

 Styler

 v0.4.0

 Table of contents

 	Changelog

 	Styler

 	Modules

 	Styler.Style

 	Styler.Style.Defs

 	Styler.Style.ModuleDirectives

 	Styler.Style.Pipes

 	Styler.Style.Simple

 	Styler.Zipper

 	Styler.StyleError

 	Mix Tasks

 	mix style

Changelog

main
v0.4.0
Improvements
	Pipes rewrites some two-step processes into one, fixing these credo issues in pipe chains:	Credo.Check.Refactor.FilterCount
	Credo.Check.Refactor.MapJoin
	Credo.Check.Refactor.MapInto

Fixes
	ModuleDirectives handles even weirder places to hide your aliases (anonymous functions, in this case)
	Pipes tries even harder to keep single-pipe rewrites of invocations on one line

v0.3.1
Fixes
	Pipes	fixed omission of == as a valid pipe start operator (h/t @peake100 for the issue)
	fixed rewrite of a |> b, where b was invoked without parenthesis

v0.3.0
Improvements
	Enabled Defs style and overhauled it to properly handles comments
	Optimized and tweaked ModuleDirectives style	Now culls newlines between "groups" of the same directive
	sorts @behaviour directives
	orders directives within non defmodule contexts (eg, a def do) if there's at least one alias|require|use|import

Fixes
	Pipes will try to keep single-pipe rewrites on one line

v0.2.0
Improvements
	Added ModuleDirectives style	Note that this is potentially destructive in some rare cases. See moduledoc for more.
	This supersedes the Aliases style, which has been removed.

	mix style - reads and writes to stdin/stdout

Fixes
	Pipes style is now aware of unless blocks

v0.1.1
Improvements
	Lots of README tweaking =)
	Optimized some Zipper operations
	Added Simple style, replacing the following Credo rule:	Credo.Check.Readability.LargeNumbers

Fixes
	Exceptions while parsing code now appropriately render filename rather than nofile:xx
	Fixed opaque Zipper.path() typespec implementation mismatches (thanks @sega-yarkin)
	Made ex_doc dev only, removing it as a dependency for users of Styler

v0.1.0
Improvements
	Initial release of Styler
	Added Aliases style, replacing the following Credo rules:	Credo.Check.Readability.AliasOrder
	Credo.Check.Readability.MultiAlias
	Credo.Check.Readability.UnnecessaryAliasExpansion

	Added Pipes style, replacing the following Credo rules:	Credo.Check.Readability.BlockPipe
	Credo.Check.Readability.SinglePipe
	Credo.Check.Refactor.PipeChainStart

	Added Defs style (currently disabled by default)

Styler

Styler is an AST-rewriting tool. Think of it as a combination of mix format and mix credo, except instead of telling
you what's wrong, it just rewrites the code for you to fit its style rules. Hence, mix style!
Styler is configuration-free. Like mix format, it runs based on the inputs from .formatter.exs and has opinions rather than configuration.
Installation
Add :styler as a dependency to your project's mix.exs:
def deps do
 [
 {:styler, "~> 0.4", only: [:dev, :test], runtime: false},
]
end
Usage
$ mix style

This will rewrite your code according to the Styles of Styler and format it.
Run mix help style for more details on arguments and flags.
Replacing mix format
As stated above, Styler takes a cue from Elixir's Formatter and offers no configuration. Instead, it harnesses the same .formatter.exs file as Formatter to know which files within your project it should style.
Styler wraps up its work by running its rewrites through the Formatter - in fact, it's meant to be a complete stand-in for mix format. You can alias it as format to quickly standardize its use across your project and save yourself the work of having to update existing formatter-related CI scripts and documentation.
def aliases do
 [
 # `mix format` will now actually run `mix style` behind the scenes
 # saving you from updating your existing CI scripts etc!
 format: "style"
]
end
Styles
You can find the currently-enabled styles in the Mix.Tasks.Style module, inside of its @styles module attribute. Each Style's moduledoc will tell you more about what it rewrites.
Credo Rules Styler Replaces
	Credo.Check	Styler.Style	Style notes
	Credo.Check.Consistency.MultiAliasImportRequireUse	Styler.Style.ModuleDirectives	always expands A.{B, C}
	Credo.Check.Readability.AliasOrder	Styler.Style.ModuleDirectives	
	Credo.Check.Readability.BlockPipe	Styler.Style.Pipes	
	Credo.Check.Readability.LargeNumbers	Styler.Style.Simple	fixes bad underscores, ie: 100_00
	Credo.Check.Readability.ModuleDoc	Styler.Style.ModuleDirectives	adds @moduledoc false
	Credo.Check.Readability.MultiAlias	Styler.Style.ModuleDirectives	
	Credo.Check.Readability.SinglePipe	Styler.Style.Pipes	
	Credo.Check.Readability.StrictModuleLayout	Styler.Style.ModuleDirectives	potentially destructive! (see moduledoc)
	Credo.Check.Readability.UnnecessaryAliasExpansion	Styler.Style.ModuleDirectives	
	Credo.Check.Refactor.PipeChainStart	Styler.Style.Pipes	
	Credo.Check.Refactor.FilterCount	Styler.Style.Pipes	(in pipes only)
	Credo.Check.Refactor.MapJoin	Styler.Style.Pipes	(in pipes only)
	Credo.Check.Refactor.MapInto	Styler.Style.Pipes	(in pipes only)

If you're using Credo and Styler, we recommend disabling these rules in Credo to save on unnecessary checks in CI.
Thanks & Inspiration
Sourceror
This work was inspired by earlier large-scale rewrites of an internal codebase that used the fantastic tool Sourceror.
The initial implementation of Styler used Sourceror, but Sourceror's AST-embedding comment algorithm slows Styler down to
the point that it's no longer an appropriate drop-in for mix format.
Still, we're grateful for the inspiration Sourceror provided and the changes to the Elixir AST APIs that it drove.
The AST-Zipper implementation in this project was forked from Sourceror's implementation.
Credo
Similarly, this project originated from one-off scripts doing large scale rewrites of an enormous codebase as part of an
effort to enable particular Credo rules for that codebase. Credo's tests and implementations were referenced for implementing
Styles that took the work the rest of the way. Thanks to Credo & the Elixir community at large for coalescing around
many of these Elixir style credos.
Elixir's Formatter
The low-hassle, (almost) no-config design of mix format greatly influenced the implementation of mix style.

Styler.Style behaviour

A Style takes AST and returns a transformed version of that AST.
Because these transformations involve traversing trees (the "T" in "AST"), we wrap the AST in a structure
called a Zipper to facilitate walking the trees.

 Anchor for this section

 Summary

 Types

 context()

 Callbacks

 run(zipper, context)

 run will be used with Zipper.traverse_while/3, meaning it will be executed on every node of the AST.

 Functions

 delete_line_meta(ast_node)

 Deletes :line from the node's meta

 displace_comments(comments, range)

 Set the line of all comments with line in range_start..range_end to instead have line range_start

 ensure_block_parent(zipper)

 Ensure the parent node can have multiple children.

 shift_comments(comments, range, delta)

 Change the line of all comments with line in range by adding delta to it.
A positive delta will move the lines further down a file, while a negative delta will move them up.

 Anchor for this section

Types

 Link to this type

 context()

 View Source

 @type context() :: %{comment: [map()], file: :stdin | String.t()}

 Anchor for this section

Callbacks

 Link to this callback

 run(zipper, context)

 View Source

 @callback run(Styler.Zipper.zipper(), context()) ::
 {Styler.Zipper.command(), Styler.Zipper.zipper(), context()}

run will be used with Zipper.traverse_while/3, meaning it will be executed on every node of the AST.
You can skip traversing parts of the tree by returning a Zipper that's further along in the traversal, for example
by calling Zipper.skip(zipper) to skip an entire subtree you know is of no interest to your Style.

 Anchor for this section

Functions

 Link to this function

 delete_line_meta(ast_node)

 View Source

Deletes :line from the node's meta
If you expected {:foo, foo_meta, [bar, baz, bop] to give you a a single line like
 foo(bar, baz, bop)
but instead got
 foo(
bar,
baz,
bop
)
then it's likely that at least one of bar, baz, and/or bop have :line meta that's confusing the formatter
and causing the multilining.
This function fixes that problem.
 # => foo(bar, baz, bop)

 Link to this function

 displace_comments(comments, range)

 View Source

Set the line of all comments with line in range_start..range_end to instead have line range_start

 Link to this function

 ensure_block_parent(zipper)

 View Source

Ensure the parent node can have multiple children.
If a context-changing node (a do end block or an -> arrow block) is encountered
the child is wrapped in a :__block__
Other nodes (pipes, assignments) can only have a fixed number of children. This function
will recursively traverse up the zipper until it's found the parents of those nodes.

 Link to this function

 shift_comments(comments, range, delta)

 View Source

Change the line of all comments with line in range by adding delta to it.
A positive delta will move the lines further down a file, while a negative delta will move them up.

Styler.Style.Defs

Styles function heads so that they're as small as possible.
The goal is that a function head fits on a single line.
This isn't a Credo issue, and the formatter is fine with either approach. But Styler has opinions!
Ex:
This long declaration
def foo(%{
 bar: baz
}) do
 ...
end
Becomes
def foo(%{bar: baz}) do
 ...
end

 Anchor for this section

 Summary

 Functions

 run(zipper, ctx)

 Callback implementation for Styler.Style.run/2.

 Anchor for this section

Functions

 Link to this function

 run(zipper, ctx)

 View Source

Callback implementation for Styler.Style.run/2.

Styler.Style.ModuleDirectives

Styles up module directives!
This Style will expand multi-aliases/requires/imports/use and sort the directive within its groups (except uses, which cannot be sorted)
It also adds a blank line after each directive group.
Credo rules
Rewrites for the following Credo rules:
	Credo.Check.Consistency.MultiAliasImportRequireUse (force expansion)
	Credo.Check.Readability.AliasOrder (we sort __MODULE__, which credo doesn't)
	Credo.Check.Readability.ModuleDoc (adds @moduledoc false if missing. includes *.exs files)
	Credo.Check.Readability.MultiAlias
	Credo.Check.Readability.StrictModuleLayout (see section below for details)
	Credo.Check.Readability.UnnecessaryAliasExpansion

Strict Layout
This can break your code.
Modules directives are sorted into the following order:
	@shortdoc
	@moduledoc
	@behaviour
	use
	import
	alias
	require
	everything else (unchanged)

If any of the sorted directives had a dependency on code that is now below it, your code will fail to compile after being styled.
For instance, the following will be broken because the module attribute definition will
be moved below the use clause, meaning @pi is undefined when invoked.
 # before `mix style`
 defmodule Approximation do
 @pi 3.14
 use Math, pi: @pi
 end

 # after `mix style`
 defmodule Approximation do
 @moduledoc false
 use Math, pi: @pi
 @pi 3.14
 end
For now, it's up to you to come up with a fix for this issue. Sorry!

 Anchor for this section

 Summary

 Functions

 run(zipper, ctx)

 Callback implementation for Styler.Style.run/2.

 Anchor for this section

Functions

 Link to this function

 run(zipper, ctx)

 View Source

Callback implementation for Styler.Style.run/2.

Styler.Style.Pipes

Styles pipes! In particular, don't make pipe chains of only one pipe, and some persnickety pipe chain start stuff.
Rewrites for the following Credo rules:
	Credo.Check.Readability.BlockPipe
	Credo.Check.Readability.SinglePipe
	Credo.Check.Refactor.PipeChainStart, excluded_functions: ["from"]

The following two rules are only corrected within pipe chains; nested functions aren't fixed
	Credo.Check.Refactor.FilterCount
	Credo.Check.Refactor.MapJoin
	Credo.Check.Refactor.MapInto

 Anchor for this section

 Summary

 Functions

 run(zipper, ctx)

 Callback implementation for Styler.Style.run/2.

 Anchor for this section

Functions

 Link to this function

 run(zipper, ctx)

 View Source

Callback implementation for Styler.Style.run/2.

Styler.Style.Simple

Simple 1-1 rewrites all crammed into one module to make for more efficient traversals
Credo Rules addressed:
	Credo.Check.Readability.LargeNumbers
 Formatter handles large number (>5 digits) rewrites, but doesn't rewrite typos like 100_000_0, so it's worthwhile to have styler do this

 Anchor for this section

 Summary

 Functions

 run(zipper, ctx)

 Callback implementation for Styler.Style.run/2.

 Anchor for this section

Functions

 Link to this function

 run(zipper, ctx)

 View Source

Callback implementation for Styler.Style.run/2.

Styler.Zipper

Implements a Zipper for the Elixir AST based on Gérard Huet Functional pearl: the
zipper paper and
Clojure's clojure.zip API.
A zipper is a data structure that represents a location in a tree from the
perspective of the current node, also called focus. It is represented by a
2-tuple where the first element is the focus and the second element is the
metadata/context. The metadata is nil when the focus is the topmost node

 Anchor for this section

 Summary

 Types

 command()

 path()

 tree()

 zipper()

 Functions

 append_child(arg, child)

 Inserts the item as the rightmost child of the node at this zipper,
without moving.

 branch?(list)

 Returns true if the node is a branch.

 children(list)

 Returns a list of children of the node.

 down(arg)

 Returns the zipper of the leftmost child of the node at this zipper, or
nil if no there's no children.

 find(zipper, direction \\ :next, predicate)

 Returns a zipper to the node that satisfies the predicate function, or nil
if none is found.

 insert_child(arg, child)

 Inserts the item as the leftmost child of the node at this zipper,
without moving.

 insert_left(arg, child)

 Inserts the item as the left sibling of the node at this zipper, without
moving. Raises an ArgumentError when attempting to insert a sibling at the
top level.

 insert_right(arg, child)

 Inserts the item as the right sibling of the node at this zipper, without
moving. Raises an ArgumentError when attempting to insert a sibling at the
top level.

 left(arg1)

 Returns the zipper of the left sibling of the node at this zipper, or nil.

 leftmost(zipper)

 Returns the leftmost sibling of the node at this zipper, or itself.

 next(zipper)

 Returns the following zipper in depth-first pre-order.

 node(arg)

 Returns the node at the zipper.

 prev(zipper)

 Returns the previous zipper in depth-first pre-order. If it's already at
the end, it returns nil.

 remove(arg)

 Removes the node at the zipper, returning the zipper that would have preceded
it in a depth-first walk.

 replace(arg, tree)

 Replaces the current node in the zipper with a new node.

 replace_children(list, children)

 Returns a new branch node, given an existing node and new children.

 right(arg1)

 Returns the zipper of the right sibling of the node at this zipper, or nil.

 rightmost(zipper)

 Returns the rightmost sibling of the node at this zipper, or itself.

 root(zipper)

 Walks the zipper all the way up and returns the root node.

 skip(zipper, direction \\ :next)

 Returns the zipper of the right sibling of the node at this zipper, or the
next zipper when no right sibling is available.

 top(zipper)

 Walks the zipper all the way up and returns the top zipper.

 traverse(zipper, fun)

 Traverses the tree in depth-first pre-order calling the given function for
each node.

 traverse(zipper, acc, fun)

 Traverses the tree in depth-first pre-order calling the given function for
each node with an accumulator.

 traverse_while(zipper, fun)

 Traverses the tree in depth-first pre-order calling the given function for
each node.

 traverse_while(zipper, acc, fun)

 Traverses the tree in depth-first pre-order calling the given function for
each node with an accumulator.

 up(arg)

 Returns the zipper of the parent of the node at this zipper, or nil if at the
top.

 update(arg, fun)

 Replaces the current node in the zipper with the result of applying fun to
the node.

 zip(term)

 Creates a zipper from a tree node.

 Anchor for this section

Types

 Link to this type

 command()

 View Source

 @type command() :: :cont | :skip | :halt

 Link to this opaque

 path()

 View Source

 (opaque)

 @opaque path()

 Link to this type

 tree()

 View Source

 @type tree() :: Macro.t()

 Link to this type

 zipper()

 View Source

 @type zipper() :: {tree(), path() | nil}

 Anchor for this section

Functions

 Link to this function

 append_child(arg, child)

 View Source

Inserts the item as the rightmost child of the node at this zipper,
without moving.

 Link to this function

 branch?(list)

 View Source

 @spec branch?(tree()) :: boolean()

Returns true if the node is a branch.

 Link to this function

 children(list)

 View Source

 @spec children(tree()) :: [tree()]

Returns a list of children of the node.

 Link to this function

 down(arg)

 View Source

 @spec down(zipper()) :: zipper() | nil

Returns the zipper of the leftmost child of the node at this zipper, or
nil if no there's no children.

 Link to this function

 find(zipper, direction \\ :next, predicate)

 View Source

 @spec find(zipper(), direction :: :prev | :next, predicate :: (tree() -> any())) ::
 zipper() | nil

Returns a zipper to the node that satisfies the predicate function, or nil
if none is found.
The optional second parameters specifies the direction, defaults to
:next.

 Link to this function

 insert_child(arg, child)

 View Source

Inserts the item as the leftmost child of the node at this zipper,
without moving.

 Link to this function

 insert_left(arg, child)

 View Source

 @spec insert_left(zipper(), tree()) :: zipper()

Inserts the item as the left sibling of the node at this zipper, without
moving. Raises an ArgumentError when attempting to insert a sibling at the
top level.

 Link to this function

 insert_right(arg, child)

 View Source

 @spec insert_right(zipper(), tree()) :: zipper()

Inserts the item as the right sibling of the node at this zipper, without
moving. Raises an ArgumentError when attempting to insert a sibling at the
top level.

 Link to this function

 left(arg1)

 View Source

 @spec left(zipper()) :: zipper() | nil

Returns the zipper of the left sibling of the node at this zipper, or nil.

 Link to this function

 leftmost(zipper)

 View Source

 @spec leftmost(zipper()) :: zipper()

Returns the leftmost sibling of the node at this zipper, or itself.

 Link to this function

 next(zipper)

 View Source

 @spec next(zipper()) :: zipper() | nil

Returns the following zipper in depth-first pre-order.

 Link to this function

 node(arg)

 View Source

 @spec node(zipper()) :: tree()

Returns the node at the zipper.

 Link to this function

 prev(zipper)

 View Source

 @spec prev(zipper()) :: zipper() | nil

Returns the previous zipper in depth-first pre-order. If it's already at
the end, it returns nil.

 Link to this function

 remove(arg)

 View Source

 @spec remove(zipper()) :: zipper()

Removes the node at the zipper, returning the zipper that would have preceded
it in a depth-first walk.

 Link to this function

 replace(arg, tree)

 View Source

 @spec replace(zipper(), tree()) :: zipper()

Replaces the current node in the zipper with a new node.

 Link to this function

 replace_children(list, children)

 View Source

 @spec replace_children(tree(), [tree()]) :: tree()

Returns a new branch node, given an existing node and new children.

 Link to this function

 right(arg1)

 View Source

 @spec right(zipper()) :: zipper() | nil

Returns the zipper of the right sibling of the node at this zipper, or nil.

 Link to this function

 rightmost(zipper)

 View Source

 @spec rightmost(zipper()) :: zipper()

Returns the rightmost sibling of the node at this zipper, or itself.

 Link to this function

 root(zipper)

 View Source

 @spec root(zipper()) :: tree()

Walks the zipper all the way up and returns the root node.

 Link to this function

 skip(zipper, direction \\ :next)

 View Source

 @spec skip(zipper(), direction :: :next | :prev) :: zipper() | nil

Returns the zipper of the right sibling of the node at this zipper, or the
next zipper when no right sibling is available.
This allows to skip subtrees while traversing the siblings of a node.
The optional second parameters specifies the direction, defaults to
:next.
If no right/left sibling is available, this function returns the same value as
next/1/prev/1.
The function skip/1 behaves like the :skip in traverse_while/2 and
traverse_while/3.

 Link to this function

 top(zipper)

 View Source

 @spec top(zipper()) :: zipper()

Walks the zipper all the way up and returns the top zipper.

 Link to this function

 traverse(zipper, fun)

 View Source

 @spec traverse(zipper(), (zipper() -> zipper())) :: zipper()

Traverses the tree in depth-first pre-order calling the given function for
each node.
If the zipper is not at the top, just the subtree will be traversed.
The function must return a zipper.

 Link to this function

 traverse(zipper, acc, fun)

 View Source

 @spec traverse(zipper(), term(), (zipper(), term() -> {zipper(), term()})) ::
 {zipper(), term()}

Traverses the tree in depth-first pre-order calling the given function for
each node with an accumulator.
If the zipper is not at the top, just the subtree will be traversed.

 Link to this function

 traverse_while(zipper, fun)

 View Source

 @spec traverse_while(zipper(), (zipper() -> {command(), zipper()})) :: zipper()

Traverses the tree in depth-first pre-order calling the given function for
each node.
The traversing will continue if the function returns {:cont, zipper},
skipped for {:skip, zipper} and halted for {:halt, zipper}
If the zipper is not at the top, just the subtree will be traversed.
The function must return a zipper.

 Link to this function

 traverse_while(zipper, acc, fun)

 View Source

 @spec traverse_while(
 zipper(),
 term(),
 (zipper(), term() -> {command(), zipper(), term()})
) ::
 {zipper(), term()}

Traverses the tree in depth-first pre-order calling the given function for
each node with an accumulator.
The traversing will continue if the function returns {:cont, zipper, acc},
skipped for {:skip, zipper, acc} and halted for {:halt, zipper, acc}
If the zipper is not at the top, just the subtree will be traversed.

 Link to this function

 up(arg)

 View Source

 @spec up(zipper()) :: zipper() | nil

Returns the zipper of the parent of the node at this zipper, or nil if at the
top.

 Link to this function

 update(arg, fun)

 View Source

 @spec update(zipper(), (tree() -> tree())) :: zipper()

Replaces the current node in the zipper with the result of applying fun to
the node.

 Link to this function

 zip(term)

 View Source

 @spec zip(tree()) :: zipper()

Creates a zipper from a tree node.

Styler.StyleError exception

Wraps errors raised by Styles during tree traversal.

 Anchor for this section

 Summary

 Functions

 message(map)

 Callback implementation for Exception.message/1.

 Anchor for this section

Functions

 Link to this function

 message(map)

 View Source

Callback implementation for Exception.message/1.

mix style

Formats and rewrites the given files and patterns.
 mix style mix.exs "lib//*.{ex,exs}" "test//*.{ex,exs}"
If - is one of the files, input is read from stdin and written to stdout.
mix style uses the same options as mix format specified in .formatter.exs to
format the code, and to determine which files to style if you don't pass any as arguments
Task-specific options
	--check-formatted - an alias for --check-styled, included for compatibility with mix format

	--check-styled - checks that the file is already styled rather than styling it.
useful for CI.

 OEBPS/dist/epub-75RCTLK3.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);var a="hll";function c(){u()}function u(){o("[data-group-id]").forEach(e=>{let t=e.getAttribute("data-group-id");e.addEventListener("mouseenter",n=>{i(t,!0)}),e.addEventListener("mouseleave",n=>{i(t,!1)})})}function i(r,e){o(`[data-group-id="${r}"]`).forEach(n=>{n.classList.toggle(a,e)})}c();})();

