

 StreamData

 v1.1.2

 Table of contents

 	Modules

 	ExUnitProperties

 	StreamData

 	StreamData.FilterTooNarrowError

 	StreamData.TooManyDuplicatesError

ExUnitProperties

Provides macros for property-based testing.
This module provides a few macros that can be used for property-based testing. The core is check/3,
which allows executing arbitrary tests on many pieces of generated data. Another one is
property/3, which is meant as a utility to replace the ExUnit.Case.test/3 macro when writing
properties. The last one is gen/3, which can be used as syntactic sugar to build generators
(see StreamData for other ways of building generators and for core generators).
Overview of property-based testing
One of the most common ways of writing tests (in Elixir and many other
languages) is to write tests by hand. For example, say that we want to write a
starts_with?/2 function that takes two binaries and returns true if the
first starts with the second and false otherwise. We would likely test such
function with something like this:
test "starts_with?/2" do
 assert starts_with?("foo", "f")
 refute starts_with?("foo", "b")
 assert starts_with?("foo", "")
 assert starts_with?("", "")
 refute starts_with?("", "something")
end
This test highlights the method used to write such kind of tests: they're
written by hand. The process usually consists of testing an expected output on
a set of expected inputs. This works especially well for edge cases, but the
robustness of this test could be improved. This is what property-based testing aims
to solve. Property testing is based on two ideas:
	specify a set of properties that a piece of code should satisfy
	test those properties on a very large number of randomly generated data

The point of specifying properties instead of testing manual scenarios is
that properties should hold for all the data that the piece of code should be
able to deal with, and in turn, this plays well with generating data at
random. Writing properties has the added benefit of forcing the programmer to
think about their code differently: they have to think about which are
invariant properties that their code satisfies.
To go back to the starts_with?/2 example above, let's come up with a
property that this function should hold. Since we know that the Kernel.<>/2
operator concatenates two binaries, we can say that a property of
starts_with?/2 is that the concatenation of binaries a and b always
starts with a. This is easy to model as a property using the check/3 macro
from this module and generators taken from the StreamData module:
test "starts_with?/2" do
 check all a <- StreamData.binary(),
 b <- StreamData.binary() do
 assert starts_with?(a <> b, a)
 end
end
When run, this piece of code will generate a random binary and assign it to
a, do the same for b, and then run the assertion. This step will be
repeated for a large number of times (100 by default, but it's
configurable), hence generating many combinations of random a and b. If
the body passes for all the generated data, then we consider the property to
hold. If a combination of randomly generated terms fails the body of the
property, then ExUnitProperties tries to find the smallest set of random
generated terms that still fails the property and reports that; this step is
called shrinking.
Shrinking
Say that our starts_with?/2 function blindly returns false when the second
argument is the empty binary (such as starts_with?("foo", "")). It's likely
that in 100 runs an empty binary will be generated and bound to b. When that
happens, the body of the property fails but a is a randomly generated binary
and this might be inconvenient: for example, a could be <<0, 74, 192, 99, 24, 26>>. In this case, the check/3 macro tries to shrink a to the
smallest term that still fails the property (b is not shrunk because "" is
the smallest binary possible). Doing so will lead to a = "" and b = ""
which is the "minimal" failing case for our function.
The example above is a contrived example but shrinking is a very powerful tool
that aims at taking the noise out of the failing data.
For detailed information on shrinking, see also the "Shrinking" section in the
documentation for StreamData.
Building structs
We can use the built-in generators to generate other kinds of structs. For
example, imagine we wanted to test the following function.
def noon?(~T[12:00:00]), do: true
def noon?(_), do: false
We could generate %Time{} structs as follows:
defp non_noon_generator do
 gen all time <- valid_time_generator(), time != ~T[12:00:00] do
 time
 end
end

defp valid_time_generator do
 gen all hour <- StreamData.integer(0..23),
 minute <- StreamData.integer(0..59),
 second <- StreamData.integer(0..59) do
 Time.new!(hour, minute, second)
 end
end
and use them in properties:
describe "noon?/1" do
 test "returns true for noon" do
 assert noon?(~T[12:00:00]) == true
 end

 property "returns false for other times" do
 check all time <- non_noon_generator() do
 assert noon?(time) == false
 end
 end
end
Resources on property-based testing
There are many resources available online on property-based testing. An interesting
read is the original paper that introduced QuickCheck, "QuickCheck: A
Lightweight Tool for Random Testing of Haskell
Programs", a
property-testing tool for the Haskell programming language. Another very
useful resource especially geared towards Erlang and the BEAM is
propertesting.com, a website created by Fred
Hebert: it's a great explanation of property-based testing that includes many
examples. Fred's website uses an Erlang property-based testing tool called
PropEr but many of the things he talks
about apply to ExUnitProperties as well.

 Summary

 Functions

 __using__(opts)

 Sets up an ExUnit.Case module for property-based testing.

 check(clauses_and_body)

 Runs tests for a property.

 gen(clauses_and_body)

 Syntactic sugar to create generators.

 pick(data)

 Picks a random element generated by the StreamData generator data.

 property(message)

 Defines a not-implemented property test with a string.

 property(message, context \\ quote do
 _
end, contents)

 Defines a property and imports property-testing facilities in the body.

Functions

 Link to this macro

 __using__(opts)

 View Source

 (macro)

Sets up an ExUnit.Case module for property-based testing.

 Link to this macro

 check(clauses_and_body)

 View Source

 (macro)

Runs tests for a property.
This macro provides ad hoc syntax to write properties. Let's see a quick
example to get a feel of how it works:
check all int1 <- integer(),
 int2 <- integer(),
 int1 > 0 and int2 > 0,
 sum = int1 + int2 do
 assert sum > int1
 assert sum > int2
end
Everything between check all and do is referred to as clauses. Clauses
are used to specify the values to generate in order to test the properties.
The actual tests that the properties hold live in the do block.
Clauses work exactly like they work in the gen/1 macro.
The body passed in the do block is where you test that the property holds
for the generated values. The body is just like the body of a test: use
ExUnit.Assertions.assert/2 (and friends) to assert whatever you want.

 Options

	:initial_size - (non-negative integer) the initial generation size used
to start generating values. The generation size is then incremented by 1
on each iteration. See the "Generation size" section of the StreamData
documentation for more information on generation size. Defaults to 1.

	:max_runs - (non-negative integer) the total number of generations to
run. Defaults to 100.

	:max_run_time - (non-negative integer) the total number of time (in milliseconds)
to run a given check for. This is not used by default, so unless a value
is given then the length of the test will be determined by :max_runs.
If both :max_runs and :max_run_time are given, then the check will finish at
whichever comes first, :max_runs or :max_run_time.

	:max_shrinking_steps - (non-negative integer) the maximum numbers of
shrinking steps to perform in case a failing case is found. Defaults to
100.

	:max_generation_size - (non-negative integer) the maximum generation
size to reach. Note that the size is increased by one on each run. By
default, the generation size is unbounded.

	:initial_seed - (integer) the initial seed used to drive the random generation.
When check all is run with the same initial seed more than once, then every time
the terms generated by the generators will be the same as all other runs. This is useful
when you want to deterministically reproduce a result. However, it's usually better
to leave :initial_seed to its default value, which is taken from ExUnit's seed: this
way, the random generation will follow options like --seed used in ExUnit to
deterministically reproduce tests.

It is also possible to set the values for :initial_size, :max_runs, :max_run_time, and
:max_shrinking_steps through your project's config files. This is especially helpful
in combination with :max_runs when you want to run more iterations on your continuous
integration platform, but keep your local tests fast:
config/test.exs
import Config

config :stream_data,
 max_runs: if System.get_env("CI"), do: 1_000, else: 50

 Examples

Check that all values generated by the StreamData.integer/0 generator are
integers:
check all int <- integer() do
 assert is_integer(int)
end
Check that String.starts_with?/2 and String.ends_with?/2 always hold for
concatenated strings:
check all start <- binary(),
 finish <- binary(),
 concat = start <> finish do
 assert String.starts_with?(concat, start)
 assert String.ends_with?(concat, finish)
end
Check that Kernel.in/2 returns true when checking if an element taken out
of a list is in that same list (changing the number of runs):
check all list <- list_of(integer()),
 member <- member_of(list),
 max_runs: 50 do
 assert member in list
end

 Using check all in doctests

check all can be used in doctests. Make sure that the module where you call
doctest(MyModule) calls use ExUnitProperties. Then, you can call check all
in your doctests:
@doc """
Tells if a term is an integer.

 iex> check all i <- integer() do
 ...> assert int?(i)
 ...> end
 :ok

"""
def int?(i), do: is_integer(i)
check all always returns :ok, so you can use that as the return value of
the whole expression.

 Link to this macro

 gen(clauses_and_body)

 View Source

 (macro)

Syntactic sugar to create generators.
This macro provides ad-hoc syntax to write complex generators. Let's see a
quick example to get a feel of how it works. Say we have a User struct:
defmodule User do
 defstruct [:name, :email]
end
We can create a generator of users like this:
email_generator = map({binary(), binary()}, fn {left, right} -> left <> "@" <> right end)

user_generator =
 gen all name <- binary(),
 email <- email_generator do
 %User{name: name, email: email}
 end
Everything between gen all and do is referred to as clauses. You can write
clauses to specify the values to generate. You can then use those values in the do body.
The newly-created generator will generate values that are the return value of the
do body using the generated values in the clauses.

 Clauses

As seen in the example above, clauses can be of the following types:
	value generation - they have the form pattern <- generator where generator must be a
generator. These clauses take a value out of generator on each run and match it against
pattern. Variables bound in pattern can be then used throughout subsequent clauses and
in the do body. If pattern doesn't match a generated value, it's treated like a filter
(see the "filtering" clauses described below).

	filtering and binding - they have the form expression. If a filtering clause returns
a truthy value, then the set of generated values that appear before the
filtering clause is considered valid and generation continues. If the
filtering clause returns a falsey value, then the current value is
considered invalid and a new value is generated. Note that filtering
clauses should not filter out too many times; in case they do, a
StreamData.FilterTooNarrowError error is raised (same as StreamData.filter/3).
Filtering clauses can be used also to assign variables: for example, a = :foo is a valid
clause.

The behaviour of the clauses above is similar to the behaviour of clauses in
Kernel.SpecialForms.for/1.

 Body

The return value of the body passed in the do block is what is ultimately
generated by the generator return by this macro.

 Shrinking

See the module documentation for more information on shrinking. Clauses affect
shrinking in the following way:
	filtering clauses affect shrinking like StreamData.filter/3
	value generation clauses affect shrinking similarly to StreamData.bind/2

 Link to this function

 pick(data)

 View Source

 @spec pick(StreamData.t(a)) :: a when a: term()

Picks a random element generated by the StreamData generator data.
This function uses the current ExUnit seed to generate a random term from data. The generation
size (see Generation size) is chosen at random between in 1..100. If you want finer
control over the generation size, you can use functions like StreamData.resize/2 to resize
data or StreamData.scale/2 to scale the generation size.

 Examples

ExUnitProperties.pick(StreamData.integer())
#=> -21

 Link to this macro

 property(message)

 View Source

 (macro)

Defines a not-implemented property test with a string.
Provides a convenient macro that allows a property test to be defined with a
string, but not yet implemented. The resulting property test will always
fail and print a "Not implemented" error message. The resulting test case is
also tagged with :not_implemented.
This behavior is similar to ExUnit.Case.test/1.

 Examples

property "this will be a property test in the future"

 Link to this macro

 property(message, context \\ quote do
 _
end, contents)

 View Source

 (macro)

Defines a property and imports property-testing facilities in the body.
This macro is similar to ExUnit.Case.test/3, except that it denotes a
property. In the given body, all the functions exposed by StreamData are
imported, as well as check/2.
When defining a test whose body only consists of one or more check/2 calls,
it's advised to use property/3 so as to clearly denote and scope properties.
Doing so will also improve reporting.

 Examples

use ExUnitProperties

property "reversing a list doesn't change its length" do
 check all list <- list_of(integer()) do
 assert length(list) == length(:lists.reverse(list))
 end
end

StreamData

Functions to create and combine generators.
A generator is a StreamData struct. Generators can be created through the
functions exposed in this module, like constant/1, and by combining other
generators through functions like bind/2.
Similar to the Stream module, the functions in this module return a lazy
construct. We can get values out of a generator by enumerating the generator.
Generators always generate an infinite stream of values (which are randomized
most of the time).
For example, to get an infinite stream of integers that starts with small
integers and progressively grows the boundaries, you can use integer/0:
Enum.take(StreamData.integer(), 10)
#=> [-1, 0, -3, 4, -4, 5, -1, -3, 5, 8]
As you can see above, values emitted by a generator are not unique.
In many applications of generators, the longer the generator runs the larger
the generated values will be. For integers, a larger integer means a bigger number.
For lists, it may mean a list with more elements. This is controlled by a parameter
that we call the generation size (see the "Generation size" section below).
StreamData is often used to generate random values. It is also the foundation
for property-based testing. See ExUnitProperties for more information.
Enumeration
Generators implement the Enumerable protocol. The enumeration starts with a
small generation size, which increases when the enumeration continues (up to a
fixed maximum size).
Since generators are proper streams, functions from the Stream module can be
used to stream values out of them. For example, to build an infinite stream of
positive even integers, you can do:
StreamData.integer()
|> Stream.filter(& &1 > 0)
|> Stream.map(& &1 * 2)
|> Enum.take(10)
#=> [4, 6, 4, 10, 14, 16, 4, 16, 36, 16]
Generators that are manipulated via the Stream and Enum modules are no
longer shrinkable (see the section about shrinking below). If you want
generation through the Enumerable protocol to be reproducible, see seeded/2.
Generation size
Generators have access to a generation parameter called the generation
size, which is a non-negative integer. This parameter is meant to bind the
data generated by each generator in a way that is completely up to the
generator. For example, a generator that generates integer can use the size
parameter to generate integers inside the -size..size range. In a similar
way, a generator that generates lists could use this parameter to generate a
list with 0 to size elements. During composition, it is common for the
"parent generator" to pass the size to the composed generators.
When creating generators, they can access the generation size using the
sized/1 function. Generators can be resized to a fixed generation size using
resize/2.
Shrinking
StreamData generators are also shrinkable. The idea behind shrinking is
to find the simplest value that respects a certain condition. For example,
during property-based tests, we use shrinking to find the integer closest to 0
or the smallest list that makes a test fail. By reporting the simplest data
structure that triggers an error, the failure becomes easier to understand
and reproduce.
Each generator has its own logic to shrink values. Those are outlined in each
generator documentation.
Note that the generation size is not related in any way to shrinking: while
intuitively one may think that shrinking just means decreasing the generation
size, in reality the shrinking rule is bound to each generated value. One way
to look at it is that shrinking a list is always the same, regardless of its
generated length.
Special generators
Some Elixir types are implicitly converted to StreamData generators when
composed or used in property-based testing. These types are:
	atoms - they generate themselves. For example, :foo is equivalent to
StreamData.constant(:foo).

	tuples of generators - they generate tuples where each value is a value
generated by the corresponding generator, exactly like described in
tuple/1. For example, {StreamData.integer(), StreamData.boolean()}
generates entries like {10, false}.

Note that these terms must be explicitly converted to StreamData generators.
This means that these terms are not full-fledged generators. For example, atoms
cannot be enumerated directly as they don't implement the Enumerable protocol.
However, StreamData.constant(:foo) is enumerable as it has been wrapped in
a StreamData function.

 Summary

 Types

 t(a)

 An opaque type that represents a StreamData generator that generates values
of type a.

 Functions

 atom(kind)

 Generates atoms of various kinds.

 binary(options \\ [])

 Generates binaries.

 bind(data, fun)

 Binds each element generated by data to a new generator returned by applying fun.

 bind_filter(data, fun, max_consecutive_failures \\ 10)

 Binds each element generated by data and to a new generator returned by
applying fun or filters the generated element.

 bitstring(options \\ [])

 Generates bitstrings.

 boolean()

 Generates boolean values.

 byte()

 Generates bytes.

 chardata()

 Generates chardata.

 check_all(data, options, fun)

 Checks the behaviour of a given function on values generated by data.

 codepoint(kind \\ :utf8)

 Generates an integer corresponding to a valid UTF-8 codepoint of the given kind.

 constant(term)

 A generator that always generates the given term.

 filter(data, predicate, max_consecutive_failures \\ 25)

 Filters the given generator data according to the given predicate function.

 fixed_list(datas)

 Generates a list of fixed length where each element is generated from the
corresponding generator in data.

 fixed_map(data)

 Generates maps with fixed keys and generated values.

 float(options \\ [])

 Generates floats according to the given options.

 frequency(frequencies)

 Generates values from different generators with specified probability.

 integer()

 Generates integers bound by the generation size.

 integer(range)

 Generates an integer in the given range.

 iodata()

 Generates iodata.

 iolist()

 Generates iolists.

 keyword_of(value_data)

 Generates keyword lists where values are generated by value_data.

 list_of(data)

 Generates lists where each values is generated by the given data.

 list_of(data, options)

 Generates lists where each values is generated by the given data.

 map(data, fun)

 Maps the given function fun over the given generator data.

 map_of(key_data, value_data, options \\ [])

 Generates maps with keys from key_data and values from value_data.

 mapset_of(data, options \\ [])

 Generates sets where values are generated by data.

 maybe_improper_list_of(first, improper)

 Generates lists of elements out of first with a chance of them being
improper with the improper ending taken out of improper.

 member_of(enum)

 Generates elements taken randomly out of enum.

 non_negative_integer()

 Generates non-negative integers bound by the generation size.

 nonempty(enum_data)

 Constrains the given enum_data to be non-empty.

 nonempty_improper_list_of(first, improper)

 Generates non-empty improper lists where elements of the list are generated
out of first and the improper ending out of improper.

 one_of(datas)

 Generates values out of one of the given datas.

 optional_map(data, optional_keys \\ nil)

 Generates maps with fixed but optional keys and generated values.

 positive_integer()

 Generates positive integers bound by the generation size.

 repeatedly(fun)

 Calls the provided zero argument function to generate values.

 resize(data, new_size)

 Resize the given generated data to have fixed generation size new_size.

 scale(data, size_changer)

 Scales the generation size of the given generator data according to
size_changer.

 seeded(data, seed)

 Makes the given generator data always use the same given seed when generating.

 sized(fun)

 Returns the generator returned by calling fun with the generation size.

 string(kind_or_codepoints, options \\ [])

 Generates a string of the given kind or from the given characters.

 term()

 Generates any term.

 tree(leaf_data, subtree_fun)

 Generates trees of values generated by leaf_data and subtree_fun.

 tuple(tuple_datas)

 Generates tuples where each element is taken out of the corresponding
generator in the tuple_datas tuple.

 uniq_list_of(data, options \\ [])

 Generates a list of elements generated by data without duplicates (possibly
according to a given uniqueness function).

 unshrinkable(data)

 Makes the values generated by data not shrink.

Types

 Link to this opaque

 t(a)

 View Source

 (opaque)

 @opaque t(a)

An opaque type that represents a StreamData generator that generates values
of type a.

Functions

 Link to this function

 atom(kind)

 View Source

 @spec atom(:alphanumeric | :alias) :: t(atom())

Generates atoms of various kinds.
kind can be:
	:alphanumeric - this generates alphanumeric atoms that don't need to be quoted when
written as literals. For example, it will generate :foo but not :"foo bar".

	:alias - generates Elixir aliases like Foo or Foo.Bar.Baz.

These are some of the most common kinds of atoms usually used in Elixir applications. If you
need completely arbitrary atoms, you can use a combination of map/2, String.to_atom/1,
and string-focused generators to transform arbitrary strings into atoms:
printable_atom =
 StreamData.map(
 StreamData.string(:printable, max_length: 255),
 &String.to_atom/1
)
Bear in mind the system limit
of 255 characters in an atom when doing so.

 Examples

Enum.take(StreamData.atom(:alphanumeric), 3)
#=> [:xF, :y, :B_]

 Shrinking

Shrinks towards smaller atoms and towards "simpler" letters (like towards only alphabet
letters).

 Link to this function

 binary(options \\ [])

 View Source

 @spec binary(keyword()) :: t(binary())

Generates binaries.
The length of the generated binaries is limited by the generation size.

 Options

	:length - (non-negative integer) sets the exact length of the generated
binaries (same as in list_of/2).

	:min_length - (non-negative integer) sets the minimum length of the
generated binaries (same as in list_of/2). Ignored if :length is
present.

	:max_length - (non-negative integer) sets the maximum length of the
generated binaries (same as in list_of/2). Ignored if :length is
present.

 Examples

Enum.take(StreamData.binary(), 3)
#=> [<<1>>, "", "@Q"]

 Shrinking

Values generated by this generator shrink by becoming smaller binaries and by
having individual bytes that shrink towards 0.

 Link to this function

 bind(data, fun)

 View Source

 @spec bind(t(a), (a -> t(b))) :: t(b) when a: term(), b: term()

Binds each element generated by data to a new generator returned by applying fun.
This function is the basic mechanism for composing generators. It takes a
generator data and invokes fun with each element in data. fun must
return a new generator that is effectively used to generate items from
now on.

 Examples

Say we wanted to create a generator that returns two-element tuples where the
first element is a non-empty list, and the second element is a random element from that
list. To do that, we can first generate a list and then bind a function to
that list; this function will return the list and a random element from it.
StreamData.bind(StreamData.list_of(StreamData.integer(), min_length: 1), fn list ->
 StreamData.bind(StreamData.member_of(list), fn elem ->
 StreamData.constant({list, elem})
 end)
end)

 Shrinking

The generator returned by bind/2 shrinks by first shrinking the value
generated by the inner generator and then by shrinking the outer generator
given as data. When data shrinks, fun is once more applied on the
shrunk value and returns a whole new generator, which will most likely
emit new items.

 Link to this function

 bind_filter(data, fun, max_consecutive_failures \\ 10)

 View Source

 @spec bind_filter(
 t(a),
 (a -> {:cont, t(b)} | :skip)
 | (a, non_neg_integer() -> {:cont, t(b)} | :skip),
 non_neg_integer()
) :: t(b)
when a: term(), b: term()

Binds each element generated by data and to a new generator returned by
applying fun or filters the generated element.
Works similarly to bind/2 but allows to filter out unwanted values. It takes
a generator data and invokes fun with each element generated by data.
fun must return one of:
	{:cont, generator} - generator is then used to generate the next
element

	:skip - the value generated by data is filtered out and a new element
is generated

Since this function acts as a filter as well, it behaves similarly to
filter/3: when more than max_consecutive_failures elements are filtered
out (that is, fun returns :skip), a StreamData.FilterTooNarrowError is
raised. See the documentation for filter/3 for suggestions on how to avoid
such errors.
The function can accept one or two arguments. If a two-argument function is
passed, the second argument will be the number of tries left before raising
StreamData.FilterTooNarrowError.

 Examples

Say we wanted to create a generator that generates two-element tuples where
the first element is a list of integers with an even number of members and the
second element is a member of that list. We can do that by generating a list
and, if it has even length, taking an element out of it, otherwise filtering
it out.
require Integer

list_data = StreamData.list_of(StreamData.integer(), min_length: 1)

data =
 StreamData.bind_filter(list_data, fn
 list when Integer.is_even(length(list)) ->
 inner_data = StreamData.bind(StreamData.member_of(list), fn member ->
 StreamData.constant({list, member})
 end)
 {:cont, inner_data}
 _odd_list ->
 :skip
 end)

Enum.at(data, 0)
#=> {[-6, -7, -4, 5, -9, 8, 7, -9], 5}

 Shrinking

This generator shrinks like bind/2 but values that are skipped are not used
for shrinking (similarly to how filter/3 works).

 Link to this function

 bitstring(options \\ [])

 View Source

 @spec bitstring(keyword()) :: t(bitstring())

Generates bitstrings.
The length of the generated bitstring is limited by the generation size.

 Options

	:length - (non-negative integer) sets the exact length of the generated
bitstrings (same as in list_of/2).

	:min_length - (non-negative integer) sets the minimum length of the
generated bitstrings (same as in list_of/2). Ignored if :length is
present.

	:max_length - (non-negative integer) sets the maximum length of the
generated bitstrings (same as in list_of/2). Ignored if :length is
present.

 Examples

Enum.take(StreamData.bitstring(), 3)
#=> [<<0::size(1)>>, <<2::size(2)>>, <<5::size(3)>>]

 Shrinking

Values generated by this generator shrink by becoming smaller bitstrings and
by having the individual bits go towards 0.

 Link to this function

 boolean()

 View Source

 @spec boolean() :: t(boolean())

Generates boolean values.

 Examples

Enum.take(StreamData.boolean(), 3)
#=> [true, true, false]

 Shrinking

Shrinks towards false.

 Link to this function

 byte()

 View Source

 @spec byte() :: t(byte())

Generates bytes.
A byte is an integer between 0 and 255.

 Examples

Enum.take(StreamData.byte(), 3)
#=> [102, 161, 13]

 Shrinking

Values generated by this generator shrink like integers, so towards bytes
closer to 0.

 Link to this function

 chardata()

 View Source

 (since 0.6.0)

 @spec chardata() :: t(IO.chardata())

Generates chardata.
Chardata are values of the IO.chardata/0 type.

 Examples

Enum.take(StreamData.chardata(), 3)
#=> ["", [""], [12174]]

 Shrinking

Shrinks towards less nested chardata and ultimately towards smaller binaries.

 Link to this function

 check_all(data, options, fun)

 View Source

 @spec check_all(t(a), Keyword.t(), (a -> {:ok, term()} | {:error, b})) ::
 {:ok, map()} | {:error, map()}
when a: term(), b: term()

Checks the behaviour of a given function on values generated by data.
This function takes a generator and a function fun and verifies that that
function "holds" for all generated data. fun is called with each generated
value and can return one of:
	{:ok, term} - means that the function "holds" for the given value. term
can be anything and will be used for internal purposes by StreamData.

	{:error, term} - means that the function doesn't hold for the given
value. term is the term that will be shrunk to find the minimal value
for which fun doesn't hold. See below for more information on shrinking.

When a value is found for which fun doesn't hold (returns {:error, term}),
check_all/3 tries to shrink that value in order to find a minimal value that
still doesn't satisfy fun.
The return value of this function is one of:
	{:ok, ok_map} - if all generated values satisfy fun. ok_map is a map
of metadata that contains no keys for now.

	{:error, error_map} - if a generated value doesn't satisfy fun.
error_map is a map of metadata that contains the following keys:
	:original_failure - if fun returned {:error, term} for a generated
value, this key in the map will be term.

	:shrunk_failure - the value returned in {:error, term} by fun
when invoked with the smallest failing value that was generated.

	:nodes_visited - the number of nodes (a positive integer) visited in
the shrinking tree in order to find the smallest value. See also the
:max_shrinking_steps option.

	:successful_runs - the number of successful runs before a failing value was found.

 Options

This function takes the following options:
	:initial_seed - three-element tuple with three integers that is used as
the initial random seed that drives the random generation. This option is
required.

	:initial_size - (non-negative integer) the initial generation size used
to start generating values. The generation size is then incremented by 1
on each iteration. See the "Generation size" section of the module
documentation for more information on generation size. Defaults to 1.

	:max_runs - (non-negative integer) the total number of elements to
generate out of data and check through fun. Defaults to 100.

	:max_run_time - (non-negative integer) the total number of time (in milliseconds)
to run a given check for. This is not used by default, so unless a value
is given, then the length of the check will be determined by :max_runs.
If both :max_runs and :max_run_time are given, then the check will finish at
whichever comes first, :max_runs or :max_run_time.

	:max_shrinking_steps - (non-negative integer) the maximum numbers of
shrinking steps to perform in case check_all/3 finds an element that
doesn't satisfy fun. Defaults to 100.

 Examples

Let's try out a contrived example: we want to verify that the integer/0
generator generates integers that are not 0 or multiples of 11. This
verification is broken by design because integer/0 is likely to generate
multiples of 11 at some point, but it will show the capabilities of
check_all/3. For the sake of the example, let's say we want the values that
fail to be represented as strings instead of the original integers that
failed. We can implement what we described like this:
options = [initial_seed: :os.timestamp()]

{:error, metadata} = StreamData.check_all(StreamData.integer(), options, fn int ->
 if int == 0 or rem(int, 11) != 0 do
 {:ok, nil}
 else
 {:error, Integer.to_string(int)}
 end
end)

metadata.nodes_visited
#=> 7
metadata.original_failure
#=> 22
metadata.shrunk_failure
#=> 11
As we can see, the function we passed to check_all/3 "failed" for int = 22, and check_all/3 was able to shrink this value to the smallest failing
value, which in this case is 11.

 Link to this function

 codepoint(kind \\ :utf8)

 View Source

 (since 0.6.0)

 @spec codepoint(:ascii | :alphanumeric | :printable | :utf8) :: t(char())

Generates an integer corresponding to a valid UTF-8 codepoint of the given kind.
kind can be:
	:ascii - only ASCII characters are generated. Shrinks towards lower codepoints.

	:alphanumeric - only alphanumeric characters (?a..?z, ?A..?Z, ?0..?9)
are generated. Shrinks towards ?a following the order shown previously.

	:printable - only printable codepoints
(String.printable?(<<codepoint::utf8>>) returns true)
are generated. Shrinks towards lower codepoints.

	:utf8 - all valid codepoints (<<codepoint::utf8>>) does not raise)
are generated. Shrinks towards lower codepoints.

Defaults to :utf8.

 Examples

Enum.take(StreamData.codepoint(), 3)
#=> [889941, 349615, 1060099]

Enum.take(StreamData.codepoint(:ascii), 3)
#=> ~c"Kk:"

 Link to this function

 constant(term)

 View Source

 @spec constant(a) :: t(a) when a: var

A generator that always generates the given term.

 Examples

iex> Enum.take(StreamData.constant(:some_term), 3)
[:some_term, :some_term, :some_term]

 Shrinking

This generator doesn't shrink.

 Link to this function

 filter(data, predicate, max_consecutive_failures \\ 25)

 View Source

 @spec filter(t(a), (a -> as_boolean(term())), non_neg_integer()) :: t(a)
when a: term()

Filters the given generator data according to the given predicate function.
Only elements generated by data that pass the filter are kept in the
resulting generator.
If the filter is too strict, it can happen that too few values generated by data satisfy it.
In case more than max_consecutive_failures consecutive values don't satisfy the filter, a
StreamData.FilterTooNarrowError will be raised. There are a few ways you can avoid risking
StreamData.FilterTooNarrowError errors.
	Try to make sure that your filter filters out only a small subset of the elements generated
by data. For example, having something like StreamData.filter(StreamData.integer(), &(&1 != 0)) is usually fine because only a very tiny part of the generation space (integers) is
being filtered out.

	Keep an eye on how the generation size affects the generator being filtered. For example,
take something like StreamData.filter(StreamData.positive_integer(), &(&1 not in 1..5).
While it seems like this filter is not that strict (as we're filtering out only a handful of
numbers out of all natural numbers), this filter will fail with small generation sizes.
Since positive_integer/0 returns an integer between 0..size, if size is small (for
example, less than 10) then the probability of generating many consecutive values in 1..5
is high.

	Try to restructure your generator so that instead of generating many values and taking out
the ones you don't want, you instead generate values and turn all of them into values that
are suitable. A good example is a generator for even integers. You could write it as
def even_integers() do
 StreamData.filter(StreamData.integer(), &Integer.is_even/1)
end
but this would generate many unused values, increasing likeliness of
StreamData.FilterTooNarrowError errors and performing inefficiently. Instead, you can use
map/2 to turn all integers into even integers:
def even_integers() do
 StreamData.map(StreamData.integer(), &(&1 * 2))
end

 Shrinking

All the values that each generated value shrinks to satisfy predicate as
well.

 Link to this function

 fixed_list(datas)

 View Source

 @spec fixed_list([t(a)]) :: t([a]) when a: term()

Generates a list of fixed length where each element is generated from the
corresponding generator in data.

 Examples

data = StreamData.fixed_list([StreamData.integer(), StreamData.binary()])
Enum.take(data, 3)
#=> [[1, <<164>>], [2, ".T"], [1, ""]]

 Shrinking

Shrinks by shrinking each element in the generated list according to the
corresponding generator. Shrunk lists never lose elements.

 Link to this function

 fixed_map(data)

 View Source

 @spec fixed_map(map() | keyword()) :: t(map())

Generates maps with fixed keys and generated values.
data_map is a map or keyword list of fixed_key => data pairs. Maps generated by this
generator will have the same keys as data_map and values corresponding to values generated by
the generator under those keys.
See also optional_map/1.

 Examples

data = StreamData.fixed_map(%{
 integer: StreamData.integer(),
 binary: StreamData.binary(),
})
Enum.take(data, 3)
#=> [%{binary: "", integer: 1}, %{binary: "", integer: -2}, %{binary: "R1^", integer: -3}]

 Shrinking

This generator shrinks by shrinking the values of the generated map.

 Link to this function

 float(options \\ [])

 View Source

 @spec float(keyword()) :: t(float())

Generates floats according to the given options.
The complexity of the generated floats grows proportionally to the generation size.

 Options

	:min - (float) if present, the generated floats will be greater than or equal to this
value.

	:max - (float) if present, the generated floats will be less than or equal to this value.

If neither of :min or :max is provided, then unbounded floats will be generated.

 Shrinking

Values generated by this generator will shrink towards simpler floats. Such values are not
guaranteed to shrink towards smaller or larger values (but they will never violate the :min or
:max options).

 Link to this function

 frequency(frequencies)

 View Source

 @spec frequency([{pos_integer(), t(a)}]) :: t(a) when a: term()

Generates values from different generators with specified probability.
frequencies is a list of {frequency, data} where frequency is an integer
and data is a generator. The resulting generator will generate data from one
of the generators in frequency, with probability frequency / vsum_of_frequencies.

 Examples

Let's build a generator that returns a binary around 25% of the time and an
integer around 75% of the time. We'll use integer/0 first so that generated values
will shrink towards integers.
ints_and_some_bins = StreamData.frequency([
 {3, StreamData.integer()},
 {1, StreamData.binary()},
])
Enum.take(ints_and_some_bins, 3)
#=> ["", -2, -1]

 Shrinking

Each generated value is shrunk, and then this generator shrinks towards
values generated by generators earlier in the list of frequencies.

 Link to this function

 integer()

 View Source

 @spec integer() :: t(integer())

Generates integers bound by the generation size.

 Examples

Enum.take(StreamData.integer(), 3)
#=> [1, -1, -3]

 Shrinking

Generated values shrink towards 0.

 Link to this function

 integer(range)

 View Source

 @spec integer(Range.t()) :: t(integer())

Generates an integer in the given range.
The generation size is ignored since the integer always lies inside range.

 Examples

Enum.take(StreamData.integer(4..8), 3)
#=> [6, 7, 7]

 Shrinking

Shrinks towards the smallest absolute value that still lie in range.

 Link to this function

 iodata()

 View Source

 @spec iodata() :: t(iodata())

Generates iodata.
Iodata are values of the iodata/0 type.

 Examples

Enum.take(StreamData.iodata(), 3)
#=> [[""], <<198>>, [115, 172]]

 Shrinking

Shrinks towards less nested iodata and ultimately towards smaller binaries.

 Link to this function

 iolist()

 View Source

 @spec iolist() :: t(iolist())

Generates iolists.
Iolists are values of the iolist/0 type.

 Examples

Enum.take(StreamData.iolist(), 3)
#=> [[164 | ""], [225], ["" | ""]]

 Shrinking

Shrinks towards smaller and less nested lists and towards bytes instead of
binaries.

 Link to this function

 keyword_of(value_data)

 View Source

 @spec keyword_of(t(a)) :: t(keyword(a)) when a: term()

Generates keyword lists where values are generated by value_data.
Keys are always atoms.

 Examples

Enum.take(StreamData.keyword_of(StreamData.integer()), 3)
#=> [[], [sY: 1], [t: -1]]

 Shrinking

This generator shrinks equivalently to a list of key-value tuples generated by
list_of/1, that is, by shrinking the values in each tuple and also reducing
the size of the generated keyword list.

 Link to this function

 list_of(data)

 View Source

 @spec list_of(t(a)) :: t([a]) when a: term()

Generates lists where each values is generated by the given data.
The same as calling list_of/2 with [] as options.

 Link to this function

 list_of(data, options)

 View Source

 @spec list_of(
 t(a),
 keyword()
) :: t([a])
when a: term()

Generates lists where each values is generated by the given data.
Each generated list can contain duplicate elements. The length of the
generated list is bound by the generation size. If the generation size is 0,
the empty list will always be generated. Note that the accepted options
provide finer control over the size of the generated list. See the "Options"
section below.

 Options

	:length - (integer or range) if an integer, the exact length the
generated lists should be; if a range, the range in which the length of
the generated lists should be. If provided, :min_length and
:max_length are ignored.

	:min_length - (integer) the minimum length of the generated lists.

	:max_length - (integer) the maximum length of the generated lists.

 Examples

Enum.take(StreamData.list_of(StreamData.binary()), 3)
#=> [[""], [], ["", "w"]]

Enum.take(StreamData.list_of(StreamData.integer(), length: 3), 3)
#=> [[0, 0, -1], [2, -1, 1], [0, 3, -3]]

Enum.take(StreamData.list_of(StreamData.integer(), max_length: 1), 3)
#=> [[1], [], []]

 Shrinking

This generator shrinks by taking elements out of the generated list and also
by shrinking the elements of the generated list. Shrinking still respects any
possible length-related option: for example, if :min_length is provided, all
shrunk list will have more than :min_length elements.

 Link to this function

 map(data, fun)

 View Source

 @spec map(t(a), (a -> b)) :: t(b) when a: term(), b: term()

Maps the given function fun over the given generator data.
Returns a new generator that returns elements from data after applying fun
to them.

 Examples

iex> data = StreamData.map(StreamData.integer(), &Integer.to_string/1)
iex> Enum.take(data, 3)
["1", "0", "3"]

 Shrinking

This generator shrinks exactly like data, but with fun mapped over the
shrunk data.

 Link to this function

 map_of(key_data, value_data, options \\ [])

 View Source

 @spec map_of(t(key), t(value), keyword()) :: t(%{optional(key) => value})
when key: term(), value: term()

Generates maps with keys from key_data and values from value_data.
Since maps require keys to be unique, this generator behaves similarly to
uniq_list_of/2: if more than max_tries duplicate keys are generated
consequently, it raises a StreamData.TooManyDuplicatesError exception.

 Options

	:length - (non-negative integer) same as in list_of/2.

	:min_length - (non-negative integer) same as in list_of/2.

	:max_length - (non-negative integer) same as in list_of/2.

 Examples

Enum.take(StreamData.map_of(StreamData.integer(), StreamData.boolean()), 3)
#=> [%{}, %{1 => false}, %{-2 => true, -1 => false}]

 Shrinking

Shrinks towards smallest maps and towards shrinking keys and values according
to the respective generators.

 Link to this function

 mapset_of(data, options \\ [])

 View Source

 @spec mapset_of(
 t(a),
 keyword()
) :: t(MapSet.t(a))
when a: term()

Generates sets where values are generated by data.

 Options

	:max_tries - (non-negative integer) the maximum number of times that
this generator tries to generate the next element of the set before
giving up and raising a StreamData.TooManyDuplicatesError in case it
can't find a unique element to generate.

 Examples

Enum.take(StreamData.mapset_of(StreamData.integer()), 3)
#=> [#MapSet<[-1]>, #MapSet<[1, 2]>, #MapSet<[-3, 2, 3]>]

 Shrinking

This generator shrinks in the same way as uniq_list_of/2, by removing
elements and shrinking elements as well.

 Link to this function

 maybe_improper_list_of(first, improper)

 View Source

 @spec maybe_improper_list_of(t(a), t(b)) :: t(maybe_improper_list(a, b))
when a: term(), b: term()

Generates lists of elements out of first with a chance of them being
improper with the improper ending taken out of improper.
Behaves similarly to nonempty_improper_list_of/2 but can generate empty
lists and proper lists as well.

 Examples

data = StreamData.maybe_improper_list_of(StreamData.byte(), StreamData.binary())
Enum.take(data, 3)
#=> [[60 | "."], [], [<<212>>]]

 Shrinking

Shrinks towards smaller lists and shrunk elements in those lists, and
ultimately towards proper lists.

 Link to this function

 member_of(enum)

 View Source

 @spec member_of(Enumerable.t()) :: t(term())

Generates elements taken randomly out of enum.
enum must be a non-empty and finite enumerable. If given an empty
enumerable, this function raises an error. If given an infinite enumerable,
this function will not terminate.

 Examples

Enum.take(StreamData.member_of([:ok, 4, "hello"]), 3)
#=> [4, 4, "hello"]

 Shrinking

This generator shrinks towards elements that appear earlier in enum.

 Link to this function

 non_negative_integer()

 View Source

 (since 0.6.0)

 @spec non_negative_integer() :: t(non_neg_integer())

Generates non-negative integers bound by the generation size.

 Examples

Enum.take(StreamData.non_negative_integer(), 3)
#=> [0, 2, 0]

 Shrinking

Generated values shrink towards 0.

 Link to this function

 nonempty(enum_data)

 View Source

 @spec nonempty(t(Enumerable.t())) :: t(Enumerable.t())

Constrains the given enum_data to be non-empty.
enum_data must be a generator that emits enumerables, such as lists
and maps. nonempty/1 will filter out enumerables that are empty
(Enum.empty?/1 returns true).

 Examples

Enum.take(StreamData.nonempty(StreamData.list_of(StreamData.integer())), 3)
#=> [[1], [-1, 0], [2, 1, -2]]

 Link to this function

 nonempty_improper_list_of(first, improper)

 View Source

 @spec nonempty_improper_list_of(t(a), t(b)) :: t(nonempty_improper_list(a, b))
when a: term(), b: term()

Generates non-empty improper lists where elements of the list are generated
out of first and the improper ending out of improper.

 Examples

data = StreamData.nonempty_improper_list_of(StreamData.byte(), StreamData.binary())
Enum.take(data, 3)
#=> [[42], [56 | <<140, 137>>], [226 | "j"]]

 Shrinking

Shrinks towards smaller lists (that are still non-empty, having the improper
ending) and towards shrunk elements of the list and a shrunk improper
ending.

 Link to this function

 one_of(datas)

 View Source

 @spec one_of([t(a)]) :: t(a) when a: term()

Generates values out of one of the given datas.
datas must be a list of generators. The values generated by this generator
are values generated by generators in datas, chosen each time at random.

 Examples

data = StreamData.one_of([StreamData.integer(), StreamData.binary()])
Enum.take(data, 3)
#=> [-1, <<28>>, ""]

 Shrinking

The generated value will be shrunk first according to the generator that
generated it, and then this generator will shrink towards earlier generators
in datas.

 Link to this function

 optional_map(data, optional_keys \\ nil)

 View Source

 @spec optional_map(map() | keyword(), [any()] | nil) :: t(map())

Generates maps with fixed but optional keys and generated values.
data_map is a map or keyword list of fixed_key => data pairs. Maps generated by this
generator will have a subset of the keys of data_map and values corresponding to the values
generated by the generator unders those keys.
By default, all keys are considered optional. A list of exactly which keys are optional can be
provided as the second argument, allowing for a map of mixed optional and required keys. The second argument is available since StreamData 0.6.0.
See also fixed_map/1.

 Examples

data = StreamData.optional_map(%{
 integer: StreamData.integer(),
 binary: StreamData.binary(),
})
Enum.take(data, 3)
#=> [%{binary: "", integer: 1}, %{integer: -2}, %{binary: "R1^"}]

data = StreamData.optional_map(%{
 integer: StreamData.integer(),
 binary: StreamData.binary(),
}, [:integer])
Enum.take(data, 3)
#=> [%{binary: ""}, %{binary: "R1^", integer: -2}, %{binary: "R2^"}]

 Shrinking

This generator shrinks by first shrinking the map by taking out keys until the map is empty, and
then by shrinking the generated values.

 Link to this function

 positive_integer()

 View Source

 @spec positive_integer() :: t(pos_integer())

Generates positive integers bound by the generation size.

 Examples

Enum.take(StreamData.positive_integer(), 3)
#=> [1, 1, 3]

 Shrinking

Generated values shrink towards 1.

 Link to this function

 repeatedly(fun)

 View Source

 (since 0.6.0)

 @spec repeatedly((-> returns)) :: t(returns) when returns: term()

Calls the provided zero argument function to generate values.

 Examples

Generating a UUID
uuid = StreamData.repeatedly(&Ecto.UUID.generate/0)
Enum.take(uuid, 3)
#=> ["2712ec5b-bc50-4b4a-8a8a-ca85d37a457b", "2092570d-8fb0-4e67-acbe-92db4c8a2bae", "1bef1fb1-8f86-46ac-a49e-3bffaa51e40b"]
Generating a unique integer
integer = StreamData.repeatedly(&System.unique_integer([:positive, :monotonic]))
Enum.take(integer, 3)
#=> [1, 2, 3]

 Shrinking

By nature, this generator is not shrinkable.

 Link to this function

 resize(data, new_size)

 View Source

 @spec resize(t(a), size()) :: t(a) when a: term()

Resize the given generated data to have fixed generation size new_size.
The new generator will ignore the generation size and always use new_size.
See the "Generation size" section in the documentation for StreamData for
more information about the generation size.

 Examples

data = StreamData.resize(StreamData.integer(), 10)
Enum.take(data, 3)
#=> [4, -5, -9]

 Link to this function

 scale(data, size_changer)

 View Source

 @spec scale(t(a), (size() -> size())) :: t(a) when a: term()

Scales the generation size of the given generator data according to
size_changer.
When generating data from data, the generation size will be the result of
calling size_changer with the generation size as its argument. This is
useful, for example, when a generator needs to grow faster or slower than
the default.
See the "Generation size" section in the documentation for StreamData for
more information about the generation size.

 Examples

Let's create a generator that generates much smaller integers than integer/0
when size grows. We can do this by scaling the generation size to the
logarithm of the generation size.
data = StreamData.scale(StreamData.integer(), fn size ->
 trunc(:math.log(size))
end)

Enum.take(data, 3)
#=> [0, 0, -1]
Another interesting example is creating a generator with a fixed maximum
generation size. For example, say we want to generate binaries but we never
want them to be larger than 64 bytes:
small_binaries = StreamData.scale(StreamData.binary(), fn size ->
 min(size, 64)
end)

 Link to this function

 seeded(data, seed)

 View Source

 @spec seeded(t(a), integer()) :: t(a) when a: term()

Makes the given generator data always use the same given seed when generating.
This function is useful when you want a generator to have a predictable generating
behaviour. It's especially useful when using a generator with the Enumerable protocol
since you can't set the seed specifically in that case (while you can with check_all/3
for example).
seed must be an integer.

 Examples

int = StreamData.seeded(StreamData.integer(), 10)

Enum.take(int, 3)
#=> [-1, -2, 1]
Enum.take(int, 4)
#=> [-1, -2, 1, 2]

 Link to this function

 sized(fun)

 View Source

 @spec sized((size() -> t(a))) :: t(a) when a: term()

Returns the generator returned by calling fun with the generation size.
fun takes the generation size and has to return a generator, that can use
that size to its advantage.
See the "Generation size" section in the documentation for StreamData for
more information about the generation size.

 Examples

Let's build a generator that generates integers in double the range integer/0
does:
data = StreamData.sized(fn size ->
 StreamData.resize(StreamData.integer(), size * 2)
end)

Enum.take(data, 3)
#=> [0, -1, 5]

 Link to this function

 string(kind_or_codepoints, options \\ [])

 View Source

Generates a string of the given kind or from the given characters.
kind_or_codepoints can be:
	:ascii - strings containing only ASCII characters are generated. Such
strings shrink towards lower codepoints.

	:alphanumeric - strings containing only alphanumeric characters
(?a..?z, ?A..?Z, ?0..?9) are generated. Such strings shrink towards
?a following the order shown previously.

	:printable - printable strings (String.printable?/1 returns true)
are generated. Such strings shrink towards lower codepoints.

	:utf8 - valid strings (String.valid?/1 returns true)
are generated. Such strings shrink towards lower codepoints. Available
since 0.6.0.

	a range - strings with characters from the range are generated. Such
strings shrink towards characters that appear earlier in the range.

	a list of ranges or single codepoints - strings with characters from the
ranges or codepoints are generated. Such strings shrink towards earlier
elements of the given list and towards the beginning of ranges.

 Options

See the documentation of list_of/2 for the possible values of options.

 Examples

Enum.take(StreamData.string(:ascii), 3)
#=> ["c", "9A", ""]

Enum.take(StreamData.string(Enum.concat([?a..?c, ?l..?o])), 3)
#=> ["c", "oa", "lb"]

 Shrinking

Shrinks towards smaller strings and as described in the description of the
possible values of kind_or_codepoints above.

 Link to this function

 term()

 View Source

 @spec term() :: t(simple | [simple] | %{optional(simple) => simple} | tuple())
when simple: boolean() | integer() | binary() | float() | atom() | reference()

Generates any term.
The terms that this generator can generate are simple terms or compound terms. The simple terms
are:
	integers (through integer/0)
	binaries (through binary/1)
	floats (through float/0)
	booleans (through boolean/0)
	atoms (through atom/1)
	references (which are not shrinkable)

Compound terms are terms that contain other terms (which are generated recursively with
term/0):
	lists (through list_of/2)
	maps (through map_of/2)
	tuples

 Examples

Enum.take(StreamData.term(), 3)
#=> [0.5119003572251588, {{true, ""}}, :WJg]

 Shrinking

The terms generated by this generator shrink based on the generator used to create them (see the
list of possible generated terms above).

 Link to this function

 tree(leaf_data, subtree_fun)

 View Source

 @spec tree(t(a), (child_data :: t(a | b) -> t(b))) :: t(a | b)
when a: term(), b: term()

Generates trees of values generated by leaf_data and subtree_fun.
leaf_data generates the leaf nodes. subtree_fun is a function that is
called by tree, if an inner node of the tree shall be generated. It takes a
generator child_gen for child nodes and returns a generator for an inner
node using child_gen to go "one level deeper" in the tree. The frequency
between leaves and inner nodes is 1:2.
This is best explained with an example. Say that we want to generate binary
trees of integers, and that we represent binary trees as either an integer (a
leaf) or a %Branch{} struct:
defmodule Branch do
 defstruct [:left, :right]
end
Now, we can generate trees by using the integer() generator to generate
the leaf nodes. Then we can use the subtree_fun function to generate inner
nodes (that is, %Branch{} structs or integer()s).
tree_data =
 StreamData.tree(StreamData.integer(), fn child_data ->
 StreamData.map({child_data, child_data}, fn {left, right} ->
 %Branch{left: left, right: right}
 end)
 end)

Enum.at(StreamData.resize(tree_data, 10), 0)
#=> %Branch{left: %Branch{left: 4, right: -1}, right: -2}

 Examples

A common example is a nested list:
data = StreamData.tree(StreamData.integer(), &StreamData.list_of/1)
Enum.at(StreamData.resize(data, 10), 0)
#=> [[], '\t', '\a', [1, 2], -3, [-7, [10]]]
A more complex example is generating data that could represent the Elixir
equivalent of a JSON document. The code below is slightly simplified
compared to the JSON spec.
scalar_generator =
 StreamData.one_of([
 StreamData.integer(),
 StreamData.boolean(),
 StreamData.string(:ascii),
 nil
])

json_generator =
 StreamData.tree(scalar_generator, fn nested_generator ->
 StreamData.one_of([
 StreamData.list_of(nested_generator),
 StreamData.map_of(StreamData.string(:ascii, min_length: 1), nested_generator)
])
 end)

Enum.at(StreamData.resize(json_generator, 10), 0)
#=> [%{"#" => "5"}, true, %{"4|B" => nil, "7" => true, "yt(3y" => 4}, [[false]]]

 Shrinking

Shrinks values and shrinks towards less deep trees.

 Link to this function

 tuple(tuple_datas)

 View Source

 @spec tuple(tuple()) :: t(tuple())

Generates tuples where each element is taken out of the corresponding
generator in the tuple_datas tuple.

 Examples

data = StreamData.tuple({StreamData.integer(), StreamData.binary()})
Enum.take(data, 3)
#=> [{-1, <<170>>}, {1, "<"}, {1, ""}]

 Shrinking

Shrinks by shrinking each element in the generated tuple according to the
corresponding generator.

 Link to this function

 uniq_list_of(data, options \\ [])

 View Source

 @spec uniq_list_of(
 t(a),
 keyword()
) :: t([a])
when a: term()

Generates a list of elements generated by data without duplicates (possibly
according to a given uniqueness function).
This generator will generate lists where each list is unique according to the
value returned by applying the given uniqueness function to each element
(similarly to how Enum.uniq_by/2 works). If more than the value of the
:max_tries option consecutive elements are generated that are considered
duplicates according to the uniqueness function, a
StreamData.TooManyDuplicatesError error is raised. For this reason, try to
make sure to not make the uniqueness function return values out of a small
value space. The uniqueness function and the max number of tries can be
customized via options.

 Options

	:uniq_fun - (a function of arity one) a function that is called with
each generated element and whose return value is used as the value to
compare with other values for uniqueness (similarly to Enum.uniq_by/2).

	:max_tries - (non-negative integer) the maximum number of times that
this generator tries to generate the next element of the list before
giving up and raising a StreamData.TooManyDuplicatesError in case it
can't find a unique element to generate. Note that the generation size
often affects this: for example, if you have a generator like
uniq_list_of(integer(), min_length: 4) and you start generating elements
out of it with a generation size of 1, it will fail by definition
because integer/0 generates in -size..size so it would only generate
in a set ([-1, 0, 1]) with three elements. Use resize/2 or scale/2
to manipulate the size (for example by setting a minimum generation size
of 3) in such cases.

	:length - (non-negative integer) same as in list_of/2.

	:min_length - (non-negative integer) same as in list_of/2.

	:max_length - (non-negative integer) same as in list_of/2.

 Examples

data = StreamData.uniq_list_of(StreamData.integer())
Enum.take(data, 3)
#=> [[1], [], [2, 3, 1]]

 Shrinking

This generator shrinks like list_of/1, but the shrunk values are unique
according to the :uniq_fun option as well.

 Link to this function

 unshrinkable(data)

 View Source

 @spec unshrinkable(t(a)) :: t(a) when a: term()

Makes the values generated by data not shrink.

 Examples

Let's build a generator of bytes (integers in the 0..255) range. We can
build this on top of integer/1, but for our purposes, it doesn't make sense for
a byte to shrink towards 0:
byte = StreamData.unshrinkable(StreamData.integer(0..255))
Enum.take(byte, 3)
#=> [190, 181, 178]

 Shrinking

The generator returned by unshrinkable/1 generates the same values as data,
but such values will not shrink.

StreamData.FilterTooNarrowError exception

 Summary

 Functions

 message(exception)

 Callback implementation for Exception.message/1.

Functions

 Link to this function

 message(exception)

 View Source

Callback implementation for Exception.message/1.

StreamData.TooManyDuplicatesError exception

 Summary

 Functions

 message(map)

 Callback implementation for Exception.message/1.

Functions

 Link to this function

 message(map)

 View Source

Callback implementation for Exception.message/1.

 (()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);var a="hll";function c(){u()}function u(){o("[data-group-id]").forEach(e=>{let t=e.getAttribute("data-group-id");e.addEventListener("mouseenter",n=>{i(t,!0)}),e.addEventListener("mouseleave",n=>{i(t,!1)})})}function i(r,e){o(`[data-group-id="${r}"]`).forEach(n=>{n.classList.toggle(a,e)})}c();})();

