

 Spectral

 v0.4.0

 Table of contents

 	Spectral

 	
 Modules

 	Spectral

 	Spectral.OpenAPI

 	Exceptions

 	Spectral.Error

 Spectral

Spectral provides type-safe data serialization and deserialization for Elixir types. Currently the focus is on JSON.
	Type-safe conversion: Convert typed Elixir values to/from external formats such as JSON, ensuring data conforms to the type specification
	Detailed errors: Get error messages with location information when validation fails
	Support for complex scenarios: Handles unions, structs, atoms, nested structures, and more

Installation
Add spectral to your list of dependencies in mix.exs:
def deps do
 [
 {:spectral, "~> 0.4.0"}
]
end
Usage
Here's how to use Spectral for JSON serialization and deserialization:
Note: Spectral reads type information from compiled beam files, so modules must be defined in files (not in IEx).
lib/person.ex
defmodule Person do
 defmodule Address do
 defstruct [:street, :city]

 @type t :: %Address{
 street: String.t(),
 city: String.t()
 }
 end

 defstruct [:name, :age, :address]

 @type t :: %Person{
 name: String.t(),
 age: non_neg_integer() | nil,
 address: Address.t() | nil
 }
end
Encode a struct to JSON
person = %Person{
 name: "Alice",
 age: 30,
 address: %Person.Address{
 street: "Ystader Straße",
 city: "Berlin"
 }
}

with {:ok, json_iodata} <- Spectral.encode(person, Person, :t) do
 IO.iodata_to_binary(json_iodata)
 # Returns: "{\"address\":{\"city\":\"Berlin\",\"street\":\"Ystader Straße\"},\"age\":30,\"name\":\"Alice\"}"
end

Decode JSON to a struct
json_string = ~s({"name":"Alice","age":30,"address":{"street":"Ystader Straße","city":"Berlin"}})
{:ok, person} = Spectral.decode(json_string, Person, :t)

Generate a JSON schema
schema_iodata = Spectral.schema(Person, :t)
IO.iodata_to_binary(schema_iodata)
Bang Functions
For convenience, Spectral provides bang versions (!) of all main functions that raise exceptions instead of returning error tuples:
json =
 person
 |> Spectral.encode!(Person, :t)
 |> IO.iodata_to_binary()

person =
 json_string
 |> Spectral.decode!(Person, :t)

schema =
 Person
 |> Spectral.schema(:t)
 |> IO.iodata_to_binary()
Use bang functions when you want exceptions instead of explicit error handling.
Nil Value Handling
Spectral automatically omits nil values from JSON output for optional struct fields:
Only required fields
person = %Person{name: "Alice"}

with {:ok, json_iodata} <- Spectral.encode(person, Person, :t) do
 IO.iodata_to_binary(json_iodata)
 # Returns: "{\"name\":\"Alice\"}" (age and address are omitted)
end

When decoding, both missing fields and explicit null values become nil in structs
Spectral.decode(~s({"name":"Alice"}), Person, :t)
Returns: {:ok, %Person{name: "Alice", age: nil, address: nil}}

Spectral.decode(~s({"name":"Alice","age":null,"address":null}), Person, :t)
Returns: {:ok, %Person{name: "Alice", age: nil, address: nil}}
Extra Fields Handling
When decoding JSON into Elixir structs, extra fields that are not defined in the type specification are silently ignored. This enables forward compatibility and flexible API evolution:
JSON with extra fields not in the Person type
json = ~s({"name":"Alice","age":30,"unknown_field":"ignored"})

Spectral.decode(json, Person, :t)
Returns: {:ok, %Person{name: "Alice", age: 30, address: nil}}
Extra fields are discarded without errors
This permissive behavior allows your application to accept JSON from newer API versions without breaking, as long as all required fields are present.
Data Serialization API
The main functions for JSON serialization and deserialization (pipe-friendly):
Regular versions (return tuples)
Spectral.encode(data, module, type_ref, format \\ :json) ::
 {:ok, iodata()} | {:error, [%Spectral.Error{}]}

Spectral.encode!(data, module, type_ref, format \\ :json) :: iodata()

Spectral.decode(data, module, type_ref, format \\ :json) ::
 {:ok, dynamic()} | {:error, [%Spectral.Error{}]}

Spectral.decode!(data, module, type_ref, format \\ :json) :: dynamic()
Parameters:
	data - The data to encode/decode (Elixir value for encode, binary/string for decode)
	module - The module where the type is defined (e.g., Person)
	type_ref - The type reference, typically an atom like :t for the @type t definition
	format - (optional) The data format: :json (default), :binary_string, or :string

Schema API
Generate schemas from your type definitions:
Spectral.schema(module, type_ref, format \\ :json_schema) :: iodata()
Parameters:
	module - The module where the type is defined
	type_ref - The type reference
	format - (optional) Schema format, currently supports :json_schema (default)

OpenAPI Specification
Spectral can generate complete OpenAPI 3.0 specifications for your REST APIs. This provides interactive documentation, client generation, and API testing tools.
OpenAPI Builder API
The API uses a fluent builder pattern for constructing endpoints and responses. While experimental and subject to change, it's designed to be used by web framework developers.
Building Responses
Responses are constructed using a builder pattern:
Code.ensure_loaded!(Person)

Simple response
user_not_found_response =
 Spectral.OpenAPI.response(404, "User not found")

Response with body
user_found_response =
 Spectral.OpenAPI.response(200, "User found")
 |> Spectral.OpenAPI.response_with_body(Person, :t)

user_created_response =
 Spectral.OpenAPI.response(201, "User created")
 |> Spectral.OpenAPI.response_with_body(
 Person,
 {:type, :t, 0}
)

users_found_response =
 Spectral.OpenAPI.response(200, "Users found")
 |> Spectral.OpenAPI.response_with_body(
 Person,
 {:type, :persons, 0}
)

Response with response header
response_with_headers =
 Spectral.OpenAPI.response(200, "Success")
 |> Spectral.OpenAPI.response_with_body(Person, :t)
 |> Spectral.OpenAPI.response_with_header(
 "X-Rate-Limit",
 :t,
 %{
 description: "Requests remaining",
 required: false,
 schema: :integer
 }
)
Building Endpoints
Endpoints are built by combining the endpoint definition with responses, request bodies, and parameters:
Responses are taken from the previous section.
user_get_endpoint =
 Spectral.OpenAPI.endpoint(:get, "/users/{id}")
 |> Spectral.OpenAPI.with_parameter(Person, %{
 name: "id",
 in: :path,
 required: true,
 schema: :string
 })
 |> Spectral.OpenAPI.add_response(user_found_response)
 |> Spectral.OpenAPI.add_response(user_not_found_response)

Add request body (for POST, PUT, PATCH)
user_create_endpoint =
 Spectral.OpenAPI.endpoint(:post, "/users")
 |> Spectral.OpenAPI.with_request_body(
 Person,
 {:type, :t, 0}
)
 |> Spectral.OpenAPI.add_response(user_created_response)

Add parameters
user_search_endpoint =
 Spectral.OpenAPI.endpoint(:get, "/users")
 |> Spectral.OpenAPI.with_parameter(Person, %{
 name: "search",
 in: :query,
 required: false,
 schema: :search
 })
 |> Spectral.OpenAPI.add_response(users_found_response)
Generating the OpenAPI Specification
Combine all endpoints into a complete OpenAPI spec:
metadata = %{
 title: "My API",
 version: "1.0.0"
}

endpoints = [
 #user_get_endpoint,
 user_create_endpoint,
 #user_search_endpoint
]

{:ok, openapi_spec} =
 Spectral.OpenAPI.endpoints_to_openapi(metadata, endpoints)

IO.inspect(openapi_spec, pretty: true)
Requirements
	Erlang/OTP 27+: Spectral requires Erlang/OTP version 27 or later (required by the underlying spectra library)
	Compilation: Modules must be compiled with debug_info for Spectral to extract type information. This is enabled by default in Mix projects.

Error Handling
Spectral provides two types of functions with different error handling strategies:
Normal Functions
The encoding and decoding functions (encode/3-4, decode/3-4) use a dual error handling approach:
Data validation errors return {:error, [%Spectral.Error{}]} tuples:
	Type mismatches (e.g., string when integer expected)
	Missing required fields
	Invalid data structure
	Decoding failures

Use with for clean error handling:
bad_json = ~s({"name":"Alice","age":"not a number"})

with {:ok, person} <- Spectral.decode(bad_json, Person, :t) do
 process_person(person)
end
Type and configuration errors raise exceptions:
	Module not found, unloaded, or compiled without debug_info
	Type not found in the specified module
	Unsupported types used (e.g., pid(), port(), tuple())

These exceptions indicate problems with your application's configuration or type definitions, not with the data being processed.
Bang Functions
The bang versions (encode!/3-4, decode!/3-4) always raise exceptions for any error:
person =
 bad_json
 |> Spectral.decode!(Person, :t)
 |> process_person()
Use bang functions when you want to propagate all errors as exceptions, simplifying pipelines but requiring try/rescue for error handling.
Schema Generation
The schema/2-3 function returns the schema directly as iodata() without wrapping it in a result tuple:
schema = Spectral.schema(Person, :t)
IO.iodata_to_binary(schema)
Schema generation may still raise exceptions for type and configuration errors (module not found, type not found, etc.).
Error Structure
Each Spectral.Error struct represents a single error with the following fields:
	location - Path showing where the error occurred (e.g., ["user", "age"])
	type - Error type: :decode_error, :type_mismatch, :no_match, :missing_data, :not_matched_fields
	context - Additional context information about the error
	message - Human-readable error message (auto-generated)

Functions return {:error, [%Spectral.Error{}]} - a list of error structs:
{:error, [
 %Spectral.Error{
 location: ["user", "age"],
 type: :type_mismatch,
 context: %{expected: :integer, got: "not a number"},
 message: "type_mismatch at user.age"
 }
]}
Special Handling
nil Values
In Elixir structs, nil values are handled specially:
	When encoding to JSON, struct fields with nil values are omitted from the output if the type includes nil as a valid value
	When decoding from JSON, missing fields become nil if the type specification allows it

Example:
@type t :: %Person{
 name: String.t(),
 age: non_neg_integer() | nil # nil is allowed
}
dynamic(), term() and any()
When using types with dynamic(), term(), or any() in your type specifications, Spectral will not reject any data, which means it can return data that may not be valid JSON.
Note: Spectral uses dynamic() for runtime-determined types in its own API, following Erlang's gradual typing conventions.
Unsupported Types
For JSON serialization and schema generation, the following Erlang/Elixir types are not supported:
	pid(), port(), reference() - Cannot be serialized to JSON
	tuple() (generic tuples without specific structure)
	Function types - Cannot be serialized

Related Projects
	spectra - The underlying Erlang library that powers Spectral

Development Status
This library is under active development. APIs may change in future versions.
Contributing
Contributions are welcome! Please feel free to submit issues and pull requests.
License
See LICENSE.md for details.

Spectral

Elixir wrapper for the Erlang spectra library.
Provides idiomatic Elixir interfaces for encoding, decoding, and schema generation
based on type specifications.
API
All functions are designed to work well with Elixir's pipe and with operators:
%Person{name: "Alice", age: 30}
|> Spectral.encode!(Person, :t)
|> send_response()

with {:ok, json} <- Spectral.encode(%Person{name: "Alice"}, Person, :t) do
 send_response(json)
end

 Summary

 Functions

 decode(data, module, type_ref, format \\ :json)

 Decodes data from the specified format.

 decode!(data, module, type_ref, format \\ :json)

 Decodes data from the specified format, raising on error.

 encode(data, module, type_ref, format \\ :json)

 Encodes data to the specified format.

 encode!(data, module, type_ref, format \\ :json)

 Encodes data to the specified format, raising on error.

 schema(module, type_ref, format \\ :json_schema)

 Generates a schema for the specified type.

 Functions

 decode(data, module, type_ref, format \\ :json)

 @spec decode(binary(), module(), atom(), atom()) ::
 {:ok, dynamic()} | {:error, [Spectral.Error.t()]}

Decodes data from the specified format.
Parameters
	data - The data to decode (binary for JSON, string for string format)
	module - Module containing the type definition
	type_ref - Type reference (typically an atom like :t)
	format - Format to decode from (default: :json)

Returns
	{:ok, dynamic()} - Decoded data on success
	{:error, [%Spectral.Error{}]} - List of errors on failure

Examples
iex> ~s({"name":"Alice","age":30,"address":{"street":"Ystader Straße", "city": "Berlin"}})
...> |> Spectral.decode(Person, :t)
{:ok, %Person{age: 30, name: "Alice", address: %Person.Address{street: "Ystader Straße", city: "Berlin"}}}

iex> ~s({"name":"Alice"})
...> |> Spectral.decode(Person, :t)
{:ok, %Person{age: nil, name: "Alice", address: nil}}

iex> ~s({"name":"Alice","age":30,"extra_field":"ignored"})
...> |> Spectral.decode(Person, :t)
{:ok, %Person{age: 30, name: "Alice", address: nil}}

 decode!(data, module, type_ref, format \\ :json)

 @spec decode!(binary(), module(), atom(), atom()) :: dynamic()

Decodes data from the specified format, raising on error.
Like decode/4 but raises Spectral.Error instead of returning an error tuple.
Parameters
	data - The data to decode (binary for JSON, string for string format)
	module - Module containing the type definition
	type_ref - Type reference (typically an atom like :t)
	format - Format to decode from (default: :json)

Returns
	dynamic() - Decoded data on success

Raises
	Spectral.Error - If decoding fails

Examples
iex> ~s({"name":"Alice","age":30})
...> |> Spectral.decode!(Person, :t)
%Person{age: 30, name: "Alice", address: nil}

 encode(data, module, type_ref, format \\ :json)

 @spec encode(dynamic(), module(), atom(), atom()) ::
 {:ok, iodata()} | {:error, [Spectral.Error.t()]}

Encodes data to the specified format.
Parameters
	data - The data to encode
	module - Module containing the type definition
	type_ref - Type reference (typically an atom like :t)
	format - Format to encode to (default: :json)

Returns
	{:ok, iodata()} - Encoded data on success
	{:error, [%Spectral.Error{}]} - List of errors on failure

Examples
iex> person = %Person{name: "Alice", age: 30, address: %Person.Address{street: "Ystader Straße", city: "Berlin"}}
...> with {:ok, json} <- Spectral.encode(person, Person, :t) do
...> IO.iodata_to_binary(json)
...> end
~s({"address":{"city":"Berlin","street":"Ystader Straße"},"age":30,"name":"Alice"})

iex> {:ok, json} = %Person{name: "Alice"} |> Spectral.encode(Person, :t)
iex> IO.iodata_to_binary(json)
~s({"name":"Alice"})

 encode!(data, module, type_ref, format \\ :json)

 @spec encode!(dynamic(), module(), atom(), atom()) :: iodata()

Encodes data to the specified format, raising on error.
Like encode/4 but raises Spectral.Error instead of returning an error tuple.
Parameters
	data - The data to encode
	module - Module containing the type definition
	type_ref - Type reference (typically an atom like :t)
	format - Format to encode to (default: :json)

Returns
	iodata() - Encoded data on success

Raises
	Spectral.Error - If encoding fails

Examples
iex> %Person{name: "Alice", age: 30}
...> |> Spectral.encode!(Person, :t)
...> |> IO.iodata_to_binary()
~s({"age":30,"name":"Alice"})

 schema(module, type_ref, format \\ :json_schema)

 @spec schema(module(), atom(), atom()) :: iodata()

Generates a schema for the specified type.
Parameters
	module - Module containing the type definition
	type_ref - Type reference (typically an atom like :t)
	format - Schema format (default: :json_schema)

Returns
	iodata() - Generated schema

Examples
iex> schemadata = Spectral.schema(Person, :t)
iex> is_binary(IO.iodata_to_binary(schemadata))
true

Spectral.OpenAPI

Elixir wrapper for spectra OpenAPI specification generation.
This module provides idiomatic Elixir functions for generating OpenAPI 3.0
specifications from Elixir type definitions using spectra.
Response Builder Pattern
Responses are built using a fluent API:
response = Spectral.OpenAPI.response(200, "Success")
 |> Spectral.OpenAPI.response_with_body(Person, :t)
 |> Spectral.OpenAPI.response_with_header("X-Rate-Limit", RateLimit, :t, %{
 description: "Remaining requests",
 required: false
 })

endpoint = Spectral.OpenAPI.endpoint(:get, "/users/{id}")
 |> Spectral.OpenAPI.add_response(response)

 Summary

 Functions

 add_response(endpoint, response)

 Adds a complete response specification to an endpoint.

 endpoint(method, path)

 Creates a new OpenAPI endpoint definition.

 endpoints_to_openapi(metadata, endpoints)

 Converts a list of endpoints to a complete OpenAPI specification.

 response(status_code, description)

 Creates a response builder.

 response_with_body(response, module, schema)

 Adds a response body to a response builder.

 response_with_body(response, module, schema, content_type)

 Adds a response body with custom content type to a response builder.

 response_with_header(response, header_name, module, header_spec)

 Adds a header to a response builder.

 with_parameter(endpoint, module, parameter_spec)

 Adds a parameter to an endpoint.

 with_request_body(endpoint, module, schema)

 Adds a request body specification to an endpoint.

 with_request_body(endpoint, module, schema, content_type)

 Adds a request body specification with custom content type to an endpoint.

 Functions

 add_response(endpoint, response)

Adds a complete response specification to an endpoint.
This function adds a response that was built using the response builder pattern.
Parameters
	endpoint - The endpoint to add the response to
	response - Response specification built with response/2 and related functions

Returns
	endpoint - Updated endpoint with the response added

Example
response = Spectral.OpenAPI.response(200, "User found")
 |> Spectral.OpenAPI.response_with_body(Person, :t)

endpoint = Spectral.OpenAPI.endpoint(:get, "/users/{id}")
 |> Spectral.OpenAPI.add_response(response)

 endpoint(method, path)

Creates a new OpenAPI endpoint definition.
Parameters
	method - HTTP method as an atom (:get, :post, :put, :delete, :patch, etc.)
	path - URL path as a binary (e.g., "/users/{id}")

Returns
	endpoint - OpenAPI endpoint structure

Example
endpoint = Spectral.OpenAPI.endpoint(:get, "/users/{id}")

 endpoints_to_openapi(metadata, endpoints)

 @spec endpoints_to_openapi(map(), [dynamic()]) ::
 {:ok, map()} | {:error, [Spectral.Error.t()]}

Converts a list of endpoints to a complete OpenAPI specification.
Parameters
	metadata - OpenAPI metadata map with keys:	:title - API title
	:version - API version

	endpoints - List of endpoint definitions

Returns
	{:ok, openapi_spec} - Complete OpenAPI 3.0 specification as a map
	{:error, [%Spectral.Error{}]} - List of errors if generation fails

Example
metadata = %{title: "My API", version: "1.0.0"}
endpoints = [
 Spectral.OpenAPI.endpoint(:get, "/users/{id}")
 |> Spectral.OpenAPI.add_response(
 Spectral.OpenAPI.response(200, "User found")
 |> Spectral.OpenAPI.response_with_body(Person, :t)
)
]

{:ok, openapi_spec} = Spectral.OpenAPI.endpoints_to_openapi(metadata, endpoints)

 response(status_code, description)

Creates a response builder.
This creates a response specification that can be further configured with
response_with_body/3-4 and response_with_header/4 before being added
to an endpoint with add_response/2.
Parameters
	status_code - HTTP status code (e.g., 200, 404, 500)
	description - Human-readable description of the response

Returns
	response - Response builder structure

Example
response = Spectral.OpenAPI.response(200, "User found successfully")

 response_with_body(response, module, schema)

Adds a response body to a response builder.
Parameters
	response - Response builder from response/2
	module - Module containing the type definition
	schema - Schema reference (typically an atom like :t)

Returns
	response - Updated response builder with body schema

Example
response = Spectral.OpenAPI.response(200, "Success")
 |> Spectral.OpenAPI.response_with_body(Person, :t)

 response_with_body(response, module, schema, content_type)

Adds a response body with custom content type to a response builder.
Parameters
	response - Response builder from response/2
	module - Module containing the type definition
	schema - Schema reference (typically an atom like :t)
	content_type - Content type (e.g., "application/json", "application/xml")

Returns
	response - Updated response builder with body schema and content type

Example
response = Spectral.OpenAPI.response(200, "Success")
 |> Spectral.OpenAPI.response_with_body(Person, :t, "application/xml")

 response_with_header(response, header_name, module, header_spec)

Adds a header to a response builder.
Parameters
	response - Response builder from response/2
	header_name - Name of the response header (e.g., "X-Rate-Limit")
	module - Module containing the type definition for the header value
	header_spec - Header specification map with keys:	:description (optional) - Description of the header
	:required (optional) - Whether the header is required (default: false)
	:schema - Schema for the header value

Returns
	response - Updated response builder with header added

Example
response = Spectral.OpenAPI.response(200, "Success")
 |> Spectral.OpenAPI.response_with_header("X-Rate-Limit", RateLimit, :t, %{
 description: "Requests remaining",
 required: false,
 schema: :integer
 })

 with_parameter(endpoint, module, parameter_spec)

Adds a parameter to an endpoint.
Parameters can be in the path, query string, headers, or cookies.
Parameters
	endpoint - The endpoint to modify
	module - Module containing the type definition for the parameter
	parameter_spec - Parameter specification map with keys:	:name - Parameter name
	:in - Location (:path, :query, :header, :cookie)
	:required - Whether the parameter is required
	:schema - Schema for the parameter value

Returns
	endpoint - Modified endpoint with parameter added

Example
endpoint = Spectral.OpenAPI.endpoint(:get, "/users/{id}")
 |> Spectral.OpenAPI.with_parameter(User, %{
 name: "id",
 in: :path,
 required: true,
 schema: :string
 })

 with_request_body(endpoint, module, schema)

Adds a request body specification to an endpoint.
Parameters
	endpoint - The endpoint to modify
	module - Module containing type definitions
	schema - Schema reference (typically an atom like :t)

Returns
	endpoint - Modified endpoint with request body

Example
endpoint = Spectral.OpenAPI.endpoint(:post, "/users")
 |> Spectral.OpenAPI.with_request_body(Person, :t)

 with_request_body(endpoint, module, schema, content_type)

Adds a request body specification with custom content type to an endpoint.
Parameters
	endpoint - The endpoint to modify
	module - Module containing type definitions
	schema - Schema reference (typically an atom like :t)
	content_type - Content type (e.g., "application/json", "application/xml")

Returns
	endpoint - Modified endpoint with request body

Example
endpoint = Spectral.OpenAPI.endpoint(:post, "/users")
 |> Spectral.OpenAPI.with_request_body(Person, :t, "application/xml")

Spectral.Error exception

Exception for Spectral operations.
This exception represents errors returned from the underlying :spectra library,
converted to an idiomatic Elixir format.
Can be used both in {:error, [%Spectral.Error{}]} tuples and raised as an exception.
Fields
	:location - Path to where the error occurred (list of strings or atoms)
	:type - Type of error (:decode_error, :type_mismatch, :no_match, :missing_data, :not_matched_fields)
	:context - Additional context information about the error (runtime-determined type)
	:message - Human-readable error message (auto-generated for exceptions)

Example
%Spectral.Error{
 location: ["user", "age"],
 type: :type_mismatch,
 context: %{expected: :integer, got: "not a number"}
}

 Summary

 Types

 error_type()

 t()

 Functions

 from_erlang(arg)

 Converts an Erlang error record from :spectra to a Spectral.Error struct.

 from_erlang_list(erlang_errors)

 Converts a list of Erlang error records to Elixir structs.

 Types

 error_type()

 @type error_type() ::
 :decode_error
 | :type_mismatch
 | :no_match
 | :missing_data
 | :not_matched_fields

 t()

 @type t() :: %Spectral.Error{
 __exception__: true,
 context: dynamic(),
 location: [String.t() | atom()],
 message: String.t(),
 type: error_type()
}

 Functions

 from_erlang(arg)

Converts an Erlang error record from :spectra to a Spectral.Error struct.
Parameters
	erlang_error - An error record from the :spectra library

Returns
	%Spectral.Error{} - The error as an Elixir struct

Example
iex> erlang_error = {:sp_error, ["user", "age"], :type_mismatch, %{expected: :integer}}
iex> Spectral.Error.from_erlang(erlang_error)
%Spectral.Error{
 location: ["user", "age"],
 type: :type_mismatch,
 context: %{expected: :integer},
 message: nil
}

 from_erlang_list(erlang_errors)

Converts a list of Erlang error records to Elixir structs.
Parameters
	erlang_errors - A list of error records from the :spectra library

Returns
	[%Spectral.Error{}] - List of errors as Elixir structs

Example
iex> errors = [{:sp_error, [], :decode_error, %{reason: "invalid JSON"}}]
iex> Spectral.Error.from_erlang_list(errors)
[%Spectral.Error{location: [], type: :decode_error, context: %{reason: "invalid JSON"}, message: nil}]

 OEBPS/dist/epub-4WIP524F.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);function r(e){document.readyState!=="loading"?e():document.addEventListener("DOMContentLoaded",e)}var l="hll";window.addEventListener("exdoc:loaded",t);function t(){o("[data-group-id]").forEach(e=>{e.addEventListener("mouseenter",i),e.addEventListener("mouseleave",i)})}function i(e){let n=e.currentTarget,a=e.type==="mouseenter",c=n.getAttribute("data-group-id");n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach(u=>{u.classList.toggle(l,a)})}r(()=>{t()});})();

