

 ssh_subsystem_fwup

 v0.6.2

 Table of contents

 	SSHSubsystemFwup

 	Changelog

 	

 	Modules

 	SSHSubsystemFwup

 	Mix Tasks

 	mix firmware.gen.script

 	mix upload

SSHSubsystemFwup

[image: CircleCI]
[image: Hex version]
This library provides an ssh
subsystem that applies Nerves "over-the-air" firmware updates. It is an
alternative to
nerves_firmware_ssh
that extracts the update service to a :ssh.daemon/1 spec. This trims down the
responsibilities of the library and makes it possible to:
	Customize ssh authentication (for example, password-based auth is possible)
	Handle host keys differently and more securely
	Run firmware updates on port 22 with other ssh services

In addition, the protocol for sending updates over ssh has been simplified. If
you're coming from nerves_firmware_ssh, you'll have used the upload.sh
script or mix upload. This library provides the same interface. If using
upload.sh, you will need to rerun mix firmware.gen.script since the script
has changed.

 Installation

The easiest installation is to use
nerves_ssh and have it bring
in this library as a dependency. See that project for details.
However, if you do not want to use nerves_ssh, here's what do do. First, add
the dependency:
def deps do
 [{:ssh_subsystem_fwup, "~> 0.6.0"}]
end
Then add ssh subsystem spec to the call that starts the ssh daemon. This code
will look something like:
 {:ok, ref} =
 :ssh.daemon([
 {:subsystems, [SSHSubsystemFwup.subsystem_spec()]}
])
You will likely have many more options passed to the ssh.daemon.

 Uploading firmware

There are two ways of uploading firmware. The first is to run:
mix upload

That doesn't work for everyone due to ssh authentication preferences. The
alternative is to use commandline ssh. For convenience, ssh_subsystem_fwup
can generate a script that makes this easier. Go to your Nerves project
directory and run:
mix firmware.gen.script

This should create an upload.sh script. Frequently when starting out, you can
run ./upload.sh without arguments since it will guess that it's supposed to
upload to nerves.local. To specify a device to upload to, pass the device's
hostname as the first argument. For example:
$./upload.sh nerves-1234.local
fwup: Upgrading partition B
|====================================| 100% (32.34 / 32.34) MB
Success!
Elapsed time: 4.720 s
Disconnected from 172.31.207.89 port 22

Note that the .local address assumes that mDNS has been configured on the
device and that mDNS works on your network and OS. That's not always the case
and a frequent source of frustration when it fails. When in doubt, check that
you can upload to the device's IP address. You can get the IP address from your
router or by connecting to the device's IEx prompt and running ifconfig.

 Upload protocol

It's not necessary to use the upload.sh script. The following line is
equivalent:
cat $firmware | ssh -s $nerves_device fwup

 Configuration

The default options should satisfy most use cases, but it's possible to alter
how updates are applied by passing options when creating the SSH subsystem spec
(see SSHSubsystemFwup.subsystem_spec/1) or by setting the application
environment.
Here's an example of what the code looks like when setting options via a
subsystem spec:
 :ssh.daemon(@port, [
 ...
 {:subsystems, [SSHSubsystemFwup.subsystem_spec(task: "my_upgrade_task")]}
])
If another library starts the SSH deamon for you, like
nerves_ssh, it might be more convenient
to set options via the application environment. ssh_subsystem_fwup uses its
defaults first, then those from the application environment and finally those in
the subsystem spec, so as long as the options you specify in the application
environment aren't overridden, you'll be fine. Here's an example:
config :ssh_subsystem_fwup, precheck_callback: {MyProject, :precheck, []}
The following options are available:
	:devpath - path for fwup to upgrade (Required)
	:fwup_path - path to the fwup firmware update utility
	:fwup_env - a list of name,value tuples to be passed to the OS environment for fwup
	:fwup_extra_options - additional options to pass to fwup like for setting
public keys
	:precheck_callback - an MFArgs to call when there's a connection. If
specified, the callback will be passed the username and the current set of
options. If allowed, it should return {:ok, new_options}. Any other return
value closes the connection.
	:success_callback - an MFArgs to call when a firmware update completes
successfully. Defaults to {Nerves.Runtime, :reboot, []}.
	:task - the task to run in the firmware update. Defaults to "upgrade"

 License

Copyright (C) 2017-21 The Nerves Project Authors developers@nerves-project.org
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

Changelog

 v0.6.2

	Improvements	Fix mix upload so that its invocation of ssh no longer overrides
LD_LIBRARY_PATH. (@ringlej)
	Fix/clean up some typespecs

 v0.6.1

	Improvements	mix upload now attempts to display the UUID of the firmware as well

 v0.6.0

	New features	Added a :precheck_callback option to support updating firmware update
options at runtime and to stop updates from happening at critical times
	Added a :fwup_env option for passing OS environment variables to fwup
	Support setting default system-wide options in the application config in
addition to the subsystem spec. The subsystem spec takes precedence.

 v0.5.2

	Improvements	Improve instructions for how to update from nerves_firmware_ssh

 v0.5.1

This releases adds a check for old upload.sh scripts to warn users that
they'll need to update it.

 v0.5.0

Initial release.
This factors out the SSH subsystem from
nerves_firmware_ssh
and removes all ssh server code. The user of this library now has to start a
server themselves. This makes it possible to run the firmware update on port 22
and removes the constraint of needing to hard code authorized ssh public keys.

SSHSubsystemFwup

SSH subsystem for upgrading Nerves devices
This module provides an SSH subsystem for Erlang's ssh application. This
makes it possible to send firmware updates to Nerves devices using plain old
ssh like this:
cat $firmware | ssh -s $ip_address fwup

Where $ip_address is the IP address of your Nerves device. Depending on how
you have Erlang's ssh application set up, you may need to pass more
parameters (like username, port, identities, etc.).
See nerves_ssh for an easy
way to set this up. If you don't want to use nerves_ssh, then in your call
to :ssh.daemon add the return value from
SSHSubsystemFwup.subsystem_spec/1:
devpath = Nerves.Runtime.KV.get("nerves_fw_devpath")

:ssh.daemon([
 {:subsystems, [SSHSubsystemFwup.subsystem_spec(devpath: devpath)]}
])
See SSHSubsystemFwup.subsystem_spec/1 for options. You will almost always
need to pass the path to the device that should be updated since that is
device-specific.

 Summary

 Types

 options()

 Options

 Functions

 subsystem_spec(options \\ [])

 Helper for creating the SSH subsystem spec

 Types

 Link to this type

 options()

 View Source

 @type options() :: [
 devpath: Path.t(),
 fwup_path: Path.t(),
 fwup_env: [{String.t(), String.t()}],
 fwup_extra_options: [String.t()],
 precheck_callback: mfargs() | nil,
 task: String.t(),
 success_callback: mfargs()
]

Options:
	:devpath - path for fwup to upgrade (Required)
	:fwup_path - path to the fwup firmware update utility
	:fwup_env - a list of name,value tuples to be passed to the OS environment for fwup
	:fwup_extra_options - additional options to pass to fwup like for setting
public keys
	:precheck_callback - an MFArgs to call when there's a connection. If
specified, the callback will be passed the username and the current set of
options. If allowed, it should return {:ok, new_options}. Any other
return value closes the connection.
	:success_callback - an MFArgs to call when a firmware update completes
successfully. Defaults to {Nerves.Runtime, :reboot, []}.
	:task - the task to run in the firmware update. Defaults to "upgrade"

 Functions

 Link to this function

 subsystem_spec(options \\ [])

 View Source

 @spec subsystem_spec(options()) :: :ssh.subsystem_spec()

Helper for creating the SSH subsystem spec

mix firmware.gen.script

Creates a shell script for invoking ssh to upgrade devices with ssh_subsystem_fwup.
This script may be used on its own or used as a base for more complicated
device software upgrade deployments.
It saves the script to upload.sh.

 Summary

 Functions

 run(args)

 Callback implementation for Mix.Task.run/1.

 Functions

 Link to this function

 run(args)

 View Source

 @spec run(keyword()) :: :ok

Callback implementation for Mix.Task.run/1.

mix upload

Upgrade the firmware on a Nerves device using SSH.
By default, mix upload reads the firmware built by the current MIX_ENV
and MIX_TARGET settings, and sends it to nerves.local. Pass in a another
hostname to send the firmware elsewhere.
NOTE: This implementation cannot ask for passphrases, and therefore, cannot
connect to devices protected by username/passwords or decrypt
password-protected private keys. One workaround is to use the ssh-agent to
pass credentials.

 Command line options

	--firmware - The path to a fw file

 Examples

Upgrade a Raspberry Pi Zero at nerves.local:
MIX_TARGET=rpi0 mix upload nerves.local
Upgrade 192.168.1.120 and explicitly pass the .fw file:
mix upload 192.168.1.120 --firmware _build/rpi0_prod/nerves/images/app.fw

 OEBPS/dist/epub-N2MDDSYJ.js
(()=>{var g=document.querySelector.bind(document),i=document.querySelectorAll.bind(document);function r(o){document.readyState!=="loading"?o():document.addEventListener("DOMContentLoaded",o)}var l="ex_doc:settings",d={tooltips:!0,theme:null,livebookUrl:null},s=class{constructor(){this._subscribers=[],this._settings=d,this._loadSettings()}get(){return this._settings}update(t){let e=this._settings;this._settings={...this._settings,...t},this._subscribers.forEach(n=>n(this._settings,e)),this._storeSettings()}getAndSubscribe(t){this._subscribers.push(t),t(this._settings)}_loadSettings(){try{let t=localStorage.getItem(l);if(t){let e=JSON.parse(t);this._settings={...this._settings,...e}}this._loadSettingsLegacy()}catch(t){console.error(`Failed to load settings: ${t}`)}}_storeSettings(){try{this._storeSettingsLegacy(),localStorage.setItem(l,JSON.stringify(this._settings))}catch(t){console.error(`Failed to persist settings: ${t}`)}}_loadSettingsLegacy(){localStorage.getItem("tooltipsDisabled")!==null&&(this._settings={...this._settings,tooltips:!1}),localStorage.getItem("night-mode")==="true"&&(this._settings={...this._settings,nightMode:!0}),this._settings.nightMode===!0&&(this._settings={...this._settings,theme:"dark"})}_storeSettingsLegacy(){this._settings.tooltips?localStorage.removeItem("tooltipsDisabled"):localStorage.setItem("tooltipsDisabled","true"),this._settings.nightMode!==null?localStorage.setItem("night-mode",this._settings.nightMode===!0?"true":"false"):localStorage.removeItem("night-mode"),this._settings.theme!==null?(localStorage.setItem("night-mode",this._settings.theme==="dark"?"true":"false"),this._settings.nightMode=this._settings.theme==="dark"):(delete this._settings.nightMode,localStorage.removeItem("night-mode"))}},h=new s;function a(){["warning","info","error","neutral","tip"].forEach(t=>{i(`blockquote h3.${t}, blockquote h4.${t}`).forEach(e=>{e.closest("blockquote").classList.add(t)})})}var m="hll";function u(){f()}function f(){i("[data-group-id]").forEach(t=>{let e=t.getAttribute("data-group-id");t.addEventListener("mouseenter",n=>{c(e,!0)}),t.addEventListener("mouseleave",n=>{c(e,!1)})})}function c(o,t){i(`[data-group-id="${o}"]`).forEach(n=>{n.classList.toggle(m,t)})}r(()=>{u(),a()});})();

