

 splode

 v0.3.0

 Table of contents

 	Get Started with Splode

 	
 Modules

 	Splode

 	Splode.Error

 	Splode.ErrorClass

 	Splode.Stacktrace

 	Exceptions

 	Splode.Error.Unknown

 Get Started with Splode

Splode helps you deal with errors and exceptions in your application that are aggregatable and consistent. The general pattern is that you use the Splode module as a top level aggregator of error classes, and whenever you return errors, you return one of your Splode.Error structs, or a string, or a keyword list. Then, if you want to group errors together, you can use your Splode module to do so. You can also use that module to turn any arbitrary value into a splode error.
More documentation for Splode will come in the future. This was extracted from Ash Framework so that it could be standardized across multiple packages. If you use Ash, you can use Ash.Errors to get the benefits of Splode.
For now, here is an example:
defmodule MyApp.Errors do
 use Splode, error_classes: [
 invalid: MyApp.Errors.Invalid,
 unknown: MyApp.Errors.Unknown
],
 unknown_error: MyApp.Errors.Unknown.Unknown
end

Error classes are splode errors with an `errors` key.
defmodule MyApp.Errors.Invalid do
 use Splode.ErrorClass, class: :invalid
end

You will want to define an unknown error class,
otherwise splode will use its own
defmodule MyApp.Errors.Unknown do
 use Splode.ErrorClass, class: :unknown
end

This fallback exception will be used for unknown errors
defmodule MyApp.Errors.Unknown.Unknown do
 use Splode.Error, class: :unknown

 # your unknown message should have an `error` key
 def message(%{error: error}) do
 if is_binary(error) do
 to_string(error)
 else
 inspect(error)
 end
 end
end

Finally, you can create your own error classes

defmodule MyApp.Errors.InvalidArgument do
 use Splode.Error, fields: [:name, :message], class: :invalid

 def message(%{name: name, message: message}) do
 "Invalid argument #{name}: #{message}"
 end
end
To use these exceptions in your application, the general pattern is to return errors in :ok | :error tuples, like so:
def do_something(argument) do
 if is_valid?(argument) do
 {:ok, do_stuff()}
 else
 {:error,
 MyApp.Errors.InvalidArgument.exception(
 name: :argument,
 message: "is invalid"
)}
 end
end
Then, you can use to_class, and to_error tools to ensure that you have consistent error structures.
def do_multiple_things(argument) do
 results = [do(), multiple(), things()]
 {results, errors} =
 Enum.reduce(results, {[], []}, fn
 {:ok, result}, {results, errors} ->
 {[result | results], errors}
 {:error, error} ->
 # ensure each error is a splode error
 # technically, `to_class` does this for you,
 # this is just an example
 {results, [MyApp.Errors.to_error(error) | errors]}
 end)

 case {results, errors} do
 {results, []} ->
 {:ok, results}
 {_results, errors} ->
 {:error, MyApp.Errors.to_class(errors)}
 end
end
Error classes
When we combine errors into error classes, we choose the first error class for which there are any errors as the "class" of the combined error. For example, in Ash Framework, we have:
use Splode,
 error_classes: [
 forbidden: Ash.Error.Forbidden,
 invalid: Ash.Error.Invalid,
 framework: Ash.Error.Framework,
 unknown: Ash.Error.Unknown
],
 unknown_error: Ash.Error.Unknown.UnknownError
What this means is that if there are any Forbidden errors, then the class is Forbidden. A Forbidden error can contain any of the lower classed errors. This allows people to match on and/or rescue on "the general type of failure" that occurred. Given that you have many varied kinds of errors, you can use this to your advantage to have both detailed errors, but simple to match on errors. Here is an example:
def get(conn, %{"user_id" => user_id}) do
 user = MyApp.Accounts.get_user!()
 render_user(conn, user)
rescue
 e in Ash.Error.Forbidden ->
 render_error(conn, %{error: "You can't do this"})

 e in Ash.Error.Invalid ->
 render_error(conn, %{error: "You did something wrong"})

 e in [Ash.Error.Framework, Ash.Error.Unknown] ->
 render_error(conn, %{error: "Something went wrong"})
end
Or, alternatively, you can pattern match on them given a non-raised error class
def get(conn, %{"user_id" => user_id}) do
 case MyApp.Accounts.get_user() do
 {:ok, user} ->
 render_user(conn, user)

 {:error, %Ash.Error.Forbidden{}} ->
 render_error(conn, %{error: "You can't do this"})

 {:error, %Ash.Error.Invalid{}} ->
 render_error(conn, %{error: "You did something wrong"})

 {:error, %error{}} when error in [Ash.Error.Framework, Ash.Error.Unknown] ->
 render_error(conn, %{error: "Something went wrong"})
 end
end
Raising Exceptions
To make a ! version of a function, use .unwrap!/2 on your splode module.
def get_user!(user_id) do
 user_id
 |> get_user()
 |> MyApp.Errors.unwrap!()
end

def get_user(user_id) do
 case Repo.get(user_id) do
 nil ->
 {:error, MyApp.Error.NotFound.exception(resource: User, key: user_id)}
 user ->
 {:ok, user}
 end
end
Installation
def deps do
 [
 {:splode, "~> 0.1.0"}
]
end

Splode behaviour

Use this module to create your error aggregator and handler.
For example:
defmodule MyApp.Errors do
 use Splode, error_classes: [
 invalid: MyApp.Errors.Invalid,
 unknown: MyApp.Errors.Unknown
],
 unknown_error: MyApp.Errors.Unknown.Unknown
end
Options
	:error_classes - A keyword list mapping error class atoms to error class modules.
At least one error class must be provided.

	:unknown_error - The module to use when an error cannot be converted to a known type.
This is required.

	:merge_with - A list of other Splode modules whose errors should be recognized and
flattened when combined. Optional.

	:filter_stacktraces - A list of modules or module prefixes to filter from stacktraces.
For each consecutive sequence of frames matching any filter, only the deepest (last) frame
is kept. This is useful for hiding internal implementation details from error stacktraces.
Accepts atoms (exact module match) or strings (prefix match). Optional.
Elixir standard library frames (Enum, Stream, List, Map, etc.) are treated as part of an
active matching sequence but are not kept as the "deepest" frame. This prevents stdlib
frames from appearing in filtered stacktraces when they're sandwiched between internal
module calls.
defmodule MyApp.Errors do
 use Splode,
 error_classes: [invalid: MyApp.Errors.Invalid],
 unknown_error: MyApp.Errors.Unknown,
 filter_stacktraces: [MyApp.Internal, "MyApp.Internal."]
end

 Summary

 Callbacks

 from_json(module, map)

 Converts a combination of a module and json input into an Splode exception.

 set_path(arg1, arg2)

 Sets the path on the error or errors

 splode_error?(term)

 Returns true if the given value is a splode error.

 to_class(any)

 Combine errors into an error class

 to_error(any)

 Turns any value into a splode error

 Callbacks

 from_json(module, map)

 @callback from_json(module(), map()) :: Splode.Error.t()

Converts a combination of a module and json input into an Splode exception.
This allows for errors to be serialized and deserialized

 set_path(arg1, arg2)

 @callback set_path(Splode.Error.t() | [Splode.Error.t()], term() | [term()]) ::
 Splode.Error.t() | [Splode.Error.t()]

Sets the path on the error or errors

 splode_error?(term)

 @callback splode_error?(term()) :: boolean()

Returns true if the given value is a splode error.

 to_class(any)

 @callback to_class(any()) :: Splode.Error.t()

Combine errors into an error class

 to_error(any)

 @callback to_error(any()) :: Splode.Error.t()

Turns any value into a splode error

Splode.Error behaviour

Use this module to create an aggregatable error.
For example:
defmodule MyApp.Errors.InvalidArgument do
 use Splode.Error, fields: [:name, :message], class: :invalid

 def message(%{name: name, message: message}) do
 "Invalid argument #{name}: #{message}"
 end
end

 Summary

 Types

 t()

 Callbacks

 error_class?()

 from_json(map)

 splode_error?()

 Types

 t()

 @type t() :: Exception.t()

 Callbacks

 error_class?()

 @callback error_class?() :: boolean()

 from_json(map)

 @callback from_json(map()) :: struct()

 splode_error?()

 @callback splode_error?() :: boolean()

Splode.ErrorClass

Tools for working with error classes

 Summary

 Functions

 error_messages(errors, opts \\ [])

 Creates a long form composite error message for a list of errors

 Functions

 error_messages(errors, opts \\ [])

Creates a long form composite error message for a list of errors

Splode.Stacktrace

A placeholder for a stacktrace so that we can avoid printing it everywhere

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Splode.Stacktrace{stacktrace: list()}

Splode.Error.Unknown exception

The default top level unknown error container

 Summary

 Functions

 exception(args)

 Create an Elixir.Splode.Error.Unknown without raising it.

 message(map)

 Callback implementation for Exception.message/1.

 Functions

 exception(args)

 @spec exception(opts :: Keyword.t()) :: %Splode.Error.Unknown{
 __exception__: true,
 bread_crumbs: term(),
 class: term(),
 errors: term(),
 path: term(),
 splode: term(),
 stacktrace: term(),
 vars: term()
}

Create an Elixir.Splode.Error.Unknown without raising it.
Keys
	:errors

 message(map)

Callback implementation for Exception.message/1.

 OEBPS/dist/epub-4WIP524F.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);function r(e){document.readyState!=="loading"?e():document.addEventListener("DOMContentLoaded",e)}var l="hll";window.addEventListener("exdoc:loaded",t);function t(){o("[data-group-id]").forEach(e=>{e.addEventListener("mouseenter",i),e.addEventListener("mouseleave",i)})}function i(e){let n=e.currentTarget,a=e.type==="mouseenter",c=n.getAttribute("data-group-id");n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach(u=>{u.classList.toggle(l,a)})}r(()=>{t()});})();

