

 spectra

 v0.2.0

 Table of contents

 	Spectra

 	
 Modules

 	spectra

 	spectra_abstract_code

 	spectra_binary_string

 	spectra_json

 	spectra_json_schema

 	spectra_module_types

 	spectra_openapi

 	spectra_string

 	spectra_type

 	spectra_type_info

 	spectra_util

 Spectra

A data validation library for Erlang inspired by Pydantic.
Spectra provides type-safe data serialization and deserialization for Erlang records and types. Currently the focus is on JSON.
	Type-safe conversion: Convert typed Erlang values to/from external formats such as JSON, making sure the data conforms to the type.
	Detailed errors: Get error messages with location information when validation fails
	Support for complex scenarios: Handles unions, records, atoms, nested structures, ...

Installation
Add spectra to your rebar.config dependencies:
{deps, [
 {spectra, "~> 0.2.0"}
]}.
Data (de)serialization
Here's how to use spectra for JSON serialization and deserialization:
-module(demo).

-export([json_to_contacts/1, contacts_to_json/1, json_schema/0, binary_to_quality/1]).

-record(email_contact, {address, verified, domain}).
-record(phone_contact, {number, verified, sms_capable}).

-type quality() :: 1..5.
-type verified() ::
 #{source := one_time_code | gut_feeling,
 quality => quality(),
 binary() => binary()} | undefined.
-type email_contact() ::
 #email_contact{address :: nonempty_binary(),
 verified :: verified(),
 domain :: nonempty_binary()}.
-type phone_contact() ::
 #phone_contact{number :: binary(),
 verified :: verified(),
 sms_capable :: boolean()}.
-type contacts() :: [email_contact() | phone_contact()].

%% Some helper functions

-spec json_to_contacts(binary()) -> {ok, contacts()} | {error, [spectra:error()]}.
json_to_contacts(Json) ->
 spectra:decode(json, ?MODULE, contacts, Json).

-spec contacts_to_json(contacts()) -> {ok, binary()} | {error, [spectra:error()]}.
contacts_to_json(Contacts) ->
 case spectra:encode(json, ?MODULE, contacts, Contacts) of
 {ok, JsonIoList} -> {ok, iolist_to_binary(JsonIoList)};
 {error, _} = Error -> Error
 end.

-spec binary_to_quality(binary()) -> {ok, quality()} | {error, [spectra:error()]}.
binary_to_quality(Bin) ->
 spectra:decode(binary_string, ?MODULE, quality, Bin).

json_schema() ->
 {ok, IoSchema} = spectra:schema(json_schema, ?MODULE, contacts),
 iolist_to_binary(IoSchema).

Using the demo module in the shell
%% Compile the demo module (note: You need debug info)
c("demo.erl", [debug_info]).

%% Load the record defs into the shell.
rr(demo).

%% Create some data
Contacts = [
 #email_contact{
 address = <<"john.doe@example.com">>,
 verified = #{source => one_time_code, quality => 2, <<"code">> => <<"123456">>},
 domain = <<"example.com">>
 },
 #phone_contact{
 number = <<"+1-555-123-4567">>,
 verified = #{source => gut_feeling, <<"confidence">> => <<"high">>},
 sms_capable = true
 },
 #email_contact{
 address = <<"alice@company.org">>,
 domain = <<"company.org">>
 }
].

%% Convert to JSON
{ok, Json} = demo:contacts_to_json(Contacts).

%% Convert back from JSON
demo:json_to_contacts(Json).

%% If you get quality as a query parameter, you can do:
demo:binary_to_quality(<<"4">>).

%% Generate the json schema
demo:json_schema().

Data Serialization API
These are the main functions for JSON serialization and deserialization:
spectra:encode(Format, Module, Type, Value) ->
 {ok, iolist()} | {error, [spectra:error()]}.
spectra:decode(Format, Module, Type, JsonBinary) ->
 {ok, Value} | {error, [spectra:error()]}.

Where:
	Format is json, binary_string or string
	Module is the module where the type/record is defined (or a type_info() for advanced usage)
	Type is either:	an atom: spectra will look for a type of arity 0 or a record with that name
	{type, TypeName, Arity} for user-defined types (e.g., {type, my_type, 0})
	{record, RecordName} for records (e.g., {record, user})
	An actual sp_type() structure (for advanced usage)

Schema API
spectra:schema(Format, Module, Type) ->
 {ok, Schema :: map()} | {error, [spectra:error()]}.
Where:
	Format is json_schema (for now)

And the rest of the arguments are the same as for the data serialization API.
OpenAPI Spec
Spectra can generate complete OpenAPI 3.0 specifications for your REST APIs. This provides interactive documentation, client generation, and API testing tools.
OpenAPI Builder API
The API for building endpoints is very experimental and will probably change a lot.
It is meant to be used by developers of web servers / web frameworks.
See elli_openapi for an example of how to use it in a web server.
%% Create a base endpoint
spectra_openapi:endpoint(Method, Path) ->
 endpoint_spec().

%% Add responses
spectra_openapi:with_response(Endpoint, StatusCode, Description, Module, Schema) ->
 endpoint_spec().

%% Add request body
spectra_openapi:with_request_body(Endpoint, Module, Schema) ->
 endpoint_spec().

%% Add parameters (path, query, header, cookie)
spectra_openapi:with_parameter(Endpoint, Module, ParameterSpec) ->
 endpoint_spec().

%% Generate complete OpenAPI spec
spectra_openapi:endpoints_to_openapi(Metadata, Endpoints) ->
 {ok, json:encode_value()} | {error, [spectra:error()]}.
Requirements
	Modules must be compiled with debug_info for spectra to extract type information.

Error Handling
Spectra uses two different error handling strategies depending on the type of error:
Returned Errors ({error, [spectra:error()]})
Data validation errors are returned as {error, [#sp_error{}]} tuples. These occur when input data doesn't match the expected type during encoding/decoding.
Example:
BadSourceJson = <<"[{\"number\":\"+1-555-123-4567\",\"verified\":{\"source\":\"a_bad_source\",\"confidence\":\"high\"},\"sms_capable\":true}]">>.

{error, [#sp_error{...}]} = json_to_contacts(BadSourceJson).
#error{} contains:
	location - List showing the path to where the error occurred
	type - Error type: type_mismatch, no_match, missing_data, missing_type, type_not_supported, not_matched_fields, not_implemented
	ctx - Context information about the error

Raised Exceptions
Configuration and structural errors raise exceptions. These occur when:
	Module not found, not loaded, or not compiled with debug_info
	Type or record not found in module (e.g., {type_or_record_not_found, TypeName})
	Unsupported type used (e.g., pid(), port(), tuple())

These errors indicate a problem with your application's configuration or type definitions, not with the data being processed.
Special Handling
undefined and nil Values
The atoms undefined and nil have special handling in JSON serialization to represent missing or null values.
Encoding (Erlang → JSON):
	Fields with undefined or nil values are omitted from the JSON output
	Example: #{name => <<"John">>, email => undefined} encodes to {"name":"John"}

Decoding (JSON → Erlang):
	Missing JSON fields decode to undefined or nil if the type includes that literal
	Explicit JSON null values also decode to undefined or nil if the type includes that literal
	Example with type #{email := binary() | undefined}:
	{} (missing field) → #{email => undefined}
	{"email": null} → #{email => undefined}
	{"email": "test@example.com"} → #{email => <<"test@example.com">>}

Note: If a union type includes both undefined and nil (e.g., integer() | undefined | nil), the selection of which missing value to use depends on the order they appear in the type definition. The last one encountered will be used. For predictable behavior, include only one missing value literal in your type definitions. The nil atom is primarily for Elixir interoperability.
term() | any()
When using types with term, spectra_json will not reject any data, which means it can return data that json.erl cannot convert to JSON.
Char
Char is currently handled as integer, which is probably not what you want. Try to not use the char type for now. This is documented in test/char_test.erl.
Unsupported Types
Each format supports a subset of Erlang types. For JSON serialization and schema, the following are not supported:
	maybe_improper_list() - Currently returns an error
	pid(), port(), reference() - Cannot be serialized to JSON
	tuple(), bitstring(), nonempty_bitstring() - Not JSON-compatible
	Function types - Cannot be serialized

It would be interesting to add support for key value lists, but as it isn't a native type in erlang, I haven't gotten around to it yet.
Configuration
Application Environment Variables
You can configure spectra behavior using application environment variables:
use_module_types_cache
	Type: boolean()
	Default: false
	Description: When set to true, enables caching of extracted type information for modules using persistent terms. This can improve performance when repeatedly processing the same modules.
	Note: When only changing types and not code, the module vsn (used for caching) is not updated, so the types will not be updated.
	Recommendation: Enable this in production systems where no hot code reloading is done.

check_unicode
	Type: boolean()
	Default: false
	Description: When set to true, enables additional Unicode validation for string data. This validates that list-type string data contains valid Unicode characters. When disabled, string conversion still works correctly but skips the additional validation step for better performance.
	Note: Required type conversions (e.g., binary to list, list to binary) always use Unicode functions regardless of this setting.
	Recommendation: Enable this if you need strict Unicode validation, or keep disabled for better performance when Unicode validity is guaranteed by other means.

Example configuration in sys.config:
{spectra, [
 {use_module_types_cache, true},
 {check_unicode, false}
]}.
Related Projects
	elli_openapi - Elli middleware for automatic OpenAPI spec generation and validation using spectra
	exdantic - Elixir port of spectra for data validation and JSON serialization

Development Status
This library is under active development. APIs and error messages will probably change.
Contributing
Contributions are welcome! Please feel free to submit issues and pull requests.

spectra

 Summary

 Types

 error()

 map_field()

 missing_value()

 record_field_arg()

 sp_function_spec()

 sp_type()

 sp_type_or_ref()

 sp_type_reference()

 type_info()

 user_type_name()

 var_type()

 Functions

 decode(Format, ModuleOrTypeinfo, TypeOrRef, Binary)

 Decodes data from the specified format into an Erlang term based on type information.

 encode(Format, ModuleOrTypeinfo, TypeOrRef, Binary)

 Encodes an Erlang term to the specified format based on type information.

 schema(Format, ModuleOrTypeinfo, TypeOrRef)

 Generates a schema for the specified type in the given format.

 Types

 error()

 -type error() ::
 #sp_error{location :: [string() | atom()],
 type :: decode_error | type_mismatch | no_match | missing_data | not_matched_fields,
 ctx :: term()}.

 map_field()

 -type map_field() ::
 #literal_map_field{kind :: assoc | exact,
 name :: atom() | integer(),
 binary_name :: binary(),
 val_type :: spectra:sp_type()} |
 #typed_map_field{kind :: assoc | exact,
 key_type :: spectra:sp_type(),
 val_type :: spectra:sp_type()}.

 missing_value()

 -type missing_value() :: undefined | nil.

 record_field_arg()

 -type record_field_arg() :: {FieldName :: atom(), sp_type()}.

 sp_function_spec()

 -type sp_function_spec() :: #sp_function_spec{args :: [spectra:sp_type()], return :: spectra:sp_type()}.

 sp_type()

 -type sp_type() ::
 #sp_simple_type{type ::
 string | nonempty_string | integer | non_neg_integer | neg_integer |
 pos_integer | float | number | boolean | binary | nonempty_binary |
 bitstring | nonempty_bitstring | atom | term | reference | pid | port |
 iolist | iodata | none | map} |
 #sp_rec_ref{record_name :: spectra:user_type_name(),
 field_types :: [spectra:record_field_arg()]} |
 #sp_user_type_ref{type_name :: spectra:user_type_name(), variables :: [spectra:sp_type()]} |
 #sp_var{name :: atom()} |
 #sp_map{fields :: [spectra:map_field()], struct_name :: undefined | atom()} |
 #sp_rec{name :: atom(),
 fields ::
 [#sp_rec_field{name :: atom(), binary_name :: binary(), type :: spectra:sp_type()}],
 arity :: pos_integer()} |
 #sp_tuple{fields :: any | [spectra:sp_type()]} |
 #sp_type_with_variables{type :: spectra:sp_type(), vars :: [atom()]} |
 #sp_function{args :: any | [spectra:sp_type()], return :: spectra:sp_type()} |
 #sp_union{types :: term()} |
 #sp_literal{value :: integer() | atom() | [], binary_value :: binary()} |
 #sp_range{type :: integer, lower_bound :: integer(), upper_bound :: integer()} |
 #sp_list{type :: spectra:sp_type()} |
 #sp_nonempty_list{type :: spectra:sp_type()} |
 #sp_maybe_improper_list{elements :: spectra:sp_type(), tail :: spectra:sp_type()} |
 #sp_nonempty_improper_list{elements :: spectra:sp_type(), tail :: spectra:sp_type()} |
 #sp_remote_type{mfargs :: {module(), atom(), [spectra:sp_type()]}}.

 sp_type_or_ref()

 -type sp_type_or_ref() :: sp_type() | sp_type_reference().

 sp_type_reference()

 -type sp_type_reference() :: {type, Name :: atom(), Arity :: arity()} | {record, Name :: atom()}.

 type_info()

 -type type_info() :: spectra_type_info:type_info().

 user_type_name()

 -type user_type_name() :: atom().

 var_type()

 -type var_type() :: {VarName :: atom(), sp_type()}.

 Functions

 decode(Format, ModuleOrTypeinfo, TypeOrRef, Binary)

 -spec decode(Format :: atom(),
 ModuleOrTypeinfo :: module() | type_info(),
 TypeOrRef :: atom() | sp_type_or_ref(),
 Binary :: any()) ->
 {ok, term()} | {error, [error()]}.

Decodes data from the specified format into an Erlang term based on type information.
The function validates the decoded data against the type specification and returns
an error if the data doesn't match the expected type.
Example:
-module(my_module).
-type user_id() :: pos_integer().
-type status() :: active | inactive | pending.
-record(user, {id :: user_id(), name :: binary(), age :: integer(), status :: status()}).

1> spectra:decode(json, my_module, user_id, <<"123">>).
{ok, 123}

2> spectra:decode(json, my_module, user, <<"{\"id\":42,\"name\":\"Bob\",\"age\":25, \"status\":\"active\"}">>).
{ok, #user{id = 42, name = <<"Bob">>, age = 25, status = active}}

3> spectra:decode(binary_string, my_module, status, <<"active">>).
{ok, active}

4> spectra:decode(json, my_module, user_id, <<"\"not_a_number\"">>).
{error, [#sp_error{type = type_mismatch, ...}]}

 encode(Format, ModuleOrTypeinfo, TypeOrRef, Binary)

 -spec encode(Format :: atom(),
 ModuleOrTypeinfo :: module() | type_info(),
 TypeOrRef :: atom() | sp_type_or_ref(),
 Binary :: any()) ->
 {ok, term()} | {error, [error()]}.

Encodes an Erlang term to the specified format based on type information.
The function validates the Erlang term against the type specification before encoding
and returns an error if the data doesn't match the expected type.
Example:
-module(my_module).
-type user_id() :: pos_integer().
-type status() :: active | inactive | pending.
-record(user, {id :: user_id(), name :: binary(), age :: integer(), status :: status()}).

1> spectra:encode(json, my_module, user_id, 123).
{ok, <<"123">>}

2> User = #user{id = 42, name = <<"Bob">>, age = 25, status = active}.
3> spectra:encode(json, my_module, user, User).
{ok, <<"{\"id\":42,\"name\":\"Bob\",\"age\":25, \"status\":\"active\"}">>}

4> spectra:encode(json, my_module, user_id, -5).
{error, [#sp_error{type = type_mismatch, ...}]}

 schema(Format, ModuleOrTypeinfo, TypeOrRef)

 -spec schema(Format :: atom(),
 ModuleOrTypeinfo :: module() | type_info(),
 TypeOrRef :: atom() | sp_type_or_ref()) ->
 {ok, iodata()} | {error, [error()]}.

Generates a schema for the specified type in the given format.
Example:
-module(my_module).
-type user_id() :: pos_integer().
-type status() :: active | inactive | pending.
-record(user, {id :: user_id(), name :: binary(), age :: integer(), status :: status()}).

1> spectra:schema(json_schema, my_module, user).
{ok, <<"{\"type\":\"object\",\"properties\":{\"id\":{\"type\":\"integer\"},...}}">>}

2> spectra:schema(json_schema, my_module, status).
{ok, <<"{\"oneOf\":[{\"enum\":[\"active\"]},{\"enum\":[\"inactive\"]},{\"enum\":[\"pending\"]}]}">>}

3> spectra:schema(json_schema, my_module, {type, user_id, 0}).
{ok, <<"{\"type\":\"integer\",\"minimum\":1}">>}

4> spectra:schema(invalid_format, my_module, user).
{error, [#sp_error{...}]}

spectra_abstract_code

 Summary

 Types

 erl_parse__af_field_decl/0

 type_form_result/0

 Functions

 types_in_module(Module)

 Types

 erl_parse__af_field_decl/0

 -type erl_parse__af_field_decl() :: term().

 type_form_result/0

 -type type_form_result() ::
 {{type, atom(), arity()}, spectra:sp_type()} |
 {{record, atom()}, spectra:sp_type()} |
 {{function, atom(), arity()}, [spectra:sp_function_spec()]}.

 Functions

 types_in_module(Module)

 -spec types_in_module(atom()) -> spectra:type_info().

spectra_binary_string

 Summary

 Functions

 from_binary_string(TypeInfo, Type, BinaryString)

 Converts a binary string value to an Erlang value based on a type specification.

 to_binary_string(TypeInfo, Type, Data)

 Converts an Erlang value to a binary string based on a type specification.

 Functions

 from_binary_string(TypeInfo, Type, BinaryString)

 -spec from_binary_string(TypeInfo :: spectra:type_info(),
 Type :: spectra:sp_type_or_ref(),
 BinaryString :: binary()) ->
 {ok, term()} | {error, [spectra:error()]}.

Converts a binary string value to an Erlang value based on a type specification.
This function validates the given binary string value against the specified type definition
and converts it to the corresponding Erlang value.
Returns
{ok, ErlangValue} if conversion succeeds, or {error, Errors} if validation fails

 to_binary_string(TypeInfo, Type, Data)

 -spec to_binary_string(TypeInfo :: spectra:type_info(),
 Type :: spectra:sp_type_or_ref(),
 Data :: term()) ->
 {ok, binary()} | {error, [spectra:error()]}.

Converts an Erlang value to a binary string based on a type specification.
This function validates the given Erlang value against the specified type definition
and converts it to a binary string representation.
Returns
{ok, BinaryString} if conversion succeeds, or {error, Errors} if validation fails

spectra_json

 Summary

 Functions

 from_json(TypeInfo, Type, Json)

 to_json(Module, TypeRef, Data)

 Functions

 from_json(TypeInfo, Type, Json)

 -spec from_json(TypeInfo :: spectra:type_info() | module(),
 Type :: spectra:sp_type_or_ref(),
 Json :: json:decode_value()) ->
 {ok, term()} | {error, [spectra:error()]}.

 to_json(Module, TypeRef, Data)

 -spec to_json(spectra:type_info() | module(), spectra:sp_type_or_ref(), Data :: dynamic()) ->
 {ok, json:encode_value()} | {error, [spectra:error()]}.

spectra_json_schema

 Summary

 Functions

 to_schema(Module, Type)

 Functions

 to_schema(Module, Type)

 -spec to_schema(module() | spectra:type_info(), spectra:sp_type_or_ref()) ->
 {ok, Schema :: map()} | {error, [spectra:error()]}.

spectra_module_types

 Summary

 Types

 module_version/0

 Functions

 clear(Module)

 get(Module)

 Types

 module_version/0

 -type module_version() :: term().

 Functions

 clear(Module)

 -spec clear(Module :: module()) -> ok.

 get(Module)

 -spec get(Module :: module()) -> spectra:type_info().

spectra_openapi

 Summary

 Types

 endpoint_spec()

 http_method()

 http_status_code()

 openapi_metadata()

 parameter_location()

 parameter_spec()

 request_body_spec()

 response_header_input_spec()

 response_header_spec()

 response_spec()

 Functions

 add_response(Endpoint, Response)

 Adds a complete response specification to an endpoint.

 endpoint(Method, Path)

 Creates a basic endpoint specification.

 endpoints_to_openapi(MetaData, Endpoints)

 Generates a complete OpenAPI 3.0 specification from a list of endpoints.

 response(StatusCode, Description)

 Creates a response builder for constructing response specifications.

 response_with_body(Response, Module, Schema)

 Adds a response body to a response builder.

 response_with_body(Response, Module, Schema, ContentType)

 Adds a response body with custom content type to a response builder.

 response_with_header(Response, HeaderName, Module, HeaderSpec)

 Adds a header to a response builder.

 with_parameter(Endpoint, Module, ParameterSpec)

 Adds a parameter specification to an endpoint.

 with_request_body(Endpoint, Module, Schema)

 Adds a request body specification to an endpoint.

 with_request_body(Endpoint, Module, Schema, ContentType)

 Adds a request body specification with custom content type to an endpoint.

 Types

 endpoint_spec()

 -type endpoint_spec() ::
 #{method := http_method(),
 path := binary(),
 responses := #{http_status_code() => response_spec()},
 parameters := [parameter_spec()],
 request_body => request_body_spec()}.

 http_method()

 -type http_method() :: get | put | post | delete | options | head | patch | trace.

 http_status_code()

 -type http_status_code() :: 100..599.

 openapi_metadata()

 -type openapi_metadata() :: #{title := binary(), version := binary()}.

 parameter_location()

 -type parameter_location() :: path | query | header | cookie.

 parameter_spec()

 -type parameter_spec() ::
 #{name := binary(),
 in := parameter_location(),
 required := boolean(),
 schema := spectra:sp_type_or_ref(),
 module := module()}.

 request_body_spec()

 -type request_body_spec() ::
 #{schema := spectra:sp_type_or_ref(), module := module(), content_type => binary()}.

 response_header_input_spec()

 -type response_header_input_spec() ::
 #{description => binary(), required => boolean(), schema := spectra:sp_type_or_ref()}.

 response_header_spec()

 -type response_header_spec() ::
 #{description => binary(),
 required => boolean(),
 schema := spectra:sp_type_or_ref(),
 module := module()}.

 response_spec()

 -type response_spec() ::
 #{description := binary(),
 schema => spectra:sp_type_or_ref(),
 module => module(),
 status_code => http_status_code(),
 content_type => binary(),
 headers => #{binary() => response_header_spec()}}.

 Functions

 add_response(Endpoint, Response)

 -spec add_response(Endpoint :: endpoint_spec(), Response :: response_spec()) -> endpoint_spec().

Adds a complete response specification to an endpoint.
This function adds a response that was built using the response builder pattern:
response/2, response_with_body/3-4, and response_with_header/4.
Example
Response = spectra_openapi:response(200, <<"Success">>),
Response2 = spectra_openapi:response_with_body(Response, Module, Schema),
Response3 = spectra_openapi:response_with_header(Response2, <<"X-Rate-Limit">>, Module, HeaderSpec),
Endpoint = spectra_openapi:add_response(Endpoint1, Response3).
Returns
Updated endpoint map with the response added

 endpoint(Method, Path)

 -spec endpoint(Method :: http_method(), Path :: binary()) -> endpoint_spec().

Creates a basic endpoint specification.
This function creates the foundation for an endpoint with the specified HTTP method and path.
Additional details like responses, request body, and parameters can be added using the with_* functions.
Returns
Endpoint map with method and path set

 endpoints_to_openapi(MetaData, Endpoints)

 -spec endpoints_to_openapi(MetaData :: openapi_metadata(), Endpoints :: [endpoint_spec()]) ->
 {ok, json:encode_value()} | {error, [spectra:error()]}.

Generates a complete OpenAPI 3.0 specification from a list of endpoints.
This function takes a list of endpoint specifications and generates a complete OpenAPI document
with paths, operations, and component schemas.
Returns
{ok, OpenAPISpec} containing the complete OpenAPI 3.0 document, or {error, Errors} if generation fails

 response(StatusCode, Description)

 -spec response(StatusCode :: http_status_code(), Description :: binary()) -> response_spec().

Creates a response builder for constructing response specifications.
This function creates a response builder that can be incrementally configured with body and headers
before being added to an endpoint using add_response/2.
Example
Response = spectra_openapi:response(200, <<"Success">>),
Response2 = spectra_openapi:response_with_body(Response, Module, Schema),
Response3 = spectra_openapi:response_with_header(Response2, <<"X-Rate-Limit">>, Module, HeaderSpec),
Endpoint = spectra_openapi:add_response(Endpoint1, Response3).
Returns
Response builder map with status code and description

 response_with_body(Response, Module, Schema)

 -spec response_with_body(Response :: response_spec(),
 Module :: module(),
 Schema :: spectra:sp_type_or_ref()) ->
 response_spec().

Adds a response body to a response builder.
This function sets the schema and module for the response body.
Use this with response/2 to build up a complete response specification.
Returns
Updated response builder with body schema added

 response_with_body(Response, Module, Schema, ContentType)

 -spec response_with_body(Response :: response_spec(),
 Module :: module(),
 Schema :: spectra:sp_type_or_ref(),
 ContentType :: binary()) ->
 response_spec().

Adds a response body with custom content type to a response builder.
This function sets the schema, module, and content type for the response body.
Use this with response/2 to build up a complete response specification.
Returns
Updated response builder with body schema and content type added

 response_with_header(Response, HeaderName, Module, HeaderSpec)

 -spec response_with_header(Response :: response_spec(),
 HeaderName :: binary(),
 Module :: module(),
 HeaderSpec :: response_header_input_spec()) ->
 response_spec().

Adds a header to a response builder.
This function adds a header specification to the response being built.
Multiple headers can be added by calling this function multiple times.
Returns
Updated response builder with header added

 with_parameter(Endpoint, Module, ParameterSpec)

 -spec with_parameter(Endpoint :: endpoint_spec(), Module :: module(), ParameterSpec :: parameter_spec()) ->
 endpoint_spec().

Adds a parameter specification to an endpoint.
This function adds a parameter (path, query, header, or cookie) to the endpoint.
Multiple parameters can be added by calling this function multiple times.
Parameter Specification
The parameter spec should be a map with these keys:
	name: Parameter name (binary)
	in: Parameter location (path | query | header | cookie)

	required: Whether the parameter is required (boolean)
	schema: Schema reference or direct type (spectra:sp_type_or_ref())

Returns
Updated endpoint map with the new parameter added

 with_request_body(Endpoint, Module, Schema)

 -spec with_request_body(Endpoint :: endpoint_spec(),
 Module :: module(),
 Schema :: spectra:sp_type_or_ref()) ->
 endpoint_spec().

Adds a request body specification to an endpoint.
This function sets the request body schema for the endpoint.
Typically used with POST, PUT, and PATCH endpoints.
Returns
Updated endpoint map with request body set

 with_request_body(Endpoint, Module, Schema, ContentType)

 -spec with_request_body(Endpoint :: endpoint_spec(),
 Module :: module(),
 Schema :: spectra:sp_type_or_ref(),
 ContentType :: binary()) ->
 endpoint_spec().

Adds a request body specification with custom content type to an endpoint.
This function sets the request body schema and content type for the endpoint.
Typically used with POST, PUT, and PATCH endpoints.
Returns
Updated endpoint map with request body set

spectra_string

 Summary

 Functions

 from_string(TypeInfo, Type, String)

 Converts a string value to an Erlang value based on a type specification.

 to_string(TypeInfo, Type, Data)

 Converts an Erlang value to a string based on a type specification.

 Functions

 from_string(TypeInfo, Type, String)

 -spec from_string(TypeInfo :: spectra:type_info(), Type :: spectra:sp_type_or_ref(), String :: list()) ->
 {ok, term()} | {error, [spectra:error()]}.

Converts a string value to an Erlang value based on a type specification.
This function validates the given string value against the specified type definition
and converts it to the corresponding Erlang value.
Returns
{ok, ErlangValue} if conversion succeeds, or {error, Errors} if validation fails

 to_string(TypeInfo, Type, Data)

 -spec to_string(TypeInfo :: spectra:type_info(), Type :: spectra:sp_type_or_ref(), Data :: term()) ->
 {ok, string()} | {error, [spectra:error()]}.

Converts an Erlang value to a string based on a type specification.
This function validates the given Erlang value against the specified type definition
and converts it to a string representation.
Returns
{ok, String} if conversion succeeds, or {error, Errors} if validation fails

spectra_type

 Summary

 Functions

 can_be_missing(TypeInfo, Type)

 is_type_reference(_)

 Functions

 can_be_missing(TypeInfo, Type)

 -spec can_be_missing(TypeInfo :: spectra:type_info(), Type :: spectra:sp_type()) ->
 {true, spectra:missing_value()} | false.

 is_type_reference(_)

 -spec is_type_reference(spectra:sp_type_or_ref()) -> boolean().

spectra_type_info

 Summary

 Types

 function_key/0

 type_info/0

 type_key/0

 Functions

 add_function(Type_info, Name, Arity, FuncSpec)

 add_record(Type_info, Name, Sp_rec)

 add_type(Type_info, Name, Arity, Type)

 get_function(Type_info, Name, Arity)

 get_record(Type_info, Name)

 get_type(Type_info, Name, Arity)

 new()

 Types

 function_key/0

 -type function_key() :: {Name :: atom(), Arity :: arity()}.

 type_info/0

 -type type_info() ::
 #type_info{types :: #{spectra_type_info:type_key() => spectra:sp_type()},
 records ::
 #{atom() =>
 #sp_rec{name :: atom(),
 fields ::
 [#sp_rec_field{name :: atom(),
 binary_name :: binary(),
 type :: spectra:sp_type()}],
 arity :: pos_integer()}},
 functions ::
 #{spectra_type_info:function_key() =>
 [#sp_function_spec{args :: [spectra:sp_type()],
 return :: spectra:sp_type()}]}}.

 type_key/0

 -type type_key() :: {Name :: atom(), Arity :: arity()}.

 Functions

 add_function(Type_info, Name, Arity, FuncSpec)

 -spec add_function(type_info(), atom(), arity(), [spectra:sp_function_spec()]) -> type_info().

 add_record(Type_info, Name, Sp_rec)

 -spec add_record(type_info(),
 atom(),
 #sp_rec{name :: atom(),
 fields ::
 [#sp_rec_field{name :: atom(),
 binary_name :: binary(),
 type :: spectra:sp_type()}],
 arity :: pos_integer()}) ->
 type_info().

 add_type(Type_info, Name, Arity, Type)

 -spec add_type(type_info(), atom(), arity(), spectra:sp_type()) -> type_info().

 get_function(Type_info, Name, Arity)

 -spec get_function(type_info(), atom(), arity()) -> {ok, [spectra:sp_function_spec()]} | error.

 get_record(Type_info, Name)

 -spec get_record(type_info(), atom()) ->
 {ok,
 #sp_rec{name :: atom(),
 fields ::
 [#sp_rec_field{name :: atom(),
 binary_name :: binary(),
 type :: spectra:sp_type()}],
 arity :: pos_integer()}} |
 error.

 get_type(Type_info, Name, Arity)

 -spec get_type(type_info(), atom(), arity()) -> {ok, spectra:sp_type()} | error.

 new()

 -spec new() -> type_info().

spectra_util

 Summary

 Functions

 fold_until_error(Fun, Acc, List)

 map_until_error(Fun, List)

 test_abs_code(Module)

 Functions

 fold_until_error(Fun, Acc, List)

 -spec fold_until_error(Fun ::
 fun((Elem :: dynamic(), Acc :: dynamic()) ->
 {error, Err :: dynamic()} | {ok, Acc :: dynamic()}),
 Acc :: dynamic(),
 List :: [Elem :: dynamic()]) ->
 {ok, Acc :: dynamic()} | {error, Err :: dynamic()}.

 map_until_error(Fun, List)

 -spec map_until_error(fun((Elem :: dynamic()) -> {error, Err :: dynamic()} | {ok, ResElem :: dynamic()}),
 [Elem :: dynamic()]) ->
 {ok, [ResElem :: dynamic()]} | {error, Err :: dynamic()}.

 test_abs_code(Module)

 -spec test_abs_code(module()) ->
 {ok, spectra:type_info()} | {error, {atom(), term(), erlang:stacktrace()}}.

 OEBPS/dist/epub-4WIP524F.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);function r(e){document.readyState!=="loading"?e():document.addEventListener("DOMContentLoaded",e)}var l="hll";window.addEventListener("exdoc:loaded",t);function t(){o("[data-group-id]").forEach(e=>{e.addEventListener("mouseenter",i),e.addEventListener("mouseleave",i)})}function i(e){let n=e.currentTarget,a=e.type==="mouseenter",c=n.getAttribute("data-group-id");n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach(u=>{u.classList.toggle(l,a)})}r(()=>{t()});})();

