

 Styler

 v1.0.0

 Table of contents

 	Changelog

 	Styler

 	Rewrites

 	Basic Styles

 	Pipe Chains

 	Control Flow Macros (if, case, ...)

 	Mix Configs (config/config.exs, ...)

 	Module Directives (use, alias, ...)

 	Styler & Credo

 	

 	Modules

 	Styler

 	Styler.AliasEnv

 	Styler.Style

 	Styler.Style.Blocks

 	Styler.Style.Configs

 	Styler.Style.Defs

 	Styler.Style.Deprecations

 	Styler.Style.ModuleDirectives

 	Styler.Style.Pipes

 	Styler.Style.SingleNode

 	Styler.Zipper

 	Exceptions

 	Styler.StyleError

Changelog

Note Styler's only public API is its usage as a formatter plugin. While you're welcome to play with its internals,
they can and will change without that change being reflected in Styler's semantic version.

 1.0.0

Styler's two biggest outstanding bugs have been fixed, both related to compilation breaking during module directive organization. One was references to aliases being moved above where the aliases were declared, and the other was similarly module directives being moved after their uses in module directives.
In both cases, Styler is now smart enough to auto-apply the fixes we recommended in the old Readme.
Other than that, a slew of powerful new features have been added, the neatest one (in the author's opinion anyways) being Alias Lifting.
Thanks to everyone who reported bugs that contributed to all the fixes released in 1.0.0 as well.

 Improvements

Alias Lifting
Along the lines of Credo.Check.Design.AliasUsage, Styler now "lifts" deeply nested aliases (depth >= 3, ala A.B.C....) that are used more than once.
Put plainly, this code:
defmodule A do
 def lift_me() do
 A.B.C.foo()
 A.B.C.baz()
 end
end
will become
defmodule A do
 @moduledoc false
 alias A.B.C

 def lift_me do
 C.foo()
 C.baz()
 end
end
To exclude modules ending in .Foo from being lifted, add styler: [alias_lifting_exclude: [Foo]] to your .formatter.exs
Module Attribute Lifting
A long outstanding breakage of a first pass with Styler was breaking directives that relied on module attributes which Styler moved after their uses. Styler now detects these potential breakages and automatically applies our suggested fix, which is creating a variable before the module. This usually happened when folks were using a library that autogenerated their moduledocs for them.
In code, this module:
defmodule MyGreatLibrary do
 @library_options [...]
 @moduledoc make_pretty_docs(@library_options)
 use OptionsMagic, my_opts: @library_options

 ...
end
Will now be styled like so:
library_options = [...]

defmodule MyGreatLibrary do
 @moduledoc make_pretty_docs(library_options)
 use OptionsMagic, my_opts: unquote(library_options)

 @library_options library_options

 ...
end
Mix Config File Organization
Styler now organizes Mix.Config.config/2,3 stanzas according to erlang term sorting. This helps manage large configuration files, removing the "where should I put this" burden from developers AND helping find duplicated configuration stanzas.
See the moduledoc for Styler.Style.Configs for more.
Pipe Optimizations
	Enum.into(x, []) => Enum.to_list(x)
	Enum.into(x, [], mapper) => Enum.map(x, mapper)
	a |> Enum.map(m) |> Enum.join() to map_join(a, m). we already did this for join/2, but missed the case for join/1
	lhs |> Enum.reverse() |> Kernel.++(enum) => lhs |> Enum.reverse(enum)

with styles
	remove with structure with no left arrows in its head to be normal code (#174)
	with true <- x(), do: y => if x(), do: y (#173)

Everything Else
	if/unless: invert if and unless with != or !==, like we do for ! and not #132
	@derive: move @derive before defstruct|schema|embedded_schema declarations (fixes compiler warning!) #134
	strings: rewrite double-quoted strings to use ~s when there's 4+ escaped double-quotes
("\"\"\"\"" -> ~s("""")) (Credo.Check.Readability.StringSigils) #146
	Map.drop(foo, [single_key]) => Map.delete(foo, single_key) #161 (also in pipes)
	Keyword.drop(foo, [single_key]) => Keyword.delete(foo, single_key) #161 (also in pipes)

 Fixes

	don't blow up on def function_head_with_no_body_nor_parens (#185, h/t @ypconstante)
	fix with arrow replacement + redundant body removal creating invalid statements (#184, h/t @JesseHerrick)
	allow Kernel unary ! and not as valid pipe starts (#183, h/t @nherzing)
	fix Map.drop(x, [a | b]) registering as a chance to refactor to Map.delete

	alias: expands aliases when moving an alias after another directive that relied on it (#137)
	module directives: various fixes for unreported obscure crashes
	pipes: fix a comment-shifting scenario when unpiping
	Timex.now/1 will no longer be rewritten to DateTime.now!/1 due to Timex accepting a wider domain of "timezones" than the stdlib (#145, h/t @ivymarkwell)
	with: skip nodes which (unexpectedly) do not contain a do body (#158, h/t @DavidB59)
	then(&fun/1): fix false positives on arithmetic &1 + x / 1 (#164, h/t @aenglisc)

 Breaking Changes

	drop support for elixir 1.14
	ModuleDirectives: group callback attributes (before_compile after_compile after_verify) with nondirectives (previously, were grouped with use, their relative order maintained). to keep the desired behaviour, you can make new use macros that wrap these callbacks. Apologies if this makes using Styler untenable for your codebase, but it's probably not a good tool for macro-heavy libraries.
	sorting configs for the first time can change your configuration; see Mix Configs docs for more

Styler

[image: Hex.pm]
[image: Hexdocs.pm]
[image: Github.com]
Styler
Styler is an Elixir formatter plugin that's combination of mix format and mix credo, except instead of telling
you what's wrong, it just rewrites the code for you to fit its style rules.
You can learn more about the history, purpose and implementation of Styler from our talk: Styler: Elixir Style-Guide Enforcer @ GigCity Elixir 2023

 Features

	auto-fixes many credo rules, meaning you can turn them off to speed credo up
	keeps a strict module layout	alphabetizes module directives

	extracts repeated aliases
	makes your pipe chains pretty as can be	pipes and unpipes function calls based on the number of calls
	optimizes standard library calls (a |> Enum.map(m) |> Enum.into(Map.new) => Map.new(a, m))

	replaces strings with sigils when the string has many escaped quotes
	... and so much more

See our Rewrites documentation on hexdocs

 Who is Styler for?

Styler was designed for a **large team (40+ engineers) working in a single codebase. It helps remove fiddly code review comments and removes failed linter CI slowdowns, helping teams get things done faster. Teams in similar situations might appreciate Styler.
Its automations are also extremely valuable for taming legacy elixir codebases or just refactoring in general. Some of its rewrites have inspired code actions in elixir language servers.
Conversely, Styler probably isn't a good match for:
	experimental, macro-heavy codebases
	teams that don't care about code standards

 Installation

Add :styler as a dependency to your project's mix.exs:
def deps do
 [
 {:styler, "~> 1.0.0-rc.1", only: [:dev, :test], runtime: false},
]
end
Then add Styler as a plugin to your .formatter.exs file
[
 plugins: [Styler]
]
And that's it! Now when you run mix format you'll also get the benefits of Styler's Stylish Stylings.
Speed: Expect the first run to take some time as Styler rewrites violations of styles and bottlenecks on disk I/O. Subsequent formats formats won't take noticeably more time.

 Configuration

Styler can be configured in your .formatter.exs file
[
 plugins: [Styler],
 styler: [
 alias_lifting_exclude: [...]
]
]
Styler's only current configuration option is :alias_lifting_exclude, which accepts a list of atoms to not lift. See the Module Directive documentation for more.
No Credo-Style Enable/Disable
Styler will not add configuration for ad-hoc enabling/disabling of rewrites. Sorry! Its implementation simply does not support that approach. There are however many forks out there that have attempted this; please explore the Github forks tab to see if there's a project that suits your needs or that you can draw inspiration from.
Ultimately Styler is @adobe's internal tool that we're happy to share with the world. We're delighted if you like it as is, and just as excited if it's a starting point for you to make something even better for yourself.

 WARNING: Styler can change the behaviour of your program!

In some cases, this can introduce bugs. It goes without saying, but look over your changes before committing to main :)
A simple example of a way Styler changes the behaviour of code is the following rewrite:
Before: this case statement...
case foo do
 true -> :ok
 false -> :error
end

After: ... is rewritten by Styler to be an if statement!.
if foo do
 :ok
else
 :error
end
These programs are not semantically equivalent. The former would raise if foo returned any value other than true or false, while the latter blissfully completes.
However, Styler is about style, and the if statement is (in our opinion) of much better style. If the exception behaviour was intentional on the code author's part, they should have written the program like this:
case foo do
 true -> :ok
 false -> :error
 other -> raise "expected `true` or `false`, got: #{inspect other}"
end
Also good style! But Styler assumes that most of the time people just meant the if equivalent of the code, and so makes that change. If issues like this bother you, Styler probably isn't the tool you're looking for.
Other ways Styler can change your program:
	with statement rewrites
	config file sorting
	and likely other ways. stay safe out there!

 Thanks & Inspiration

 Sourceror

Styler's first incarnation was as one-off scripts to rewrite an internal codebase to allow Credo rules to be turned on.
These rewrites were entirely powered by the terrific Sourceror library.
While Styler no longer relies on Sourceror, we're grateful for its author's help with those scripts, the inspiration
Sourceror provided in showing us what was possible, and the changes to the Elixir AST APIs that it drove.
Styler's AST-Zipper implementation in this project was forked from Sourceror. Zipper has been a crucial
part of our ability to ergonomically zip around (heh) Elixir AST.

 Credo

We never would've bothered trying to rewrite our codebase if we didn't have Credo rules we wanted to apply.
Credo's tests and implementations were referenced for implementing Styles that took the work the rest of the way.
Thanks to Credo & the Elixir community at large for coalescing around many of these Elixir style credos.

Simple (Single Node) Styles

Function Performance & Readability Optimizations
Optimizing for either performance or readability, probably both!
These apply to the piped versions as well

 Strings to Sigils

Rewrites strings with 4 or more escaped quotes to string sigils with an alternative delimiter.
The delimiter will be one of " ({ | [' < /, chosen by which would require the fewest escapes, and otherwise preferred in the order listed.
Before
"{\"errors\":[\"Not Authorized\"]}"
Styled
~s({"errors":["Not Authorized"]})

 Large Base 10 Numbers

Style base 10 numbers with 5 or more digits to have a _ every three digits.
Formatter already does this except it doesn't rewrite "typos" like 100_000_0.
If you're concerned that this breaks your team's formatting for things like "cents" (like "$100" being written as 100_00),
consider using a library made for denoting currencies rather than raw elixir integers.
	Before	After
	10000	10_000
	1_0_0_0_0	10_000 (elixir's formatter leaves the former as-is)
	-543213	-543_213
	123456789	123_456_789
	55333.22	55_333.22
	-123456728.0001	-123_456_728.0001

 Enum.into -> X.new

This rewrite is applied when the collectable is a new map, keyword list, or mapset via Enum.into/2,3.
This is an improvement for the reader, who gets a more natural language expression: "make a new map from enum" vs "enumerate enum and collect its elements into a new map"
Note that all of the examples below also apply to pipes (enum |> Enum.into(...))
	Before	After
	Enum.into(enum, %{})	Map.new(enum)
	Enum.into(enum, Map.new())	Map.new(enum)
	Enum.into(enum, Keyword.new())	Keyword.new(enum)
	Enum.into(enum, MapSet.new())	Keyword.new(enum)
	Enum.into(enum, %{}, fn x -> {x, x} end)	Map.new(enum, fn x -> {x, x} end)
	Enum.into(enum, [])	Enum.to_list(enum)
	Enum.into(enum, [], mapper)	Enum.map(enum, mapper)

 Map/Keyword.merge w/ single key literal -> X.put

Keyword.merge and Map.merge called with a literal map or keyword argument with a single key are rewritten to the equivalent put, a cognitively simpler function.
Before
Keyword.merge(kw, [key: :value])
Styled
Keyword.put(kw, :key, :value)

Before
Map.merge(map, %{key: :value})
Styled
Map.put(map, :key, :value)

Before
Map.merge(map, %{key => value})
Styled
Map.put(map, key, value)

Before
map |> Map.merge(%{key: value}) |> foo()
Styled
map |> Map.put(:key, value) |> foo()

 Map/Keyword.drop w/ single key -> X.delete

In the same vein as the merge style above, [Map|Keyword].drop/2 with a single key to drop are rewritten to use delete/2
Before
Map.drop(map, [key])
Styled
Map.delete(map, key)

Before
Keyword.drop(kw, [key])
Styled
Keyword.delete(kw, key)

 Enum.reverse/1 and concatenation -> Enum.reverse/2

Enum.reverse/2 optimizes a two-step reverse and concatenation into a single step.
Before
Enum.reverse(foo) ++ bar
Styled
Enum.reverse(foo, bar)

Before
baz |> Enum.reverse() |> Enum.concat(bop)
Styled
Enum.reverse(baz, bop)

 Timex.now/0 ->DateTime.utc_now/0

Timex certainly has its uses, but knowing what stdlib date/time struct is returned by now/0 is a bit difficult!
We prefer calling the actual function rather than its rename in Timex, helping the reader by being more explicit.
This also hews to our internal styleguide's "Don't make one-line helper functions" guidance.

 DateModule.compare/2 -> DateModule.[before?|after?]

Again, the goal is readability and maintainability. before?/2 and after?/2 were implemented long after compare/2,
so it's not unusual that a codebase needs a lot of refactoring to be brought up to date with these new functions.
That's where Styler comes in!
The examples below use DateTime.compare/2, but the same is also done for NaiveDateTime|Time|Date.compare/2
Before
DateTime.compare(start, end_date) == :gt
Styled
DateTime.after?(start, end_date)

Before
DateTime.compare(start, end_date) == :lt
Styled
DateTime.before?(start, end_date)

 Implicit Try

Styler will rewrite functions whose entire body is a try/do to instead use the implicit try syntax, per Credo's Credo.Check.Readability.PreferImplicitTry
The following example illustrates the most complex case, but Styler happily handles just basic try do/rescue bodies just as easily.

 Before

def foo() do
 try do
 uh_oh()
 rescue
 exception -> {:error, exception}
 catch
 :a_throw -> {:error, :threw!}
 else
 try_has_an_else_clause? -> {:did_you_know, try_has_an_else_clause?}
 after
 :done
 end
end

 After

def foo() do
 uh_oh()
rescue
 exception -> {:error, exception}
catch
 :a_throw -> {:error, :threw!}
else
 try_has_an_else_clause? -> {:did_you_know, try_has_an_else_clause?}
after
 :done
end

 Remove parenthesis from 0-arity function & macro definitions

The author of the library disagrees with this style convention :) BUT, the wonderful thing about Styler is it lets you write code how you want to, while normalizing it for reading for your entire team. The most important thing is not having to think about the style, and instead focus on what you're trying to achieve.
Before
def foo()
defp foo()
defmacro foo()
defmacrop foo()

Styled
def foo
defp foo
defmacro foo
defmacrop foo

 Elixir Deprecation Rewrites

 1.15+

	Before	After
	Logger.warn	Logger.warning
	Path.safe_relative_to/2	Path.safe_relative/2
	~R/my_regex/	~r/my_regex/
	Enum/String.slice/2 with decreasing ranges	add explicit steps to the range *
	Date.range/2 with decreasing range	Date.range/3 *
	IO.read/bin_read with :all option	replace :all with :eof

* For both of the "decreasing range" changes, the rewrite can only be applied if the range is being passed as an argument to the function.

 1.16+

File.stream! :line and :bytes deprecation
Before
File.stream!(path, [encoding: :utf8, trim_bom: true], :line)
Styled
File.stream!(path, :line, encoding: :utf8, trim_bom: true)

 Putting variable matching on the right

Before
case foo do
 bar = %{baz: baz? = true} -> :baz?
 opts = [[a = %{}] | _] -> a
end
Styled:
case foo do
 %{baz: true = baz?} = bar -> :baz?
 [[%{} = a] | _] = opts -> a
end

Before
with {:ok, result = %{}} <- foo, do: result
Styled
with {:ok, %{} = result} <- foo, do: result

Before
def foo(bar = %{baz: baz? = true}, opts = [[a = %{}] | _]), do: :ok
Styled
def foo(%{baz: true = baz?} = bar, [[%{} = a] | _] = opts), do: :ok

 Drops superfluous = _ in pattern matching

Before
def foo(_ = bar), do: bar
Styled
def foo(bar), do: bar

Before
case foo do
 _ = bar -> :ok
end
Styled
case foo do
 bar -> :ok
end

 Use Implicit Try

before
def foo d
 try do
 throw_ball()
 catch
 :ball -> :caught
 end
end

Styled:
def foo d
 throw_ball()
catch
 :ball -> :caught
end

 Shrink Function Definitions to One Line When Possible

Before

def save(
 # Socket comment
 %Socket{assigns: %{user: user, live_action: :new}} = initial_socket,
 # Params comment
 params
),
 do: :ok

Styled

Socket comment
Params comment
def save(%Socket{assigns: %{user: user, live_action: :new}} = initial_socket, params), do: :ok

Pipe Chains

 Pipe Start

Styler will ensure that the start of a pipechain is a 0-arity function, a raw value, or a variable.
Enum.at(enum, 5)
|> IO.inspect()

Styled:
enum
|> Enum.at(5)
|> IO.inspect()
If the start of a pipe is a block expression, styler will create a new variable to store the result of that expression and make that variable the start of the pipe.
if a do
 b
else
 c
end
|> Enum.at(4)
|> IO.inspect()

Styled:
if_result =
 if a do
 b
 else
 c
 end

if_result
|> Enum.at(4)
|> IO.inspect()

 Add parenthesis to function calls in pipes

a |> b |> c |> d
Styled:
a |> b() |> c() |> d()

 Remove Unnecessary then/2

When the piped argument is being passed as the first argument to the inner function, there's no need for then/2.
a |> then(&f(&1, ...)) |> b()
Styled:
a |> f(...) |> b()
	add parens to function calls |> fun |> => |> fun() |>

 Add then/2 when defining and calling anonymous functions in pipes

a |> (fn x -> x end).() |> c()
Styled:
a |> then(fn x -> x end) |> c()

 Piped function optimizations

Two function calls into one! Fewer steps is always nice.
reverse |> concat => reverse/2
a |> Enum.reverse() |> Enum.concat(enum) |> ...
Styled:
a |> Enum.reverse(enum) |> ...

filter |> count => count(filter)
a |> Enum.filter(filterer) |> Enum.count() |> ...
Styled:
a |> Enum.count(filterer) |> ...

map |> join => map_join
a |> Enum.map(mapper) |> Enum.join(joiner) |> ...
Styled:
a |> Enum.map_join(joiner, mapper) |> ...

Enum.map |> X.new() => X.new(mapper)
where X is one of: Map, MapSet, Keyword
a |> Enum.map(mapper) |> Map.new() |> ...
Styled:
a |> Map.new(mapper) |> ...

Enum.map |> Enum.into(empty_collectable) => X.new(mapper)
Where empty_collectable is one of `%{}`, `Map.new()`, `Keyword.new()`, `MapSet.new()`
Given:
a |> Enum.map(mapper) |> Enum.into(%{}) |> ...
Styled:
a |> Map.new(mapper) |> ...

 Unpiping Single Pipes

Styler rewrites pipechains with a single pipe to be function calls. Notably, this rule combined with the optimizations rewrites above means some chains with more than one pipe will also become function calls.
foo = bar |> baz()
Styled:
foo = baz(bar)

map = a |> Enum.map(mapper) |> Map.new()
Styled:
map = Map.new(a, mapper)

Control Flow Macros (<code class="inline">case</code>, <code class="inline">if</code>, <code class="inline">unless</code>, <code class="inline">cond</code>, <code class="inline">with</code>)

Elixir's Kernel documentation refers to these structures as "macros for control-flow".
We often refer to them as "blocks" in our changelog, which is a much worse name, to be sure.
You're likely here just to see what Styler does, in which case, please click here to skip the following manifesto on our philosophy regarding the usage of these macros.

 Which Control Flow Macro Should I Use?

The number of "blocks" in Elixir means there are many ways to write semantically equivalent code, often leaving developers in the dark as to which structure they should use.
We believe readability is enhanced by using the simplest api possible, whether we're talking about internal module function calls or standard-library macros.

 use case, if, or unless when...

We advocate for case and if as the first tools to be considered for any control flow as they are the two simplest blocks. If a branch can be expressed with an if statement, it should be. Otherwise, case is the next best choice. In situations where developers might reach for an if/elseif/else block in other languages, cond do should be used.
(cond do seems to see a paucity of use in the language, but many complex nested expressions or with statements can be improved by replacing them with a cond do).
unless is a special case of if meant to make code read as natural-language (citation needed). While it sometimes succeeds in this goal, its absence in most programming languages often makes it feel cumbersome to programmers with non-Ruby backgrounds. Thankfully, with Styler's help developers don't need to ever reach for unless - expressions that are "simpler" with its use are automatically rewritten to use it.

 use with when...

with great power comes great responsibility
	Uncle Ben

As the most powerful of the Kernel control-flow expressions, with requires the most cognitive overhead to understand. Its power means that we can use it as a replacement for anything we might express using a case, if, or cond (especially with the liberal application of small private helper functions).
Unfortunately, this has lead to a proliferation of with in codebases where simpler expressions would have sufficed, meaning a lot of Elixir code ends up being harder for readers to understand than it needs to be.
Thus, with is the control-flow structure of last resort. We advocate that with should only be used when more basic expressions do not suffice or become overly verbose. As for verbosity, we subscribe to the Chris Keathley school of thought that judicious nesting of control flow blocks within a function isn't evil and more-often-than-not is superior to spreading implementation over many small single-use functions. We'd even go so far as to suggest that cyclomatic complexity is an inexact measure of code quality, with more than a few false negatives and many false positives.
with is a great way to unnest multiple case statements when every failure branch of those statements results in the same error. This is easily and succinctly expressed with with's else block: else (_ -> :error). As Keathley says though, Avoid Else In With Blocks. Having multiple else clauses "means that the error conditions matter. Which means that you don’t want with at all. You want case."
It's acceptable to use one-line with statements (eg with {:ok, _} <- Repo.update(changeset), do: :ok) to signify that other branches are uninteresting or unmodified by your code, but ultimately that can hide the possible returns of a function from the reader, making it more onerous to debug all possible branches of the code in their mental model of the function. In other words, ideally all function calls in a with statement head have obvious error types for the reader, leaving their omission in the code acceptable as the reader feels no need to investigate further. The example at the start of this paragraph with an Ecto.Repo call is a good example, as most developers in a codebase using Ecto are expected to be familiar with its basic API.
Using case rather than with for branches with unusual failure types can help document code as well as save the reader time in tracking down types. For example, replacing the following with a with statement that only matched against the {:ok, _} tuple would hide from readers that an atypically-shaped 3-tuple is returned when things go wrong.
case some_http_call() do
 {:ok, _response} -> :ok
 {:error, http_error, response} -> {:error, http_error, response}
end

 if and unless

Styler removes else: nil clauses:
if a, do: b, else: nil
styled:
if a, do: b

 Negation Inversion

Styler removes negators in the head of if and unless statements by "inverting" the statement.
The following operators are considered "negators": !, not, !=, !==
Examples:
negated `if` statement with no `else` clause are rewritten to `unless`
if not x, do: y
Styled:
unless x, do: y

negated `if` statements with an `else` clause have their clauses inverted and negation removed
if !x, do: y, else: z
Styled:
if x, do: z, else: y

negated `unless` statements are rewritten to `if`
unless x != y, do: z
B styled:
if x == y, do: z

`unless` with `else` is verboten; these are always rewritten to `if` statements
unless x, do: y, else: z
styled:
if x, do: z, else: y
Because elixir relies on truthy/falsey values for its if statements, boolean casting is unnecessary and so double negation is simply removed.
if !!x, do: y
styled:
if x, do: y

 case

 "Erlang heritage" case true/false -> if

Trivial true/false case statements are rewritten to if statements. While this results in a semantically different program, we argue that it results in a better program for maintainability. If the developer wants their case statement to raise when receiving a non-boolean value as a feature of the program, they would better serve their callers by raising something more descriptive.
In other words, Styler leaves the code with better style, trumping obscure exception design :)
Styler will rewrite this even if the clause order is flipped,
and if the `false` is replaced with a wildcard (`_`)
case foo do
 true -> :ok
 false -> :error
end

styled:
if foo do
 :ok
else
 :error
end
Per the argument above, if the if statement is an incorrect rewrite for your program, we recommend this manual fix rewrite:
case foo do
 true -> :ok
 false -> :error
 other -> raise "expected `true` or `false`, got: #{inspect other}"
end

 cond

Styler has only one cond statement rewrite: replace 2-clause statements with if statements.
Given
cond do
 a -> b
 true -> c
end
Styled
if a do
 b
else
 c
end

 with

with statements are extremely expressive. Styler tries to remove any unnecessary complexity from them in the following ways.

 Remove Identity Else Clause

Like if statements with nil as their else clause, the identity else clause is the default for with statements and so is removed.
Given
with :ok <- b(), :ok <- b() do
 foo()
else
 error -> error
end
Styled:
with :ok <- b(), :ok <- b() do
 foo()
end

 Remove The Statement Entirely

While you might think "surely this kind of code never appears in the wild", it absolutely does. Typically it's the result of someone refactoring a pattern away and not looking at the larger picture and realizing that the with statement now serves no purpose.
Maybe someday the compiler will warn about these use cases. Until then, Styler to the rescue.
Given:
with a <- b(),
 c <- d(),
 e <- f(),
 do: g,
 else: (_ -> h)
Styled:
a = b()
c = d()
e = f()
g

Given
with value <- arg do
 value
end
Styled:
arg

 Replace _ <- rhs with rhs

This is another case of "less is more" for the reader.
Given
with :ok <- x,
 _ <- y(),
 {:ok, _} <- z do
 :ok
end
Styled:
with :ok <- x,
 y(),
 {:ok, _} <- z do
 :ok
end

 Replace non-branching bar <- with bar =

<- is for branching. If the lefthand side is the trivial match (a bare variable), Styler rewrites it to use the = operator instead.
Given
with :ok <- foo(),
 bar <- baz(),
 :ok <- woo(),
 do: {:ok, bar}
Styled
 with :ok <- foo(),
 bar = baz(),
 :ok <- woo(),
 do: {:ok, bar}

 Move assignments from with statement head

Just because any program could be written entirely within the head of a with statement doesn't mean it should be!
Styler moves assignments that aren't trapped between <- outside of the head. Combined with the non-pattern-matching replacement above, we get the following:
Given
with foo <- bar,
 x = y,
 :ok <- baz,
 bop <- boop,
 :ok <- blop,
 foo <- bar,
 :success = hope_this_works! do
 :ok
end
Styled:
foo = bar
x = y

with :ok <- baz,
 bop = boop,
 :ok <- blop do
 foo = bar
 :success = hope_this_works!
 :ok
end

 Remove redundant final clause

If the pattern of the final clause of the head is also the with statements do body, styler nixes the final match and makes the right hand side of the clause into the do body.
Given
with {:ok, a} <- foo(),
 {:ok, b} <- bar(a) do
 {:ok, b}
end
Styled:
with {:ok, a} <- foo() do
 bar(a)
end

 Replace with case

A with statement with a single clause in the head and an else body is really just a case statement putting on airs.
Given:
with :ok <- foo do
 :success
else
 :fail -> :failure
 error -> error
end
Styled:
case foo do
 :ok -> :success
 :fail -> :failure
 error -> error
end

 Replace with if

Given Styler rewrites trivial case to if, it shouldn't be a surprise that that same rule means that with can be rewritten to if in some cases.
Given:
with true <- foo(), bar <- baz() do
 {:ok, bar}
else
 _ -> :error
end
Styled:
if foo() do
 bar = baz()
 {:ok, bar}
else
 :error
end

Mix Configs

Mix Config files have their config stanzas sorted. Similar to the sorting of aliases, this delivers consistency to an otherwise arbitrary world, and can even help catch bugs like configuring the same key multiple times.
A file is considered a config file if
	its path matches ~r|config/.*\.exs| ~r|rel/overlays/.*\.exs|
	the file has import Config

Once a file is detected as a mix config, its config/2,3 stanzas are grouped and ordered like so:
	group config stanzas separated by assignments (x = y) together
	sort each group according to erlang term sorting
	move all existing assignments between the config stanzas to above the stanzas (without changing their ordering)

 THIS CAN BREAK YOUR PROGRAM

It's important to double check your configuration after running Styler on it for the first time.
First Use Advice: To limit the size of changes Styler submits to a codebase, we recommend formatting only a few (or a single) files at a time and making pull requests for each. Only commit Styler as a new formatter plugin once each of these more dangerous changes has been safely committed to the codebase.
Imagine your application configures the same value twice, once with an invalid or application breaking value, and then again with a correct value, like so:
string = "i am a string"
atom = :i_am_an_atom

config :my_app, value_must_be_an_atom: string
...
...
config :my_app, value_must_be_an_atom: atom
When styler sorts the configuration file, this dormant mistake can become a bug if the sorting changes the order such that the invalid value takes precedence (aka comes last)
string = "i am a string"
atom = :i_am_an_atom

The value that must be an atom is now a string!
config :my_app, value_must_be_an_atom: atom
config :my_app, value_must_be_an_atom: string

 Examples

Sorts configs by erlang term ordering:
Given
import Config

config :z, :x, :c
config :a, :b, :c
config :y, :x, :z
config :a, :c, :d

Styled:
import Config

config :a, :b, :c
config :a, :c, :d

config :y, :x, :z

config :z, :x, :c
Non-config statements break the file up into chunks, where each chunk is sorted separately relative to itself.
Given
import Config

config :z, :x, :c
config :a, :b, :c
var = "value"
config :y, :x, var
config :a, :c, var

Styled:
import Config

config :a, :b, :c
config :z, :x, :c

var = "value"

config :a, :c, var
config :y, :x, var

Module Directives (use, alias, ...)

 Adds Moduledoc

Adds @moduledoc false to modules without a moduledoc unless the module's name ends with one of the following:
	Test
	Mixfile
	MixProject
	Controller
	Endpoint
	Repo
	Router
	Socket
	View
	HTML
	JSON

 Directive Expansion

Expands Module.{SubmoduleA, SubmoduleB} to their explicit forms for ease of searching.
Before
import Foo.{Bar, Baz, Bop}
alias Foo.{Bar, Baz.A, Bop}

After
import Foo.Bar
import Foo.Baz
import Foo.Bop

alias Foo.Bar
alias Foo.Baz.A
alias Foo.Bop

 Directive Organization

Modules directives are sorted into the following order:
	@shortdoc
	@moduledoc (adds @moduledoc false)
	@behaviour
	use
	import (sorted alphabetically)
	alias (sorted alphabetically)
	require (sorted alphabetically)
	everything else (order unchanged)

 Before

defmodule Foo do
 @behaviour Lawful
 alias A.A
 require A

 use B

 def c(x), do: y

 import C
 @behaviour Chaotic
 @doc "d doc"
 def d do
 alias X.X
 alias H.H

 alias Z.Z
 import Ecto.Query
 X.foo()
 end
 @shortdoc "it's pretty short"
 import A
 alias C.C
 alias D.D

 require C
 require B

 use A

 alias C.C
 alias A.A

 @moduledoc "README.md"
 |> File.read!()
 |> String.split("<!-- MDOC !-->")
 |> Enum.fetch!(1)
end

 After

defmodule Foo do
 @shortdoc "it's pretty short"
 @moduledoc "README.md"
 |> File.read!()
 |> String.split("<!-- MDOC !-->")
 |> Enum.fetch!(1)
 @behaviour Chaotic
 @behaviour Lawful

 use B
 use A.A

 import A.A
 import C

 alias A.A
 alias C.C
 alias D.D

 require A
 require B
 require C

 def c(x), do: y

 @doc "d doc"
 def d do
 import Ecto.Query

 alias H.H
 alias X.X
 alias Z.Z

 X.foo()
 end
end
If any line previously relied on an alias, the alias is fully expanded when it is moved above the alias:
Given
alias Foo.Bar
import Bar
Styled
import Foo.Bar

alias Foo.Bar

 Alias Lifting

When a module with three parts is referenced two or more times, styler creates a new alias for that module and uses it.
Given
require A.B.C

A.B.C.foo()
A.B.C.bar()

Styled
alias A.B.C

require C

C.foo()
C.bar()

 Collisions

Styler won't lift aliases that will collide with existing aliases, and likewise won't lift any module whose name would collide with a standard library name.
You can specify additional modules to exclude from lifting via the :alias_lifting_exclude configuration option. For the example above, the following configuration would keep Styler from creating the alias A.B.C node:
.formatter.exs
[
 plugins: [Styler],
 styler: [alias_lifting_exclude: [:C]],
]

 OEBPS/dist/epub-CB7BJMUW.js
