

 SuperWorker

 v0.3.0

 Table of contents

 	Config Guide

 	Config Quickstart

 	Readme

 	
 Modules

 	SuperWorker

 	SuperWorker.ConfigLoader.Bootstrap

 	SuperWorker.ConfigLoader.ConfigParser

 	SuperWorker.ConfigLoader.Parser

 	SuperWorker.Supervisor

 	SuperWorker.Supervisor.ApiHelper

 	SuperWorker.Supervisor.Chain

 	SuperWorker.Supervisor.Chain.Config

 	SuperWorker.Supervisor.Chain.Messaging

 	SuperWorker.Supervisor.Constants.Strategies

 	SuperWorker.Supervisor.Constants.Timeouts

 	SuperWorker.Supervisor.Constants.Types

 	SuperWorker.Supervisor.Constants.Validation

 	SuperWorker.Supervisor.Group

 	SuperWorker.Supervisor.Looper

 	SuperWorker.Supervisor.MapQueue

 	SuperWorker.Supervisor.Partition

 	SuperWorker.Supervisor.Utils

 	SuperWorker.Supervisor.Validator

 	SuperWorker.Supervisor.Worker

 	SuperWorker.TermStorage

 	Exceptions

 	SuperWorker.Error

 	SuperWorker.Supervisor.ErrorHandler

 SuperWorker ConfigLoader

The ConfigLoader module provides a declarative way to configure and automatically start SuperWorker supervisors from the application environment. Instead of manually starting supervisors and adding workers programmatically, you can define your entire supervision tree in configuration files.
Overview
The ConfigLoader system consists of three main modules:
	ConfigParser - Main entry point that loads configurations from the application environment
	Parser - Validates and transforms raw configurations into structured data
	Bootstrap - Starts supervisors and their children from parsed configurations

Quick Start
1. Define Configuration
Add supervisor configurations to your config/config.exs or config/runtime.exs:
import Config

config :super_worker, :my_supervisor,
 options: [
 number_of_partitions: 2,
 link: false
],
 groups: [
 [
 id: :worker_pool,
 restart_strategy: :one_for_one,
 workers: [
 [
 mfa: {MyApp.Worker, :start_link, []},
 options: [id: :worker_1]
]
]
]
]
2. Automatic Loading
Supervisors are automatically loaded when your application starts via the SuperWorker.Application module.
3. Manual Loading
You can also load supervisors manually:
Load all configured supervisors
SuperWorker.ConfigLoader.ConfigParser.load()

Load a specific supervisor
SuperWorker.ConfigLoader.ConfigParser.load_one(:my_supervisor)
Configuration Format
Supervisor Options
options: [
 number_of_partitions: 2, # Number of partitions (default: number of schedulers)
 link: false, # Whether to link supervisor to caller
 report_to: [], # List of PIDs to report events to
 strategy: :one_for_one # Supervisor strategy (optional)
]
Groups
Groups are collections of workers that share a restart strategy:
groups: [
 [
 id: :my_group, # Required: Unique atom identifier
 restart_strategy: :one_for_one, # :one_for_one or :one_for_all
 type: :normal, # Optional: group type
 max_restarts: 3, # Optional: max restarts
 max_seconds: 5, # Optional: time window for restarts
 workers: [
 # Worker specifications (see below)
]
]
]
Chains
Chains enable sequential data processing where output flows from one worker to the next:
chains: [
 [
 id: :processing_chain, # Required: Unique atom identifier
 restart_strategy: :rest_for_one, # :one_for_one, :one_for_all, :rest_for_one
 send_type: :round_robin, # :broadcast, :random, :partition, :round_robin
 queue_length: 100, # Optional: max queue size
 finished_callback: {M, :f, [a]}, # Optional: callback when chain completes
 workers: [
 # Worker specifications (see below)
]
]
]
Standalone Workers
Independent workers with their own restart strategies:
workers: [
 [
 mfa: {MyModule, :start_link, [arg1, arg2]}, # Worker MFA
 options: [
 id: :my_worker, # Required: Unique atom identifier
 restart_strategy: :permanent, # :permanent, :transient, :temporary
 max_restarts: 5, # Optional
 max_seconds: 10 # Optional
]
]
]
Worker Specifications
Workers can be specified in two ways:
Using MFA (Module, Function, Arguments)
[
 mfa: {MyApp.Workers.EmailWorker, :start_link, []},
 options: [id: :email_worker]
]
Using Anonymous Functions
[
 fun: fn ->
 # Worker loop
 receive do
 msg -> IO.puts("Received: #{inspect(msg)}")
 end
 end,
 options: [id: :function_worker]
]
Note: Anonymous functions must have 0 arity.
Complete Example
config :super_worker, :app_supervisor,
 options: [
 number_of_partitions: 4,
 link: false
],
 groups: [
 [
 id: :api_handlers,
 restart_strategy: :one_for_one,
 workers: [
 [mfa: {MyApp.API.Handler, :start_link, []}, options: [id: :handler_1]],
 [mfa: {MyApp.API.Handler, :start_link, []}, options: [id: :handler_2]]
]
]
],
 chains: [
 [
 id: :order_pipeline,
 restart_strategy: :rest_for_one,
 send_type: :partition,
 workers: [
 [mfa: {MyApp.Orders.Validator, :start_link, []}, options: [id: :validator]],
 [mfa: {MyApp.Orders.Processor, :start_link, []}, options: [id: :processor]],
 [mfa: {MyApp.Orders.Notifier, :start_link, []}, options: [id: :notifier]]
]
]
],
 workers: [
 [
 mfa: {MyApp.HealthChecker, :start_link, []},
 options: [id: :health, restart_strategy: :permanent]
]
]
Module Details
ConfigParser
Main entry point for loading configurations.
Functions:
	load/0 - Loads all supervisor configurations from application environment
	load_one(sup_id) - Loads a specific supervisor configuration

Returns:
	load/0 returns :ok
	load_one/1 returns {:ok, pid} or {:error, reason}

Parser
Validates and transforms raw configuration into structured format.
Functions:
	parse(config) - Parses and validates a configuration

Returns:
	{:ok, parsed_config} - Successfully parsed
	{:error, reason} - Validation failed

Validation:
	Ensures all required fields are present
	Validates restart strategies
	Validates send types for chains
	Checks that IDs are atoms
	Verifies MFA tuples are well-formed

Bootstrap
Starts supervisors from parsed configurations.
Functions:
	start_supervisor(parsed_config) - Starts a supervisor with parsed config

Returns:
	{:ok, pid} - Supervisor started successfully
	{:error, reason} - Failed to start

Behavior:
	Starts the supervisor process
	Adds all groups, chains, and workers
	Performs cleanup if children fail to start

Restart Strategies
Group Restart Strategies
	:one_for_one - Only restart the failed worker
	:one_for_all - Restart all workers in the group when one fails

Chain Restart Strategies
	:one_for_one - Only restart the failed worker
	:one_for_all - Restart all workers in the chain
	:rest_for_one - Restart the failed worker and all workers after it

Standalone Restart Strategies
	:permanent - Always restart the worker
	:transient - Restart only on abnormal termination
	:temporary - Never restart the worker

Chain Send Types
	:broadcast - Send data to all workers at the current level
	:random - Send to a randomly selected worker
	:partition - Use consistent hashing based on data
	:round_robin - Distribute messages evenly across workers

Best Practices
	Use Descriptive IDs: Choose clear, meaningful atom IDs for all supervisors, groups, chains, and workers

	Start Simple: Begin with basic configurations and add complexity as needed

	Environment-Specific Configs: Use different configurations for dev/test/prod environments:
config/dev.exs
config :super_worker, :my_sup, options: [number_of_partitions: 1]

config/prod.exs
config :super_worker, :my_sup, options: [number_of_partitions: 8]

	Validate Early: Invalid configurations are caught during parsing, so test your configs in development

	Use Groups for Related Workers: Group workers that need to work together or share restart behavior

	Use Chains for Pipelines: Chains are ideal for data processing pipelines with sequential steps

	Monitor Startup: Check logs during application startup to ensure supervisors start correctly

Troubleshooting
Configuration Not Found
{:error, :config_not_found}
Solution: Ensure configuration exists in application environment:
Application.get_env(:super_worker, :my_supervisor)
Invalid Configuration Format
{:error, :invalid_config_format}
Solution: Configuration must be a keyword list. Check syntax in config file.
Missing Required Field
{:error, {:missing_id, ...}}
Solution: All groups, chains, and workers must have an :id field.
Invalid Restart Strategy
Configuration will use defaults, but check logs for warnings:
SuperWorker, Parser, invalid restart_strategy: ...
Solution: Use valid restart strategies (see above).
Supervisor Already Running
{:error, :already_running}
Solution: Stop the supervisor first or use a different ID:
SuperWorker.Supervisor.stop(:my_supervisor)
Worker Module Not Found
{:error, {:workers_parsing_errors, ...}}
Solution: Ensure all worker modules exist and are compiled before the supervisor starts.
Examples
See config/examples/config_loader_example.exs for comprehensive examples covering:
	Simple supervisors with groups
	Chain-based processing pipelines
	Standalone workers
	Complex multi-type supervisors
	Development/testing configurations

Testing
Run the ConfigLoader tests:
mix test test/config_loader/

Specific test files:
	test/config_loader/parser_test.exs - Parser validation tests
	test/config_loader/bootstrap_test.exs - Bootstrap functionality tests
	test/config_loader/config_wrapper_test.exs - Integration tests

API Reference
For detailed API documentation, see:
mix docs

Then open doc/index.html and navigate to the ConfigLoader modules.
Integration with SuperWorker.Application
The ConfigLoader is automatically invoked in SuperWorker.Application.start/2:
def start(_type, _args) do
 SuperWorker.ConfigLoader.ConfigParser.load()

 children = []
 Supervisor.start_link(children, strategy: :one_for_one, name: SuperWorker.MainAppSupervisor)
end
All configured supervisors are started before the main application supervisor.
License
This module is part of SuperWorker, licensed under MPL-2.0.

 ConfigLoader Quick Start Guide

Get started with SuperWorker's ConfigLoader in 5 minutes.
What is ConfigLoader?
ConfigLoader automatically starts SuperWorker supervisors from your application configuration files. Define your supervision tree in config.exs instead of writing code.
Basic Setup
1. Add Configuration
In config/config.exs:
import Config

config :super_worker, :my_app_supervisor,
 options: [
 number_of_partitions: 2,
 link: false
],
 groups: [
 [
 id: :api_workers,
 restart_strategy: :one_for_one,
 workers: [
 [
 mfa: {MyApp.Worker, :start_link, []},
 options: [id: :worker_1]
]
]
]
]
2. That's It!
The supervisor starts automatically when your application boots. No additional code needed.
Common Patterns
Pattern 1: Background Job Workers
config :super_worker, :job_supervisor,
 options: [number_of_partitions: 4, link: false],
 groups: [
 [
 id: :job_workers,
 restart_strategy: :one_for_one,
 workers: [
 [mfa: {MyApp.Jobs.EmailWorker, :start_link, []}, options: [id: :email]],
 [mfa: {MyApp.Jobs.ImageWorker, :start_link, []}, options: [id: :image]]
]
]
]
Pattern 2: Processing Pipeline (Chain)
config :super_worker, :pipeline_supervisor,
 options: [number_of_partitions: 2, link: false],
 chains: [
 [
 id: :data_pipeline,
 restart_strategy: :rest_for_one,
 send_type: :round_robin,
 workers: [
 [mfa: {MyApp.Validate, :start_link, []}, options: [id: :step1]],
 [mfa: {MyApp.Transform, :start_link, []}, options: [id: :step2]],
 [mfa: {MyApp.Save, :start_link, []}, options: [id: :step3]]
]
]
]
Pattern 3: Mixed Workers
config :super_worker, :app_supervisor,
 options: [number_of_partitions: 4, link: false],
 groups: [
 [id: :api_group, restart_strategy: :one_for_one, workers: [...]]
],
 chains: [
 [id: :processing_chain, restart_strategy: :rest_for_one, workers: [...]]
],
 workers: [
 # Standalone workers with individual restart strategies
 [
 mfa: {MyApp.Cache, :start_link, []},
 options: [id: :cache, restart_strategy: :permanent]
]
]
Worker Requirements
Your worker modules must implement start_link/0 (or similar arity) and return:
defmodule MyApp.Worker do
 def start_link do
 # Start your worker process
 pid = spawn(fn -> worker_loop() end)
 {:ok, pid}
 end

 defp worker_loop do
 receive do
 msg ->
 # Handle message
 worker_loop()
 end
 end
end
Runtime Control
Load supervisors manually:
Load all configured supervisors
SuperWorker.ConfigLoader.ConfigParser.load()

Load a specific supervisor
SuperWorker.ConfigLoader.ConfigParser.load_one(:my_app_supervisor)
Check if running:
SuperWorker.Supervisor.running?(:my_app_supervisor)
Stop a supervisor:
SuperWorker.Supervisor.stop(:my_app_supervisor)
Configuration Options
Supervisor Options
	number_of_partitions - Number of partitions (default: CPU cores)
	link - Link to caller process (true/false)
	report_to - List of PIDs for event reporting

Group Options
	id - Required. Unique atom identifier
	restart_strategy - :one_for_one or :one_for_all

Chain Options
	id - Required. Unique atom identifier
	restart_strategy - :one_for_one, :one_for_all, :rest_for_one
	send_type - :broadcast, :random, :partition, :round_robin
	queue_length - Max queue size

Worker Options
	id - Required. Unique atom identifier
	restart_strategy - (Standalone only) :permanent, :transient, :temporary

Environment-Specific Config
config/dev.exs
import Config
config :super_worker, :my_supervisor,
 options: [number_of_partitions: 1, link: false]

config/prod.exs
import Config
config :super_worker, :my_supervisor,
 options: [number_of_partitions: 8, link: false]
Troubleshooting
Supervisor not starting?
	Check logs for parsing errors
	Ensure all required fields (:id) are present
	Verify worker modules exist and are compiled

Workers crashing?
	Ensure worker start_link returns {:ok, pid}
	Check worker implementation doesn't exit immediately
	Review restart strategy settings

Next Steps
	Read CONFIG_GUIDE.md for complete documentation
	See config/examples/config_loader_example.exs for more examples
	Check tests for usage patterns

Quick Reference
	Component	Config Key	Required Fields
	Supervisor	Top-level atom	:options with :id
	Group	:groups list	:id
	Chain	:chains list	:id
	Standalone	:workers list	:id, :restart_strategy
	Worker (in group/chain)	:workers list	:mfa or :fun, :options with :id

Help
Questions? Check the full CONFIG GUIDE or the test files for examples.

 Intro

The library support for auto scale & distritubed for Elixir application.
Help dev can easily work with concurrency.
Note: Library is still developing, please don't use for product.
Guide
Just declare function for worker (task) and input (in param or stream) and run.
Library is created for dev can add workers in runtime without care too much about design supervisor tree.
It's matched with dynamic typed language like Elixir.
Features
Support new kind of process, chain processes is made for easy create a powerful stream processing.
Supervisor
Support three type of processes in one supervisor. Can declare by config or add in runtime.
graph LR
Client(Client) <-->|api| Supervisor
 Supervisor--> Group_1
 Supervisor--> Chain_1
 Supervisor-->Worker_standalone1
 Supervisor-->Worker_standalone2
 Group_1-->Worker_g1
 Group_1-->Worker_g2
 Group_1-->Worker_g3
 Chain_1-->Worker_c1
 Worker_c1-->Worker_c2
 Worker_c2-->Worker_c3
Type of processes:
	Group processes
	Chain processes
	Freedom processes

Group processes
All processes in supervisor have same group_id.
If a process in group is crashed, all other processes will be died follow.
Avoid using trap_exit in process to avoid side effect.
Support send message to worker or broadcast to all workers in a group. Dev don't need to implement a way for transfer data to worker.
graph LR
 Group_1-->Worker_1
 Group_1-->Worker_2
 Group_1-->Worker_3
Chain processes
Support chain task type. The data after process in a process will be passed to next process in chain.
If a process is crashed, all other process in chain will be die follow.
From foreign process data can pass to chain (first worker in chain or directly to a worker with id) by Supervisor APIs.
Can config function to call in the end of chain or self implement code in the last worker in the chain.
graph LR
 Worker_c1-->Worker_c2
 Worker_c2-->Worker_c3
Standalone processes
This for standalone worker run in supervisor, it has owner restart strategy.
If a standalone worker is crashed, it doesn't affect to other standalone workers or workers in group/chain.
graph LR
 Supervisor-->Worker_standalone1
 Supervisor-->Worker_standalone2
 Supervisor-->Worker_standalone3
Planned features
	Support GenServer.
	Callback module for easy understand & implement.
	Multiprocess per chain node.
	Auto scale for chain.
	Distributed in cluster.

Support AI agents & MCP
Run this command for update guide & rules from deps to repo for supporting ai agents in dev.
mix usage_rules.sync AGENTS.md --all \
 --link-to-folder deps \
 --inline usage_rules:all

Run this command for enable MCP server
mix tidewave

Config MCP for agent http://localhost:4115/tidewave/mcp, changes port in mix.exs file if needed. Go to Tidewave for more informations.

SuperWorker

Documentation for SuperWorker.
SuperWorker library is a open-source library for building a fault-tolerant, and scalable Elixir applications contributed by Ohhi.vn
Some of the features of SuperWorker include:
	All in one supervisor for Elixir application.
	Support for standalone, group, chain workers.
	Support for partitioning workers for better scalability.
	Support for worker restart strategy.

Please go to docs of modules for more information.

SuperWorker.ConfigLoader.Bootstrap

Bootstraps supervisors from parsed configurations.
This module takes validated and parsed configurations from the Parser module
and uses the SuperWorker.Supervisor API to start supervisors and their children.

 Summary

 Functions

 start_supervisor(invalid)

 Starts a supervisor with the given parsed configuration.

 Functions

 start_supervisor(invalid)

 @spec start_supervisor(map()) :: {:ok, pid()} | {:error, any()}

Starts a supervisor with the given parsed configuration.
Parameters
	config - A parsed configuration map containing:	:options - Supervisor options (must include :id)
	:children - List of child specifications

Returns
	{:ok, pid} - Successfully started supervisor
	{:error, reason} - Failed to start supervisor

Example
config = %{
 options: [id: :my_sup, number_of_partitions: 2, link: false],
 children: [
 %{
 type: :group,
 id: :my_group,
 options: [restart_strategy: :one_for_one],
 workers: [
 %{mfa: {MyModule, :worker_fun, []}, options: [id: :worker1]}
]
 }
]
}

Bootstrap.start_supervisor(config)

SuperWorker.ConfigLoader.ConfigParser

This module is the main entry point for loading supervisor configurations.
It reads configurations from the application environment, uses the Parser
to validate and expand them, and the Bootstrap to start the supervisors.

 Summary

 Functions

 load()

 Loads all supervisor configurations defined in the application environment,
except for the general :options key.

 load_one(sup_id)

 Loads and starts a single supervisor configuration by its ID from the
application environment.

 Functions

 load()

 @spec load() :: :ok

Loads all supervisor configurations defined in the application environment,
except for the general :options key.
For each configuration found, it parses and starts a supervisor.
Example Configuration in config/config.exs:
config :super_worker,
 my_awesome_supervisor: [
 options: [
 strategy: :one_for_one
],
 groups: [
 # ... group definitions
]
]

 load_one(sup_id)

 @spec load_one(sup_id :: atom()) :: {:ok, pid()} | {:error, any()}

Loads and starts a single supervisor configuration by its ID from the
application environment.

SuperWorker.ConfigLoader.Parser

Parses and validates supervisor configurations from the application environment.
This module takes raw configuration keyword lists and transforms them into
validated structures that can be used by the Bootstrap module to start supervisors.

 Summary

 Types

 child_spec()

 config()

 parsed_config()

 worker_spec()

 Functions

 convert_regular_child_spec(module)

 parse(config)

 Parses and validates a supervisor configuration.

 Types

 child_spec()

 @type child_spec() :: %{
 type: :group | :chain | :standalone,
 options: keyword(),
 workers: [worker_spec()]
}

 config()

 @type config() :: keyword()

 parsed_config()

 @type parsed_config() :: %{options: keyword(), children: [child_spec()]}

 worker_spec()

 @type worker_spec() :: %{
 mfa: {module(), atom(), list()} | {:fun, function()},
 options: keyword()
}

 Functions

 convert_regular_child_spec(module)

 parse(config)

 @spec parse(config()) :: {:ok, parsed_config()} | {:error, any()}

Parses and validates a supervisor configuration.
Parameters
	config - A keyword list containing supervisor configuration

Returns
	{:ok, parsed_config} - Successfully parsed configuration
	{:error, reason} - Validation or parsing error

Expected Configuration Format
[
 options: [
 number_of_partitions: 2,
 link: false,
 strategy: :one_for_one
],
 groups: [
 [
 id: :my_group,
 restart_strategy: :one_for_one,
 workers: [
 [mfa: {MyModule, :my_function, [:arg1]}, options: [id: :worker1]],
 [fun: fn -> :ok end, options: [id: :worker2]]
]
]
],
 chains: [
 [
 id: :my_chain,
 restart_strategy: :one_for_one,
 send_type: :round_robin,
 workers: [
 [mfa: {MyModule, :step1, []}, options: [id: :step1]],
 [mfa: {MyModule, :step2, []}, options: [id: :step2]]
]
]
],
 workers: [
 [mfa: {MyModule, :standalone_worker, []}, options: [id: :standalone1]]
]
]

SuperWorker.Supervisor

Documentation for SuperWorker.Supervisor.
This module is new model supervisor.
Better support for modern applications.
That is an all-in-one supervisor for Elixir application.
Easy to identify the worker for directly communicating with it.
New supervisor supports the following features:
	Group processes
	Chain processes
	Standalone processes

Group processes
Group processes are a set of processes that are started together.
If one of the processes is crashed, depending on the restart strategy of group only that process or all the processes will be restarted.
Each group has a separated restart strategy.
Chain processes
Chain processes are a set of processes that support for chain processing.
Each process in a chain has order to process data.
The output of the previous process is passed to the next process.
Standalone processes
Standalone processes are independent processes that are started separately.
Each process has its own restart strategy.
All type of processes can be started in parallel & can be stopped individually or in a group.
The restart strategy only works when the process is crashed, for normal exit, shutdown, or terminated it will be ignored.
Examples
Start a supervisor with 2 partitions & 2 groups:
alias SuperWorker.Supervisor, as: Sup

Config for supervisor
opts = [id: :sup1, number_of_partitions: 2, link: false]

Start supervisor
Sup.start_with_config(opts)

Add group in runtime, you also can add group in config.
Sup.add_group(:sup1, [id: :group1, restart_strategy: :one_for_all])
Sup.add_group_worker(:sup1, :group1, {Dev, :task, [15]}, [id: :g1_1])

Sup.add_group(:sup1, [id: :group2, restart_strategy: :one_for_one])
Sup.add_group_worker(:sup1, :group2, fn ->
 receive do
 {:ping, ref, from} ->
 send(from, {:pong, ref})
 msg ->
 :ok
 end
end, [id: :g2_2])

ref = make_ref()
Sup.send_to_group_worker(:sup1, :group2, :g2_2, {:ping, ref, self()})

receive do
 {:pong, ^ref} ->
 :ok
end

 Summary

 Functions

 add_chain(sup_id, options, timeout \\ 5000)

 Add a chain to the supervisor.
Chain's options follow docs in Chain module.

 add_chain_worker(sup_id, chain_id, mfa_or_fun, opts, timeout \\ 3000)

 Add a worker to the chain in supervisor.

 add_group(sup_id, options, timeout \\ 3000)

 Add a group to the supervisor.
Group's options follow docs in Group module.

 add_group_worker(sup_id, group_id, mfa_or_fun, opts, timeout \\ 3000)

 Add a worker to a group in the supervisor.
Function's options follow Worker module.

 add_standalone_worker(sup_id, mfa_or_fun, options \\ [], timeout \\ 3000)

 Add a standalone worker process to the supervisor.
function for start worker can be a function or a {module, function, arguments}.
Standalone worker is run independently from other workers follow :one_to_one strategy.
If worker crashes, it will check the restart strategy of worker then act accordingly.

 broadcast_to_group(sup_id, group_id, data, timeout \\ 3000)

 Send data to all workers in a group.

 broadcast_to_my_group(data)

 Send data to all workers in current group of worker.
Using for communite between workers in the same group.

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 get_chain(sup_id, chain_id, timeout \\ 3000)

 get chain structure from supervisor.

 get_my_group()

 get_my_supervisor()

 Get supervisor id in current process (except GenServer worker).

 get_pid_chain_worker(sup_id, chain_id, worker_id, timeout \\ 3000)

 get pid of chain worker

 get_pid_group_worker(sup_id, group_id, worker_id, timeout \\ 3000)

 get pid of group worker.

 get_pid_standalone_worker(sup_id, worker_id, timeout \\ 3000)

 get pid of standalone worker

 remove_chain(sup_id, chain_id, timeout \\ 3000)

 remove chain.

 remove_chain_worker(sup_id, chain_id, worker_id, timeout \\ 3000)

 remove a worker from chain.

 remove_group(sup_id, group_id, timeout \\ 3000)

 remove group

 remove_group_worker(sup_id, group_id, worker_id, timeout \\ 3000)

 remove a worker out of group

 remove_standalone_worker(sup_id, worker_id, timeout \\ 3000)

 restart_group(sup_id, group_id, timeout \\ 3000)

 Restart all workers in group

 restart_group_worker(sup_id, group_id, worker_id, timeout \\ 3000)

 Restart a worker in group

 running?(id)

 send_to_chain(sup_id, chain_id, data, timeout \\ 3000)

 Send data to the entry worker in the chain.
If chain doesn't has any worker, it will be dropped.

 send_to_group_random(sup_id, group_id, data, timeout \\ 3000)

 Send data to a random worker in the group.

 send_to_group_worker(sup_id, group_id, worker_id, data, timeout \\ 3000)

 Send data to a worker in the group.

 send_to_my_group(worker_id, data)

 Send data to other worker in the same group.

 send_to_my_group_random(data)

 Send data to a random worker in the same group.

 send_to_standalone_worker(sup_id, worker_id, data, timeout \\ 3000)

 Send data directly to the worker standalone in the supervisor.

 start()

 start(options)

 start_link()

 start_link(options)

 start_with_config(config)

 Start supervisor for run standalone please set option :link to false.
result format: {:ok, pid} or {:error, reason}

 stop(sup_id, shutdown_type \\ :kill, timeout \\ 3000)

 Stop supervisor.
Type of shutdown

 Functions

 add_chain(sup_id, options, timeout \\ 5000)

Add a chain to the supervisor.
Chain's options follow docs in Chain module.

 add_chain_worker(sup_id, chain_id, mfa_or_fun, opts, timeout \\ 3000)

 @spec add_chain_worker(
 atom(),
 atom(),
 {module(), atom(), list()} | fun(),
 list(),
 integer()
) ::
 {:ok, atom()} | {:error, any()}

Add a worker to the chain in supervisor.

 add_group(sup_id, options, timeout \\ 3000)

 @spec add_group(atom(), list(), integer()) :: {:ok, atom()} | {:error, any()}

Add a group to the supervisor.
Group's options follow docs in Group module.

 add_group_worker(sup_id, group_id, mfa_or_fun, opts, timeout \\ 3000)

 @spec add_group_worker(
 atom(),
 atom(),
 {module(), atom(), list()} | fun(),
 list(),
 integer()
) ::
 {:ok, atom()} | {:error, any()}

Add a worker to a group in the supervisor.
Function's options follow Worker module.

 add_standalone_worker(sup_id, mfa_or_fun, options \\ [], timeout \\ 3000)

 @spec add_standalone_worker(
 atom(),
 {module(), atom(), list()} | fun(),
 list(),
 integer()
) ::
 {:ok, atom()} | {:error, any()}

Add a standalone worker process to the supervisor.
function for start worker can be a function or a {module, function, arguments}.
Standalone worker is run independently from other workers follow :one_to_one strategy.
If worker crashes, it will check the restart strategy of worker then act accordingly.

 broadcast_to_group(sup_id, group_id, data, timeout \\ 3000)

Send data to all workers in a group.

 broadcast_to_my_group(data)

Send data to all workers in current group of worker.
Using for communite between workers in the same group.

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 get_chain(sup_id, chain_id, timeout \\ 3000)

get chain structure from supervisor.

 get_my_group()

 get_my_supervisor()

Get supervisor id in current process (except GenServer worker).

 get_pid_chain_worker(sup_id, chain_id, worker_id, timeout \\ 3000)

get pid of chain worker

 get_pid_group_worker(sup_id, group_id, worker_id, timeout \\ 3000)

get pid of group worker.

 get_pid_standalone_worker(sup_id, worker_id, timeout \\ 3000)

get pid of standalone worker

 remove_chain(sup_id, chain_id, timeout \\ 3000)

remove chain.

 remove_chain_worker(sup_id, chain_id, worker_id, timeout \\ 3000)

remove a worker from chain.

 remove_group(sup_id, group_id, timeout \\ 3000)

remove group

 remove_group_worker(sup_id, group_id, worker_id, timeout \\ 3000)

remove a worker out of group

 remove_standalone_worker(sup_id, worker_id, timeout \\ 3000)

 restart_group(sup_id, group_id, timeout \\ 3000)

 @spec restart_group(atom(), any(), integer()) :: {:ok, atom()} | {:error, any()}

Restart all workers in group

 restart_group_worker(sup_id, group_id, worker_id, timeout \\ 3000)

 @spec restart_group_worker(atom(), any(), any(), integer()) ::
 {:ok, atom()} | {:error, any()}

Restart a worker in group

 running?(id)

 send_to_chain(sup_id, chain_id, data, timeout \\ 3000)

Send data to the entry worker in the chain.
If chain doesn't has any worker, it will be dropped.

 send_to_group_random(sup_id, group_id, data, timeout \\ 3000)

Send data to a random worker in the group.

 send_to_group_worker(sup_id, group_id, worker_id, data, timeout \\ 3000)

Send data to a worker in the group.

 send_to_my_group(worker_id, data)

Send data to other worker in the same group.

 send_to_my_group_random(data)

Send data to a random worker in the same group.

 send_to_standalone_worker(sup_id, worker_id, data, timeout \\ 3000)

Send data directly to the worker standalone in the supervisor.

 start()

 start(options)

 start_link()

 start_link(options)

 start_with_config(config)

 @spec start_with_config(
 id: atom(),
 link: boolean() | pid(),
 number_of_partitions: integer(),
 report_to: list()
) :: {:ok, pid()} | {:error, any()}

Start supervisor for run standalone please set option :link to false.
result format: {:ok, pid} or {:error, reason}

 stop(sup_id, shutdown_type \\ :kill, timeout \\ 3000)

 @spec stop(atom(), shutdown_type :: atom(), timeout :: integer()) ::
 {:ok, atom()} | {:error, any()}

Stop supervisor.
Type of shutdown:
	:normal supervisor will send a message to worker for graceful shutdown. Not support for spawn process by function.
	:kill supervisor will kill worker.

SuperWorker.Supervisor.ApiHelper

Utility functions for SuperWorker.Supervisor.
This module provides common utility functions used across the supervisor
implementation, including:
	API call helpers

 Summary

 Types

 api_result()

 timeout_ms()

 Functions

 api_receiver(ref, timeout)

 Waits for an API response matching the given reference.

 api_response(message, result)

 Sends an API response to the caller.

 call_api(target, api, params, timeout)

 Makes a synchronous API call to a target process.

 call_api_no_reply(target, api, params)

 Makes an asynchronous API call (fire-and-forget).

 internal_call_api_no_reply(target, api, params)

 valid_type?(type)

 Types

 api_result()

 @type api_result() :: {:ok, any()} | {:error, any()}

 timeout_ms()

 @type timeout_ms() :: non_neg_integer() | :infinity

 Functions

 api_receiver(ref, timeout)

 @spec api_receiver(reference(), timeout_ms()) :: any()

Waits for an API response matching the given reference.
Blocks until a message with the matching reference is received
or the timeout expires.
Examples
ref = response_ref()
... send message with ref ...
api_receiver(ref, 5000)

 api_response(message, result)

 @spec api_response(SuperWorker.Supervisor.Message.t(), any()) :: any()

Sends an API response to the caller.
Examples
def handle_api({from, ref}, params) do
 result = do_work(params)
 api_response({from, ref}, result)
end

 call_api(target, api, params, timeout)

 @spec call_api(atom() | pid(), atom(), any(), timeout_ms()) :: any()

Makes a synchronous API call to a target process.
Sends a message in the format {api_name, {from, ref}, params} and waits
for a response with the matching reference.
Parameters
	target - The pid or registered name of the target process
	api - The API function name (atom)
	params - Parameters to pass to the API
	timeout - Maximum time to wait for response in milliseconds

Examples
result = call_api(:my_supervisor, :get_worker, worker_id, 5000)

 call_api_no_reply(target, api, params)

 @spec call_api_no_reply(atom() | pid(), atom(), any()) :: reference()

Makes an asynchronous API call (fire-and-forget).
Sends a message but does not wait for a response.
Examples
call_api_no_reply(:my_supervisor, :notify, :data_updated)

 internal_call_api_no_reply(target, api, params)

 @spec internal_call_api_no_reply(atom() | pid(), atom(), any()) :: reference()

 valid_type?(type)

SuperWorker.Supervisor.Chain

Documentation for SuperWorker.Supervisor.Chain.

 Summary

 Types

 t()

 Functions

 add_worker(chain, worker)

 check_options(options)

 get_all_workers(chain)

 get_worker(chain, worker_id)

 kill_all_workers(chain)

 kill_worker(chain, worker_id)

 remove_worker(chain, worker_id)

 restart_all_workers(chain)

 restart_worker(chain, worker_id)

 worker_exists?(chain, worker_id)

 Types

 t()

 @type t() :: %SuperWorker.Supervisor.Chain{
 finished_callback: nil | {:fun, fun()} | {module(), atom(), [any()]},
 id: any(),
 partition_pid: term(),
 queue_length: non_neg_integer(),
 restart_strategy: atom(),
 send_type: :broadcast | :random | :partition | :round_robin,
 supervisor: atom(),
 table: atom()
}

 Functions

 add_worker(chain, worker)

 @spec add_worker(t(), SuperWorker.Supervisor.Worker.t()) ::
 {:error, :already_exists} | {:ok, t()}

 check_options(options)

 @spec check_options([atom() | keyword()]) ::
 {:error, atom() | {atom(), any()}} | {:ok, t()}

 get_all_workers(chain)

 @spec get_all_workers(t()) :: {:ok, [SuperWorker.Supervisor.Worker.t()]}

 get_worker(chain, worker_id)

 @spec get_worker(t(), any()) ::
 {:error, :worker_not_found} | {:ok, SuperWorker.Supervisor.Worker.t()}

 kill_all_workers(chain)

 @spec kill_all_workers(t()) :: {:ok, t()}

 kill_worker(chain, worker_id)

 @spec kill_worker(t(), any()) :: {:error, any()} | {:ok, t()}

 remove_worker(chain, worker_id)

 @spec remove_worker(t(), any()) :: true

 restart_all_workers(chain)

 @spec restart_all_workers(t()) :: {:ok, t()}

 restart_worker(chain, worker_id)

 @spec restart_worker(t(), any()) :: {:error, any()} | {:ok, t()}

 worker_exists?(chain, worker_id)

 @spec worker_exists?(t(), any()) :: boolean()

SuperWorker.Supervisor.Chain.Config

Handles the configuration and validation for a Chain.
This module is responsible for taking a keyword list of options,
validating them against predefined rules, and creating a
SuperWorker.Supervisor.Chain struct.

 Summary

 Functions

 new(opts)

 Normalizes, validates, and creates a Chain struct from the given options.

 Functions

 new(opts)

 @spec new(list()) :: {:ok, SuperWorker.Supervisor.Chain.t()} | {:error, term()}

Normalizes, validates, and creates a Chain struct from the given options.

SuperWorker.Supervisor.Chain.Messaging

Handles message passing and data flow within a worker chain.
This module is responsible for sending data to the correct worker(s)
based on the chain's configuration (e.g., send type, order) and
invoking the finished callback when data completes its journey
through the chain.

 Summary

 Functions

 new_data(chain, msg)

 Injects new data into the beginning of the chain.

 send_next(chain, order, msg)

 Sends data to the next worker(s) in the chain based on the current order.

 Functions

 new_data(chain, msg)

 @spec new_data(SuperWorker.Supervisor.Chain.t(), SuperWorker.Supervisor.Message.t()) ::
 :ok

Injects new data into the beginning of the chain.

 send_next(chain, order, msg)

 @spec send_next(
 SuperWorker.Supervisor.Chain.t(),
 non_neg_integer(),
 SuperWorker.Supervisor.Message.t()
) ::
 {:ok, atom()} | {:error, atom()}

Sends data to the next worker(s) in the chain based on the current order.

SuperWorker.Supervisor.Constants.Strategies

This module defines the valid restart strategies for different types of workers.

 Summary

 Functions

 chain_restart_strategies()

 Returns the list of valid restart strategies for chains.

 group_restart_strategies()

 Returns the list of valid restart strategies for groups.

 standalone_restart_strategies()

 Returns the list of valid restart strategies for standalone workers.

 Functions

 chain_restart_strategies()

 @spec chain_restart_strategies() :: [atom()]

Returns the list of valid restart strategies for chains.

 group_restart_strategies()

 @spec group_restart_strategies() :: [atom()]

Returns the list of valid restart strategies for groups.

 standalone_restart_strategies()

 @spec standalone_restart_strategies() :: [atom()]

Returns the list of valid restart strategies for standalone workers.

SuperWorker.Supervisor.Constants.Timeouts

This module contains all timeout-related constants used in the SuperWorker system.

 Summary

 Functions

 default_api_timeout()

 Default timeout for API calls in milliseconds.

 default_chain_timeout()

 Default timeout for chain operations in milliseconds.

 default_stop_timeout()

 Default timeout for stop operations in milliseconds.

 Functions

 default_api_timeout()

 @spec default_api_timeout() :: non_neg_integer()

Default timeout for API calls in milliseconds.

 default_chain_timeout()

 @spec default_chain_timeout() :: non_neg_integer()

Default timeout for chain operations in milliseconds.

 default_stop_timeout()

 @spec default_stop_timeout() :: non_neg_integer()

Default timeout for stop operations in milliseconds.

SuperWorker.Supervisor.Constants.Types

This module defines various types and constant lists used throughout the SuperWorker system.

 Summary

 Functions

 api_messages()

 Returns the list of valid API message types.

 chain_params()

 Returns the list of valid chain parameters.

 chain_send_types()

 Returns the list of valid send types for chains.

 chain_worker_params()

 exit_reasons()

 Returns the list of valid process exit reasons.

 group_params()

 Returns the list of valid group parameters.

 group_worker_params()

 shutdown_types()

 Returns the list of valid shutdown types.

 standalone_params()

 Returns the list of valid standalone worker parameters.

 standalone_worker_params()

 supervisor_params()

 Returns the list of valid supervisor parameters.

 worker_params()

 Returns the list of valid worker parameters.

 worker_types()

 Returns the list of valid worker types.

 Functions

 api_messages()

 @spec api_messages() :: [atom()]

Returns the list of valid API message types.

 chain_params()

 @spec chain_params() :: [atom()]

Returns the list of valid chain parameters.

 chain_send_types()

 @spec chain_send_types() :: [atom()]

Returns the list of valid send types for chains.

 chain_worker_params()

 exit_reasons()

 @spec exit_reasons() :: [atom()]

Returns the list of valid process exit reasons.

 group_params()

 @spec group_params() :: [atom()]

Returns the list of valid group parameters.

 group_worker_params()

 shutdown_types()

 @spec shutdown_types() :: [atom()]

Returns the list of valid shutdown types.

 standalone_params()

 @spec standalone_params() :: [atom()]

Returns the list of valid standalone worker parameters.

 standalone_worker_params()

 supervisor_params()

 @spec supervisor_params() :: [atom()]

Returns the list of valid supervisor parameters.

 worker_params()

 @spec worker_params() :: [atom()]

Returns the list of valid worker parameters.

 worker_types()

 @spec worker_types() :: [atom()]

Returns the list of valid worker types.

SuperWorker.Supervisor.Constants.Validation

Provides validation functions for various constants and parameters in the SuperWorker system.

 Summary

 Functions

 default_partitions()

 Calculates the default number of partitions based on the number of online schedulers.

 default_queue_length()

 Default queue length for chains.

 max_queue_length()

 Maximum queue length for chains.

 min_queue_length()

 Minimum queue length for chains.

 valid_queue_length?(length)

 Validates if a given queue length is within the allowed range.

 valid_restart_strategy?(strategy, arg2)

 Validates if a given restart strategy is valid for a specific worker type.

 valid_send_type?(send_type)

 Validates if a given send type is valid for chains.

 valid_shutdown_type?(type)

 Validates if a given shutdown type is valid.

 valid_worker_type?(type)

 Validates if a given worker type is valid.

 Functions

 default_partitions()

 @spec default_partitions() :: pos_integer()

Calculates the default number of partitions based on the number of online schedulers.

 default_queue_length()

 @spec default_queue_length() :: non_neg_integer()

Default queue length for chains.

 max_queue_length()

 @spec max_queue_length() :: non_neg_integer()

Maximum queue length for chains.

 min_queue_length()

 @spec min_queue_length() :: non_neg_integer()

Minimum queue length for chains.

 valid_queue_length?(length)

 @spec valid_queue_length?(integer()) :: boolean()

Validates if a given queue length is within the allowed range.

 valid_restart_strategy?(strategy, arg2)

 @spec valid_restart_strategy?(atom(), :group | :chain | :standalone) :: boolean()

Validates if a given restart strategy is valid for a specific worker type.

 valid_send_type?(send_type)

 @spec valid_send_type?(atom()) :: boolean()

Validates if a given send type is valid for chains.

 valid_shutdown_type?(type)

 @spec valid_shutdown_type?(atom()) :: boolean()

Validates if a given shutdown type is valid.

 valid_worker_type?(type)

 @spec valid_worker_type?(atom()) :: boolean()

Validates if a given worker type is valid.

SuperWorker.Supervisor.Group

Documentation for SuperWorker.Supervisor.Group.

 Summary

 Types

 t()

 Functions

 add_worker(group, worker)

 A internal function. Add a worker to the group.

 broadcast(group, message)

 check_options(options)

 Check, validate and convert key-value pairs to struct.

 count_workers(group)

 get_all_workers(group)

 Get all workers from the group.

 get_worker(group, worker_id)

 Get worker from the group.

 kill_all_workers(group, reason \\ :kill)

 kill_worker(group, worker, reason)

 remove_worker(group, worker_id)

 restart_worker(group, worker)

 A internal function. Restart a worker in the group.

 send_message(group, worker_id, message)

 worker_exists?(group, worker_id)

 Check if worker exists in the group.

 Types

 t()

 @type t() :: %SuperWorker.Supervisor.Group{
 id: any(),
 restart_strategy: atom(),
 supervisor: atom(),
 table: atom()
}

 Functions

 add_worker(group, worker)

A internal function. Add a worker to the group.

 broadcast(group, message)

 check_options(options)

 @spec check_options([keyword()]) ::
 {:ok,
 %SuperWorker.Supervisor.Group{
 id: term(),
 restart_strategy: term(),
 supervisor: term(),
 table: term()
 }}
 | {:error, atom() | {atom(), any()}}

Check, validate and convert key-value pairs to struct.

 count_workers(group)

 get_all_workers(group)

Get all workers from the group.

 get_worker(group, worker_id)

Get worker from the group.

 kill_all_workers(group, reason \\ :kill)

 kill_worker(group, worker, reason)

 remove_worker(group, worker_id)

 restart_worker(group, worker)

A internal function. Restart a worker in the group.

 send_message(group, worker_id, message)

 worker_exists?(group, worker_id)

Check if worker exists in the group.

SuperWorker.Supervisor.Looper

 Summary

 Functions

 main_loop(state)

 Functions

 main_loop(state)

SuperWorker.Supervisor.MapQueue

A simple queue implementation using a map for O(1) lookups.
This queue is designed for managing messages in chain workers where:
	Fast lookups by message ID are required
	Queue size limits need to be enforced
	Messages can be removed in any order (not strictly FIFO)

Examples
iex> queue = MapQueue.new(:my_queue)
iex> {:ok, queue, msg_id} = MapQueue.add(queue, "hello")
iex> {:ok, "hello"} = MapQueue.get(queue, msg_id)
iex> false = MapQueue.is_empty?(queue)
iex> 1 = MapQueue.size(queue)

 Summary

 Types

 message()

 msg_id()

 t()

 Functions

 add(queue, msg)

 Adds a message to the queue.

 all_messages(map_queue)

 Returns all messages currently in the queue as a list.

 clear(queue)

 Clears all messages from the queue.

 get(queue, id)

 Retrieves a message from the queue by ID without removing it.

 has_message?(map_queue, id)

 Checks if a message with the given ID exists in the queue.

 is_empty?(map_queue)

 Checks if the queue is empty.

 is_full?(map_queue)

 Checks if the queue is full.

 message_ids(map_queue)

 Returns all message IDs currently in the queue.

 new(id, opts \\ [])

 Creates a new queue with the given ID.

 remaining_capacity(map_queue)

 Returns the remaining capacity of the queue.

 remove(queue, id)

 Removes a message from the queue by ID.

 size(map_queue)

 Returns the current number of messages in the queue.

 update_queue_length(queue, new_length)

 Updates the queue length limit.

 Types

 message()

 @type message() :: any()

 msg_id()

 @type msg_id() :: non_neg_integer()

 t()

 @type t() :: %SuperWorker.Supervisor.MapQueue{
 id: any(),
 last_msg_id: msg_id(),
 last_send: non_neg_integer(),
 msgs: %{required(msg_id()) => message()},
 queue_length: pos_integer()
}

 Functions

 add(queue, msg)

 @spec add(t(), message()) :: {:ok, t(), msg_id()} | {:error, :queue_full}

Adds a message to the queue.
Returns {:ok, updated_queue, message_id} if successful,
or {:error, :queue_full} if the queue is at capacity.
Examples
iex> queue = MapQueue.new(:test)
iex> {:ok, queue, 1} = MapQueue.add(queue, "message")
iex> {:ok, queue, 2} = MapQueue.add(queue, "another")

 all_messages(map_queue)

 @spec all_messages(t()) :: [message()]

Returns all messages currently in the queue as a list.
Examples
iex> queue = MapQueue.new(:test)
iex> {:ok, queue, _} = MapQueue.add(queue, "msg1")
iex> {:ok, queue, _} = MapQueue.add(queue, "msg2")
iex> messages = MapQueue.all_messages(queue)
iex> "msg1" in messages and "msg2" in messages
true

 clear(queue)

 @spec clear(t()) :: t()

Clears all messages from the queue.
Returns the queue with an empty message map.
Examples
iex> queue = MapQueue.new(:test)
iex> {:ok, queue, _} = MapQueue.add(queue, "msg1")
iex> {:ok, queue, _} = MapQueue.add(queue, "msg2")
iex> queue = MapQueue.clear(queue)
iex> true = MapQueue.is_empty?(queue)

 get(queue, id)

 @spec get(t(), msg_id()) :: {:ok, message()} | {:error, {:not_found, msg_id()}}

Retrieves a message from the queue by ID without removing it.
Returns {:ok, message} if found, or {:error, {:not_found, id}} otherwise.
Examples
iex> queue = MapQueue.new(:test)
iex> {:ok, queue, msg_id} = MapQueue.add(queue, "hello")
iex> {:ok, "hello"} = MapQueue.get(queue, msg_id)
iex> {:error, {:not_found, 999}} = MapQueue.get(queue, 999)

 has_message?(map_queue, id)

 @spec has_message?(t(), msg_id()) :: boolean()

Checks if a message with the given ID exists in the queue.
Examples
iex> queue = MapQueue.new(:test)
iex> {:ok, queue, msg_id} = MapQueue.add(queue, "msg")
iex> true = MapQueue.has_message?(queue, msg_id)
iex> false = MapQueue.has_message?(queue, 999)

 is_empty?(map_queue)

 @spec is_empty?(t()) :: boolean()

Checks if the queue is empty.
Returns true if the queue contains no messages.
Examples
iex> queue = MapQueue.new(:test)
iex> true = MapQueue.is_empty?(queue)
iex> {:ok, queue, _} = MapQueue.add(queue, "msg")
iex> false = MapQueue.is_empty?(queue)

 is_full?(map_queue)

 @spec is_full?(t()) :: boolean()

Checks if the queue is full.
Returns true if the queue has reached its maximum capacity.
Examples
iex> queue = MapQueue.new(:test, queue_length: 2)
iex> {:ok, queue, _} = MapQueue.add(queue, "msg1")
iex> {:ok, queue, _} = MapQueue.add(queue, "msg2")
iex> true = MapQueue.is_full?(queue)

 message_ids(map_queue)

 @spec message_ids(t()) :: [msg_id()]

Returns all message IDs currently in the queue.
Examples
iex> queue = MapQueue.new(:test)
iex> {:ok, queue, id1} = MapQueue.add(queue, "msg1")
iex> {:ok, queue, id2} = MapQueue.add(queue, "msg2")
iex> ids = MapQueue.message_ids(queue)
iex> id1 in ids and id2 in ids
true

 new(id, opts \\ [])

 @spec new(
 any(),
 keyword()
) :: t()

Creates a new queue with the given ID.
Options
	:queue_length - Maximum number of messages in the queue (default: 50)

Examples
iex> MapQueue.new(:my_queue)
%MapQueue{id: :my_queue, queue_length: 50, msgs: %{}}

iex> MapQueue.new(:my_queue, queue_length: 100)
%MapQueue{id: :my_queue, queue_length: 100, msgs: %{}}

 remaining_capacity(map_queue)

 @spec remaining_capacity(t()) :: non_neg_integer()

Returns the remaining capacity of the queue.
Examples
iex> queue = MapQueue.new(:test, queue_length: 10)
iex> 10 = MapQueue.remaining_capacity(queue)
iex> {:ok, queue, _} = MapQueue.add(queue, "msg")
iex> 9 = MapQueue.remaining_capacity(queue)

 remove(queue, id)

 @spec remove(t(), msg_id()) :: {:ok, t()}

Removes a message from the queue by ID.
Returns {:ok, updated_queue} regardless of whether the message existed.
Examples
iex> queue = MapQueue.new(:test)
iex> {:ok, queue, msg_id} = MapQueue.add(queue, "hello")
iex> {:ok, queue} = MapQueue.remove(queue, msg_id)
iex> {:error, {:not_found, _}} = MapQueue.get(queue, msg_id)

 size(map_queue)

 @spec size(t()) :: non_neg_integer()

Returns the current number of messages in the queue.
Examples
iex> queue = MapQueue.new(:test)
iex> 0 = MapQueue.size(queue)
iex> {:ok, queue, _} = MapQueue.add(queue, "msg")
iex> 1 = MapQueue.size(queue)

 update_queue_length(queue, new_length)

 @spec update_queue_length(t(), pos_integer()) :: t()

Updates the queue length limit.
Note: This does not remove existing messages if the new limit is smaller
than the current size.
Examples
iex> queue = MapQueue.new(:test, queue_length: 10)
iex> queue = MapQueue.update_queue_length(queue, 20)
iex> 20 = queue.queue_length

SuperWorker.Supervisor.Partition

 Summary

 Functions

 init_additional_partitions(supervisor)

 start_partition(state)

 Functions

 init_additional_partitions(supervisor)

 start_partition(state)

SuperWorker.Supervisor.Utils

Utility functions for SuperWorker.Supervisor.
This module provides common utility functions used across the supervisor
implementation, including:
	Hashing and partitioning utilities
	Process information helpers

 Summary

 Functions

 count_msgs(pid)

 Counts the number of messages in a process's message queue.

 get_default_schedulers()

 Returns the number of online schedulers in the system.

 get_hash_order(term, num_partitions)

 Computes a hash-based order for partitioning data.

 random_id()

 Generates a cryptographically secure random ID.

 Functions

 count_msgs(pid)

 @spec count_msgs(pid()) :: non_neg_integer()

Counts the number of messages in a process's message queue.
Returns 0 if the process is not alive.

 get_default_schedulers()

 @spec get_default_schedulers() :: pos_integer()

Returns the number of online schedulers in the system.
This is typically used as the default number of partitions.

 get_hash_order(term, num_partitions)

 @spec get_hash_order(term(), pos_integer()) :: non_neg_integer()

Computes a hash-based order for partitioning data.
Uses Erlang's phash2 for consistent hashing across the cluster.
Examples
iex> order = get_hash_order("my_data", 10)
iex> order >= 0 and order < 10
true

 random_id()

 @spec random_id() :: String.t()

Generates a cryptographically secure random ID.
Returns a 32-character hexadecimal string.
Examples
iex> id = random_id()
iex> String.length(id)
32

SuperWorker.Supervisor.Validator

Utility functions for SuperWorker.Supervisor.
This module provides common utility functions used across the supervisor
implementation, including:
	Option normalization and validation
	API call helpers
	Hashing and partitioning utilities
	Process information helpers

 Summary

 Types

 api_result()

 timeout_ms()

 Functions

 check_type(opts, key, validator_fun)

 Checks that the value of a key in options passes a validation function.

 count_msgs(pid)

 Counts the number of messages in a process's message queue.

 get_default_schedulers()

 Returns the number of online schedulers in the system.

 get_hash_order(term, num_partitions)

 Computes a hash-based order for partitioning data.

 get_keyword(arg1)

 Converts a keyword option shorthand to a full keyword tuple.

 normalize_options(opts, allowed_params)

 validate_and_convert(options)

 Types

 api_result()

 @type api_result() :: {:ok, any()} | {:error, any()}

 timeout_ms()

 @type timeout_ms() :: non_neg_integer() | :infinity

 Functions

 check_type(opts, key, validator_fun)

 @spec check_type(map(), atom(), (any() -> boolean())) :: api_result()

Checks that the value of a key in options passes a validation function.
Examples
iex> check_type(%{count: 5}, :count, &is_integer/1)
{:ok, %{count: 5}}

iex> check_type(%{count: "five"}, :count, &is_integer/1)
{:error, :invalid_type}

 count_msgs(pid)

 @spec count_msgs(pid()) :: non_neg_integer()

Counts the number of messages in a process's message queue.
Returns 0 if the process is not alive.

 get_default_schedulers()

 @spec get_default_schedulers() :: pos_integer()

Returns the number of online schedulers in the system.
This is typically used as the default number of partitions.

 get_hash_order(term, num_partitions)

 @spec get_hash_order(term(), pos_integer()) :: non_neg_integer()

Computes a hash-based order for partitioning data.
Uses Erlang's phash2 for consistent hashing across the cluster.
Examples
iex> order = get_hash_order("my_data", 10)
iex> order >= 0 and order < 10
true

 get_keyword(arg1)

 @spec get_keyword(atom()) :: {:type, atom()} | {:error, :invalid_options}

Converts a keyword option shorthand to a full keyword tuple.
Used for converting shorthand like :group to {:type, :group}.

 normalize_options(opts, allowed_params)

 @spec normalize_options([keyword() | atom()], [atom()]) :: api_result()

 validate_and_convert(options)

SuperWorker.Supervisor.Worker

Documentation for SuperWorker.Supervisor.Worker.

 Summary

 Types

 t()

 Functions

 check_chain_options(opts)

 check_group_options(opts)

 check_standalone_options(opts)

 Types

 t()

 @type t() :: %SuperWorker.Supervisor.Worker{
 fun:
 nil
 | {:fun, fun()}
 | {module(), atom(), [any()]}
 | {:gen_server, {module(), atom(), [any()]}},
 id: any(),
 name: term(),
 num_workers: non_neg_integer(),
 order: non_neg_integer() | nil,
 parent: :standalone | {atom(), any()},
 partition: atom(),
 restart_strategy: atom(),
 supervisor: atom(),
 table: term(),
 type: :standalone | :group | :chain
}

 Functions

 check_chain_options(opts)

 check_group_options(opts)

 check_standalone_options(opts)

SuperWorker.TermStorage

A wrapper module for storing terms in :persistent_term.
Good choice for storing data that is rarely change.
Data is can acessed by all processes in the same node.
Key was prefixed with the module name to avoid key collision.
Note:
By default, TermStorage will be limited to 1GB of memory.
If you need to store more data, you can increase the limit by setting the :persistent_term option in the Erlang VM.

 Summary

 Functions

 delete(key)

 Delete the key from the storage.

 get(key)

 Get the value of the key from the storage.

 get_all()

 Get all key/value in the storage.

 put(key, value)

 Put the value of the key to the storage.

 Functions

 delete(key)

Delete the key from the storage.

 get(key)

Get the value of the key from the storage.

 get_all()

Get all key/value in the storage.

 put(key, value)

Put the value of the key to the storage.

SuperWorker.Error exception

Exception module for SuperWorker errors.
This module defines exceptions that can be raised by SuperWorker operations.

 Summary

 Types

 t()

 Functions

 format_message(reason)

 Formats an error reason into a human-readable message.

 Types

 t()

 @type t() :: %SuperWorker.Error{
 __exception__: true,
 message: String.t(),
 reason: atom() | String.t()
}

 Functions

 format_message(reason)

 @spec format_message(atom() | String.t()) :: String.t()

Formats an error reason into a human-readable message.

SuperWorker.Supervisor.ErrorHandler exception

Provides consistent error handling for the SuperWorker system.
This module defines a custom exception and helper functions to create
standardized error tuples. This ensures that errors are handled uniformly
across the application, making the system more robust and easier to debug.

 Summary

 Types

 error_reason()

 error_tuple()

 Functions

 already_exists(type \\ :generic)

 Creates a standardized already exists error.

 already_running()

 Creates a standardized "already running" error.

 api_timeout()

 Creates a standardized API timeout error.

 invalid_config(details)

 Creates a standardized invalid config error.

 invalid_options(details)

 Creates a standardized invalid options error.

 log_error(module, message, context \\ [])

 Logs an error message.

 message(map)

 Callback implementation for Exception.message/1.

 not_found(type \\ :generic)

 Creates a standardized not found error.

 not_running()

 Creates a standardized "not running" error.

 raise_error(reason)

 Raises a SuperWorker.Error exception.

 Types

 error_reason()

 @type error_reason() ::
 :not_found
 | :already_exists
 | :already_running
 | :not_running
 | :api_timeout
 | :invalid_type
 | :worker_not_found
 | :group_not_found
 | :chain_not_found
 | :supervisor_not_found
 | :worker_already_exists
 | :group_already_exists
 | :chain_already_exists
 | :supervisor_already_exists
 | {:invalid_options, term()}
 | {:invalid_config, term()}
 | {:custom, term()}

 error_tuple()

 @type error_tuple() :: {:error, error_reason()}

 Functions

 already_exists(type \\ :generic)

 @spec already_exists(atom()) :: error_tuple()

Creates a standardized already exists error.

 already_running()

 @spec already_running() :: error_tuple()

Creates a standardized "already running" error.

 api_timeout()

 @spec api_timeout() :: error_tuple()

Creates a standardized API timeout error.

 invalid_config(details)

 @spec invalid_config(term()) :: error_tuple()

Creates a standardized invalid config error.

 invalid_options(details)

 @spec invalid_options(term()) :: error_tuple()

Creates a standardized invalid options error.

 log_error(module, message, context \\ [])

 @spec log_error(module(), String.t(), keyword()) :: :ok

Logs an error message.

 message(map)

Callback implementation for Exception.message/1.

 not_found(type \\ :generic)

 @spec not_found(atom()) :: error_tuple()

Creates a standardized not found error.

 not_running()

 @spec not_running() :: error_tuple()

Creates a standardized "not running" error.

 raise_error(reason)

 @spec raise_error(term()) :: no_return()

Raises a SuperWorker.Error exception.

 OEBPS/dist/epub-4WIP524F.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);function r(e){document.readyState!=="loading"?e():document.addEventListener("DOMContentLoaded",e)}var l="hll";window.addEventListener("exdoc:loaded",t);function t(){o("[data-group-id]").forEach(e=>{e.addEventListener("mouseenter",i),e.addEventListener("mouseleave",i)})}function i(e){let n=e.currentTarget,a=e.type==="mouseenter",c=n.getAttribute("data-group-id");n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach(u=>{u.classList.toggle(l,a)})}r(()=>{t()});})();

