{
 user_id: other_user_id,
 content: "Hi there!"
 })
Editing a Message
Use the :edit action with :edits pointing to the message ID being edited:
[_, %{id: first_message_id}] = chat.messages

assert {:ok, %{messages: [%{content: "Hi there!"}, %{content: "Hello everyone! (edited)"}]} = chat} =
 Spector.execute(chat, :edit, %{
 edits: first_message_id,
 content: "Hello everyone! (edited)"
 })
How It Works
	Insert: Creates the first event with the initial message.

	Update: Adds new messages to the conversation.

	Edit: Creates a new event linked to the previous version via basic_chat_edits. The original remains in the event log.

	History: Follow the edits links backward to see all versions of a message.

Tips
	The user_id in each message tracks the author
	Edits preserve the original user_id - add an edited_by field if you need to track who made edits
	For real-time updates, combine with Phoenix PubSub
	Add inserted_at from the event for message timestamps

 Event Links Guide

This guide shows how to use Spector's event links feature to create many-to-many relationships between events. Links are useful for tracking ancestry, references, dependencies, and other relationships.
Overview
Event links allow events to reference other events in the same event log. Common use cases include:
	Ancestry tracking: Building tree-structured data like conversation branches
	Edit history: Linking edited versions to their originals
	References: Connecting related events within the same record
	Dependencies: Tracking which events depend on others

Setup
This guide demonstrates typed link tables, which add a type integer column to categorize different relationship types.
Typed Link Schema
Define an Ecto schema to manage the type values:
defmodule MyApp.TypedEventLink do
 use Ecto.Schema
 alias Ecto.Changeset

 @type link_type :: :parent | :sibling | :reference | :supersedes

 @primary_key false
 schema "typed_event_links" do
 field :event_id, :binary_id
 field :linked_id, :binary_id
 # Use explicit integer assignments for forward compatibility.
 # This ensures existing data remains valid if you rename a type.
 field :type, Ecto.Enum, values: [parent: 0, sibling: 1, reference: 2, supersedes: 3]
 end

 def changeset(link \\ %__MODULE__{}, attrs) do
 link
 |> Changeset.cast(attrs, [:event_id, :linked_id, :type])
 |> Changeset.validate_required([:event_id, :linked_id, :type])
 end

 @doc "Create a link struct for insertion"
 def new(event_id, linked_id, type) do
 %__MODULE__{event_id: event_id, linked_id: linked_id, type: type}
 end
end
Document Schema with prepare_event
The prepare_event/3 callback lets you populate link associations before an event is inserted into the event table:
defmodule MyApp.TypedDoc do
 use Spector.Evented, events: MyApp.TypedLinkEvents, actions: [:revise]
 use Ecto.Schema
 alias Ecto.Changeset

 @primary_key {:id, :binary_id, autogenerate: false}
 embedded_schema do
 field :content, :string
 field :version, :integer, default: 1
 end

 @impl true
 def prepare_event(event_changeset, previous_events, attrs) do
 case Spector.get_attr(attrs, :supersedes) do
 nil ->
 event_changeset

 superseded_id ->
 # Find the superseded event
 superseded_event = Enum.find(previous_events, &(&1.id == superseded_id))

 if superseded_event do
 # Create a typed link marking this event as superseding another
 link = MyApp.TypedEventLink.new(
 Changeset.get_field(event_changeset, :id),
 superseded_id,
 :supersedes
)
 Changeset.put_assoc(event_changeset, :links, [link])
 else
 event_changeset
 end
 end
 end

 def changeset(changeset, attrs) when changeset.action == :revise do
 current_version = Changeset.get_field(changeset, :version, 0)

 changeset
 |> Changeset.cast(attrs, [:content])
 |> Changeset.put_change(:version, current_version + 1)
 |> Changeset.validate_required([:content])
 end

 def changeset(changeset, attrs) do
 changeset
 |> Changeset.cast(attrs, [:content])
 |> Changeset.validate_required([:content])
 end

 import Ecto.Query

 def get_superseding_events(event_id) do
 from(link in MyApp.TypedEventLink,
 where: link.linked_id == ^event_id and link.type == :supersedes,
 join: e in MyApp.TypedLinkEvents,
 on: e.id == link.event_id,
 select: e
)
 |> MyApp.Repo.all()
 end

 def get_superseded_by(event_id) do
 from(link in MyApp.TypedEventLink,
 where: link.event_id == ^event_id and link.type == :supersedes,
 join: e in MyApp.TypedLinkEvents,
 on: e.id == link.linked_id,
 select: e
)
 |> MyApp.Repo.all()
 end
end
Events Module
defmodule MyApp.TypedLinkEvents do
 use Spector.Events,
 table: "typed_link_events",
 links: [links: {MyApp.TypedEventLink, :linked_id}],
 schemas: [MyApp.TypedDoc],
 repo: MyApp.Repo
end
Usage
Creating a Document
{:ok, doc} = Spector.insert(MyApp.TypedDoc, %{content: "First draft"})
assert doc.content == "First draft"
assert doc.version == 1
Revising with a Supersedes Link
When revising, pass the :supersedes attribute to create a link to the original event:
Get the original event ID (same as doc.id for insert events)
original_event_id = doc.id

{:ok, revised} = Spector.execute(doc, :revise, %{
 content: "Second draft",
 supersedes: original_event_id
})
assert revised.content == "Second draft"
assert revised.version == 2
Querying Links
Find which events supersede a given event:
superseding = MyApp.TypedDoc.get_superseding_events(original_event_id)
assert length(superseding) == 1
assert hd(superseding).action == :revise
Find what an event supersedes:
import Ecto.Query

Get the revise event ID from the events table
[revise_event] = MyApp.Repo.all(
 from e in MyApp.TypedLinkEvents,
 where: e.parent_id == ^doc.id and e.action == :revise
)

superseded = MyApp.TypedDoc.get_superseded_by(revise_event.id)
assert length(superseded) == 1
assert hd(superseded).id == original_event_id
Preloading Links
Events with links can be preloaded through the association:
events = MyApp.Repo.all(MyApp.TypedLinkEvents)
 |> MyApp.Repo.preload(:links)

The revise event should have one link
revise_event = Enum.find(events, &(&1.action == :revise))
assert length(revise_event.links) == 1
assert hd(revise_event.links).type == :supersedes
Link Types Reference
Common relationship types and when to use them:
	Type	Use Case	Example
	:ancestor	Tree-structured history	Conversation branches, version trees
	:parent	Hierarchical relationships	Comment replies, nested items
	:sibling	Peer relationships	Related documents, alternatives
	:reference	Loose connections	Citations, mentions
	:supersedes	Replacement relationships	Edits, corrections, updates
	:depends_on	Dependency tracking	Build steps, prerequisites

Best Practices
	Links must connect events with the same parent_id: Links are designed for relating events within the same record (e.g., linking messages in the same conversation, or revisions of the same document). Do not use links to connect events across different records.

	Choose between typed and separate link tables: Separate link tables (one per relationship type) have a unique index on (event_id, foreign_key). Typed link tables have a unique index on (event_id, foreign_key, type), allowing the same pair of events to have multiple relationships of different types. Typed tables are particularly useful for heterogeneous event tables where you want flexible relationship types without creating a new link table for each one.

	Define clear type semantics: Document what each type means in your domain and enforce it in prepare_event/3.

	Index appropriately: The migration creates indexes on event_id and the foreign key. For typed tables, consider adding a composite index if you frequently query by type.

	Keep links immutable: Links are created when events are inserted and shouldn't be modified afterward. This preserves the integrity of your event log.

	Use Ecto.Enum for types: This provides compile-time checking and clear documentation of valid types.

See Also
	Building an AI Chat Log - Uses links for conversation branching
	Building a Basic Chat - Uses links for edit history

Spector

CQRS-style event sourcing for Ecto schemas.
Spector records all changes to your Ecto schemas as events in a separate event
log table. This enables full audit trails, temporal queries, and the ability to
replay history. For tamper-evident logs, enable optional hash chain integrity.
Quick Start
1. Define an Events Table
defmodule MyApp.Events do
 use Spector.Events,
 table: "events",
 schemas: [MyApp.User, MyApp.Post],
 repo: MyApp.Repo
end
2. Mark Schemas as Evented
defmodule MyApp.User do
 use Spector.Evented, events: MyApp.Events
 use Ecto.Schema

 schema "users" do
 field :name, :string
 field :email, :string
 end

 def changeset(changeset, attrs) do
 changeset
 |> Ecto.Changeset.cast(attrs, [:name, :email])
 |> Ecto.Changeset.validate_required([:name, :email])
 end
end
3. Create Migrations
defmodule MyApp.Repo.Migrations.CreateEvents do
 use Ecto.Migration

 def up, do: Spector.Migration.up(table: "events")
 def down, do: Spector.Migration.down(table: "events")
end
4. Use Spector Instead of Repo
Insert
{:ok, user} = Spector.insert(MyApp.User, %{name: "Alice", email: "alice@example.com"})

Update
{:ok, user} = Spector.update(user, %{name: "Alice Smith"})

Delete
{:ok, user} = Spector.delete(user)
How It Works
When you update or execute an action on a record, Spector "rolls forward" by
replaying all stored events through your schema's changeset/2 function. This means:
	Your changeset function handles both new operations AND historical replay
	Schema migrations happen automatically during replay (using version guards)
	The current state is always reconstructed from the event log
	Stale in-memory records are never a problem

This design lets you evolve your schema over time while maintaining full
compatibility with historical events.
Guides
For complete examples of building applications with Spector:
	Building an AI Chat Log - Conversation branching with tree-structured message history
	Building a Basic Chat - Simple chat with edit history tracking

Features
Custom Actions
Define domain-specific actions beyond insert/update/delete:
defmodule MyApp.Item do
 use Spector.Evented, events: MyApp.Events, actions: [:archive]

 def changeset(changeset, attrs) when changeset.action == :archive do
 Ecto.Changeset.change(changeset, archived_at: Spector.get_attr(attrs, :archived_at))
 end

 def changeset(changeset, attrs) do
 Ecto.Changeset.cast(changeset, attrs, [:name, :value])
 end
end

Execute custom action
{:ok, item} = Spector.execute(item, :archive, %{archived_at: DateTime.utc_now()})
Schema Versioning
Handle schema migrations with version guards:
defmodule MyApp.User do
 use Spector.Evented, events: MyApp.Events, version: 1

 # Migrate v0 events (with :title) to v1 (with :name)
 def changeset(changeset, attrs) when version_is(attrs, 0) do
 attrs = Map.put(attrs, "name", Spector.get_attr(attrs, :title))
 do_changeset(changeset, attrs)
 end

 def changeset(changeset, attrs), do: do_changeset(changeset, attrs)
end
Hash Chain Integrity
Enable tamper-evident event logs with cryptographic hashing:
defmodule MyApp.Events do
 use Spector.Events,
 table: "events",
 schemas: [MyApp.User],
 repo: MyApp.Repo,
 hashed: true
end
Explicit Schema Indexing
Ensure stability when adding/removing schemas:
schemas: [MyApp.User, MyApp.Post, {MyApp.Comment, 10}]
Action Aliases
Maintain backwards compatibility when renaming actions:
use Spector.Events,
 aliases: [soft_delete: :archive]
Reserved Attributes
Spector injects reserved attributes into the attrs map passed to your
changeset/2 function. These provide metadata about the event being applied:
	:__version__ - The schema version when the event was created. Use with
version_is/2 guards to handle schema migrations during replay.

	:__event_id__ - The unique ID of the event being applied. Use
Spector.changeset_put_event_id/3 to assign this to a field:
def changeset(message, attrs) do
 message
 |> Ecto.Changeset.cast(attrs, [:content])
 |> Spector.changeset_put_event_id(attrs) # puts :__event_id__ into :id field
end

These attributes are also stored in the event payload for reference.
Database Support
Spector works with any database supported by Ecto for basic functionality.
Note: Hashed event tables (hashed: true) currently require PostgreSQL.
The hash chain integrity feature uses LOCK TABLE ... IN EXCLUSIVE MODE which
is PostgreSQL-specific.

 Summary

 Types

 action()

 An action atom (e.g., :insert, :update, :delete, or custom actions)

 attrs()

 Attributes map passed to changesets

 bringup_opts()

 Options for bringup/2

 evented_schema()

 An Ecto schema module that uses Spector.Evented

 evented_struct()

 A struct instance of an evented schema

 Functions

 all_events(schema, parent_id)

 Returns all events for a record from the beginning.

 bringup(schema, opts \\ [])

 Import existing database records into the event log.

 changeset_put_event_id(changeset, attrs, field \\ :id)

 Assigns the current event ID to a changeset field.

 delete(record)

 Delete a record, creating a delete event in the event log.

 execute(record, action, attrs)

 Execute an action on a record, creating an event in the event log.

 fetch_attr(attrs, key)

 Fetches a field from attrs, checking both atom and string keys.

 fetch_attr!(attrs, key)

 Fetches a field from attrs, checking both atom and string keys.

 get(schema, parent_id)

 Retrieve the current state of a record by replaying its events.

 get_attr(attrs, key, default \\ nil)

 Gets a field from attrs, checking both atom and string keys.

 insert(schema, attrs, action \\ :insert)

 Insert a new record, creating an event in the event log.

 previous_events(event)

 Returns all events up to and including the given event.

 recent_events(schema, parent_id)

 Returns events starting from the most recent savepoint.

 savepoint(record)

 Create a savepoint event capturing the current state of a record.

 savepoint(schema, id)

 update(record, attrs)

 Update an existing record, creating an event in the event log.

 Types

 action()

 @type action() :: atom()

An action atom (e.g., :insert, :update, :delete, or custom actions)

 attrs()

 @type attrs() :: map()

Attributes map passed to changesets

 bringup_opts()

 @type bringup_opts() :: [
 action: action(),
 attr_fn: (evented_struct() -> attrs()),
 transfer: (evented_struct(), evented_struct() -> any())
]

Options for bringup/2

 evented_schema()

 @type evented_schema() :: module()

An Ecto schema module that uses Spector.Evented

 evented_struct()

 @type evented_struct() :: struct()

A struct instance of an evented schema

 Functions

 all_events(schema, parent_id)

 @spec all_events(evented_schema(), Ecto.UUID.t()) :: [struct()]

Returns all events for a record from the beginning.
Events are returned in insertion order.
Example
events = Spector.all_events(MyApp.User, user_id)

 bringup(schema, opts \\ [])

 @spec bringup(evented_schema(), bringup_opts()) :: {:ok, [evented_struct()]}

Import existing database records into the event log.
Reads all rows from the schema's table and migrates each to Spector management:
deletes the original record and creates a new one with a UUIDv7 ID and
corresponding event. The entire operation runs in a single transaction.
Records that are already tracked by Spector (have existing events) are skipped.
Options
	:action - The action to use for the event (default: :insert). Use a custom
action like :import to trigger different changeset behavior during migration.

	:attr_fn - A function that takes a record and returns the attributes map to
insert (default: extracts all schema fields except the primary key). Use this to
transform or augment data during migration.

	:transfer - A function that receives the old record and the new record before
the old record is deleted. Use this to update associations or perform other
transfer operations (default: no-op).

Returns {:ok, [struct]} on success or {:error, reason} on failure.
Timestamps
By default, bringup creates new records, so inserted_at and updated_at timestamps
will be set to the current time. To preserve original timestamps from the source
records, include them in the attr_fn and ensure your changeset accepts them.
If you don't want your regular changeset to accept timestamp fields, use a custom
action like :import to handle them separately:
Register :import as a custom action
use Spector.Evented, events: MyApp.Events, actions: [:import]

Handle :import with timestamp support
def changeset(changeset, attrs) when changeset.action == :import do
 changeset
 |> cast(attrs, [:name, :inserted_at, :updated_at])
 |> validate_required([:name])
end

Regular changeset doesn't accept timestamps
def changeset(changeset, attrs) do
 changeset
 |> cast(attrs, [:name])
 |> validate_required([:name])
end

Pass timestamps in attr_fn
attr_fn = fn record ->
 %{name: record.name, inserted_at: record.inserted_at, updated_at: record.updated_at}
end

{:ok, users} = Spector.bringup(MyApp.User, action: :import, attr_fn: attr_fn)
Examples
Basic usage migrates all untracked records (timestamps reset to now):
{:ok, users} = Spector.bringup(MyApp.User)
Use a custom attr_fn to transform data during migration:
{:ok, users} = Spector.bringup(MyApp.User, attr_fn: fn record ->
 %{
 name: String.upcase(record.name),
 value: record.value || 0 # provide defaults for nil values
 }
end)
Use a transfer function to update associations before the old record is deleted:
{:ok, users} = Spector.bringup(MyApp.User, transfer: fn old, new ->
 Repo.update_all(
 from(p in Post, where: p.user_id == ^old.id),
 set: [user_id: new.id]
)
end)

 changeset_put_event_id(changeset, attrs, field \\ :id)

 @spec changeset_put_event_id(Ecto.Changeset.t(), attrs(), atom()) ::
 Ecto.Changeset.t()

Assigns the current event ID to a changeset field.
When Spector calls your changeset/2 function, it includes an :__event_id__
key in the attrs map. This function extracts that ID and assigns it to
the specified field in your changeset.
This is useful for embedded schemas and {:array, :map} rollup records
where you want each record to have a unique ID that matches its creation event.
Parameters
	changeset - The changeset to modify
	attrs - The attrs map passed to changeset/2 (contains :__event_id__)
	field - The field to assign the event ID to (default: :id)

Example
def changeset(message, attrs) do
 message
 |> Ecto.Changeset.cast(attrs, [:content, :role])
 |> Spector.changeset_put_event_id(attrs)
 |> Ecto.Changeset.validate_required([:id, :content, :role])
end

 delete(record)

 @spec delete(evented_struct()) ::
 {:ok, evented_struct()} | {:error, Ecto.Changeset.t()}

Delete a record, creating a delete event in the event log.
Returns {:ok, struct} on success or {:error, changeset} on failure.
The delete event is recorded in the event log before the record is removed
from the database, providing a complete audit trail.
Example
{:ok, user} = Spector.delete(user)

 execute(record, action, attrs)

 @spec execute(evented_struct(), action(), attrs()) ::
 {:ok, evented_struct()} | {:error, Ecto.Changeset.t()}

Execute an action on a record, creating an event in the event log.
This is the general-purpose function for applying any action to a record,
including custom actions defined in the schema's :actions option.
Returns {:ok, struct} on success or {:error, changeset} on failure.
The function rolls forward from the event log to reconstruct current state,
applies the action through the schema's changeset/2 function, and records
the new event.
Example
Using a custom :archive action
{:ok, item} = Spector.execute(item, :archive, %{archived_at: DateTime.utc_now()})

The :update action (same as Spector.update/2)
{:ok, user} = Spector.execute(user, :update, %{name: "New Name"})

 fetch_attr(attrs, key)

 @spec fetch_attr(attrs(), atom()) :: {:ok, any()} | :error

Fetches a field from attrs, checking both atom and string keys.
Returns {:ok, value} if the key exists, or :error if not found.
This is useful in changesets where attrs may come with string keys (from JSON)
or atom keys (from internal calls).
Example
def changeset(record, attrs) do
 case Spector.fetch_attr(attrs, :parent_id) do
 {:ok, parent_id} -> # handle parent_id
 :error -> # no parent_id provided
 end
end

 fetch_attr!(attrs, key)

 @spec fetch_attr!(attrs(), atom()) :: any()

Fetches a field from attrs, checking both atom and string keys.
Returns the value if the key exists, or raises KeyError if not found.
Example
def changeset(record, attrs) do
 parent_id = Spector.fetch_attr!(attrs, :parent_id)
 # use parent_id
end

 get(schema, parent_id)

 @spec get(evented_schema(), String.t()) :: evented_struct() | nil

Retrieve the current state of a record by replaying its events.
Returns the struct if found, or nil if no events exist for the given ID.
This is useful for embedded schemas (without database tables) or when you
want to reconstruct state purely from the event log.
Example
user = Spector.get(MyApp.User, "019ac640-dfc0-7407-8238-39a9c45e8813")

 get_attr(attrs, key, default \\ nil)

 @spec get_attr(attrs(), atom(), any()) :: any()

Gets a field from attrs, checking both atom and string keys.
Returns the value if the key exists, or default if not found.
Example
def changeset(record, attrs) do
 parent_id = Spector.get_attr(attrs, :parent_id, nil)
 # use parent_id, which may be nil
end

 insert(schema, attrs, action \\ :insert)

 @spec insert(evented_schema(), attrs(), action()) ::
 {:ok, evented_struct()} | {:error, Ecto.Changeset.t()}

Insert a new record, creating an event in the event log.
Returns {:ok, struct} on success or {:error, changeset} on failure.
Example
{:ok, user} = Spector.insert(MyApp.User, %{name: "Alice", email: "alice@example.com"})
The inserted struct will have a new UUIDv7 id assigned.

 previous_events(event)

Returns all events up to and including the given event.
Events are returned in insertion order. The specified event is included
as the last element in the result.
Note
This function does not take into account savepoints.
Example
events = Spector.previous_events(event)

 recent_events(schema, parent_id)

 @spec recent_events(evented_schema(), Ecto.UUID.t()) :: [struct()]

Returns events starting from the most recent savepoint.
If no savepoint exists, returns all events from the beginning.
The savepoint event itself is included as the first element.
Events are returned in insertion order.
Use of this function over all_events/2 is preferable; if the
schema does not support savepoints, the two functions behave
identically.
Example
events = Spector.recent_events(MyApp.User, user_id)

 savepoint(record)

Create a savepoint event capturing the current state of a record.
Returns {:ok, struct} on success or raises on failure.
Savepoints store the complete state of a record at a point in time, allowing
event replay to start from the savepoint instead of replaying all events
from the beginning. This is useful for records with long event histories.
The schema must implement the savepoint/2 callback to define how the
current state is converted to an attrs map:
@behaviour Spector.Evented

@impl true
def savepoint(record, _version) do
 %{name: record.name, email: record.email}
end
Forms
There are two ways to create a savepoint:
From a record (savepoint/1)
Pass the record directly. This verifies that the record matches the current
state in the event log (replayed events must produce the same field values).
This guards against creating savepoints from stale records:
{:ok, user} = Spector.savepoint(user)
If the record is stale (e.g., another process updated it), this raises an error.
From schema and ID (savepoint/2)
Pass the schema module and record ID. This replays events to determine
current state without verification:
{:ok, user} = Spector.savepoint(MyApp.User, user_id)
Use this form when you don't have the record in memory or don't need
stale record detection.

 savepoint(schema, id)

 update(record, attrs)

 @spec update(evented_struct(), attrs()) ::
 {:ok, evented_struct()} | {:error, Ecto.Changeset.t()}

Update an existing record, creating an event in the event log.
This is a convenience function that calls execute(record, :update, attrs).
Returns {:ok, struct} on success or {:error, changeset} on failure.
Example
{:ok, user} = Spector.update(user, %{name: "Alice Smith"})

Spector.Evented behaviour

Mark a schema as evented, linking it to an event log table.
Basic Usage
defmodule MyApp.User do
 use Spector.Evented, events: MyApp.Events
 use Ecto.Schema

 schema "users" do
 field :name, :string
 timestamps()
 end

 def changeset(changeset, attrs) do
 changeset
 |> Ecto.Changeset.cast(attrs, [:name, :inserted_at, :updated_at])
 |> Ecto.Changeset.validate_required([:name])
 end
end
Timestamps in Changesets
Always include inserted_at and updated_at in your changeset's cast fields
when using timestamps(). Spector stores these values in event payloads to
ensure proper timestamp replay. Without casting them, replayed events won't
restore original timestamps.
Options
	:events (required) - The events module (defined with Spector.Events)
	:repo - Override the repo for this schema's table (default: uses events repo)
	:version - Schema version for migrations (default: 0). See "Schema Versioning" below
	:actions - List of custom action atoms (default: []). See "Custom Actions" below

Custom Actions
Beyond the built-in :insert, :update, and :delete actions, you can define
custom actions for domain-specific operations:
defmodule MyApp.Item do
 use Spector.Evented,
 events: MyApp.Events,
 actions: [:archive, :restore]

 schema "items" do
 field :name, :string
 field :value, :integer
 field :archived_at, :utc_datetime_usec
 timestamps()
 end

 # Handle the archive action
 def changeset(changeset, attrs) when changeset.action == :archive do
 changeset
 |> Ecto.Changeset.change(archived_at: Spector.get_attr(attrs, :archived_at))
 end

 # Handle other actions
 def changeset(changeset, attrs) do
 changeset
 |> Ecto.Changeset.cast(attrs, [:name, :value, :inserted_at, :updated_at])
 end
end
Execute custom actions with Spector.execute/3:
{:ok, item} = Spector.execute(item, :archive, %{archived_at: DateTime.utc_now()})
Schema Versioning
When you change your schema (add/remove/rename fields), increment the version
and handle migrations in your changeset:
defmodule MyApp.User do
 # Version 0: had :title field
 # Version 1: renamed :title to :name
 use Spector.Evented, events: MyApp.Events, version: 1

 schema "users" do
 field :name, :string
 timestamps()
 end

 # Migrate v0 events (with :title) to v1 (with :name)
 def changeset(changeset, attrs) when version_is(attrs, 0) do
 attrs = Map.put(attrs, "name", Spector.get_attr(attrs, :title))
 do_changeset(changeset, attrs)
 end

 def changeset(changeset, attrs), do: do_changeset(changeset, attrs)

 defp do_changeset(changeset, attrs) do
 changeset
 |> Ecto.Changeset.cast(attrs, [:name, :inserted_at, :updated_at])
 |> Ecto.Changeset.validate_required([:name])
 end
end
The version_is/2 and version_in/2 guards help you handle different versions.
During updates, Spector replays all stored events through your changeset/2
function. Old events retain their original version, so your version guards
automatically migrate historical data during replay.
Generated Functions
Using this module generates:
	__spector__/1 - Internal metadata accessor
	Imports version_in/2 and version_is/2 guards
	Sets @primary_key to {:id, UUIDv7, autogenerate: false} (Spector manages IDs)

Customizing the Primary Key
The default @primary_key can be overridden by defining it after use Spector.Evented:
defmodule MyApp.Record do
 use Spector.Evented, events: MyApp.Events
 use Ecto.Schema

 @primary_key {:uuid, UUIDv7, autogenerate: false}
 schema "records" do
 field :name, :string
 end
end
The primary key must be a binary type (not integer). This is validated at compile time.
Optional Callbacks
prepare_event/3
Called before inserting an event, allowing last-minute modifications to the
event changeset. Useful for populating link associations.
@behaviour Spector.Evented

@impl true
def prepare_event(event_changeset, existing_events, attrs) do
 # Modify event_changeset as needed
 event_changeset
end
The callback receives:
	event_changeset - The changeset for the event about to be inserted
	existing_events - All existing events for this record (with links preloaded)
	attrs - The attributes passed to the action

Note: prepare_event/3 always runs inside a transaction.

 Summary

 Callbacks

 prepare_event(event_changeset, existing_events, attrs)

 savepoint(record, version)

 Convert the current record state into an attrs map for a savepoint event.

 Functions

 event_log(name)

 Creates a has_many association to the event log for this record.

 version_in(attrs, range)

 Guard to check if attrs version is within a range or list of integers.

 version_is(attrs, version)

 Guard to check if attrs version equals a specific integer.

 Callbacks

 prepare_event(event_changeset, existing_events, attrs)

 (optional)

 @callback prepare_event(
 event_changeset :: Ecto.Changeset.t(),
 existing_events :: [struct()],
 attrs :: map()
) :: Ecto.Changeset.t()

 savepoint(record, version)

 (optional)

 @callback savepoint(record :: struct(), version :: non_neg_integer()) :: map()

Convert the current record state into an attrs map for a savepoint event.
Called by Spector.savepoint/2 to capture the full state of a record.
When replaying events, savepoints allow starting from an intermediate state
instead of replaying from the beginning.
The version parameter is the schema version at the time the savepoint was
registered (from the savepoint event's __version__ field). This allows
handling schema migrations when replaying from older savepoints.
@behaviour Spector.Evented

@impl true
def savepoint(record, _version) do
 %{
 name: record.name,
 email: record.email,
 status: record.status
 }
end
The returned attrs map should contain all fields needed to reconstruct
the record's state at this point.
Testing savepoints is highly encouraged. Use Spector.Integrity.verify_savepoints/2
to ensure savepoints correctly capture the replayed state from all possible replay paths.

 Functions

 event_log(name)

 (macro)

Creates a has_many association to the event log for this record.
Use this inside your schema definition to add an association that retrieves
all events for a given record.
Note: This macro only works with database-backed schemas, not embedded schemas.
Embedded schemas cannot use Ecto associations for preloading.
Example
defmodule MyApp.User do
 use Spector.Evented, events: MyApp.Events
 use Ecto.Schema

 schema "users" do
 field :name, :string
 event_log :log
 end
end
Then you can preload and access events:
user = Repo.get(User, id) |> Repo.preload(:log)
user.log # Returns all events for this user

 version_in(attrs, range)

 (macro)

Guard to check if attrs version is within a range or list of integers.
Example: def changeset(struct, attrs) when version_in(attrs, 0..2)

 version_is(attrs, version)

 (macro)

Guard to check if attrs version equals a specific integer.
Example: def changeset(struct, attrs) when version_is(attrs, 0)

Spector.Events behaviour

Define an event log table for storing events from evented schemas.
Basic Usage
defmodule MyApp.Events do
 use Spector.Events,
 table: "events",
 schemas: [MyApp.User, MyApp.Post],
 repo: MyApp.Repo
end
Options
	:table (required) - The database table name for storing events
	:schemas (required) - List of schemas that will log events to this table
	:repo (required) - The Ecto repo module to use for database operations
	:hashed - Enable hash chain integrity (default: false). See "Hash Chain Integrity" below
	:aliases - Action aliases for refactoring. See "Action Aliases" below
	:shard - Sharding function name (atom). See "Table Sharding" below
	:links - List of link associations for many-to-many relationships. See "Event Links" below

Table Sharding
For high-volume event logs, you can shard events across multiple tables using
the :shard option. Specify a function name (atom) that takes a parent_id
and returns the table name:
defmodule MyApp.Events do
 use Spector.Events,
 table: "events", # base table name (used for schema definition)
 schemas: [MyApp.User],
 repo: MyApp.Repo,
 shard: :shard_table

 def shard_table(parent_id) do
 # Shard based on first byte of UUID
 <<first_byte, _rest::binary>> = parent_id
 "events_#{rem(first_byte, 4)}"
 end
end
You'll need to create migrations for each shard table. The sharding function
must be deterministic - the same parent_id must always map to the same table.
When combining sharding with hash chain integrity (hashed: true), each shard
table maintains its own independent hash chain.
Event Links
Enable event linking with the :links option to create many-to-many relationships
between events:
use Spector.Events,
 table: "events",
 schemas: [MyApp.Chat],
 repo: MyApp.Repo,
 links: [ancestors: {"event_ancestors", :ancestor_id}]
Each link creates a join table and a many_to_many association on the events module.
You can define multiple links:
links: [
 ancestors: {"event_ancestors", :ancestor_id},
 categories: {"event_categories", :category_id}
]
For links that use an Ecto schema module, pass the module instead of a table name:
links: [links: {MyApp.EventLink, :linked_id}]
The two approaches differ in what the association returns:
	Table name string: Creates a many_to_many association. Preloading returns the
linked events directly. You cannot use put_assoc to set fields on the join table.

	Schema module: Creates a has_many association. Preloading returns the link
records themselves (e.g., %EventLink{event_id: ..., linked_id: ..., type: ...}).
You can use put_assoc in prepare_event/3 to create links with custom fields.

Use a schema module when you need to store metadata on links (types, timestamps, etc.)
or need to create links via put_assoc. Use a table name string for simple joins where
you only care about which events are connected.
See the Event Links Guide for details.
Sharding with Links
When combining sharding with links, a separate link table is created for each shard.
Use link_table_for/2 to get the correct link table name for a given parent_id:
def prepare_event(event_changeset, _previous_events, attrs) do
 parent_id = Ecto.Changeset.get_field(event_changeset, :parent_id)
 link_table = MyEvents.link_table_for(parent_id, "ancestors")

 link = %MyLink{ancestor_id: attrs[:ancestor_id]}
 link = Ecto.put_meta(link, source: link_table)

 Ecto.Changeset.put_assoc(event_changeset, :ancestors, [link])
end
Schema Indexing
Schemas are stored as integers in the database. By default, schemas are
auto-indexed starting from 0. To ensure stability when adding/removing schemas,
you can specify explicit indexes:
schemas: [MyApp.User, MyApp.Post, {MyApp.Comment, 10}]
In this example, User gets index 0, Post gets index 1, and Comment gets
index 10. This allows you to remove Post later without breaking existing data.
Hash Chain Integrity
Enable hashed: true to create a cryptographic hash chain linking all events:
use Spector.Events,
 table: "events",
 schemas: [MyApp.User],
 repo: MyApp.Repo,
 hashed: true
Each event's hash includes the previous event's hash, creating a tamper-evident
chain. Any modification to historical events will break the chain.
Note: Hash chain integrity requires PostgreSQL due to the use of
LOCK TABLE ... IN EXCLUSIVE MODE for serialization.
Action Aliases
When refactoring action names, use aliases to maintain backwards compatibility
with existing events in the database:
use Spector.Events,
 table: "events",
 schemas: [MyApp.Item],
 repo: MyApp.Repo,
 aliases: [soft_delete: :archive] # soft_delete uses archive's hash
This allows renaming :archive to :soft_delete in your code while still
reading old events that used :archive.
Compilation Dependencies
Using this module creates a compilation dependency on all schema modules
listed in the :schemas option. This means changes to those schema modules
will trigger recompilation of the events module.
Generated Functions
Using this module generates the following functions:
	changeset/1, changeset/2 - Build an event changeset
	table_for/1 - Get the table name for a given parent_id
	shard/2 - Apply sharding to a changeset
	__spector__/1 - Internal metadata accessor

 Summary

 Callbacks

 changeset(attrs)

 Build an event changeset from attributes.

 changeset(struct, attrs)

 Build an event changeset from an existing struct and attributes.

 link_table_for(parent_id, link_table)

 Get the link table name for a given parent_id and base link table name.

 shard(changeset, parent_id)

 Apply sharding to a changeset based on the parent_id.

 table_for(parent_id)

 Get the table name for a given parent_id.

 Callbacks

 changeset(attrs)

 @callback changeset(attrs :: map()) :: Ecto.Changeset.t()

Build an event changeset from attributes.

 changeset(struct, attrs)

 @callback changeset(struct :: struct(), attrs :: map()) :: Ecto.Changeset.t()

Build an event changeset from an existing struct and attributes.

 link_table_for(parent_id, link_table)

 @callback link_table_for(parent_id :: binary(), link_table :: String.t()) :: String.t()

Get the link table name for a given parent_id and base link table name.
With sharding, link tables are prefixed with the shard table name.
Without sharding, returns the link table name unchanged.

 shard(changeset, parent_id)

 @callback shard(changeset :: Ecto.Changeset.t(), parent_id :: binary()) ::
 Ecto.Changeset.t()

Apply sharding to a changeset based on the parent_id.
Updates the changeset's data source to the appropriate shard table.

 table_for(parent_id)

 @callback table_for(parent_id :: binary()) :: String.t()

Get the table name for a given parent_id.
For non-sharded tables, returns the configured table name.
For sharded tables, calls the shard function to determine the table.

Spector.Integrity

Integrity verification for Spector event logs.
This module provides functions to verify the integrity of event logs,
including savepoint validation and hash chain verification.

 Summary

 Functions

 verify_hash_chain(events_module)

 Verify the hash chain integrity of an entire events table.

 verify_savepoints(schema, parent_id)

 Verify all savepoints for a record match the expected state at that point.

 Functions

 verify_hash_chain(events_module)

 @spec verify_hash_chain(module()) ::
 :ok | {:error, Spector.Integrity.HashMismatch.t()}

Verify the hash chain integrity of an entire events table.
Iterates through all events in the table ordered by id and verifies
that each event's hash correctly chains from the previous event.
Returns :ok if the hash chain is valid, or {:error, exception} where
exception is a Spector.Integrity.HashMismatch.
Raises if the events module doesn't have hash chain integrity enabled.
Examples
Verify the hash chain for an events table
:ok = Spector.Integrity.verify_hash_chain(MyApp.Events)

Handle verification failures
case Spector.Integrity.verify_hash_chain(MyApp.Events) do
 :ok -> :verified
 {:error, %Spector.Integrity.HashMismatch{} = failure} ->
 Logger.error(Exception.message(failure))
end

 verify_savepoints(schema, parent_id)

 @spec verify_savepoints(module(), String.t()) ::
 :ok | {:error, Spector.Integrity.SavepointFailure.t()}

Verify all savepoints for a record match the expected state at that point.
Replays events from the beginning up to each savepoint and verifies that
all replay paths (skipping different combinations of savepoints) converge
to the same state. This catches bugs in savepoint/2 implementations that
omit fields.
Returns :ok if all savepoints are valid, or {:error, exception} where
exception is a Spector.Integrity.SavepointFailure.
Raises if the schema doesn't implement the savepoint/2 callback.
Examples
Verify all savepoints for a record
:ok = Spector.Integrity.verify_savepoints(MyApp.User, user_id)

Handle verification failures
case Spector.Integrity.verify_savepoints(MyApp.User, user_id) do
 :ok -> :verified
 {:error, %Spector.Integrity.SavepointFailure{} = failure} ->
 Logger.error(Exception.message(failure))
end

Spector.Migration

Migration helpers for creating Spector event tables.
Basic Usage
defmodule MyApp.Repo.Migrations.CreateEvents do
 use Ecto.Migration

 def up, do: Spector.Migration.up(table: "events")
 def down, do: Spector.Migration.down(table: "events")
end
Options
	:table (required) - The database table name for the events
	:shards - List of table names for sharded setups (creates multiple tables)
	:hashed - Add a hash column for hash chain integrity (default: false)
	:links - List of link tables to create: [{"table_name", :foreign_key}, ...]

With Table Sharding
For sharded event tables, use :shards to create multiple tables:
def up do
 Spector.Migration.up(shards: ["events_0", "events_1", "events_2", "events_3"])
end

def down do
 Spector.Migration.down(shards: ["events_0", "events_1", "events_2", "events_3"])
end
When combining shards with links, a link table is created for each shard by
concatenating the shard name to the link table name. For example:
Spector.Migration.up(
 shards: ["events_0", "events_1"],
 links: [{"ancestors", :ancestor_id}]
)
This creates four tables: events_0, events_1, events_0_ancestors, and
events_1_ancestors. If you need a different naming convention, omit the
:links option and use link_up/2 separately for each shard.
With Hash Chain Integrity
If using hashed events, include the :hashed option:
def up, do: Spector.Migration.up(table: "events", hashed: true)
def down, do: Spector.Migration.down(table: "events")
With Event Links
To create join tables for event linking (e.g., ancestry tracking):
def up do
 Spector.Migration.up(
 table: "events",
 links: [{"event_ancestors", :ancestor_id}]
)
end

def down do
 Spector.Migration.down(
 table: "events",
 links: [{"event_ancestors", :ancestor_id}]
)
end
Each link tuple creates a join table with event_id and the specified foreign key,
along with indexes for efficient queries. A database trigger enforces that both
ends of a link must have the same parent_id (i.e., links can only connect events
within the same record).
Typed Link Tables
To distinguish different relationship types on the same link table, use the
:typed option to add a type integer column:
def up do
 Spector.Migration.up(
 table: "events",
 links: [{"event_links", :linked_id, typed: true}]
)
end
The type column allows a single link table to represent multiple relationship types
(e.g., "parent", "sibling", "reference") by assigning each type an integer value.
It is recommended to use an Ecto schema for typed link tables. See the
Event Links Guide for examples.
Generated Schema
The migration creates a table with:
	id - UUIDv7 primary key
	parent_id - Foreign key reference to the first event (self-referential)
	payload - Map/JSONB column storing the event data
	schema - Integer identifying which schema this event belongs to
	action - Integer identifying the action (insert, update, delete, or custom)
	hash - Binary column for SHA-256 hash (only if hashed: true)
	inserted_at, updated_at - Timestamps with microsecond precision

Indexes are created on schema and parent_id for efficient queries.

 Summary

 Functions

 down(opts)

 Drop the event table(s) and any link tables.

 link_down(arg)

 Drop a link table.

 link_up(events_table, arg)

 Create a link table for many-to-many event relationships.

 up(opts)

 Create the event table(s) and any link tables.

 Functions

 down(opts)

Drop the event table(s) and any link tables.
Pass the same options used in up/1 to ensure link tables are also dropped.

 link_down(arg)

Drop a link table.
Example
Spector.Migration.link_down({"event_ancestors", :ancestor_id})

 link_up(events_table, arg)

Create a link table for many-to-many event relationships.
Use this to add link tables in a separate migration after the events table exists.
Parameters
	events_table - The events table this link table references
	link_spec - Either {link_table, foreign_key} or {link_table, foreign_key, opts}

Options
	:typed - Add a type integer column to distinguish different relationship types
on the same link table (default: false)
	:constrained - Create a database trigger to enforce that linked events share the
same parent_id (default: true). Set to false for non-PostgreSQL databases.

Examples
Basic link table:
Spector.Migration.link_up("events", {"event_ancestors", :ancestor_id})
Link table with type column:
Spector.Migration.link_up("events", {"event_links", :linked_id, typed: true})
Link table without parent_id constraint (for non-PostgreSQL databases):
Spector.Migration.link_up("events", {"event_links", :linked_id, constrained: false})

 up(opts)

Create the event table(s) and any link tables.
Use :table for a single table or :shards for sharded setups.
See module documentation for available options.

Spector.Integrity.HashMismatch exception

Exception raised when hash chain verification fails.
This indicates that an event's hash does not match the expected hash computed
from the previous event's hash and the current event's data. This could indicate
data tampering or corruption.

Spector.Integrity.SavepointFailure exception

Exception raised when savepoint verification fails.
This indicates that replaying events through different paths (skipping vs applying
savepoints) produces divergent states, which means the savepoint/2 callback
is not correctly capturing all relevant state.

 OEBPS/dist/epub-4WIP524F.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);function r(e){document.readyState!=="loading"?e():document.addEventListener("DOMContentLoaded",e)}var l="hll";window.addEventListener("exdoc:loaded",t);function t(){o("[data-group-id]").forEach(e=>{e.addEventListener("mouseenter",i),e.addEventListener("mouseleave",i)})}function i(e){let n=e.currentTarget,a=e.type==="mouseenter",c=n.getAttribute("data-group-id");n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach(u=>{u.classList.toggle(l,a)})}r(()=>{t()});})();

