

 Stash

 v2.0.0

 Table of contents

 	Stash

 	
 Modules

 	Stash

 Stash

[image: Build Status] [image: Coverage Status] [image: Hex.pm Version] [image: Documentation]
A very small wrapper around ETS, providing a more user-friendly key/value interface for new users.
Stash automatically creates a single ETS table with a set of defaults options to get running quickly.
This library is meant as a fast way to use ETS without needing anything flashy. If you need a more fully
featured caching solutions, please check out cachex instead.
Installation
This package can be installed via Hex, just add stash to your list of dependencies in mix.exs:
def deps do
 [{:stash, "~> 2.0"}]
end
Getting Started
It's straightforward to get up and running quickly, just populate a namespace:
iex(1)> Stash.put(:namespace, "my_key", "my_value")
true
iex(2)> Stash.get(:namespace, "my_key")
"my_value"
iex(3)> Stash.delete(:namespace, "my_key")
true
iex(4)> Stash.get(:namespace, "my_key")
nil
Stash uses a single table to store all namespaces, and is automatically bootstrapped during
application startup. Tables are created with currency enabled, and act as :set. In older
versions of Stash it was possible to bring your own table, but this has been removed in 2.x.
For further examples, as well as the rest of the API, please see the documentation.
Persistence
Useful for scripting and/or local tools, Stash includes (de)serialization to/from disk via :dets.
This is accessible via Stash.persist/1 which will move your ETS tables into DTs, allowing you to
reload after your process has died. This is not synced in any way; call Stash.persist/1 repeatedly
if this is required.
iex(1)> Stash.put(:my_table, "key", "value")
true
iex(2)> Stash.size(:my_table)
1
iex(3)> Stash.persist("/tmp/my_persistence_file")
Reloading this data can be done via Stash.load/1, which accepts the same arguments:
iex(6)> Stash.load("/tmp/my_persistence_file")
:ok
iex(7)> Stash.size(:my_table)
1
iex(1)> Stash.get(:my_table, "key")
"value"
Again, very simple but it does the job :).
Contributions
I expect the shape of this library will not change much due to the intended use case, but feel free
to suggest any improvements! You can test any changes as you'd expect:
$ mix test --trace

If you have any issues or feedback, please file an issue!

Stash

This module provides a convenient interface around ETS/DTS without taking
large performance hits. Designed for being thrown into a project for basic
memory-based storage, perhaps with some form of persistence required.

 Summary

 Functions

 clear()

 Removes all items from all namespaces.

 delete(namespace, key)

 Removes a value from the namespace.

 drop(namespace)

 Removes all items from a namespace.

 empty?(namespace)

 Checks whether the namespace is empty.

 exists?(namespace, key)

 Determines whether a given key exists inside the namespace.

 get(namespace, key, default \\ nil)

 Retrieves a value from the namespace.

 increment(namespace, key, count \\ 1, initial \\ 0)

 Increments a key directly in the namespace by count. If the key does not exist
it is set to initial before then being incremented.

 info()

 Returns information about the backing ETS table.

 keys(namespace)

 Retrieves all keys from the namespace, and returns them as an (unordered) list.

 load(path)

 Loads a namespace into memory from DTS storage.

 persist(path)

 Persists a namespace onto disk to allow reload after the process dies.

 put(namespace, key, value)

 Places a value in the namespace against a given key.

 remove(namespace, key, default \\ nil)

 Removes a key from the namespace, whilst also returning the last known value.

 size(namespace)

 Determines the size of the namespace.

 Functions

 clear()

 @spec clear() :: true

Removes all items from all namespaces.
Examples
iex> Stash.put(:namespace1, "key1", "value1")
iex> Stash.put(:namespace2, "key2", "value2")
iex> Stash.put(:namespace3, "key3", "value3")

iex> Stash.clear()
true

iex> Stash.size(:namespace1)
0

iex> Stash.size(:namespace2)
0

iex> Stash.size(:namespace3)
0

 delete(namespace, key)

 @spec delete(atom(), any()) :: true

Removes a value from the namespace.
Examples
iex> Stash.put(:my_namespace, "key", "value")
iex> Stash.get(:my_namespace, "key")
"value"

iex> Stash.delete(:my_namespace, "key")
true

iex> Stash.get(:my_namespace, "key")
nil

 drop(namespace)

 @spec drop(atom()) :: true

Removes all items from a namespace.
Examples
iex> Stash.put(:namespace, "key1", "value1")
iex> Stash.put(:namespace, "key2", "value2")
iex> Stash.put(:namespace, "key3", "value3")

iex> Stash.drop(:namespace)
true

iex> Stash.size(:namespace)
0

 empty?(namespace)

 @spec empty?(atom()) :: boolean()

Checks whether the namespace is empty.
Examples
iex> Stash.put(:my_namespace, "key1", "value1")
iex> Stash.put(:my_namespace, "key2", "value2")
iex> Stash.put(:my_namespace, "key3", "value3")
iex> Stash.empty?(:my_namespace)
false

iex> Stash.clear(:my_namespace)
true

iex> Stash.empty?(:my_namespace)
true

 exists?(namespace, key)

 @spec exists?(atom(), any()) :: true | false

Determines whether a given key exists inside the namespace.
Examples
iex> Stash.put(:my_namespace, "key", "value")
iex> Stash.exists?(:my_namespace, "key")
true

iex> Stash.exists?(:my_namespace, "missing_key")
false

 get(namespace, key, default \\ nil)

 @spec get(atom(), any(), any()) :: any()

Retrieves a value from the namespace.
Examples
iex> Stash.put(:my_namespace, "key", "value")
iex> Stash.get(:my_namespace, "key")
"value"

iex> Stash.get(:my_namespace, "missing_key")
nil

iex> Stash.get(:my_namespace, "missing_key, "default")
"default

 increment(namespace, key, count \\ 1, initial \\ 0)

 @spec increment(atom(), any(), number(), number()) :: number()

Increments a key directly in the namespace by count. If the key does not exist
it is set to initial before then being incremented.
Examples
iex> Stash.put(:my_namespace, "key", 1)
iex> Stash.increment(:my_namespace, "key")
2

iex> Stash.increment(:my_namespace, "key", 2)
4

iex> Stash.increment(:my_namespace, "missing_key", 1)
1

iex> Stash.increment(:my_namespace, "a_missing_key", 1, 5)
6

 info()

 @spec info() :: [{atom(), any()}]

Returns information about the backing ETS table.
Examples
iex> Stash.info()
[read_concurrency: true, write_concurrency: true, compressed: false,
 memory: 1361, owner: #PID<0.126.0>, heir: :none, name: :my_namespace, size: 2,
 node: :nonode@nohost, named_table: true, type: :set, keypos: 1,
 protection: :public]

 keys(namespace)

 @spec keys(atom()) :: [any()]

Retrieves all keys from the namespace, and returns them as an (unordered) list.
Examples
iex> Stash.put(:my_namespace, "key1", "value1")
iex> Stash.put(:my_namespace, "key2", "value2")
iex> Stash.put(:my_namespace, "key3", "value3")
iex> Stash.keys(:my_namespace)
["key2", "key1", "key3"]

iex> Stash.keys(:empty_namespace)
[]

 load(path)

 @spec load(binary()) :: atom()

Loads a namespace into memory from DTS storage.
Examples
iex> Stash.load("/tmp/temporary.dat")
:ok

 persist(path)

 @spec persist(binary()) :: atom()

Persists a namespace onto disk to allow reload after the process dies.
Examples
iex> Stash.persist(:my_namespace, "/tmp/temporary.dat")
:ok

 put(namespace, key, value)

 @spec put(atom(), any(), any()) :: true

Places a value in the namespace against a given key.
Examples
iex> Stash.put(:my_namespace, "key", "value")
true

 remove(namespace, key, default \\ nil)

 @spec remove(atom(), any(), any()) :: any()

Removes a key from the namespace, whilst also returning the last known value.
Examples
iex> Stash.put(:my_namespace, "key", "value")
iex> Stash.remove(:my_namespace, "key")
"value"

iex> Stash.get(:my_namespace, "key")
nil

iex> Stash.remove(:my_namespace, "missing_key")
nil

iex> Stash.remove(:my_namespace, "missing_key, "default")
"default"

 size(namespace)

 @spec size(atom()) :: number()

Determines the size of the namespace.
Examples
iex> Stash.put(:my_namespace, "key1", "value1")
iex> Stash.put(:my_namespace, "key2", "value2")
iex> Stash.put(:my_namespace, "key3", "value3")
iex> Stash.size(:my_namespace)
3

 OEBPS/dist/epub-4WIP524F.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);function r(e){document.readyState!=="loading"?e():document.addEventListener("DOMContentLoaded",e)}var l="hll";window.addEventListener("exdoc:loaded",t);function t(){o("[data-group-id]").forEach(e=>{e.addEventListener("mouseenter",i),e.addEventListener("mouseleave",i)})}function i(e){let n=e.currentTarget,a=e.type==="mouseenter",c=n.getAttribute("data-group-id");n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach(u=>{u.classList.toggle(l,a)})}r(()=>{t()});})();

