

 Styler

 v0.8.0

 Table of contents

 	Changelog

 	Styler

 	Modules

 	Styler

 	Styler.Style

 	Styler.Style.Defs

 	Styler.Style.ModuleDirectives

 	Styler.Style.Pipes

 	Styler.Style.SingleNode

 	Styler.Zipper

 	Styler.StyleError

 	Mix Tasks

 	mix style

Changelog

main
v0.8.0
Improvements (Bug Fix!?)
	ModuleDirectives no longer throws comments around a file when hoisting directives up (#53)

v0.7.14
Improvements
	rewrite Logger.warn/1,2 to Logger.warning/1,2 due to Elixir 1.15 deprecation

v0.7.13
Fixes
	don't unpipe single-piped unquote expressions (h/t @elliottneilclark)

v0.7.12
Fixes
	fix 0-arity paren removal on metaprogramming creating uncompilable code (h/t @simonprev)

v0.7.11
Fixes
	fix crash from mix style running plugins as part of formatting (no longer runs formatter plugins)

Improvements
	single-quote charlists are rewritten to use the ~c sigil ('foo' -> ~c'foo') (h/t @fhunleth)
	mix style warns the user that Styler is primarily meant to be used as a plugin

v0.7.10
Fixes
	fix crash when encountering single-quote charlists (h/t @fhunleth)

Improvements
	single-quote charlists are rewritten to use the ~c sigil ('foo' -> ~c'foo')
	when encountering _ = bar ->, replace it with bar ->

v0.7.9
Fixes
	Fix a toggle state resulting from (ahem, nonsense) code like _ = bar -> encountering ParameterPatternMatching style

v0.7.8
Fixes
	Fix crash trying to remove 0-arity parens from metaprogramming ala def unquote(foo)()

v0.7.7
Improvements
	Rewrite Enum.into/2,3 into Map.new/1,2 when the collectable is %{} or Map.new/0

v0.7.6
Fixes
	Fix crash when single pipe had inner defs (h/t @michallepicki)

v0.7.5
Fixes
	Fix bug from ParameterPatternMatching implementation that re-ordered pattern matching in cond do -> clauses

v0.7.4
Features
	Implement Credo.Check.Readability.PreferImplicitTry
	Implement Credo.Check.Consistency.ParameterPatternMatching for def|defp|fn|case

v0.7.3
Features
	Remove parens from 0-arity function definitions (Credo.Check.Readability.ParenthesesOnZeroArityDefs)

v0.7.2
Features
	Rewrite case ... true -> ...; _ -> ... to if statements as well

v0.7.1
Features
	Rewrite case ... true / else -> to be if statements

v0.7.0
Features
	Styler.Style.Simple:	Optimize Enum.reverse(foo) ++ bar to Enum.reverse(foo, bar)

	Styler.Style.Pipes:	Rewrite |> (& ...).() to |> then(& ...) (Credo.Check.Readability.PipeIntoAnonymousFunctions)
	Add parens to 1-arity pipe functions (Credo.Check.Readability.OneArityFunctionInPipe)
	Optimize a |> Enum.reverse() |> Enum.concat(enum) to Enum.reverse(a, enum)

v0.6.1
Improvements
	Better error handling: mix format will still format files if a style fails

Fixes
	mix style: only run on .ex and .exs files
	ModuleDirectives: now expands alias __MODULE__.{A, B} (h/t @adriankumpf)

v0.6.0
Features
	mix style: brought back to life for folks who want to incrementally introduce Styler

Fixes
	Styler.Style.Pipes:	include x in y and ^foo (for ecto) as a valid pipe starts
	work even harder to keep rewrites on one line

v0.5.2
Fixes
	ModuleDirectives: handle dynamic module names
	Pipes: include Ecto.Query.from and Query.from as valid pipe starts

v0.5.1
Improvements
	Sped up styling just a little bit

v0.5.0
Improvements
	Styler now implements Mix.Task.Format, meaning it is now an Elixir formatter plugin.
See the README for new installation & usage instructions

Breaking Change! Wooo!
	the mix style task has been removed

v0.4.1
Improvements
	Pipes rewrites |> Enum.into(%{}[, mapper]) and Enum.into(Map.new()[, mapper]) to Map.new/1,2 calls

v0.4.0
Improvements
	Pipes rewrites some two-step processes into one, fixing these credo issues in pipe chains:	Credo.Check.Refactor.FilterCount
	Credo.Check.Refactor.MapJoin
	Credo.Check.Refactor.MapInto

Fixes
	ModuleDirectives handles even weirder places to hide your aliases (anonymous functions, in this case)
	Pipes tries even harder to keep single-pipe rewrites of invocations on one line

v0.3.1
Fixes
	Pipes	fixed omission of == as a valid pipe start operator (h/t @peake100 for the issue)
	fixed rewrite of a |> b, where b was invoked without parenthesis

v0.3.0
Improvements
	Enabled Defs style and overhauled it to properly handles comments
	Optimized and tweaked ModuleDirectives style	Now culls newlines between "groups" of the same directive
	sorts @behaviour directives
	orders directives within non defmodule contexts (eg, a def do) if there's at least one alias|require|use|import

Fixes
	Pipes will try to keep single-pipe rewrites on one line

v0.2.0
Improvements
	Added ModuleDirectives style	Note that this is potentially destructive in some rare cases. See moduledoc for more.
	This supersedes the Aliases style, which has been removed.

	mix style - reads and writes to stdin/stdout

Fixes
	Pipes style is now aware of unless blocks

v0.1.1
Improvements
	Lots of README tweaking =)
	Optimized some Zipper operations
	Added Simple style, replacing the following Credo rule:	Credo.Check.Readability.LargeNumbers

Fixes
	Exceptions while parsing code now appropriately render filename rather than nofile:xx
	Fixed opaque Zipper.path() typespec implementation mismatches (thanks @sega-yarkin)
	Made ex_doc dev only, removing it as a dependency for users of Styler

v0.1.0
Improvements
	Initial release of Styler
	Added Aliases style, replacing the following Credo rules:	Credo.Check.Readability.AliasOrder
	Credo.Check.Readability.MultiAlias
	Credo.Check.Readability.UnnecessaryAliasExpansion

	Added Pipes style, replacing the following Credo rules:	Credo.Check.Readability.BlockPipe
	Credo.Check.Readability.SinglePipe
	Credo.Check.Refactor.PipeChainStart

	Added Defs style (currently disabled by default)

Styler

Styler is an Elixir formatter plugin that's combination of mix format and mix credo, except instead of telling
you what's wrong, it just rewrites the code for you to fit its style rules.
Installation
Add :styler as a dependency to your project's mix.exs:
def deps do
 [
 {:styler, "~> 0.7", only: [:dev, :test], runtime: false},
]
end
Usage
We recommend using Styler as a formatter plugin, but it comes with a task for making it easy to try styling smaller
portions of your project or for installing without modifying your dependencies (via mix's archive.install feature)
As a Formatter plugin
Add Styler as a plugin to your .formatter.exs file
[
 plugins: [Styler]
]
And that's it! Now when you run mix format you'll also get the benefits of Styler's definitely-always-right style fixes.
As a Mix Task
$ mix style

The task can helpful for slowly converting a codebase directory-by-directory. It also allows you to use mix archive.install
to easily test run Styler on a project without modifying its dependencies:
$ mix archive.install hex styler

mix style is designed to take the same basic options as mix format.
See mix help style for more.
Configuration
There isn't any! This is intentional.
Styler's @adobe's internal Style Guide Enforcer - allowing exceptions to the styles goes against that ethos. Happily, it's open source and thus yours to do with as you will =)
Styles
You can find the currently-enabled styles in the Styler module, inside of its @styles module attribute. Each Style's moduledoc will tell you more about what it rewrites.
Credo Rules Styler Replaces
If you're using Credo and Styler, we recommend disabling these rules in .credo.exs to save on unnecessary checks in CI.
	Credo credo	notes
	Credo.Check.Consistency.MultiAliasImportRequireUse	always expands A.{B, C}
	Credo.Check.Consistency.ParameterPatternMatching	also case statements, anon functions
	Credo.Check.Readability.AliasOrder	
	Credo.Check.Readability.BlockPipe	
	Credo.Check.Readability.LargeNumbers	goes further than formatter - fixes bad underscores, eg: 100_00 -> 10_000
	Credo.Check.Readability.ModuleDoc	adds @moduledoc false
	Credo.Check.Readability.MultiAlias	
	Credo.Check.Readability.OneArityFunctionInPipe	
	Credo.Check.Readability.ParenthesesOnZeroArityDefs	removes parens
	Credo.Check.Readability.PipeIntoAnonymousFunctions	
	Credo.Check.Readability.PreferImplicitTry	
	Credo.Check.Readability.SinglePipe	
	Credo.Check.Readability.StrictModuleLayout	potentially breaks compilation (see notes above)
	Credo.Check.Readability.UnnecessaryAliasExpansion	
	Credo.Check.Refactor.CaseTrivialMatches	
	Credo.Check.Refactor.FilterCount	in pipes only
	Credo.Check.Refactor.MapInto	in pipes only
	Credo.Check.Refactor.MapJoin	in pipes only
	Credo.Check.Refactor.PipeChainStart	allows ecto's from

Your first Styling
Speed: Expect the first run to take some time as Styler rewrites violations of styles.
Once styled the first time, future styling formats shouldn't take noticeably more time.
Roughly, Styler puts about a 10% slow down on mix format.
Troubleshooting: Compilation broke due to Module Directive rearrangement
Sometimes naively moving Module Directives around can break compilation.
Here's helpers on how to manually fix that and have a happy styling for the rest of
your codebase's life.
Alias dependency
If you have an alias that, for example, a @behaviour relies on, compilation will break after your first run.
This requires one-time manual fixing to get your repo in line with Styler's standards.
For example, if your code was this:
defmodule MyModule do
 @moduledoc "Implements MyBehaviour!"
 alias Deeply.Nested.MyBehaviour
 @behaviour MyBehaviour
 ...
end
then Styler will style the file like this, which cannot compile due to MyBehaviour not being defined.
defmodule MyModule do
 @moduledoc "Implements MyBehaviour!"
 @behaviour MyBehaviour # <------ compilation error, MyBehaviour is not defined!

 alias Deeply.Nested.MyBehaviour

 ...
end
A simple solution is to manually expand the alias with a find-replace-all like:
@behaviour MyBehaviour -> @behaviour Deeply.Nested.MyBehaviour. It's important to specify that you only want to
find-replace with the @behaviour prefix or you'll unintentially expand MyBehaviour everywhere in the codebase.
Module Attribute dependency
Another common compilation break on the first run is a @moduledoc that depended on another module attribute which
was moved below it.
For example, given the following broken code after an initial mix format:
defmodule MyGreatLibrary do
 @moduledoc make_pretty_docs(@library_options)

 @library_options [...]
end
You can fix the code by moving the static value outside of the module into a naked variable and then reference it in the module.
Yes, this is a thing you can do in a .ex file =)
library_options = [...]

defmodule MyGreatLibrary do
 @moduledoc make_pretty_docs(library_options)

 @library_options library_options
end
Thanks & Inspiration
Sourceror
This work was inspired by earlier large-scale rewrites of an internal codebase that used the fantastic tool Sourceror.
The initial implementation of Styler used Sourceror, but Sourceror's AST-embedding comment algorithm slows Styler down to
the point that it's no longer an appropriate drop-in for mix format.
Still, we're grateful for the inspiration Sourceror provided and the changes to the Elixir AST APIs that it drove.
The AST-Zipper implementation in this project was forked from Sourceror's implementation.
Credo
Similarly, this project originated from one-off scripts doing large scale rewrites of an enormous codebase as part of an
effort to enable particular Credo rules for that codebase. Credo's tests and implementations were referenced for implementing
Styles that took the work the rest of the way. Thanks to Credo & the Elixir community at large for coalescing around
many of these Elixir style credos.

Styler

Styler is a formatter plugin with stronger opinions on code organization, multi-line defs and other code-style matters.

 Anchor for this section

 Summary

 Functions

 quoted_to_string(ast, comments, formatter_opts \\ [])

 Turns an ast and comments back into code, formatting it along the way.

 string_to_quoted_with_comments(code, file \\ "nofile")

 Wraps Code.string_to_quoted_with_comments with our desired options

 Anchor for this section

Functions

 Link to this function

 quoted_to_string(ast, comments, formatter_opts \\ [])

 View Source

Turns an ast and comments back into code, formatting it along the way.

 Link to this function

 string_to_quoted_with_comments(code, file \\ "nofile")

 View Source

Wraps Code.string_to_quoted_with_comments with our desired options

Styler.Style behaviour

A Style takes AST and returns a transformed version of that AST.
Because these transformations involve traversing trees (the "T" in "AST"), we wrap the AST in a structure
called a Zipper to facilitate walking the trees.

 Anchor for this section

 Summary

 Types

 context()

 Callbacks

 run(zipper, context)

 run will be used with Zipper.traverse_while/3, meaning it will be executed on every node of the AST.

 Functions

 displace_comments(comments, range)

 Set the line of all comments with line in range_start..range_end to instead have line range_start

 empty_map?(arg1)

 Returns true if the ast represents an empty map

 ensure_block_parent(zipper)

 Ensure the parent node can have multiple children.

 set_line(ast_node, line)

 Sets :line, :closing, and :last to all be on line and deletes :newlines

 shift_comments(comments, range, delta)

 Change the line of all comments with line in range by adding delta to it.
A positive delta will move the lines further down a file, while a negative delta will move them up.

 update_all_meta(node, meta_fun)

 Traverses an ast node, updating all nodes' meta with meta_fun

 Anchor for this section

Types

 Link to this type

 context()

 View Source

 @type context() :: %{comment: [map()], file: :stdin | String.t()}

 Anchor for this section

Callbacks

 Link to this callback

 run(zipper, context)

 View Source

 @callback run(Styler.Zipper.zipper(), context()) ::
 {Styler.Zipper.command(), Styler.Zipper.zipper(), context()}

run will be used with Zipper.traverse_while/3, meaning it will be executed on every node of the AST.
You can skip traversing parts of the tree by returning a Zipper that's further along in the traversal, for example
by calling Zipper.skip(zipper) to skip an entire subtree you know is of no interest to your Style.

 Anchor for this section

Functions

 Link to this function

 displace_comments(comments, range)

 View Source

Set the line of all comments with line in range_start..range_end to instead have line range_start

 Link to this function

 empty_map?(arg1)

 View Source

Returns true if the ast represents an empty map

 Link to this function

 ensure_block_parent(zipper)

 View Source

Ensure the parent node can have multiple children.
If a context-changing node (a do end block or an -> arrow block) is encountered
the child is wrapped in a :__block__
Other nodes (pipes, assignments) can only have a fixed number of children. This function
will recursively traverse up the zipper until it's found the parents of those nodes.

 Link to this function

 set_line(ast_node, line)

 View Source

Sets :line, :closing, and :last to all be on line and deletes :newlines

 Link to this function

 shift_comments(comments, range, delta)

 View Source

Change the line of all comments with line in range by adding delta to it.
A positive delta will move the lines further down a file, while a negative delta will move them up.

 Link to this function

 update_all_meta(node, meta_fun)

 View Source

Traverses an ast node, updating all nodes' meta with meta_fun

Styler.Style.Defs

Styles function heads so that they're as small as possible.
The goal is that a function head fits on a single line.
This isn't a Credo issue, and the formatter is fine with either approach. But Styler has opinions!
Ex:
This long declaration
def foo(%{
 bar: baz
}) do
 ...
end
Becomes
def foo(%{bar: baz}) do
 ...
end

 Anchor for this section

 Summary

 Functions

 run(zipper, ctx)

 Callback implementation for Styler.Style.run/2.

 Anchor for this section

Functions

 Link to this function

 run(zipper, ctx)

 View Source

Callback implementation for Styler.Style.run/2.

Styler.Style.ModuleDirectives

Styles up module directives!
This Style will expand multi-aliases/requires/imports/use and sort the directive within its groups (except uses, which cannot be sorted)
It also adds a blank line after each directive group.
Credo rules
Rewrites for the following Credo rules:
	Credo.Check.Consistency.MultiAliasImportRequireUse (force expansion)
	Credo.Check.Readability.AliasOrder (we sort __MODULE__, which credo doesn't)
	Credo.Check.Readability.ModuleDoc (adds @moduledoc false if missing. includes *.exs files)
	Credo.Check.Readability.MultiAlias
	Credo.Check.Readability.StrictModuleLayout (see section below for details)
	Credo.Check.Readability.UnnecessaryAliasExpansion

Strict Layout
This can break your code.
Modules directives are sorted into the following order:
	@shortdoc
	@moduledoc
	@behaviour
	use
	import
	alias
	require
	everything else (unchanged)

If any of the sorted directives had a dependency on code that is now below it, your code will fail to compile after being styled.
For instance, the following will be broken because the module attribute definition will
be moved below the use clause, meaning @pi is undefined when invoked.
 # before
 defmodule Approximation do
 @pi 3.14
 use Math, pi: @pi
 end

 # after
 defmodule Approximation do
 @moduledoc false
 use Math, pi: @pi
 @pi 3.14
 end
For now, it's up to you to come up with a fix for this issue. Sorry!

 Anchor for this section

 Summary

 Functions

 run(zipper, ctx)

 Callback implementation for Styler.Style.run/2.

 Anchor for this section

Functions

 Link to this function

 run(zipper, ctx)

 View Source

Callback implementation for Styler.Style.run/2.

Styler.Style.Pipes

Styles pipes! In particular, don't make pipe chains of only one pipe, and some persnickety pipe chain start stuff.
Rewrites for the following Credo rules:
	Credo.Check.Readability.BlockPipe
	Credo.Check.Readability.OneArityFunctionInPipe
	Credo.Check.Readability.PipeIntoAnonymousFunctions
	Credo.Check.Readability.SinglePipe
	Credo.Check.Refactor.FilterCount
	Credo.Check.Refactor.MapInto
	Credo.Check.Refactor.MapJoin
	Credo.Check.Refactor.PipeChainStart, excluded_functions: ["from"]

 Anchor for this section

 Summary

 Functions

 run(zipper, ctx)

 Callback implementation for Styler.Style.run/2.

 Anchor for this section

Functions

 Link to this function

 run(zipper, ctx)

 View Source

Callback implementation for Styler.Style.run/2.

Styler.Style.SingleNode

Simple 1-1 rewrites all crammed into one module to make for more efficient traversals
Credo Rules addressed:
	Credo.Check.Consistency.ParameterPatternMatching
	Credo.Check.Readability.LargeNumbers
	Credo.Check.Readability.ParenthesesOnZeroArityDefs
	Credo.Check.Readability.PreferImplicitTry
	Credo.Check.Refactor.CaseTrivialMatches

 Anchor for this section

 Summary

 Functions

 run(arg, ctx)

 Callback implementation for Styler.Style.run/2.

 Anchor for this section

Functions

 Link to this function

 run(arg, ctx)

 View Source

Callback implementation for Styler.Style.run/2.

Styler.Zipper

Implements a Zipper for the Elixir AST based on Gérard Huet Functional pearl: the
zipper paper and
Clojure's clojure.zip API.
A zipper is a data structure that represents a location in a tree from the
perspective of the current node, also called focus. It is represented by a
2-tuple where the first element is the focus and the second element is the
metadata/context. The metadata is nil when the focus is the topmost node

 Anchor for this section

 Summary

 Types

 command()

 path()

 tree()

 zipper()

 Functions

 append_child(arg, child)

 Inserts the item as the rightmost child of the node at this zipper,
without moving.

 children(arg)

 Returns a list of children of the node.

 down(zipper)

 Returns the zipper of the leftmost child of the node at this zipper, or
nil if no there's no children.

 find(zipper, direction \\ :next, predicate)

 Returns a zipper to the node that satisfies the predicate function, or nil
if none is found.

 insert_child(arg, child)

 Inserts the item as the leftmost child of the node at this zipper,
without moving.

 insert_left(arg, child)

 Inserts the item as the left sibling of the node at this zipper, without
moving. Raises an ArgumentError when attempting to insert a sibling at the
top level.

 insert_right(arg, child)

 Inserts the item as the right sibling of the node at this zipper, without
moving. Raises an ArgumentError when attempting to insert a sibling at the
top level.

 left(arg1)

 Returns the zipper of the left sibling of the node at this zipper, or nil.

 leftmost(zipper)

 Returns the leftmost sibling of the node at this zipper, or itself.

 next(zipper)

 Returns the following zipper in depth-first pre-order.

 node(arg)

 Returns the node at the zipper.

 prev(zipper)

 Returns the previous zipper in depth-first pre-order. If it's already at
the end, it returns nil.

 remove(arg)

 Removes the node at the zipper, returning the zipper that would have preceded
it in a depth-first walk.

 replace(arg, tree)

 Replaces the current node in the zipper with a new node.

 replace_children(list, children)

 Returns a new node, given an existing node and new children.

 right(arg1)

 Returns the zipper of the right sibling of the node at this zipper, or nil.

 rightmost(zipper)

 Returns the rightmost sibling of the node at this zipper, or itself.

 root(zipper)

 Walks the zipper all the way up and returns the root node.

 skip(zipper, direction \\ :next)

 Returns the zipper of the right sibling of the node at this zipper, or the
next zipper when no right sibling is available.

 top(zipper)

 Walks the zipper all the way up and returns the top zipper.

 traverse(zipper, fun)

 Traverses the tree in depth-first pre-order calling the given function for
each node.

 traverse(zipper, acc, fun)

 Traverses the tree in depth-first pre-order calling the given function for
each node with an accumulator.

 traverse_while(zipper, fun)

 Traverses the tree in depth-first pre-order calling the given function for
each node.

 traverse_while(zipper, acc, fun)

 Traverses the tree in depth-first pre-order calling the given function for
each node with an accumulator.

 up(arg)

 Returns the zipper of the parent of the node at this zipper, or nil if at the
top.

 update(arg, fun)

 Replaces the current node in the zipper with the result of applying fun to
the node.

 zip(term)

 Creates a zipper from a tree node.

 Anchor for this section

Types

 Link to this type

 command()

 View Source

 @type command() :: :cont | :skip | :halt

 Link to this opaque

 path()

 View Source

 (opaque)

 @opaque path()

 Link to this type

 tree()

 View Source

 @type tree() :: Macro.t()

 Link to this type

 zipper()

 View Source

 @type zipper() :: {tree(), path() | nil}

 Anchor for this section

Functions

 Link to this function

 append_child(arg, child)

 View Source

Inserts the item as the rightmost child of the node at this zipper,
without moving.

 Link to this function

 children(arg)

 View Source

 @spec children(zipper()) :: [tree()]

Returns a list of children of the node.

 Link to this function

 down(zipper)

 View Source

 @spec down(zipper()) :: zipper() | nil

Returns the zipper of the leftmost child of the node at this zipper, or
nil if no there's no children.

 Link to this function

 find(zipper, direction \\ :next, predicate)

 View Source

 @spec find(zipper(), direction :: :prev | :next, predicate :: (tree() -> any())) ::
 zipper() | nil

Returns a zipper to the node that satisfies the predicate function, or nil
if none is found.
The optional second parameters specifies the direction, defaults to
:next.

 Link to this function

 insert_child(arg, child)

 View Source

Inserts the item as the leftmost child of the node at this zipper,
without moving.

 Link to this function

 insert_left(arg, child)

 View Source

 @spec insert_left(zipper(), tree()) :: zipper()

Inserts the item as the left sibling of the node at this zipper, without
moving. Raises an ArgumentError when attempting to insert a sibling at the
top level.

 Link to this function

 insert_right(arg, child)

 View Source

 @spec insert_right(zipper(), tree()) :: zipper()

Inserts the item as the right sibling of the node at this zipper, without
moving. Raises an ArgumentError when attempting to insert a sibling at the
top level.

 Link to this function

 left(arg1)

 View Source

 @spec left(zipper()) :: zipper() | nil

Returns the zipper of the left sibling of the node at this zipper, or nil.

 Link to this function

 leftmost(zipper)

 View Source

 @spec leftmost(zipper()) :: zipper()

Returns the leftmost sibling of the node at this zipper, or itself.

 Link to this function

 next(zipper)

 View Source

 @spec next(zipper()) :: zipper() | nil

Returns the following zipper in depth-first pre-order.

 Link to this function

 node(arg)

 View Source

 @spec node(zipper()) :: tree()

Returns the node at the zipper.

 Link to this function

 prev(zipper)

 View Source

 @spec prev(zipper()) :: zipper() | nil

Returns the previous zipper in depth-first pre-order. If it's already at
the end, it returns nil.

 Link to this function

 remove(arg)

 View Source

 @spec remove(zipper()) :: zipper()

Removes the node at the zipper, returning the zipper that would have preceded
it in a depth-first walk.

 Link to this function

 replace(arg, tree)

 View Source

 @spec replace(zipper(), tree()) :: zipper()

Replaces the current node in the zipper with a new node.

 Link to this function

 replace_children(list, children)

 View Source

 @spec replace_children(tree(), [tree()]) :: tree()

Returns a new node, given an existing node and new children.

 Link to this function

 right(arg1)

 View Source

 @spec right(zipper()) :: zipper() | nil

Returns the zipper of the right sibling of the node at this zipper, or nil.

 Link to this function

 rightmost(zipper)

 View Source

 @spec rightmost(zipper()) :: zipper()

Returns the rightmost sibling of the node at this zipper, or itself.

 Link to this function

 root(zipper)

 View Source

 @spec root(zipper()) :: tree()

Walks the zipper all the way up and returns the root node.

 Link to this function

 skip(zipper, direction \\ :next)

 View Source

 @spec skip(zipper(), direction :: :next | :prev) :: zipper() | nil

Returns the zipper of the right sibling of the node at this zipper, or the
next zipper when no right sibling is available.
This allows to skip subtrees while traversing the siblings of a node.
The optional second parameters specifies the direction, defaults to
:next.
If no right/left sibling is available, this function returns the same value as
next/1/prev/1.
The function skip/1 behaves like the :skip in traverse_while/2 and
traverse_while/3.

 Link to this function

 top(zipper)

 View Source

 @spec top(zipper()) :: zipper()

Walks the zipper all the way up and returns the top zipper.

 Link to this function

 traverse(zipper, fun)

 View Source

 @spec traverse(zipper(), (zipper() -> zipper())) :: zipper()

Traverses the tree in depth-first pre-order calling the given function for
each node.
If the zipper is not at the top, just the subtree will be traversed.
The function must return a zipper.

 Link to this function

 traverse(zipper, acc, fun)

 View Source

 @spec traverse(zipper(), term(), (zipper(), term() -> {zipper(), term()})) ::
 {zipper(), term()}

Traverses the tree in depth-first pre-order calling the given function for
each node with an accumulator.
If the zipper is not at the top, just the subtree will be traversed.

 Link to this function

 traverse_while(zipper, fun)

 View Source

 @spec traverse_while(zipper(), (zipper() -> {command(), zipper()})) :: zipper()

Traverses the tree in depth-first pre-order calling the given function for
each node.
The traversing will continue if the function returns {:cont, zipper},
skipped for {:skip, zipper} and halted for {:halt, zipper}
If the zipper is not at the top, just the subtree will be traversed.
The function must return a zipper.

 Link to this function

 traverse_while(zipper, acc, fun)

 View Source

 @spec traverse_while(
 zipper(),
 term(),
 (zipper(), term() -> {command(), zipper(), term()})
) ::
 {zipper(), term()}

Traverses the tree in depth-first pre-order calling the given function for
each node with an accumulator.
The traversing will continue if the function returns {:cont, zipper, acc},
skipped for {:skip, zipper, acc} and halted for {:halt, zipper, acc}
If the zipper is not at the top, just the subtree will be traversed.

 Link to this function

 up(arg)

 View Source

 @spec up(zipper()) :: zipper() | nil

Returns the zipper of the parent of the node at this zipper, or nil if at the
top.

 Link to this function

 update(arg, fun)

 View Source

 @spec update(zipper(), (tree() -> tree())) :: zipper()

Replaces the current node in the zipper with the result of applying fun to
the node.

 Link to this function

 zip(term)

 View Source

 @spec zip(tree()) :: zipper()

Creates a zipper from a tree node.

Styler.StyleError exception

Wraps errors raised by Styles during tree traversal.

 Anchor for this section

 Summary

 Functions

 message(map)

 Callback implementation for Exception.message/1.

 Anchor for this section

Functions

 Link to this function

 message(map)

 View Source

Callback implementation for Exception.message/1.

mix style

Formats and rewrites the given files and patterns.
 mix style mix.exs "lib//*.{ex,exs}" "test//*.{ex,exs}"
If - is one of the files, input is read from stdin and written to stdout.
mix style uses the same options as mix format specified in .formatter.exs to
format the code, and to determine which files to style if you don't pass any as arguments
Task-specific options
	--check-formatted - an alias for --check-styled, included for compatibility with mix format

	--check-styled - checks that the file is already styled rather than styling it.
useful for CI.

 OEBPS/dist/epub-75RCTLK3.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);var a="hll";function c(){u()}function u(){o("[data-group-id]").forEach(e=>{let t=e.getAttribute("data-group-id");e.addEventListener("mouseenter",n=>{i(t,!0)}),e.addEventListener("mouseleave",n=>{i(t,!1)})})}function i(r,e){o(`[data-group-id="${r}"]`).forEach(n=>{n.classList.toggle(a,e)})}c();})();

