

 Styler

 v1.0.0-rc.0

 Table of contents

 	Changelog

 	Styler

 	Examples

 	Modules

 	Styler

 	Styler.AliasEnv

 	Styler.Style

 	Styler.Style.Blocks

 	Styler.Style.Configs

 	Styler.Style.Defs

 	Styler.Style.Deprecations

 	Styler.Style.ModuleDirectives

 	Styler.Style.Pipes

 	Styler.Style.SingleNode

 	Styler.Zipper

 	Styler.StyleError

Changelog

 main

 Fixes

	rewrite a |> Enum.map(m) |> Enum.join() to map_join(a, m). we already did this for join/2, but missed the case for join/1

 1.0.0-rc.0

At this point, 1.0.0 feels feature complete. Two things remains for a full release:
	feedback!
	documentation overhaul! monitor progress here

 Improvements

Styler's two biggest outstanding bugs have been fixed, both related to compilation breaking during module directive organization. One was references to aliases being moved above where the aliases were declared, and the other was similarly module directives being moved after their uses in module directives.
In both cases, Styler is now smart enough to auto-apply the fixes we recommended in the old Readme.
Other than that, a slew of powerful new features have been added, the neatest one (in the author's opinion anyways) being Alias Lifting.
Alias Lifting
Along the lines of Credo.Check.Design.AliasUsage, Styler now "lifts" deeply nested aliases (depth >= 3, ala A.B.C....) that are used more than once.
Put plainly, this code:
defmodule A do
 def lift_me() do
 A.B.C.foo()
 A.B.C.baz()
 end
end
will become
defmodule A do
 @moduledoc false
 alias A.B.C

 def lift_me do
 C.foo()
 C.baz()
 end
end
To exclude modules ending in .Foo from being lifted, add styler: [alias_lifting_exclude: [Foo]] to your .formatter.exs
Module Attribute Lifting
A long outstanding breakage of a first pass with Styler was breaking directives that relied on module attributes which Styler moved after their uses. Styler now detects these potential breakages and automatically applies our suggested fix, which is creating a variable before the module. This usually happened when folks were using a library that autogenerated their moduledocs for them.
In code, this module:
defmodule MyGreatLibrary do
 @library_options [...]
 @moduledoc make_pretty_docs(@library_options)
 use OptionsMagic, my_opts: @library_options

 ...
end
Will now be styled like so:
library_options = [...]

defmodule MyGreatLibrary do
 @moduledoc make_pretty_docs(library_options)
 use OptionsMagic, my_opts: unquote(library_options)

 @library_options library_options

 ...
end
Mix Config File Organization
Styler now organizes Mix.Config.config/2,3 stanzas according to erlang term sorting. This helps manage large configuration files, removing the "where should I put this" burden from developers AND helping find duplicated configuration stanzas.
See the moduledoc for Styler.Style.Configs for more.
Everything Else
	if/unless: invert if and unless with != or !==, like we do for ! and not #132
	@derive: move @derive before defstruct|schema|embedded_schema declarations (fixes compiler warning!) #134
	strings: rewrite double-quoted strings to use ~s when there's 4+ escaped double-quotes
("\"\"\"\"" -> ~s("""")) (Credo.Check.Readability.StringSigils) #146
	Map.drop(foo, [single_key]) => Map.delete(foo, single_key) #161 (also in pipes)
	Keyword.drop(foo, [single_key]) => Keyword.delete(foo, single_key) #161 (also in pipes)
	lhs |> Enum.reverse() |> Kernel.++(enum) => lhs |> Enum.reverse(enum)

 Fixes

	alias: expands aliases when moving an alias after another directive that relied on it (#137)
	module directives: various fixes for unreported obscure crashes
	pipes: fix a comment-shifting scenario when unpiping
	Timex.now/1 will no longer be rewritten to DateTime.now!/1 due to Timex accepting a wider domain of "timezones" than the stdlib (#145, h/t @ivymarkwell)
	with: skip nodes which (unexpectedly) do not contain a do body (#158, h/t @DavidB59)
	then(&fun/1): fix false positives on arithmetic &1 + x / 1 (#164, h/t @aenglisc)

 Breaking Changes

	drop support for elixir 1.14
	ModuleDirectives: group callback attributes (before_compile after_compile after_verify) with nondirectives (previously, were grouped with use, their relative order maintained). to keep the desired behaviour, you can make new use macros that wrap these callbacks. Apologies if this makes using Styler untenable for your codebase, but it's probably not a good tool for macro-heavy libraries.
	sorting configs for the first time can change your configuration; see Styler.Style.Configs moduledoc for more

 v0.11.9

 Improvements

	pipes: check for Stream.foo equivalents to Enum.foo in a few more cases

 Fixes

	pipes: |> then(&(&1 op y)) rewrites with |> Kernel.op(y) as long as the operator is defined in Kernel; skips the rewrite otherwise (h/t @kerryb for the report & @saveman71 for the fix)

 v0.11.8

Two releases in one day!? @koudelka made too good a point about Map.new not being special...

 Improvements

	pipes: treat MapSet.new and Keyword.new the same way we do Map.new (h/t @koudelka)
	pipes: treat Stream.map the same as Enum.map when piped |> Enum.into

 v0.11.7

 Improvements

	deprecations: ~R -> ~r, Date.range/2 -> Date.range/3 with decreasing dates (h/t @milmazz)
	if: rewrite if not x, do: y => unless x, do: y
	pipes: |> Enum.map(foo) |> Map.new() => |> Map.new(foo)
	pipes: remove unnecessary then/2 on named function captures: |> then(&foo/1) => |> foo(), |> then(&foo(&1, ...)) => |> foo(...) (thanks to @tfiedlerdejanze for the idea + impl!)

 v0.11.6

 Fixes

	directives: maintain order of module compilation callbacks (@before_compile etc) relative to use statements (Closes #120, h/t @frankdugan3)

 v0.11.5

 Fixes

	fix parsing ranges with non-trivial integer bounds like x..y (Closes #119, h/t @maennchen)

 v0.11.4

 Improvements

Shoutout @milmazz for all the deprecation work below =)
	Deprecations: Rewrite 1.16 Deprecations (h/t @milmazz for all the work here)	add //1 step to Enum.slice/2|String.slice/2 with decreasing ranges
	File.stream!(file, options, line_or_bytes) => File.stream!(file, line_or_bytes, options)

	Deprecations Path.safe_relative_to/2 => Path.safe_relative/2

 v0.11.3

 Fixes

	directives: fix infinite loop when encountering @spec import(...) :: ... (Closes #115, h/t @kerryb)
	with: fix deletion of arrow-less with statements within function invocations

 v0.11.2

 Fixes

	pipes: fix unpiping do-blocks into variables when the parent expression is a function invocation
 like a(if x do y end |> z(), b) (Closes #114, h/t @wkirschbaum)

 v0.11.1

 Fixes

	with: fix with replacement when it's the only child of a do or -> block (Closes #107, h/t @kerryb -- turns out those edge cases did exist in the wild!)

 v0.11.0

 Improvements

Comments
Styler will no longer make comments jump around in any situation, and will move comments with the appropriate node in all cases but module directive rearrangement (where they'll just be left behind - sorry! we're still working on it).
	Keep comments in logical places when rewriting if/unless/cond/with (#79, #97, #101, #103)

With Statements
This release has a slew of improvements for with statements. It's not surprising that there's lots of style rules for with given that just about any case, if, or even cond do could also be expressed as a with. They're very powerful! And with great power...
	style trivial pattern matches ala lhs <- rhs to lhs = rhs (#86)
	style _ <- rhs to rhs
	style keyword , do: to do end rather than wrapping multiple statements in parens
	style statements all the way to if statements when appropriate (#100)

Other
	Rewrite {Map|Keyword}.merge(single_key: value) to use put/3 instead (#96)

 Fixes

	with: various edge cases we can only hope no one's encountered and thus never reported

 v0.10.5

After being bitten by two of them in a row, Styler's test suite now makes sure that there are no
idempotency bugs as part of its tests.
In short, we now have assert style(x) == style(style(x)) as part of every test. Sorry for not thinking to include this before :)

 Fixes

	alias: fix single-module alias deletion newlines bug
	comments: ensure all generated nodes always include line meta (#101)

 v0.10.4

 Improvements

	alias: delete noop single-module aliases (alias Foo, #87, h/t @mgieger)

 Fixes

	pipes: unnest all pipe starts in one pass (f(g(h(x))) |> j() => x |> h() |> g() |> f() |> j(), #94, h/t @tomjschuster)

 v0.10.3

 Improvements

	charlists: leave charlist rewriting to elixir's formatter on elixir >= 1.15

 Fixes

	charlists: rewrite empty charlist to use sigil ('' => ~c"")
	pipes: don't blow up extracting fully-qualified macros (Foo.bar do end |> foo(), #91, h/t @NikitaNaumenko)

 v0.10.2

 Improvements

	with: remove identity singleton else clause (eg else {:error, e} -> {:error, e} end, else error -> error end)

 v0.10.1

 Fixes

	Fix function head shrink-failures causing comments to jump into blocks (Closes #67, h/t @APB9785)

 v0.10.0

 Improvements

	hoist all block-starts to pipes to their own variables (makes styler play better with piped macros)

 Fixes

	fix pipes starting with a macro do-block creating invalid ast (#83, h/t @mhanberg)

 v0.9.7

 Fixes

	rewrite pipes starting with quote blocks like we do with case|if|cond|with blocks (#82, h/t @SteffenDE)

 v0.9.6

 Breaking Change

	removed mix style task

 v0.9.5

 Fixes

	fix mistaking Timex.now/1 in a pipe for Timex.now/0 (#66, h/t @sabiwara)

 Removed style

	stop rewriting Timex.today/0 given that we allow Timex.today/1 -- too inconsistent.

 v0.9.4

 Improvements

	if statements: drop else clauses whose body is simply nil

 v0.9.3

 Fixes

	fix unless a do b else c end rewrites to if not flopping do/else bodies! (#77, h/t @jcowgar)
	fix pipes styling ranges with steps (a..b//c) incorrectly (#76, h/t @cschmatzler)

 v0.9.2

 Fixes

	fix exception styling module attributes named @def (we confused them with real defs, whoops!) (#75, h/t @randycoulman)

 v0.9.1

the boolean blocks edition!

 Improvements

	auto-fix Credo.Check.Refactor.CondStatements (detects any truthy atom, not just true)
	if/unless rewrites:	Credo.Check.Refactor.NegatedConditionsWithElse
	Credo.Check.Refactor.NegatedConditionsInUnless
	Credo.Check.Refactor.UnlessWithElse

 v0.9.0

the with statement edition!

 Improvements

	Added right-hand-pattern-matching rewrites to for and with left arrow expressions <-
(ex: with map = %{} <- foo() => with %{} = map <- foo)
	with statement rewrites, solving the following credo rules	Credo.Check.Readability.WithSingleClause
	Credo.Check.Refactor.RedundantWithClauseResult
	Credo.Check.Refactor.WithClauses

 v0.8.5

 Fixes

	Fixed exception when encountering non-arrowed case statements ala case foo, do: unquote(quoted) (#69, h/t @brettinternet, nice)

 v0.8.4

 Fixes

	Timex related fixes (#66):	Rewrite Timex.now/1 to DateTime.now!/1 instead of DateTime.utc_now/1
	Only rewrite Timex.today/0, don't change Timex.today/1

 v0.8.3

 Improvements

	DateTime rewrites (#62, ht @milmazz)	DateTime.compare => DateTime.{before/after} (elixir >= 1.15)
	Timex.now => DateTime.utc_now
	Timex.today => Date.utc_today

 Fixes

	Pipes: add !=, !==, ===, and, and or to list of valid infix operators (#64)

 v0.8.2

 Fixes

	Pipes always de-sugars keyword lists when unpiping them (#60)

 v0.8.1

 Fixes

	ModuleDirectives doesn't mistake variables for directives (#57, h/t @leandrocp)

 v0.8.0

 Improvements (Bug Fix!?)

	ModuleDirectives no longer throws comments around a file when hoisting directives up (#53)

 v0.7.14

 Improvements

	rewrite Logger.warn/1,2 to Logger.warning/1,2 due to Elixir 1.15 deprecation

 v0.7.13

 Fixes

	don't unpipe single-piped unquote expressions (h/t @elliottneilclark)

 v0.7.12

 Fixes

	fix 0-arity paren removal on metaprogramming creating uncompilable code (h/t @simonprev)

 v0.7.11

 Fixes

	fix crash from mix style running plugins as part of formatting (no longer runs formatter plugins)

 Improvements

	single-quote charlists are rewritten to use the ~c sigil ('foo' -> ~c'foo') (h/t @fhunleth)
	mix style warns the user that Styler is primarily meant to be used as a plugin

 v0.7.10

 Fixes

	fix crash when encountering single-quote charlists (h/t @fhunleth)

 Improvements

	single-quote charlists are rewritten to use the ~c sigil ('foo' -> ~c'foo')
	when encountering _ = bar ->, replace it with bar ->

 v0.7.9

 Fixes

	Fix a toggle state resulting from (ahem, nonsense) code like _ = bar -> encountering ParameterPatternMatching style

 v0.7.8

 Fixes

	Fix crash trying to remove 0-arity parens from metaprogramming ala def unquote(foo)()

 v0.7.7

 Improvements

	Rewrite Enum.into/2,3 into Map.new/1,2 when the collectable is %{} or Map.new/0

 v0.7.6

 Fixes

	Fix crash when single pipe had inner defs (h/t @michallepicki)

 v0.7.5

 Fixes

	Fix bug from ParameterPatternMatching implementation that re-ordered pattern matching in cond do -> clauses

 v0.7.4

 Features

	Implement Credo.Check.Readability.PreferImplicitTry
	Implement Credo.Check.Consistency.ParameterPatternMatching for def|defp|fn|case

 v0.7.3

 Features

	Remove parens from 0-arity function definitions (Credo.Check.Readability.ParenthesesOnZeroArityDefs)

 v0.7.2

 Features

	Rewrite case ... true -> ...; _ -> ... to if statements as well

 v0.7.1

 Features

	Rewrite case ... true / else -> to be if statements

 v0.7.0

 Features

	Styler.Style.Simple:	Optimize Enum.reverse(foo) ++ bar to Enum.reverse(foo, bar)

	Styler.Style.Pipes:	Rewrite |> (& ...).() to |> then(& ...) (Credo.Check.Readability.PipeIntoAnonymousFunctions)
	Add parens to 1-arity pipe functions (Credo.Check.Readability.OneArityFunctionInPipe)
	Optimize a |> Enum.reverse() |> Enum.concat(enum) to Enum.reverse(a, enum)

 v0.6.1

 Improvements

	Better error handling: mix format will still format files if a style fails

 Fixes

	mix style: only run on .ex and .exs files
	ModuleDirectives: now expands alias __MODULE__.{A, B} (h/t @adriankumpf)

 v0.6.0

 Features

	mix style: brought back to life for folks who want to incrementally introduce Styler

 Fixes

	Styler.Style.Pipes:	include x in y and ^foo (for ecto) as a valid pipe starts
	work even harder to keep rewrites on one line

 v0.5.2

 Fixes

	ModuleDirectives: handle dynamic module names
	Pipes: include Ecto.Query.from and Query.from as valid pipe starts

 v0.5.1

 Improvements

	Sped up styling just a little bit

 v0.5.0

 Improvements

	Styler now implements Mix.Task.Format, meaning it is now an Elixir formatter plugin.
See the README for new installation & usage instructions

 Breaking Change! Wooo!

	the mix style task has been removed

 v0.4.1

 Improvements

	Pipes rewrites |> Enum.into(%{}[, mapper]) and Enum.into(Map.new()[, mapper]) to Map.new/1,2 calls

 v0.4.0

 Improvements

	Pipes rewrites some two-step processes into one, fixing these credo issues in pipe chains:	Credo.Check.Refactor.FilterCount
	Credo.Check.Refactor.MapJoin
	Credo.Check.Refactor.MapInto

 Fixes

	ModuleDirectives handles even weirder places to hide your aliases (anonymous functions, in this case)
	Pipes tries even harder to keep single-pipe rewrites of invocations on one line

 v0.3.1

 Fixes

	Pipes	fixed omission of == as a valid pipe start operator (h/t @peake100 for the issue)
	fixed rewrite of a |> b, where b was invoked without parenthesis

 v0.3.0

 Improvements

	Enabled Defs style and overhauled it to properly handles comments
	Optimized and tweaked ModuleDirectives style	Now culls newlines between "groups" of the same directive
	sorts @behaviour directives
	orders directives within non defmodule contexts (eg, a def do) if there's at least one alias|require|use|import

 Fixes

	Pipes will try to keep single-pipe rewrites on one line

 v0.2.0

 Improvements

	Added ModuleDirectives style	Note that this is potentially destructive in some rare cases. See moduledoc for more.
	This supersedes the Aliases style, which has been removed.

	mix style - reads and writes to stdin/stdout

 Fixes

	Pipes style is now aware of unless blocks

 v0.1.1

 Improvements

	Lots of README tweaking =)
	Optimized some Zipper operations
	Added Simple style, replacing the following Credo rule:	Credo.Check.Readability.LargeNumbers

 Fixes

	Exceptions while parsing code now appropriately render filename rather than nofile:xx
	Fixed opaque Zipper.path() typespec implementation mismatches (thanks @sega-yarkin)
	Made ex_doc dev only, removing it as a dependency for users of Styler

 v0.1.0

 Improvements

	Initial release of Styler
	Added Aliases style, replacing the following Credo rules:	Credo.Check.Readability.AliasOrder
	Credo.Check.Readability.MultiAlias
	Credo.Check.Readability.UnnecessaryAliasExpansion

	Added Pipes style, replacing the following Credo rules:	Credo.Check.Readability.BlockPipe
	Credo.Check.Readability.SinglePipe
	Credo.Check.Refactor.PipeChainStart

	Added Defs style (currently disabled by default)

Styler

Styler is an Elixir formatter plugin that's combination of mix format and mix credo, except instead of telling
you what's wrong, it just rewrites the code for you to fit its style rules.
You can learn more about the history, purpose and implementation of Styler from our talk: Styler: Elixir Style-Guide Enforcer @ GigCity Elixir 2023

Styler's documentation is under work as part of releasing 1.0.
You can find the much more complete and usable 0.11.9 documentation and readme here.

 Installation

Add :styler as a dependency to your project's mix.exs:
def deps do
 [
 {:styler, "~> 1.0.0-rc.0", only: [:dev, :test], runtime: false},
]
end
Please excuse the mess below as I find spare time to update our documentation =) Anything with TODOs are, well, notes to myself on documentation that needs rewriting. Happy to accept PRs if one seems doable to others.
@TODO put this somewhere more reasonable
Note Styler's only public API is its usage as a formatter plugin. While you're welcome to play with its internals,
they can and will change without that change being reflected in Styler's semantic version.
Then add Styler as a plugin to your .formatter.exs file
[
 plugins: [Styler]
 # optionally: include styler configuration
 # , styler: [alias_lifting_excludes: []]
]
And that's it! Now when you run mix format you'll also get the benefits of Styler's Stylish Stylings.

 Configuration

@TODO document: config for lifting, and why we won't add options other configs
Styler is @adobe's internal Style Guide Enforcer - allowing exceptions to the styles goes against that ethos. Happily, it's open source and thus yours to do with as you will =)

 Features (or as we call them, "Styles")

@TODO link examples
https://hexdocs.pm/styler/1.0.0-rc.0/styles.html

 Styler & Credo

@TODO link credo doc

 Your first Styling

Speed: Expect the first run to take some time as Styler rewrites violations of styles.
Once styled the first time, future styling formats shouldn't take noticeably more time.

 Styler can break your code

@TODO link troubleshooting
mention our rewrite of case true false to if and how we're OK with this being Styler, not SemanticallyEquivalentRewriter.

 Thanks & Inspiration

 Sourceror

Styler's first incarnation was as one-off scripts to rewrite an internal codebase to allow Credo rules to be turned on.
These rewrites were entirely powered by the terrific Sourceror library.
While Styler no longer relies on Sourceror, we're grateful for its author's help with those scripts, the inspiration
Sourceror provided in showing us what was possible, and the changes to the Elixir AST APIs that it drove.
Styler's AST-Zipper implementation in this project was forked from Sourceror. Zipper has been a crucial
part of our ability to ergonomically zip around (heh) Elixir AST.

 Credo

We never would've bothered trying to rewrite our codebase if we didn't have Credo rules we wanted to apply.
Credo's tests and implementations were referenced for implementing Styles that took the work the rest of the way.
Thanks to Credo & the Elixir community at large for coalescing around many of these Elixir style credos.

Styles

 Simple (Single Node) Styles

Function Performance & Readability Optimizations
Optimizing for either performance or readability, probably both!
These apply to the piped versions as well

 Strings to Sigils

Rewrites strings with 4 or more escaped quotes to string sigils with an alternative delimiter.
The delimiter will be one of " ({ | [' < /, chosen by which would require the fewest escapes, and otherwise preferred in the order listed.
	"{\"errors\":[\"Not Authorized\"]}" => ~s({"errors":["Not Authorized"]})

 Large Base 10 Numbers

Style base 10 numbers with 5 or more digits to have a _ every three digits.
Formatter already does this except it doesn't rewrite "typos" like 100_000_0.
If you're concerned that this breaks your team's formatting for things like "cents" (like "$100" being written as 100_00),
consider using a library made for denoting currencies rather than raw elixir integers.
	10000 => 10_000
	1_0_0_0_0 => 10_000 (elixir's formatter leaves the former as-is)
	-543213 => -543_213
	123456789 => 123_456_789
	55333.22 => 55_333.22
	-123456728.0001 => -123_456_728.0001

 Enum.into(%{}/Map/Keyword/MapSet.new) -> X.new

This is an improvement for the reader, who gets a more natural language expression: "make a new map from enum" vs "enumerate enum and collect its elements into a new map"
	Enum.into(a, %{}) => Map.new(enum)
	Enum.into(enum, Map.new()) => Map.new(enum)
	Enum.into(enum, Keyword.new()) => Keyword.new(enum)
	Enum.into(enum, MapSet.new()) => Keyword.new(enum)
	Enum.into(enum, %{}, fn x -> {x, x} end) => Map.new(enum, fn x -> {x, x} end)

 Map/Keyword.merge w/ single key literal -> X.put

Keyword.merge and Map.merge called with a literal map or keyword argument with a single key are rewritten to the equivalent put, a cognitively simpler function.
	Keyword.merge(kw, [key: :value]) => Keyword.put(kw, :key, :value)
	Map.merge(map, %{key: :value}) => Map.put(map, :key, :value)
	Map.merge(map, %{key => value}) => Map.put(map, key, value)
	map |> Map.merge(%{key: value}) |> foo() => map |> Map.put(:key, value) |> foo()

 Map/Keyword.drop w/ single key -> X.delete

In the same vein as the merge style above, [Map|Keyword].drop/2 with a single key to drop are rewritten to use delete/2
	Map.drop(map, [key]) => Map.delete(map, key)
	Keyword.drop(kw, [key]) => Keyword.delete(kw, key)

 Enum.reverse/1 and concatenation -> Enum.reverse/2

Enum.reverse/2 optimizes a two-step reverse and concatenation into a single step.
	Enum.reverse(foo) ++ bar => Enum.reverse(foo, bar)
	baz |> Enum.reverse() |> Enum.concat(bop) => Enum.reverse(baz, bop)

 Timex.now/0 ->DateTime.utc_now/0

Timex certainly has its uses, but knowing what stdlib date/time struct is returned by now/0 is a bit difficult!
We prefer calling the actual function rather than its rename in Timex, helping the reader by being more explicit.
This also hews to our internal styleguide's "Don't make one-line helper functions" guidance.

 DateModule.compare/2 -> DateModule.[before?|after?]

Again, the goal is readability and maintainability. before?/2 and after?/2 were implemented long after compare/2,
so it's not unusual that a codebase needs a lot of refactoring to be brought up to date with these new functions.
That's where Styler comes in!
	DateTime.compare(start, end_date) == :gt => DateTime.after?(start, end_date)
	DateTime.compare(start, end_date) == :lt => DateTime.before?(start, end_date)
	The same is done for DateTime|NaiveDateTime|Time|Date.compare/2

 Implicit Try

Styler will rewrite functions whose entire body is a try/do to instead use the implicit try syntax, per Credo's Credo.Check.Readability.PreferImplicitTry
The following example illustrates the most complex case, but Styler happily handles just basic try do/rescue bodies just as easily.
Before
def foo() do
 try do
 uh_oh()
 rescue
 exception -> {:error, exception}
 catch
 :a_throw -> {:error, :threw!}
 else
 try_has_an_else_clause? -> {:did_you_know, try_has_an_else_clause?}
 after
 :done
 end
end
After
def foo() do
 uh_oh()
rescue
 exception -> {:error, exception}
catch
 :a_throw -> {:error, :threw!}
else
 try_has_an_else_clause? -> {:did_you_know, try_has_an_else_clause?}
after
 :done
end

 Remove parenthesis from 0-arity function & macro definitions

The author of the library disagrees with this style convention :) BUT, the wonderful thing about Styler is it lets you write code how you want to, while normalizing it for reading for your entire team. The most important thing is not having to think about the style, and instead focus on what you're trying to achieve.
	def foo() -> def foo
	defp foo() -> defp foo
	defmacro foo() -> defmacro foo
	defmacrop foo() -> defmacrop foo

 Elixir Deprecation Rewrites

1.15+
	Logger.warn -> Logger.warning
	Path.safe_relative_to/2 => Path.safe_relative/2
	~R/my_regex/ -> ~r/my_regex/
	Enum/String.slice/2 with decreasing ranges -> add explicit steps to the range
	Date.range/2 with decreasing range -> Date.range/3
	for both of the above ranges, the rewrite can only be applied if a literal range is being passed as an argument
	IO.read/bin_read with :all option -> replace :all with :eof

1.16+
	File.stream!(file, options, line_or_bytes) => File.stream!(file, line_or_bytes, options)

 Code Readability

	put matches on right
	Credo.Check.Readability.PreferImplicitTry

 Function Definitions

	Shrink multi-line function defs
	Put assignments on the right

 case

	rewrite to if for true/false, true/_, false/true

 with

with great power comes a great responsibility. don't use with when another (simpler!) "Control Flow Structure"
	single statement with with else clauses is rewritten to case (which can be further rewritten to an if!)
	move non <- out of the head and into preroll or body
	fully replace with statement with normal code as
	drop redundant identity else clause else: (error -> error) (also more complex matches, ala {:error, error} -> {:error, error})
	Credo.Check.Refactor.RedundantWithClauseResult

 cond

	Credo.Check.Refactor.CondStatements

 if/unless

if/unless often looks to see if the root of the statement is a "negator", defined as one of the following operators: :!, :not, :!=, :!==. We always try to rewrite if/unless statements to not be negated, using the inverse construct when appropriate (but we'll never write an unless with an else)
	repeated negators (!!) are removed
	negated if/unless without an else are inverted to unless/if (this is done recursively until 0 or 1 negations remain)
	unless with else are inverted to negated if statements
	negated if with else have their clauses inverted to remove the negation
	if/unless with else: nil is dropped as redundant

 Pipe Chains

 Pipe Start

	raw value
	blocks are extracted to variables
	ecto's from is allowed

 Piped function rewrites

	add parens to function calls |> fun |> => |> fun() |>
	remove unnecessary then/2: |> then(&f(&1, ...)) -> |> f(...)
	add then when defining anon funs in pipe |> (& &1).() |> => |> |> then(& &1) |>

 Piped function optimizations

Two function calls into one! Tries to fit everything on one line when shrinking.
	lhs |> Enum.reverse() |> Enum.concat(enum) => lhs |> Enum.reverse(enum) (also Kernel.++)
	lhs |> Enum.filter(filterer) |> Enum.count() => lhs |> Enum.count(count)
	lhs |> Enum.map(mapper) |> Enum.join(joiner) => lhs |> Enum.map_join(joiner, mapper)
	lhs |> Enum.map(mapper) |> Enum.into(empty_map) => lhs |> Map.new(mapper)
	lhs |> Enum.map(mapper) |> Enum.into(collectable) => lhs |> Enum.into(collectable, mapper)
	lhs |> Enum.map(mapper) |> Map.new() => lhs |> Map.new(mapper) mapset & keyword also

 Unpiping Single Pipes

	notably, optimizations might turn a 2 pipe into a single pipe
	doesn't unpipe when we're starting w/ quote
	pretty straight forward i daresay

Styler

Styler is a formatter plugin with stronger opinions on code organization, multi-line defs and other code-style matters.

Styler.AliasEnv

A datastructure for maintaining something like compiler alias state when traversing AST.
Not anywhere as correct as what the compiler gives us, but close enough for open source work.
A alias env is a map from an alias's as to its resolution in a context.
Given the ast for
alias Foo.Bar
we'd create the env:
%{:Bar => [:Foo, :Bar]}

 Summary

 Functions

 define(env \\ %{}, ast)

 expand(env, ast)

 Functions

 Link to this function

 define(env \\ %{}, ast)

 View Source

 Link to this function

 expand(env, ast)

 View Source

Styler.Style behaviour

A Style takes AST and returns a transformed version of that AST.
Because these transformations involve traversing trees (the "T" in "AST"), we wrap the AST in a structure
called a Zipper to facilitate walking the trees.

 Summary

 Types

 context()

 Callbacks

 run(t, context)

 run will be used with Zipper.traverse_while/3, meaning it will be executed on every node of the AST.

 Functions

 displace_comments(comments, range)

 Set the line of all comments with line in range_start..range_end to instead have line range_start

 ensure_block_parent(zipper)

 Returns the current node (wrapped in a __block__ if necessary) if it's a valid place to insert additional nodes

 find_nearest_block(zipper)

 Returns a zipper focused on the nearest node where additional nodes can be inserted (a "block").

 fix_line_numbers(nodes, max)

 "Fixes" the line numbers of nodes who have had their orders changed via sorting or other methods.
This "fix" simply ensures that comments don't get wrecked as part of us moving AST nodes willy-nilly.

 max_line(ast)

 reset_newlines(nodes)

 Takes a list of nodes and clumps them up, setting end_of_expression: [newlines: x] to 1 for all but the final node,
which gets 2 instead, (hopefully!) creating an empty line before whatever follows.

 reset_newlines(list, acc)

 set_line(ast_node, line, opts \\ [])

 Recursively sets :line meta to line. Deletes :newlines unless delete_lines: false is passed

 shift_comments(comments, shifts)

 Perform a series of shifts in a single pass.

 shift_comments(comments, range, delta)

 Change the line of all comments with line in range by adding delta to it.
A positive delta will move the lines further down a file, while a negative delta will move them up.

 shift_line(ast_node, delta)

 Recursively updates :line meta by adding delta

 update_all_meta(node, meta_fun)

 Traverses an ast node, updating all nodes' meta with meta_fun

 without_meta(ast)

 Types

 Link to this type

 context()

 View Source

 @type context() :: %{comments: [map()], file: :stdin | String.t()}

 Callbacks

 Link to this callback

 run(t, context)

 View Source

 @callback run(Styler.Zipper.t(), context()) ::
 {Styler.Zipper.command(), Styler.Zipper.t(), context()}

run will be used with Zipper.traverse_while/3, meaning it will be executed on every node of the AST.
You can skip traversing parts of the tree by returning a Zipper that's further along in the traversal, for example
by calling Zipper.skip(zipper) to skip an entire subtree you know is of no interest to your Style.

 Functions

 Link to this function

 displace_comments(comments, range)

 View Source

Set the line of all comments with line in range_start..range_end to instead have line range_start

 Link to this function

 ensure_block_parent(zipper)

 View Source

 @spec ensure_block_parent(Styler.Zipper.t()) :: {:ok, Styler.Zipper.t()} | :error

Returns the current node (wrapped in a __block__ if necessary) if it's a valid place to insert additional nodes

 Link to this function

 find_nearest_block(zipper)

 View Source

 @spec find_nearest_block(Styler.Zipper.t()) :: Styler.Zipper.t()

Returns a zipper focused on the nearest node where additional nodes can be inserted (a "block").
The nearest node is either the current node, an ancestor, or one of those two but wrapped in a new :__block__ node.

 Link to this function

 fix_line_numbers(nodes, max)

 View Source

"Fixes" the line numbers of nodes who have had their orders changed via sorting or other methods.
This "fix" simply ensures that comments don't get wrecked as part of us moving AST nodes willy-nilly.
The fix is rather naive, and simply enforces the following property on the code:
A given node must have a line number less than the following node.
Et voila! Comments behave much better.

 In Detail

For example, given document
 1: defmodule ...
 2: alias B
 3: # this is foo
 4: def foo ...
 5: alias A
Sorting aliases the ast node for would put alias A (line 5) before alias B (line 2).
 1: defmodule ...
 5: alias A
 2: alias B
 3: # this is foo
 4: def foo ...
Elixir's document algebra would then encounter line: 5 and immediately dump all comments with line <= 5,
meaning after running through the formatter we'd end up with
 1: defmodule
 2: # hi
 3: # this is foo
 4: alias A
 5: alias B
 6:
 7: def foo ...
This function fixes that by seeing that alias A has a higher line number than its following sibling alias B and so
updates alias A's line to be preceding alias B's line.
Running the results of this function through the formatter now no longer dumps the comments prematurely
 1: defmodule ...
 2: alias A
 3: alias B
 4: # this is foo
 5: def foo ...

 Link to this function

 max_line(ast)

 View Source

 Link to this function

 reset_newlines(nodes)

 View Source

Takes a list of nodes and clumps them up, setting end_of_expression: [newlines: x] to 1 for all but the final node,
which gets 2 instead, (hopefully!) creating an empty line before whatever follows.

 Link to this function

 reset_newlines(list, acc)

 View Source

 Link to this function

 set_line(ast_node, line, opts \\ [])

 View Source

Recursively sets :line meta to line. Deletes :newlines unless delete_lines: false is passed

 Link to this function

 shift_comments(comments, shifts)

 View Source

Perform a series of shifts in a single pass.
When shifting comments from block A to block B, naively using two passes of shift_comments/3 would result
in all comments ending up in either region A or region B (because A would move to B, then all B back to A)
This function exists to make sure that a comment is only moved once during the swap.

 Link to this function

 shift_comments(comments, range, delta)

 View Source

Change the line of all comments with line in range by adding delta to it.
A positive delta will move the lines further down a file, while a negative delta will move them up.

 Link to this function

 shift_line(ast_node, delta)

 View Source

Recursively updates :line meta by adding delta

 Link to this function

 update_all_meta(node, meta_fun)

 View Source

Traverses an ast node, updating all nodes' meta with meta_fun

 Link to this function

 without_meta(ast)

 View Source

Styler.Style.Blocks

Simple 1-1 rewrites all crammed into one module to make for more efficient traversals
Credo Rules addressed:
	Credo.Check.Consistency.ParameterPatternMatching
	Credo.Check.Readability.LargeNumbers
	Credo.Check.Readability.ParenthesesOnZeroArityDefs
	Credo.Check.Readability.PreferImplicitTry
	Credo.Check.Readability.WithSingleClause
	Credo.Check.Refactor.CaseTrivialMatches
	Credo.Check.Refactor.CondStatements
	Credo.Check.Refactor.RedundantWithClauseResult
	Credo.Check.Refactor.WithClauses

 Summary

 Functions

 run(zipper, ctx)

 Callback implementation for Styler.Style.run/2.

 Functions

 Link to this function

 run(zipper, ctx)

 View Source

Callback implementation for Styler.Style.run/2.

Styler.Style.Configs

Orders Config.config/2,3 stanzas in configuration files.
	ordering is done only within immediate-sibling config statements
	assignments are moved above the configuration blocks
	any non config/2,3 or assignment (=/2) calls mark the end of a sorting block.
this is support having conditional blocks (if/case/cond) and import_config stanzas between blocks

 Breakages

If you configure the same values multiple times, Styler may swap their orders
Before
 line 04: config :foo, bar: :zab
 line 40: config :foo, bar: :baz
 # Application.fetch_env!(:foo)[:bar] => :baz
After
 line 04: config :foo, bar: :baz
 line 05: config :foo, bar: :zab
 # Application.fetch_env!(:foo)[:bar] => :zab
Fix
The reason Styler sorts configuration is to help you noticed these duplicated configuration stanzas.
Delete the duplicative/erroneous stanza and life will be good.

 Summary

 Functions

 run(zipper, ctx)

 set_lines(list, comments, start_line, node_acc, c_acc)

 Functions

 Link to this function

 run(zipper, ctx)

 View Source

 Link to this function

 set_lines(list, comments, start_line, node_acc, c_acc)

 View Source

Styler.Style.Defs

Styles function heads so that they're as small as possible.
The goal is that a function head fits on a single line.
This isn't a Credo issue, and the formatter is fine with either approach. But Styler has opinions!
Ex:
This long declaration
def foo(%{
 bar: baz
}) do
 ...
end
Becomes
def foo(%{bar: baz}) do
 ...
end

 Summary

 Functions

 run(zipper, ctx)

 Callback implementation for Styler.Style.run/2.

 Functions

 Link to this function

 run(zipper, ctx)

 View Source

Callback implementation for Styler.Style.run/2.

Styler.Style.Deprecations

Transformations to soft or hard deprecations introduced on newer Elixir releases

 Summary

 Functions

 run(arg, ctx)

 Callback implementation for Styler.Style.run/2.

 Functions

 Link to this function

 run(arg, ctx)

 View Source

Callback implementation for Styler.Style.run/2.

Styler.Style.ModuleDirectives

Styles up module directives!
This Style will expand multi-aliases/requires/imports/use and sort the directive within its groups (except uses, which cannot be sorted)
It also adds a blank line after each directive group.

 Credo rules

Rewrites for the following Credo rules:
	Credo.Check.Consistency.MultiAliasImportRequireUse (force expansion)
	Credo.Check.Readability.AliasOrder (we sort __MODULE__, which credo doesn't)
	Credo.Check.Readability.ModuleDoc (adds @moduledoc false if missing. includes *.exs files)
	Credo.Check.Readability.MultiAlias
	Credo.Check.Readability.StrictModuleLayout (see section below for details)
	Credo.Check.Readability.UnnecessaryAliasExpansion
	Credo.Check.Design.AliasUsage

 Breakages

This can break your code.

 Strict Layout

Modules directives are sorted into the following order:
	@shortdoc
	@moduledoc
	@behaviour
	use
	import
	alias
	require
	everything else (unchanged)

If any of the sorted directives had a dependency on code that is now below it, your code will fail to compile after being styled.
For instance, the following will be broken because the module attribute definition will
be moved below the use clause, meaning @pi is undefined when invoked.
 # before
 defmodule Approximation do
 @pi 3.14
 use Math, pi: @pi
 end

 # after
 defmodule Approximation do
 @moduledoc false
 use Math, pi: @pi
 @pi 3.14
 end
For now, it's up to you to come up with a fix for this issue. Sorry!

 Strict Layout: interwoven conflicting aliases

Ideally no one writes code like this as it's hard for our human brains to notice the context switching!
Still, it's a possible source of breakages in Styler.
 alias Foo.Bar
 Bar.Baz.bop()
 alias Baz.Bar
 Bar.Baz.bop()
 # becomes
 alias Baz.Bar
 alias Baz.Bar.Baz
 alias Foo.Bar
 Baz.bop() # was Foo.Bar.Baz, is now Baz.Bar.Baz
 Baz.bop()

 Summary

 Functions

 run(zipper, ctx)

 Callback implementation for Styler.Style.run/2.

 Functions

 Link to this function

 run(zipper, ctx)

 View Source

Callback implementation for Styler.Style.run/2.

Styler.Style.Pipes

Styles pipes! In particular, don't make pipe chains of only one pipe, and some persnickety pipe chain start stuff.
Rewrites for the following Credo rules:
	Credo.Check.Readability.BlockPipe
	Credo.Check.Readability.OneArityFunctionInPipe
	Credo.Check.Readability.PipeIntoAnonymousFunctions
	Credo.Check.Readability.SinglePipe
	Credo.Check.Refactor.FilterCount
	Credo.Check.Refactor.MapInto
	Credo.Check.Refactor.MapJoin
	Credo.Check.Refactor.PipeChainStart, excluded_functions: ["from"]

 Summary

 Functions

 run(zipper, ctx)

 Callback implementation for Styler.Style.run/2.

 Functions

 Link to this function

 run(zipper, ctx)

 View Source

Callback implementation for Styler.Style.run/2.

Styler.Style.SingleNode

Simple 1-1 rewrites all crammed into one module to make for more efficient traversals
Credo Rules addressed:
	Credo.Check.Consistency.ParameterPatternMatching
	Credo.Check.Readability.LargeNumbers
	Credo.Check.Readability.ParenthesesOnZeroArityDefs
	Credo.Check.Readability.PreferImplicitTry
	Credo.Check.Readability.StringSigils
	Credo.Check.Readability.WithSingleClause
	Credo.Check.Refactor.CaseTrivialMatches
	Credo.Check.Refactor.CondStatements
	Credo.Check.Refactor.RedundantWithClauseResult
	Credo.Check.Refactor.WithClauses

 Summary

 Functions

 run(zipper, ctx)

 Callback implementation for Styler.Style.run/2.

 Functions

 Link to this function

 run(zipper, ctx)

 View Source

Callback implementation for Styler.Style.run/2.

Styler.Zipper

Implements a Zipper for the Elixir AST based on Gérard Huet Functional pearl: the
zipper paper and
Clojure's clojure.zip API.
A zipper is a data structure that represents a location in a tree from the
perspective of the current node, also called focus. It is represented by a
2-tuple where the first element is the focus and the second element is the
metadata/context. The metadata is nil when the focus is the topmost node

 Summary

 Types

 command()

 path()

 t()

 tree()

 zipper()

 Functions

 any?(zipper, fun)

 Traverses zipper, returning true when fun.(Zipper.node(zipper)) is truthy, or false otherwise

 append_child(arg, child)

 Inserts the item as the rightmost child of the node at this zipper,
without moving.

 children(arg)

 Returns a list of children of the node.

 down(zipper)

 Returns the zipper of the leftmost child of the node at this zipper, or
nil if no there's no children.

 find(zipper, direction \\ :next, predicate)

 Returns a zipper to the node that satisfies the predicate function, or nil
if none is found.

 insert_child(arg, child)

 Inserts the item as the leftmost child of the node at this zipper,
without moving.

 insert_left(arg, child)

 Inserts the item as the left sibling of the node at this zipper, without
moving. Raises an ArgumentError when attempting to insert a sibling at the
top level.

 insert_right(arg, child)

 Inserts the item as the right sibling of the node at this zipper, without
moving. Raises an ArgumentError when attempting to insert a sibling at the
top level.

 insert_siblings(arg, siblings)

 Inserts many siblings to the right.

 left(arg1)

 Returns the zipper of the left sibling of the node at this zipper, or nil.

 leftmost(zipper)

 Returns the leftmost sibling of the node at this zipper, or itself.

 next(zipper)

 Returns the following zipper in depth-first pre-order.

 node(arg)

 Returns the node at the zipper.

 prepend_siblings(arg, siblings)

 Inserts many siblings to the left.

 prev(zipper)

 Returns the previous zipper in depth-first pre-order.
Returns nil if the tree is already at the top.

 remove(arg)

 Removes the node at the zipper, returning the zipper that would have preceded
it in a depth-first walk.

 replace(arg, tree)

 Replaces the current node in the zipper with a new node.

 replace_children(arg, children)

 Returns the zipper with the current children of the node replaced with children

 right(arg1)

 Returns the zipper of the right sibling of the node at this zipper, or nil.

 rightmost(zipper)

 Returns the rightmost sibling of the node at this zipper, or itself.

 root(zipper)

 Walks the zipper all the way up and returns the root node.

 skip(zipper, direction \\ :next)

 Returns the zipper of the right sibling of the node at this zipper, or the
next zipper when no right sibling is available.

 top(zipper)

 Walks the zipper all the way up and returns the top zipper.

 traverse(zipper, fun)

 Traverses the tree in depth-first pre-order calling the given function for
each node.

 traverse(zipper, acc, fun)

 Traverses the tree in depth-first pre-order calling the given function for
each node with an accumulator.

 traverse_while(zipper, fun)

 Traverses the tree in depth-first pre-order calling the given function for
each node.

 traverse_while(zipper, acc, fun)

 Traverses the tree in depth-first pre-order calling the given function for
each node with an accumulator.

 up(arg)

 Returns the zipper of the parent of the node at this zipper, or nil if at the
top.

 update(arg, fun)

 Replaces the current node in the zipper with the result of applying fun to
the node.

 zip(term)

 Creates a zipper from a tree node.

 Types

 Link to this type

 command()

 View Source

 @type command() :: :cont | :skip | :halt

 Link to this opaque

 path()

 View Source

 (opaque)

 @opaque path()

 Link to this type

 t()

 View Source

 @type t() :: zipper()

 Link to this type

 tree()

 View Source

 @type tree() :: Macro.t()

 Link to this type

 zipper()

 View Source

 @type zipper() :: {tree(), path() | nil}

 Functions

 Link to this function

 any?(zipper, fun)

 View Source

 @spec any?(zipper(), (tree() -> term())) :: boolean()

Traverses zipper, returning true when fun.(Zipper.node(zipper)) is truthy, or false otherwise

 Link to this function

 append_child(arg, child)

 View Source

Inserts the item as the rightmost child of the node at this zipper,
without moving.

 Link to this function

 children(arg)

 View Source

 @spec children(zipper()) :: [tree()]

Returns a list of children of the node.

 Link to this function

 down(zipper)

 View Source

 @spec down(zipper()) :: zipper() | nil

Returns the zipper of the leftmost child of the node at this zipper, or
nil if no there's no children.

 Link to this function

 find(zipper, direction \\ :next, predicate)

 View Source

 @spec find(zipper(), direction :: :prev | :next, predicate :: (tree() -> any())) ::
 zipper() | nil

Returns a zipper to the node that satisfies the predicate function, or nil
if none is found.
The optional second parameters specifies the direction, defaults to
:next.

 Link to this function

 insert_child(arg, child)

 View Source

Inserts the item as the leftmost child of the node at this zipper,
without moving.

 Link to this function

 insert_left(arg, child)

 View Source

 @spec insert_left(zipper(), tree()) :: zipper()

Inserts the item as the left sibling of the node at this zipper, without
moving. Raises an ArgumentError when attempting to insert a sibling at the
top level.

 Link to this function

 insert_right(arg, child)

 View Source

 @spec insert_right(zipper(), tree()) :: zipper()

Inserts the item as the right sibling of the node at this zipper, without
moving. Raises an ArgumentError when attempting to insert a sibling at the
top level.

 Link to this function

 insert_siblings(arg, siblings)

 View Source

 @spec insert_siblings(zipper(), [tree()]) :: zipper()

Inserts many siblings to the right.
Equivalent to
Enum.reduce(siblings, zipper, &Zipper.insert_right(&2, &1))

 Link to this function

 left(arg1)

 View Source

 @spec left(zipper()) :: zipper() | nil

Returns the zipper of the left sibling of the node at this zipper, or nil.

 Link to this function

 leftmost(zipper)

 View Source

 @spec leftmost(zipper()) :: zipper()

Returns the leftmost sibling of the node at this zipper, or itself.

 Link to this function

 next(zipper)

 View Source

 @spec next(zipper()) :: zipper() | nil

Returns the following zipper in depth-first pre-order.

 Link to this function

 node(arg)

 View Source

 @spec node(zipper()) :: tree()

Returns the node at the zipper.

 Link to this function

 prepend_siblings(arg, siblings)

 View Source

 @spec prepend_siblings(zipper(), [tree()]) :: zipper()

Inserts many siblings to the left.
Equivalent to
Enum.reduce(siblings, zipper, &Zipper.insert_left(&2, &1))

 Link to this function

 prev(zipper)

 View Source

 @spec prev(zipper()) :: zipper() | nil

Returns the previous zipper in depth-first pre-order.
Returns nil if the tree is already at the top.

 Link to this function

 remove(arg)

 View Source

 @spec remove(zipper()) :: zipper()

Removes the node at the zipper, returning the zipper that would have preceded
it in a depth-first walk.

 Link to this function

 replace(arg, tree)

 View Source

 @spec replace(zipper(), tree()) :: zipper()

Replaces the current node in the zipper with a new node.

 Link to this function

 replace_children(arg, children)

 View Source

 @spec replace_children(zipper(), [tree()]) :: zipper()

Returns the zipper with the current children of the node replaced with children

 Link to this function

 right(arg1)

 View Source

 @spec right(zipper()) :: zipper() | nil

Returns the zipper of the right sibling of the node at this zipper, or nil.

 Link to this function

 rightmost(zipper)

 View Source

 @spec rightmost(zipper()) :: zipper()

Returns the rightmost sibling of the node at this zipper, or itself.

 Link to this function

 root(zipper)

 View Source

 @spec root(zipper()) :: tree()

Walks the zipper all the way up and returns the root node.

 Link to this function

 skip(zipper, direction \\ :next)

 View Source

 @spec skip(zipper(), direction :: :next | :prev) :: zipper() | nil

Returns the zipper of the right sibling of the node at this zipper, or the
next zipper when no right sibling is available.
This allows to skip subtrees while traversing the siblings of a node.
The optional second parameters specifies the direction, defaults to
:next.
If no right/left sibling is available, this function returns the same value as
next/1/prev/1.
The function skip/1 behaves like the :skip in traverse_while/2 and
traverse_while/3.

 Link to this function

 top(zipper)

 View Source

 @spec top(zipper()) :: zipper()

Walks the zipper all the way up and returns the top zipper.

 Link to this function

 traverse(zipper, fun)

 View Source

 @spec traverse(zipper(), (zipper() -> zipper())) :: zipper()

Traverses the tree in depth-first pre-order calling the given function for
each node.
If the zipper is not at the top, just the subtree will be traversed.
The function must return a zipper.

 Link to this function

 traverse(zipper, acc, fun)

 View Source

 @spec traverse(zipper(), term(), (zipper(), term() -> {zipper(), term()})) ::
 {zipper(), term()}

Traverses the tree in depth-first pre-order calling the given function for
each node with an accumulator.
If the zipper is not at the top, just the subtree will be traversed.

 Link to this function

 traverse_while(zipper, fun)

 View Source

 @spec traverse_while(zipper(), (zipper() -> {command(), zipper()})) :: zipper()

Traverses the tree in depth-first pre-order calling the given function for
each node.
The traversing will continue if the function returns {:cont, zipper},
skipped for {:skip, zipper} and halted for {:halt, zipper}
If the zipper is not at the top, just the subtree will be traversed.
The function must return a zipper.

 Link to this function

 traverse_while(zipper, acc, fun)

 View Source

 @spec traverse_while(
 zipper(),
 term(),
 (zipper(), term() -> {command(), zipper(), term()})
) ::
 {zipper(), term()}

Traverses the tree in depth-first pre-order calling the given function for
each node with an accumulator.
The traversing will continue if the function returns {:cont, zipper, acc},
skipped for {:skip, zipper, acc} and halted for {:halt, zipper, acc}
If the zipper is not at the top, just the subtree will be traversed.

 Link to this function

 up(arg)

 View Source

 @spec up(zipper()) :: zipper() | nil

Returns the zipper of the parent of the node at this zipper, or nil if at the
top.

 Link to this function

 update(arg, fun)

 View Source

 @spec update(zipper(), (tree() -> tree())) :: zipper()

Replaces the current node in the zipper with the result of applying fun to
the node.

 Link to this function

 zip(term)

 View Source

 @spec zip(tree()) :: zipper()

Creates a zipper from a tree node.

Styler.StyleError exception

Wraps errors raised by Styles during tree traversal.

 Summary

 Functions

 message(map)

 Callback implementation for Exception.message/1.

 Functions

 Link to this function

 message(map)

 View Source

Callback implementation for Exception.message/1.

 OEBPS/dist/epub-TCI3LGHF.js
(()=>{var d=document.querySelector.bind(document),i=document.querySelectorAll.bind(document);function r(o){document.readyState!=="loading"?o():document.addEventListener("DOMContentLoaded",o)}var c="ex_doc:settings",h={tooltips:!0,theme:null,livebookUrl:null},s=class{constructor(){this._subscribers=[],this._settings=h,this._loadSettings()}get(){return this._settings}update(t){let e=this._settings;this._settings={...this._settings,...t},this._subscribers.forEach(n=>n(this._settings,e)),this._storeSettings()}getAndSubscribe(t){this._subscribers.push(t),t(this._settings)}_loadSettings(){try{let t=localStorage.getItem(c);if(t){let e=JSON.parse(t);this._settings={...this._settings,...e}}this._loadSettingsLegacy()}catch(t){console.error(`Failed to load settings: ${t}`)}}_storeSettings(){try{this._storeSettingsLegacy(),localStorage.setItem(c,JSON.stringify(this._settings))}catch(t){console.error(`Failed to persist settings: ${t}`)}}_loadSettingsLegacy(){localStorage.getItem("tooltipsDisabled")!==null&&(this._settings={...this._settings,tooltips:!1}),localStorage.getItem("night-mode")==="true"&&(this._settings={...this._settings,nightMode:!0}),this._settings.nightMode===!0&&(this._settings={...this._settings,theme:"dark"})}_storeSettingsLegacy(){this._settings.tooltips?localStorage.removeItem("tooltipsDisabled"):localStorage.setItem("tooltipsDisabled","true"),this._settings.nightMode!==null?localStorage.setItem("night-mode",this._settings.nightMode===!0?"true":"false"):localStorage.removeItem("night-mode"),this._settings.theme!==null?(localStorage.setItem("night-mode",this._settings.theme==="dark"?"true":"false"),this._settings.nightMode=this._settings.theme==="dark"):(delete this._settings.nightMode,localStorage.removeItem("night-mode"))}},f=new s;function l(){["warning","info","error","neutral","tip"].forEach(t=>{i(`blockquote h3.${t}, blockquote h4.${t}`).forEach(e=>{e.closest("blockquote").classList.add(t)})})}document.addEventListener("click",function(o){if(window.innerWidth<=768){let t=o.target.closest('a[href^="#"]');if(t){o.preventDefault();let e=t.getAttribute("href").substring(1),n=document.getElementById(e);if(n){let u=n.getBoundingClientRect().top+window.scrollY-45;window.scrollTo({top:u,behavior:"smooth"})}}}});var m="hll";function g(){p()}function p(){i("[data-group-id]").forEach(t=>{let e=t.getAttribute("data-group-id");t.addEventListener("mouseenter",n=>{a(e,!0)}),t.addEventListener("mouseleave",n=>{a(e,!1)})})}function a(o,t){i(`[data-group-id="${o}"]`).forEach(n=>{n.classList.toggle(m,t)})}r(()=>{g(),l()});})();

