

 spinlock

 v0.2.1

 Table of contents

 	Spinlock

 	LICENSE

 	Modules

 	spinlock

Spinlock

[image: CI build status]
[image: codecov]
[image: Hex docs]
[image: Hex Version]
[image: License]
Spinlock implemented using atomics for Erlang and Elixir.

 Introduction

In software engineering, locks and mutexes are usually used to prevent race conditions and
data corruption that can occur when multiple threads try to access shared data concurrently.
However, in Erlang, we rarely need such locking mechanisms. This is due to the fact that
concurrency in Erlang is based on actor model, and each process has its own separate heap
and does not share memory with other processes. This model inherently avoids many of the
concurrency issues associated with shared memory and locking mechanisms.
In erlang shared resources are typically managed through serialization of access requests
using a single gen_server process to handle all requests for a resource. It's also possible
to replicate mutex behavior using a gen_server process (see sleeplocks
as an example of a lock implementation using gen_servers). Generally, the performance of
such locks are good enough for most use cases. However, in some critical situations where
submicrosecond latency is a requirement, relying on a gen_server based lock may not be the
best choice. In such critical cases Spinlocks are used.
Spinlocks are a low-level synchronization mechanism typically used in systems programming,
such as in operating system kernels or in scenarios where you need very fast, lightweight locks.
They are called "spinlocks" because they cause a thread attempting to acquire the lock to "spin"
in a loop while repeatedly checking if the lock is available. Using this technique we can
achieve extremely fast lock acquisitions at the expense of CPU cycles spent in busy-waiting.

 Implementation

This is a Spinlock implementation using atomics for Erlang and Elixir. It is slightly different
from other typical spinlock implementations where the lock state alternates between locked and
unlocked via an atomic operation. Here, a lock consists of two atomic integers: one tracks
the number of requests to acquire the lock, and the other holds the number of releases.
This approach offers several advantages over conventional spinlock implementations. Firstly,
lock acquisition is ordered, meaning locks are acquired in the same sequence they are requested.
This feature ensures consistent and predictable latency. Secondly, it tracks the number of
processes concurrently busy-waiting to acquire a lock. By allowing only the next process
to busy-wait in a tight loop and interrupting spinning for the others with erlang:yield/0,
this method reduces spinlock starvation and offers other processes more opportunities to run.
In this implementation, attempting to acquire a lock in a locked state will forcibly release
the lock after a configurable number of attempts, under the assumption that the process owning
the lock has already terminated.

 Use Cases

Use it with caution due to its busy-waiting nature. If the lock is held for extended periods,
it could waste CPU cycles, adversely affecting overall system performance.
The rule of thumb to decide whether to use it or not is: "Employ it only if the operation
requiring the lock is a submicrosecond task, and if there's more than a 99% chance that the
lock can be acquired without busy-waiting."
A typical use case in Erlang is implementing transactions for data structures built on top of
atomic arrays (e.g. Cuckoo Filter).

LICENSE

 Apache License
 Version 2.0, January 2004
 http://www.apache.org/licenses/

 TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

 1. Definitions.

 "License" shall mean the terms and conditions for use, reproduction,
 and distribution as defined by Sections 1 through 9 of this document.

 "Licensor" shall mean the copyright owner or entity authorized by
 the copyright owner that is granting the License.

 "Legal Entity" shall mean the union of the acting entity and all
 other entities that control, are controlled by, or are under common
 control with that entity. For the purposes of this definition,
 "control" means (i) the power, direct or indirect, to cause the
 direction or management of such entity, whether by contract or
 otherwise, or (ii) ownership of fifty percent (50%) or more of the
 outstanding shares, or (iii) beneficial ownership of such entity.

 "You" (or "Your") shall mean an individual or Legal Entity
 exercising permissions granted by this License.

 "Source" form shall mean the preferred form for making modifications,
 including but not limited to software source code, documentation
 source, and configuration files.

 "Object" form shall mean any form resulting from mechanical
 transformation or translation of a Source form, including but
 not limited to compiled object code, generated documentation,
 and conversions to other media types.

 "Work" shall mean the work of authorship, whether in Source or
 Object form, made available under the License, as indicated by a
 copyright notice that is included in or attached to the work
 (an example is provided in the Appendix below).

 "Derivative Works" shall mean any work, whether in Source or Object
 form, that is based on (or derived from) the Work and for which the
 editorial revisions, annotations, elaborations, or other modifications
 represent, as a whole, an original work of authorship. For the purposes
 of this License, Derivative Works shall not include works that remain
 separable from, or merely link (or bind by name) to the interfaces of,
 the Work and Derivative Works thereof.

 "Contribution" shall mean any work of authorship, including
 the original version of the Work and any modifications or additions
 to that Work or Derivative Works thereof, that is intentionally
 submitted to Licensor for inclusion in the Work by the copyright owner
 or by an individual or Legal Entity authorized to submit on behalf of
 the copyright owner. For the purposes of this definition, "submitted"
 means any form of electronic, verbal, or written communication sent
 to the Licensor or its representatives, including but not limited to
 communication on electronic mailing lists, source code control systems,
 and issue tracking systems that are managed by, or on behalf of, the
 Licensor for the purpose of discussing and improving the Work, but
 excluding communication that is conspicuously marked or otherwise
 designated in writing by the copyright owner as "Not a Contribution."

 "Contributor" shall mean Licensor and any individual or Legal Entity
 on behalf of whom a Contribution has been received by Licensor and
 subsequently incorporated within the Work.

 2. Grant of Copyright License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 copyright license to reproduce, prepare Derivative Works of,
 publicly display, publicly perform, sublicense, and distribute the
 Work and such Derivative Works in Source or Object form.

 3. Grant of Patent License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 (except as stated in this section) patent license to make, have made,
 use, offer to sell, sell, import, and otherwise transfer the Work,
 where such license applies only to those patent claims licensable
 by such Contributor that are necessarily infringed by their
 Contribution(s) alone or by combination of their Contribution(s)
 with the Work to which such Contribution(s) was submitted. If You
 institute patent litigation against any entity (including a
 cross-claim or counterclaim in a lawsuit) alleging that the Work
 or a Contribution incorporated within the Work constitutes direct
 or contributory patent infringement, then any patent licenses
 granted to You under this License for that Work shall terminate
 as of the date such litigation is filed.

 4. Redistribution. You may reproduce and distribute copies of the
 Work or Derivative Works thereof in any medium, with or without
 modifications, and in Source or Object form, provided that You
 meet the following conditions:

 (a) You must give any other recipients of the Work or
 Derivative Works a copy of this License; and

 (b) You must cause any modified files to carry prominent notices
 stating that You changed the files; and

 (c) You must retain, in the Source form of any Derivative Works
 that You distribute, all copyright, patent, trademark, and
 attribution notices from the Source form of the Work,
 excluding those notices that do not pertain to any part of
 the Derivative Works; and

 (d) If the Work includes a "NOTICE" text file as part of its
 distribution, then any Derivative Works that You distribute must
 include a readable copy of the attribution notices contained
 within such NOTICE file, excluding those notices that do not
 pertain to any part of the Derivative Works, in at least one
 of the following places: within a NOTICE text file distributed
 as part of the Derivative Works; within the Source form or
 documentation, if provided along with the Derivative Works; or,
 within a display generated by the Derivative Works, if and
 wherever such third-party notices normally appear. The contents
 of the NOTICE file are for informational purposes only and
 do not modify the License. You may add Your own attribution
 notices within Derivative Works that You distribute, alongside
 or as an addendum to the NOTICE text from the Work, provided
 that such additional attribution notices cannot be construed
 as modifying the License.

 You may add Your own copyright statement to Your modifications and
 may provide additional or different license terms and conditions
 for use, reproduction, or distribution of Your modifications, or
 for any such Derivative Works as a whole, provided Your use,
 reproduction, and distribution of the Work otherwise complies with
 the conditions stated in this License.

 5. Submission of Contributions. Unless You explicitly state otherwise,
 any Contribution intentionally submitted for inclusion in the Work
 by You to the Licensor shall be under the terms and conditions of
 this License, without any additional terms or conditions.
 Notwithstanding the above, nothing herein shall supersede or modify
 the terms of any separate license agreement you may have executed
 with Licensor regarding such Contributions.

 6. Trademarks. This License does not grant permission to use the trade
 names, trademarks, service marks, or product names of the Licensor,
 except as required for reasonable and customary use in describing the
 origin of the Work and reproducing the content of the NOTICE file.

 7. Disclaimer of Warranty. Unless required by applicable law or
 agreed to in writing, Licensor provides the Work (and each
 Contributor provides its Contributions) on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
 implied, including, without limitation, any warranties or conditions
 of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
 PARTICULAR PURPOSE. You are solely responsible for determining the
 appropriateness of using or redistributing the Work and assume any
 risks associated with Your exercise of permissions under this License.

 8. Limitation of Liability. In no event and under no legal theory,
 whether in tort (including negligence), contract, or otherwise,
 unless required by applicable law (such as deliberate and grossly
 negligent acts) or agreed to in writing, shall any Contributor be
 liable to You for damages, including any direct, indirect, special,
 incidental, or consequential damages of any character arising as a
 result of this License or out of the use or inability to use the
 Work (including but not limited to damages for loss of goodwill,
 work stoppage, computer failure or malfunction, or any and all
 other commercial damages or losses), even if such Contributor
 has been advised of the possibility of such damages.

 9. Accepting Warranty or Additional Liability. While redistributing
 the Work or Derivative Works thereof, You may choose to offer,
 and charge a fee for, acceptance of support, warranty, indemnity,
 or other liability obligations and/or rights consistent with this
 License. However, in accepting such obligations, You may act only
 on Your own behalf and on Your sole responsibility, not on behalf
 of any other Contributor, and only if You agree to indemnify,
 defend, and hold each Contributor harmless for any liability
 incurred by, or claims asserted against, such Contributor by reason
 of your accepting any such warranty or additional liability.

 END OF TERMS AND CONDITIONS

 APPENDIX: How to apply the Apache License to your work.

 To apply the Apache License to your work, attach the following
 boilerplate notice, with the fields enclosed by brackets "[]"
 replaced with your own identifying information. (Don't include
 the brackets!) The text should be enclosed in the appropriate
 comment syntax for the file format. We also recommend that a
 file or class name and description of purpose be included on the
 same "printed page" as the copyright notice for easier
 identification within third-party archives.

 Copyright 2024, Ali Farhadi <a.farhadi@gmail.com>.

 Licensed under the Apache License, Version 2.0 (the "License");
 you may not use this file except in compliance with the License.
 You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

 Unless required by applicable law or agreed to in writing, software
 distributed under the License is distributed on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 See the License for the specific language governing permissions and
 limitations under the License.

spinlock

 Summary

 Types

 lock_id/0

 option/0

 spinlock/0

 Functions

 acquire(Spinlock)

 Acquires a lock for the current process.

 new()

 Equivalent to new([]).

 new(Options)

 Creates a new spinlock instance with the given options.

 release(Spinlock, LockId)

 Releases an already acquired lock.

 status(Spinlock)

 Returns the status of the given lock.

 transaction(Spinlock, Fun)

 Executes the given function in a transaction.

 Types

 Link to this type

 lock_id/0

 View Source

 -type lock_id() :: pos_integer().

 Link to this type

 option/0

 View Source

 -type option() :: {max_retry, pos_integer()} | {atomics_ref, atomics:atomics_ref()}.

 Link to this type

 spinlock/0

 View Source

 -type spinlock() :: #spinlock{}.

 Functions

 Link to this function

 acquire(Spinlock)

 View Source

 -spec acquire(Lock :: #spinlock{}) -> lock_id().

Acquires a lock for the current process.
This will busy-wait until a lock can be acquired, or a maximum configured number of attemps is reached. Returned lock_id is used to release the lock later.

 Link to this function

 new()

 View Source

 -spec new() -> #spinlock{}.

Equivalent to new([]).

 Link to this function

 new(Options)

 View Source

 -spec new(Options :: [option()]) -> #spinlock{}.

Creates a new spinlock instance with the given options.
Possible options are:	{max_retry, MaxRetry}The lock is forecibly released after MaxRetry number of attempts.

	{atomics_ref, AtomicsRef}Uses the first two index of the given atomics array to store the state of the lock. If you want to use spinlock to implement transactions for an atomics array, you can use this option to avoid creating an extra atomics array.

 Link to this function

 release(Spinlock, LockId)

 View Source

 -spec release(Lock :: #spinlock{}, LockId :: lock_id()) ->
 ok | {error, already_released | invalid_lock_id}.

Releases an already acquired lock.
This will release the lock for the given LockId. Returns ok if the lock is successfully released. Otherwise returns {error, already_released} if the lock is already released or {error, invalid_lock_state} if the given LockId has never been acquired.

 Link to this function

 status(Spinlock)

 View Source

 -spec status(Lock :: #spinlock{}) ->
 #{released => non_neg_integer(), is_locked => boolean(), waiting => non_neg_integer()}.

Returns the status of the given lock.
You can use this function for debugging purposes, to check the current status of the lock, and to see how many process are waiting to acquire the lock.

 Link to this function

 transaction(Spinlock, Fun)

 View Source

 -spec transaction(Lock :: #spinlock{}, Fun :: fun(() -> any())) -> any().

Executes the given function in a transaction.
Acquires the lock, executes the given function, and releases the lock when the function has returend. The lock is released even if the function fails with an exception.

 OEBPS/dist/epub-75RCTLK3.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);var a="hll";function c(){u()}function u(){o("[data-group-id]").forEach(e=>{let t=e.getAttribute("data-group-id");e.addEventListener("mouseenter",n=>{i(t,!0)}),e.addEventListener("mouseleave",n=>{i(t,!1)})})}function i(r,e){o(`[data-group-id="${r}"]`).forEach(n=>{n.classList.toggle(a,e)})}c();})();

