

 Swoosh

 v1.20.0

 Table of contents

 	Changelog

 	Contributor Code of Conduct

 	Contributing to Swoosh

 	
 Modules

 	Swoosh

 	Swoosh.Adapter

 	Swoosh.Adapters.Local.Storage.Manager

 	Swoosh.Adapters.Local.Storage.Memory

 	Swoosh.Application

 	Swoosh.Attachment

 	Swoosh.Mailer

 	Email

 	Swoosh.Email

 	Swoosh.Email.Recipient

 	Adapters

 	Swoosh.Adapters.AmazonSES

 	Swoosh.Adapters.Brevo

 	Swoosh.Adapters.CustomerIO

 	Swoosh.Adapters.Dyn

 	Swoosh.Adapters.ExAwsAmazonSES

 	Swoosh.Adapters.Gmail

 	Swoosh.Adapters.Lettermint

 	Swoosh.Adapters.Local

 	Swoosh.Adapters.Logger

 	Swoosh.Adapters.Loops

 	Swoosh.Adapters.MailPace

 	Swoosh.Adapters.Mailgun

 	Swoosh.Adapters.Mailjet

 	Swoosh.Adapters.Mailtrap

 	Swoosh.Adapters.Mandrill

 	Swoosh.Adapters.MsGraph

 	Swoosh.Adapters.Mua

 	Swoosh.Adapters.PostUp

 	Swoosh.Adapters.Postal

 	Swoosh.Adapters.Postmark

 	Swoosh.Adapters.ProtonBridge

 	Swoosh.Adapters.Resend

 	Swoosh.Adapters.SMTP

 	Swoosh.Adapters.SMTP2GO

 	Swoosh.Adapters.Scaleway

 	Swoosh.Adapters.Sendgrid

 	Swoosh.Adapters.Sendmail

 	Swoosh.Adapters.SocketLabs

 	Swoosh.Adapters.SparkPost

 	Swoosh.Adapters.Test

 	Swoosh.Adapters.ZeptoMail

 	Api Client

 	Swoosh.ApiClient

 	Swoosh.ApiClient.Finch

 	Swoosh.ApiClient.Hackney

 	Swoosh.ApiClient.Req

 	Plug

 	Plug.Swoosh.MailboxPreview

 	Test

 	Swoosh.TestAssertions

 	Swoosh.X.TestAssertions

 	Deprecated

 	Swoosh.Adapters.OhMySmtp

 	Swoosh.Adapters.Sendinblue

 	Exceptions

 	Swoosh.Adapters.Mua.MultihostError

 	Swoosh.AttachmentContentError

 	Swoosh.DeliveryError

 	
 Mix Tasks

 	mix swoosh.mailbox.server

 Changelog

1.20.0
✨ Features
	feat: add a resend adapter @ceolinrenato (#1089)	differences from community library :resend can be found in this comment

1.19.9
✨ Features
	add support for additional_headers provider option in Scaleway @jaimeiniesta (#1077)
	Support specifying ip_pool_name data for Sendgrid #1081 @lardcanoe (#1082)

📝 Documentation
	Add Resend adapter to README @jtormey (#1080)

1.19.8
✨ Features
	Encode international domain names (IDNA) @jiegillet (#1070)

1.19.7
🐛 Bug Fixes
	Fix special "TEMPLATE" from option in CustomerIO adapter @maltoe (#1069)

1.19.6
✨ Features
	Add Lettermint adapter @olivermt (#1064)

1.19.5
🐛 Bug Fixes
	Support rendering "TEMPLATE" in the mailbox @axelson (#1059)

1.19.4
✨ Features
	Allow Customer.io to use "TEMPLATE" for from @axelson (#1058)

1.19.3
✨ Features
	Add deliver_many support to Brevo adapter @linusdm (#1049)

1.19.2
✨ Features
	Escape quotes and backslashes in address names @jiegillet (#1047)
	Add Accept header to all requests made by Sendgrid adapter @sergey-elkin (#1046)
	Remove svg fill for dark mode @cmnstmntmn (#1044)

🧰 Maintenance
	Fix unused variable warnings in CI - Gmail Test @DuldR (#1045)

1.19.1
🐛 Bug Fixes
	Regenerate styles, fix #1030

1.19.0
✨ Features
	Redirect to latest message in mailbox if one exists @chrismccord (#1032)
	make links clickable in text email preview @SteffenDE (#1031)

🐛 Bug Fixes
	Specify the correct content_disposition and content_id @Hermanverschooten (#901)	fixes Mua adapter when using inline attachments

1.18.4
✨ Features
	Support dark/light mode based on system theme in dev preview mailbox @chrismccord (#1027)

1.18.3
🧰 Maintenance
	Update Req usage, preparing for v1.0 @wojtekmach (#1022)

1.18.2
🐛 Bug Fixes
	Fix: Prevent zeptomail error when receiving non json response body on 500 @atoncetti (#1017)

1.18.1
✨ Features
	Add PostUp adapter @zatchheems (#1015)

1.18.0
✨ Features
	Implement loops.so adapter @caioaao (#1012)

1.17.10
🐛 Bug Fixes
	Fix broken attachments on Scaleway adapter @olivermt (#1003)

1.17.9
🐛 Bug Fixes
	fix assets path prefix
	improve static serving config

1.17.8 (deprecated: broken css priv path, fixed in 1.17.9)
🐛 Bug Fixes
	fix priv path for css file @princemaple (#1001)

1.17.7 (deprecated: broken css priv path, fixed in 1.17.9)
✨ Feature
	fix: add csp nonce @yordis (#996)

🧰 Maintenance
	Compile tailwind instead of using cdn @princemaple (#998)

1.17.6
✨ Features
	Sendgrid: Support Mail Body Compression @luhagel (#971)

📝 Documentation
	Document how to change base_url for CustomerIO adapter @sheharyarn (#987)
	Add JSON section to README @princemaple (#985)
	Fix doc typo in test_assertions.ex @sevab (#983)

1.17.5
This release fixes a bug introduced in 1.17.4
🐛 Bug Fixes
	mua: fix mail.from @ruslandoga (#982)

📝 Documentation
	Adapters: Add documentation about setting the base_url for ZeptoMail … @reimeri (#981)

1.17.4
🐛 Bug Fixes
	mua: fix default message-id @ruslandoga (#978)

🧰 Maintenance
	mua: cleanup test @ruslandoga (#938)

1.17.3
✨ Features
	feat(mailjet): add event_payload to provider options @mrdotb (#965)
	Handle direct URL specification on MSGraph.deliver @LetThereBeDwight (#967)
	Complete Swoosh.X.TestAssertions @edgarlatorre (#924)
	Add CSS labels to email detail elements @alexslade (#956)

1.17.2
✨ Features
	fix: download attachment with the filename @RETFU (#957)

1.17.1
🐛 Bug Fixes
	Update the MSGraph Adapter Dependency @LetThereBeDwight (#955)

1.17.0
A new adapter for Postal, thanks to @onvlt
✨ Features
	Implement Postal adapter @onvlt (#949)

1.16.12
✨ Features
	Add toggle for text preview @andreicek (#947)

1.16.11
✨ Features
	mua: add Date and Message-ID headers when missing @ruslandoga (#945)

📝 Documentation
	Write docs for functions in Mailer __using__ macro @ivanhercaz (#946)
	Explain how to recompile after installing gen_smtp @aj-foster (#944)
	Fix typos and improve language @preciz (#943)

1.16.10
🐛 Bug Fixes
	mua: no mx when relay @ruslandoga (#934)

📝 Documentation
	mua: update docs @ruslandoga (#935)

1.16.9
🐛 Bug Fixes
	Fix ex_aws region override @hellomika (#914)

1.16.8
Breaking Change
Mua is bumped to 0.2.0, and brings some breaking changes. The change in v0.2.0 is splitting transport_opts into tcp and ssl specific ones since :gen_tcp.connect complains when it receives opts for :ssl.connect.
🧰 Maintenance
	update mua to v0.2.0 @ruslandoga (#911)

1.16.7
✨ Features
	Add support for tracking and return path domains for Mandrill @cenavarro (#906)

1.16.6
✨ Features
	add Swoosh.Adapters.ZeptoMail @gBillal (#905)

📝 Documentation
	Fix typo in docs @pguillory (#898)

1.16.5
✨ Features
	Add config options for AmazonSES adapter @otlaitil (#897)

1.16.4
✨ Features
	Add support for allow_nil_from @bernardd (#895)

🧰 Maintenance
	remove unstable assertion @princemaple (#892)

1.16.3
✨ Features
	Mailbox Preview: more space for the HTML preview @justincy (#882)

🐛 Bug Fixes
	Fix Mailgun adapter incompatibility with Finch @AndrewDryga (#883)

1.16.2
🐛 Bug Fixes
	Update MixProject xref exclusions [MultiPart.Part] @jbcaprell (#880)

1.16.1
With #877 Mailgun adapter now supports API Clients other than Hackney. Mailgun users,
please add :multipart to your dependency list.
🐛 Bug Fixes
	Rewrite multipart functionality to use a encoding builder @krainboltgreene (#877)
	Fix Req header handling @wojtekmach (#879)

1.16.0
✨ Features
Thank you @ruslandoga very much for throwing in this gem.
	Add Swoosh.Adapters.Mua, an alternative SMTP adapter @ruslandoga (#870)

1.15.3
✨ Features
	[SMTP2GO] Pass more info down from the API response

1.15.2
✨ Features
	Add support of subaccount and tags for Mandrill @cenavarro (#860)

📝 Documentation
	Clarify Postmark docs about template model @TheArrowsmith (#859)

1.15.1
✨ Features
	Add support for Bandit @mtrudel (#857)

1.15.0
✨ Features
	Support multiple reply_to in sendgrid @princemaple (#853)
	Support reply_to in smtp2go @princemaple (#852)
	Feat mailgun multiple reply to @ghostdsb (#850)

📝 Documentation
	Improve docs on adapter functions and deliver_many in general

1.14.4
✨ Features
	AmazonSES: add :ses_source option to set Source API parameter @adamu (#846)

📝 Documentation
	fix comma issues on adapter config samples @SirWerto (#842)

1.14.3
✨ Features
	Add template options @princemaple (#839)

📝 Documentation
	mention proton smtp, close #837 @princemaple (#840)

1.14.2
✨ Features
	Do not send subject to customer.io when empty @caioaao (#834)

📝 Documentation
	Add information about Mailtrap adapter in README.md @kalys (#833)
	Add req docs to Api Client section @krns (#831)

1.14.1
✨ Features
	Add Swoosh.ApiClient.Req @matthewlehner (#830)

1.14.0
✨ Features
	Implement Mailtrap adapter @kalys (#827)

📝 Documentation
	Add a note about the Tailwindcss cdn when using a CSP @Hermanverschooten (#828)

1.13.0
✨ Features
	Add Scaleway adapter @andreh11 (#825)
	Update the UI for the mailbox viewer @dsincl12 (#822)

1.12.0
✨ Features
	Implement Swoosh.Adapters.MsGraph @justindotpub (#815)

📝 Documentation
	Update return value in docs @princemaple (#813)

1.11.6
🐛 Bug Fixes
	Add plug as an explicit dependency though still optional

1.11.5
🧰 Maintenance
	Deprecate system env tuples @josevalim (#800)
	Use concatenation to build sup children @josevalim (#801)
	Compute docs lazily @josevalim (#802)

1.11.4
🐛 Bug Fixes
	Race condition on @on_load callback (#792) (quick fix in aef9cccbd)

📝 Documentation
	Update Mailgun docs for sandbox mode @stjhimy (#787)

1.11.3
📝 Documentation
	Fix sections on CHANGELOG @nelsonmestevao (#781)

🧰 Maintenance
	SendInBlue -> Brevo @princemaple (#783)

1.11.2
🐛 Bug Fixes
	Fix BCC for adapters that depend on SMTP helper @princemaple (#779)

📝 Documentation
	Remove unnecessary sentence from README @adamu (#776)

1.11.1
🐛 Bug Fixes
	Do not include Bcc header in delivered email @adamu (#773) Thanks heaps for the discussion and PR!

🧰 Maintenance
	Bump mime from 2.0.3 to 2.0.5 @dependabot (#771)

1.11.0
✨ Features
	Add experimental new test assertion module @jakub-gonet (#747)

1.10.3
🐛 Bug Fixes
SMTP
	Fix inline attachment showing up twice as both inline and attachment @Hermanverschooten (#769)

1.10.2
🐛 Bug Fixes
	Corrects typo in ex_aws_amazon_ses.ex @paynegreen (#766)

1.10.1
✨ Features
	Allow Regexp assertions for subjects @aronisstav (#764)

🧰 Maintenance
	Bump finch from 0.15.0 to 0.16.0 @dependabot (#762)

1.10.0
✨ Features
	Add assert_emails_sent @geeksilva97 (#757)
	Add postmark inline_css option @matehat (#759)

📝 Documentation
	Make Adapters.ExAwsAmazonSES easier to discover @nathanl (#749)
	Add notes about API Client @Shadowbeetle (#743)

🧰 Maintenance
	Move docs above maintenance @princemaple (#760)

1.9.1
✨ Features
	Add support for Protonmail Bridge @Raphexion (#739)

📝 Documentation
	Fix more typos @kianmeng (#736)

1.9.0
✨ New Adapter
	Add customer.io adapter @lucacorti (#734)

1.8.3
potential breaking change, fixing an unexpected behaviour
	Make return type of deliver_many consistent @princemaple (#733)

📝 Documentation
	Fix typo in contributor guidelines @nickcampbell18 (#727)

1.8.2
✨ Features
	Swoosh.Adapters.Test.delivery_many/2 returns a list @markthequark (#721)

📝 Documentation
	Add missing double quote to mandrill template content sample @alvarezloaiciga (#726)

🧰 Maintenance
	Bump ex_doc from 0.28.5 to 0.29.0 @dependabot (#725)

1.8.1
✨ Features
	Postmark: Support per email tracking options @Wijnand (#722)

🧰 Maintenance
	Bump jason from 1.3.0 to 1.4.0 @dependabot (#719)

1.8.0
✨ Features
	Prevent crashes caused by the memory GenServer restarts @KiKoS0 (#717)

🧰 Maintenance
	Bump ex_aws from 2.3.4 to 2.4.0 @dependabot (#715)

1.7.5
Bump to require Elixir 1.11. Now official support has been updated to Elixir 1.11+ with OTP 23+
📝 Documentation
	doc: correct tags example for Adapters.Sendinblue @03juan (#711)

1.7.4
✨ Features
	Set attachment's ContentId in Mailjet @marcinkoziej (#709)

📝 Documentation
	Fix typos in gmail and socket labs adapters @zusoomro (#706)
	Fix markdown issues and typos @kianmeng (#705)

1.7.3
✨ Features
	Support assertions for headers @MatheusBuss (#702)

1.7.2
✨ Features
	add schedule_at provider param for sendinblue @moperacz (#700)

📝 Documentation
	Update Telemetry example to mention errors on :stop @lucasmazza (#698)

🧰 Maintenance
	Bump ex_aws from 2.3.2 to 2.3.3 @dependabot (#699)

1.7.1
✨ Features
	sendgrid add support for scheduling emails @shravanjoopally (#696)

🧰 Maintenance
	Test otp 25 @princemaple (#695)

1.7.0
✨ Features
	SMTP: Allow send email without 'To' @Danielwsx64 (#694)
	Add SMTP2GO adapter @princemaple (#687)

📝 Documentation
	fix module name in ExAwsAmazonSES module doc @SteffenDE (#689)

1.6.6
	Suppress warning about ExAws.Config introduced in 1.6.5 as optional dependency

1.6.5
	Add Swoosh.Adapters.ExAwsAmazonSES adapter @ascandella (#684)

1.6.4
	Add message_stream documentation to Postmark adapter @ntodd (#674)
	Rename Mime-Version header to MIME-Version @tcitworld (#681)

1.6.3
	Migrate OhMySmtp to Mailpace @princemaple (#672)

1.6.2
	SMTP can now utilize the new :cid addition in attachments, if :cid is
nil it will fallback to original behavior and use :filename
	Fixed filename for inline images sent via SMTP

1.6.1
	Add fields to Postmark deliver_many response @zporter (#668)

1.6.0
✨ Features
	allow custom CIDs for inline attachments @taobojlen (#665)
	add OhMySMTP adapter @taobojlen (#663)

🧰 Maintenance
	Config bypass only on test @nallwhy (#650)

📝 Documentation
	Mention E2E tests @princemaple (#664)
	Add configuration options to Mailgun documentation @Zurga (#652)
	Add example to Dyn adapter @kianmeng (#647)
	Add provider options for Sparkpost @kianmeng (#646)
	Add provider options doc for socketlabs @kianmeng (#645)
	Update provider options doc for Sendinblue @kianmeng (#644)
	Update provider options doc for Sendgrid @kianmeng (#643)
	Update provider options doc for Postmark @kianmeng (#642)
	Add provider options doc for Mandrill adapter @kianmeng (#641)
	Add provider options doc for Mailjet @kianmeng (#640)
	Update provider options doc for Mailgun adapter @kianmeng (#639)
	Add provider options doc for Amazon SES adapter @kianmeng (#638)
	Correct sample configuration for gmail adapter @aarongraham (#637)
	Clarify that you need to add :gen_smtp as a dependency @Hermanverschooten (#635)

New Contributors
	@Hermanverschooten made their first contribution in https://github.com/swoosh/swoosh/pull/635
	@aarongraham made their first contribution in https://github.com/swoosh/swoosh/pull/637
	@nallwhy made their first contribution in https://github.com/swoosh/swoosh/pull/650
	@Zurga made their first contribution in https://github.com/swoosh/swoosh/pull/652
	@taobojlen made their first contribution in https://github.com/swoosh/swoosh/pull/663

Full Changelog: https://github.com/swoosh/swoosh/compare/v1.5.2...v1.6.0
1.5.2
Fixes
	Fix closing tag @feld (#634)

1.5.1
✨ Features
	Adding support for inline attachments preview in MailboxPreview @theodowling (#628)

📝 Documentation
	Fixing Typo @Orijhins (#629)
	Further cleanup async section @josevalim (#621)
	Build upon async emails section @josevalim (#620)
	Fix typos @kianmeng (#618)
	Fix a few typos in the docs @nickjj (#617)

1.5.0
✨ Features
	Add telemetry to Mailer.deliver \& Mailer.deliver_many @joshnuss (#614)

📝 Documentation
	Improve README.md - mention api_client as false @philss (#610)

1.4.0
Add Swoosh.ApiClient.Finch
You can configure what API Client to use by setting the config. Swoosh comes with
Swoosh.ApiClient.Hackney and Swoosh.ApiClient.Finch
config :swoosh, :api_client, MyAPIClient
It defaults to use :hackney with Swoosh.ApiClient.Hackney. To use Finch,
add the below config
config :swoosh, :api_client, Swoosh.ApiClient.Finch
To use Swoosh.ApiClient.Finch you also need to start Finch, either in your
supervision tree
children = [
 {Finch, name: Swoosh.Finch}
]
or somehow manually, and very rarely dynamically
Finch.start_link(name: Swoosh.Finch)
If a name different from Swoosh.Finch is used, or you want to use an existing
Finch instance, you can provide the name via the config.
config :swoosh,
 api_client: Swoosh.ApiClient.Finch,
 finch_name: My.Custom.Name
Pre-1.4 changelogs

 Contributor Code of Conduct

As contributors and maintainers of this project, and in the interest of
fostering an open and welcoming community, we pledge to respect all people who
contribute through reporting issues, posting feature requests, updating
documentation, submitting pull requests or patches, and other activities.
We are committed to making participation in this project a harassment-free
experience for everyone, regardless of level of experience, gender, gender
identity and expression, sexual orientation, disability, personal appearance,
body size, race, ethnicity, age, religion, or nationality.
Examples of unacceptable behavior by participants include:
	The use of sexualized language or imagery
	Personal attacks
	Trolling or insulting/derogatory comments
	Public or private harassment
	Publishing other's private information, such as physical or electronic
addresses, without explicit permission
	Other unethical or unprofessional conduct.

Project maintainers have the right and responsibility to remove, edit, or
reject comments, commits, code, wiki edits, issues, and other contributions
that are not aligned to this Code of Conduct. By adopting this Code of Conduct,
project maintainers commit themselves to fairly and consistently applying these
principles to every aspect of managing this project. Project maintainers who do
not follow or enforce the Code of Conduct may be permanently removed from the
project team.
This code of conduct applies both within project spaces and in public spaces
when an individual is representing the project or its community.
Instances of abusive, harassing, or otherwise unacceptable behavior may be
reported by opening an issue or contacting one or more of the project
maintainers.
This Code of Conduct is adapted from the
Contributor Covenant, version 1.2.0,
available at http://contributor-covenant.org/version/1/2/0/

 Contributing to Swoosh

Thanks for thinking about contributing to Swoosh. Please review this document
first and also take a look at our Code of Conduct, to
help us keep this project inclusive to all those that may wish to contribute
also.
Opening Issues
We classify bugs as any unexpected behaviour that occurs based on the code in
the project, and we really appreciate it when users take the time to
create an issue.
Please take time to add as much detail as you can to any bug reports, consider
including things like the version of Elixir you are using, which adapter you
are having trouble with and any custom config you have passed for that adapter.
If you are thinking about adding a feature, you should the check Issues first,
someone else may have started already, or it might be a feature we've decided
not to implement intentionally.
Submitting Pull Requests
Whether you're fixing a bug, or proposing a feature you'd like to see included,
you can submit Pull Requests by following this guide:
	Fork this repository and then clone
it locally:

 git clone https://github.com/swoosh/swoosh

	Create a topic branch for your changes:

 git checkout -b fix-mailchimp-pricing-bug

	Commit a failing test for the bug:

 git commit -am "Adds a failing test that demonstrates the bug"

	Commit a fix that makes the test pass:

 git commit -am "Adds a fix for the bug"

	Run the tests:

 mix test

	If everything looks good, push to your fork:

 git push origin fix-mailchimp-pricing-bug

	Submit a pull request.

Style guidelines
We support the common conventions found in Elixir, if you're in doubt take a
look at the code in the project, and we would like to keep the style consistent
throughout.
General rules
	Keep line length below 120 characters.
	Complex anonymous functions should be extracted into named functions.
	One line functions, should only take up one line!
	Pipes are great, but don't use them, if they are less readable than brackets
then drop the pipe!

Swoosh

[image: hex.pm]
[image: hex.pm]
[image: hex.pm]
[image: github.com]
Compose, deliver and test your emails easily in Elixir.
Swoosh comes with many adapters, including SendGrid, Mandrill, Mailgun, Postmark and SMTP.
See the full list of adapters below.
The complete documentation for Swoosh is available online at HexDocs.
Requirements
Elixir 1.13+ and Erlang OTP 24+
Getting started
In your config/config.exs file
config :sample, Sample.Mailer,
 adapter: Swoosh.Adapters.Sendgrid,
 api_key: "SG.x.x"
In your application code
defmodule Sample.Mailer do
 use Swoosh.Mailer, otp_app: :sample
end
defmodule Sample.UserEmail do
 import Swoosh.Email

 def welcome(user) do
 new()
 |> to({user.name, user.email})
 |> from({"Dr B Banner", "hulk.smash@example.com"})
 |> subject("Hello, Avengers!")
 |> html_body("<h1>Hello #{user.name}</h1>")
 |> text_body("Hello #{user.name}\n")
 end
end
In an IEx session
email = Sample.UserEmail.welcome(%{name: "Tony Stark", email: "tony.stark@example.com"})
Sample.Mailer.deliver(email)
Or in a Phoenix controller
defmodule Sample.UserController do
 use Phoenix.Controller
 alias Sample.UserEmail
 alias Sample.Mailer

 def create(conn, params) do
 user = create_user!(params)

 UserEmail.welcome(user) |> Mailer.deliver()
 end
end
See Swoosh.Mailer for more
configuration options.
Installation
	Add swoosh to your list of dependencies in mix.exs:
def deps do
 [{:swoosh, "~> 1.20"}]
end

	(Optional-ish) Most adapters (non SMTP ones) use Swoosh.ApiClient to talk
to the service provider. Swoosh comes with Swoosh.ApiClient.Hackney configured
by default. If you want to use it, you just need to include
Hackney as a dependency of your app.
Swoosh also accepts Finch and Req out-of-the-box.
See Swoosh.ApiClient.Finch and Swoosh.ApiClient.Req for details.
If you need to integrate with another HTTP client, it's easy to define a new
API client. Follow the Swoosh.ApiClient behaviour and configure Swoosh to
use it:
config :swoosh, :api_client, MyApp.ApiClient
But if you don't need Swoosh.ApiClient, you can disable it by setting the value
to false:
config :swoosh, :api_client, false
This is the case when you are using Swoosh.Adapters.Local,
Swoosh.Adapters.Test and adapters that are SMTP based, that don't require
an API client.

	(Optional) If you are using Swoosh.Adapters.SMTP,
Swoosh.Adapters.Sendmail or Swoosh.Adapters.AmazonSES, you also need to
add gen_smtp to your dependencies:
def deps do
 [
 {:swoosh, "~> 1.6"},
 {:gen_smtp, "~> 1.0"}
]
end

Adapters
Swoosh supports the most popular transactional email providers out of the box
and also has an SMTP adapter. Below is the list of the adapters currently
included:
	Provider	Swoosh adapter	Remarks
	SMTP	Swoosh.Adapters.SMTP	
	Mua	Swoosh.Adapters.Mua	SMTP alternative
	SendGrid	Swoosh.Adapters.Sendgrid	
	Brevo	Swoosh.Adapters.Brevo	Sendinblue
	Sendmail	Swoosh.Adapters.Sendmail	
	Mandrill	Swoosh.Adapters.Mandrill	
	Mailgun	Swoosh.Adapters.Mailgun	
	Mailjet	Swoosh.Adapters.Mailjet	
	MsGraph	Swoosh.Adapters.MsGraph	
	Postmark	Swoosh.Adapters.Postmark	
	SparkPost	Swoosh.Adapters.SparkPost	
	Amazon SES	Swoosh.Adapters.AmazonSES	
	Amazon SES	Swoosh.Adapters.ExAwsAmazonSES	
	Customer.io	Swoosh.Adapters.CustomerIO	
	Dyn	Swoosh.Adapters.Dyn	
	Scaleway	Swoosh.Adapters.Scaleway	
	SocketLabs	Swoosh.Adapters.SocketLabs	
	Gmail	Swoosh.Adapters.Gmail	
	MailPace	Swoosh.Adapters.MailPace	OhMySMTP
	SMTP2GO	Swoosh.Adapters.SMTP2GO	
	ProtonBridge	Swoosh.Adapters.ProtonBridge	
	Mailtrap	Swoosh.Adapters.Mailtrap	
	ZeptoMail	Swoosh.Adapters.ZeptoMail	
	Postal	Swoosh.Adapters.Postal	
	Lettermint	Swoosh.Adapters.Lettermint	
	Resend	Swoosh.Adapters.Resend	
	------	Below are not fully featured services	------
	Loops	Swoosh.Adapters.Loops	
	PostUp	Swoosh.Adapters.PostUp	

Configure which adapter you want to use by updating your config/config.exs
file:
config :sample, Sample.Mailer,
 adapter: Swoosh.Adapters.SMTP
 # adapter config (api keys, etc.)
Check the documentation of the adapter you want to use for more specific
configurations and instructions.
Adding new adapters is super easy and we are definitely looking for
contributions on that front. Get in touch if you want to help!
Third-party Adapters
Adapters for email providers not included by Swoosh, maintained by Elixir community members.
	Provider	Swoosh adapter	Remarks
	Resend	Resend.Swoosh.Adapter	

Recipient
The Recipient Protocol enables you to easily make your structs compatible
with Swoosh functions.
defmodule MyUser do
 @derive {Swoosh.Email.Recipient, name: :name, address: :email}
 defstruct [:name, :email, :other_props]
end
Now you can directly pass %MyUser{} to from, to, cc, bcc, etc.
See Swoosh.Email.Recipient for more details.
Async Emails
Swoosh does not make any special arrangements for sending emails in a
non-blocking manner. Opposite to some stacks, sending emails, talking
to third party apps, etc in Elixir do not block or interfere with other
requests, so you should resort to async emails only when necessary.
One simple way to deliver emails asynchronously is by leveraging Elixir's
standard library. First add a Task supervisor to your application root,
usually at lib/my_app/application.ex:
def start(_, _) do
 children = [
 ...,
 # Before the endpoint
 {Task.Supervisor, name: MyApp.AsyncEmailSupervisor},
 MyApp.Endpoint
]

 Supervisor.start_link(children, strategy: :one_for_one)
end
Now, whenever you want to send an email:
Task.Supervisor.start_child(MyApp.AsyncEmailSupervisor, fn ->
 %{name: "Tony Stark", email: "tony.stark@example.com"}
 |> Sample.UserEmail.welcome()
 |> Sample.Mailer.deliver()
end)
Please take a look at the official docs for
Task and
Task.Supervisor for further
options.
One of the downsides of sending email asynchronously is that failures won't
be reported to the user, who won't have an opportunity to try again immediately,
and tasks by default do not retry on errors. Therefore, if the email must be
delivered asynchronously, a safer solution would be to use a queue or job system.
Elixir's ecosystem has many
job queue libraries.
	Oban is the current community favourite.
It uses PostgreSQL for storage and coordination.
	Exq uses Redis and is compatible with
Resque / Sidekiq.

Attachments
You can attach files to your email using the Swoosh.Email.attachment/2
function. Just give the path of your file as an argument and we will do the
rest. It also works with a %Plug.Upload{} struct, or a %Swoosh.Attachment{}
struct, which can be constructed using Swoosh.Attachment.new detailed here in
the docs.
All built-in adapters have support for attachments.
new()
|> to("peter@example.com")
|> from({"Jarvis", "jarvis@example.com"})
|> subject("Invoice May")
|> text_body("Here is the invoice for your superhero services in May.")
|> attachment("/Users/jarvis/invoice-peter-may.pdf")
Testing
In your config/test.exs file set your mailer's adapter to
Swoosh.Adapters.Test so that you can use the assertions provided by Swoosh in
Swoosh.TestAssertions module.
defmodule Sample.UserTest do
 use ExUnit.Case, async: true

 import Swoosh.TestAssertions

 test "send email on user signup" do
 # Assuming `create_user` creates a new user then sends out a
 # `Sample.UserEmail.welcome` email
 user = create_user(%{username: "ironman", email: "tony.stark@example.com"})
 assert_email_sent Sample.UserEmail.welcome(user)
 end
end
Custom JSON Library
By default, Swoosh ships with required dependency Jason. In the future, we will change it to the builtin JSON module in Elixir 1.18+.
If you want to swap the default JSON library used by Swoosh, you can configure it in your config/config.exs file like this:
config :swoosh, :json_library, JSON
In future major versions, Jason will be removed from the dependency list or become an optional dependency.
Mailbox preview in the browser
Swoosh ships with a Plug that allows you to preview the emails in the local
(in-memory) mailbox. It's particularly convenient in development when you want
to check what your email will look like while testing the various flows of your
application.
For email to reach this mailbox you will need to set your Mailer adapter to
Swoosh.Adapters.Local:
in config/dev.exs
config :sample, MyApp.Mailer,
 adapter: Swoosh.Adapters.Local
In your Phoenix project you can forward directly to the plug
without spinning up a separate webserver, like this:
in web/router.ex
if Mix.env == :dev do
 scope "/dev" do
 pipe_through [:browser]

 forward "/mailbox", Plug.Swoosh.MailboxPreview
 end
end
You can also start a new server if your application does not depends on Phoenix:
in config/dev.exs
to run the preview server alongside your app
which may not have a web interface already
config :swoosh, serve_mailbox: true
in config/dev.exs
to change the preview server port (4000 by default)
config :swoosh, serve_mailbox: true, preview_port: 4001
When using serve_mailbox: true make sure to have either plug_cowboy or
bandit as a dependency of your app.
{:plug_cowboy, ">= 1.0.0"}
or
{:bandit, ">= 1.0.0"}
And finally you can also use the following Mix task to start the mailbox
preview server independently:
mix swoosh.mailbox.server

Note: the mailbox preview won't display emails
being sent from outside its own node. So if you are testing using an IEx session,
it's recommended to boot the application in the same session.
iex -S mix phx.server or iex -S mix swoosh.mailbox.server will do the trick.
If you are curious, this is how it the mailbox preview looks like:
[image: Plug.Swoosh.MailboxPreview]
Note : To show the preview we use the cdn-version of Tailwindcss. If you have set a content-security-policy you may have to add https://cdn.tailwindcss.com to default-src to have the correct make up.
The preview is also available as a JSON endpoint.
curl http://localhost:4000/dev/mailbox/json

Production
Swoosh starts a memory storage process for local adapter by default. Normally
it does no harm being left around in production. However, if it is causing
problems, or you don't like having it around, it can be disabled like so:
config/prod.exs
config :swoosh, local: false
Telemetry
The following events are emitted:
	[:swoosh, :deliver, :start]: occurs when Mailer.deliver/2 begins.
	[:swoosh, :deliver, :stop]: occurs when Mailer.deliver/2 completes.
	[:swoosh, :deliver, :exception]: occurs when Mailer.deliver/2 throws an exception.
	[:swoosh, :deliver_many, :start]: occurs when Mailer.deliver_many/2 begins.
	[:swoosh, :deliver_many, :stop]: occurs when Mailer.deliver_many/2 completes.
	[:swoosh, :deliver_many, :exception]: occurs when Mailer.deliver_many/2
throws an exception.

View example in docs
Documentation
Documentation is written into the library, you will find it in the source code,
accessible from iex and of course, it all gets published to
HexDocs.
Contributing
We are grateful for any contributions. Before you submit an issue or a pull
request, remember to:
	Look at our Contributing guidelines
	Not use the issue tracker for help or support requests (try StackOverflow,
IRC or Slack instead)
	Do a quick search in the issue tracker to make sure the issues hasn't been
reported yet.
	Look and follow the Code of Conduct. Be nice and have fun!

Running tests
Clone the repo and fetch its dependencies:
git clone https://github.com/swoosh/swoosh.git
cd swoosh
mix deps.get
mix test

Building docs
MIX_ENV=docs mix docs

LICENSE
See LICENSE

Swoosh.Adapter behaviour

Specification of the email delivery adapter.

 Summary

 Types

 config()

 email()

 t()

 Callbacks

 deliver(email, config)

 Delivers an email with the given config.

 deliver_many(list, config)

 Delivers multiple emails with the given config in one request. Some email providers allow multiple
messages to be sent in one HTTP request, for example Mailjet and Postmark allow this. Check your
provider's documentation to see if that is possible, and see the adapter you use to find out whether
it has been implemented.

 validate_config(config)

 validate_dependency()

 Functions

 validate_config(required_config, config)

 validate_dependency(required_deps)

 Types

 config()

 @type config() :: Keyword.t()

 email()

 @type email() :: Swoosh.Email.t()

 t()

 @type t() :: module()

 Callbacks

 deliver(email, config)

 @callback deliver(email(), config()) :: {:ok, term()} | {:error, term()}

Delivers an email with the given config.

 deliver_many(list, config)

 (optional)

 @callback deliver_many([email()], config()) :: {:ok, [term()]} | {:error, term()}

Delivers multiple emails with the given config in one request. Some email providers allow multiple
messages to be sent in one HTTP request, for example Mailjet and Postmark allow this. Check your
provider's documentation to see if that is possible, and see the adapter you use to find out whether
it has been implemented.

 validate_config(config)

 @callback validate_config(config()) :: :ok | no_return()

 validate_dependency()

 (optional)

 @callback validate_dependency() :: :ok | [module() | {atom(), module()}]

 Functions

 validate_config(required_config, config)

 @spec validate_config([atom()], Keyword.t()) :: :ok | no_return()

 validate_dependency(required_deps)

 @spec validate_dependency([module() | {atom(), module()}]) ::
 :ok | {:error, [module() | {:atom | module()}]}

Swoosh.Adapters.Local.Storage.Manager

Manages the creation/monitoring of the global in-memory storage driver,
Swoosh.Adapters.Local.Storage.Memory

 Summary

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 start_link(args \\ [])

 Functions

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 start_link(args \\ [])

Swoosh.Adapters.Local.Storage.Memory

In-memory storage driver used by the
Swoosh.Adapters.Local module.
The emails in this mailbox are stored in memory and won't persist once your
application is stopped.

 Summary

 Functions

 all()

 List all the emails in the mailbox.

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 delete_all()

 Delete all the emails currently in the mailbox.

 get(id)

 Get a specific email from the mailbox.

 init(args)

 Callback implementation for GenServer.init/1.

 pop()

 Pop the last email from the mailbox.

 push(email)

 Push a new email into the mailbox.

 start(args \\ [])

 Starts the server

 stop()

 Stops the server

 Functions

 all()

List all the emails in the mailbox.
Examples
iex> email = new |> from("tony.stark@example.com")
%Swoosh.Email{from: {"", "tony.stark@example.com"}, [...]}
iex> Memory.push(email)
%Swoosh.Email{from: {"", "tony.stark@example.com"}, headers: %{"Message-ID": "a1b2c3"}, [...]}
iex> Memory.all()
[%Swoosh.Email{from: {"", "tony.stark@example.com"}, headers: %{"Message-ID": "a1b2c3"}, [...]}]

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 delete_all()

Delete all the emails currently in the mailbox.
Examples
iex> email = new |> from("tony.stark@example.com")
%Swoosh.Email{from: {"", "tony.stark@example.com"}, [...]}
iex> Memory.push(email)
%Swoosh.Email{from: {"", "tony.stark@example.com"}, headers: %{"Message-ID": "a1b2c3"}, [...]}
iex> Memory.delete_all()
:ok
iex> Memory.all()
[]

 get(id)

Get a specific email from the mailbox.
Examples
iex> email = new |> from("tony.stark@example.com")
%Swoosh.Email{from: {"", "tony.stark@example.com"}, [...]}
iex> Memory.push(email)
%Swoosh.Email{from: {"", "tony.stark@example.com"}, headers: %{"Message-ID": "a1b2c3"}, [...]}
iex> Memory.get("A1B2C3")
%Swoosh.Email{from: {"", "tony.stark@example.com"}, headers: %{"Message-ID": "a1b2c3"}, [...]}

 init(args)

Callback implementation for GenServer.init/1.

 pop()

Pop the last email from the mailbox.
Examples
iex> email = new |> from("tony.stark@example.com")
%Swoosh.Email{from: {"", "tony.stark@example.com"}, [...]}
iex> Memory.push(email)
%Swoosh.Email{from: {"", "tony.stark@example.com"}, headers: %{"Message-ID": "a1b2c3"}, [...]}
iex> Memory.all() |> Enum.count()
1
iex> Memory.pop()
%Swoosh.Email{from: {"", "tony.stark@example.com"}, headers: %{"Message-ID": "a1b2c3"}, [...]}
iex> Memory.all() |> Enum.count()
0

 push(email)

Push a new email into the mailbox.
In order to make it easy to fetch a single email, a Message-ID header is
added to the email before being stored.
Examples
iex> email = new |> from("tony.stark@example.com")
%Swoosh.Email{from: {"", "tony.stark@example.com"}, [...]}
iex> Memory.push(email)
%Swoosh.Email{from: {"", "tony.stark@example.com"}, headers: %{"Message-ID": "a1b2c3"}, [...]}

 start(args \\ [])

Starts the server

 stop()

Stops the server

Swoosh.Application

 Summary

 Functions

 start(type, args)

 Callback implementation for Application.start/2.

 Functions

 start(type, args)

Callback implementation for Application.start/2.

Swoosh.Attachment

Struct representing an attachment in an email.
Usage
For all usecases of new/2 see the function documentation.
Inline Example
new()
|> to({avenger.name, avenger.email})
|> from({"Red Skull", "red_skull@villains.org"})
|> subject("End Game invitation QR Code")
|> html_body(~s|<h1>Hello #{avenger.name}</h1> Here is your QR Code |)
|> text_body("Hello #{avenger.name}. Please find your QR Code attached.\n")
|> attachment(
 Swoosh.Attachment.new(
 {:data, invitation_qr_code_binary},
 filename: "qrcode.png",
 content_type: "image/png",
 type: :inline)
)
|> VillainMailer.deliver()

 Summary

 Types

 content_encoding()

 t()

 Functions

 get_content(attachment)

 get_content(attachment, encoding \\ :raw)

 new(path, opts \\ [])

 Creates a new Attachment

 Types

 content_encoding()

 @type content_encoding() :: :raw | :base64

 t()

 @type t() :: %Swoosh.Attachment{
 cid: String.t() | nil,
 content_type: String.t(),
 data: binary() | nil,
 filename: String.t(),
 headers: [{String.t(), String.t()}],
 path: String.t() | nil,
 type: :inline | :attachment
}

 Functions

 get_content(attachment)

 get_content(attachment, encoding \\ :raw)

 @spec get_content(
 %Swoosh.Attachment{
 cid: term(),
 content_type: term(),
 data: term(),
 filename: term(),
 headers: term(),
 path: term(),
 type: term()
 },
 content_encoding()
) :: binary() | no_return()

 new(path, opts \\ [])

 @spec new(binary() | struct() | {:data, binary()}, Keyword.t() | map()) ::
 %Swoosh.Attachment{
 cid: term(),
 content_type: term(),
 data: term(),
 filename: term(),
 headers: term(),
 path: term(),
 type: term()
 }

Creates a new Attachment
Examples:
Attachment.new("/path/to/attachment.png")
Attachment.new("/path/to/attachment.png", filename: "image.png")
Attachment.new("/path/to/attachment.png", filename: "image.png", content_type: "image/png")
Attachment.new(params["file"]) # Where params["file"] is a %Plug.Upload
Attachment.new({:data, File.read!("/path/to/attachment.png")}, filename: "image.png", content_type: "image/png")
Examples with inline-attachments:
Attachment.new("/path/to/attachment.png", type: :inline)
Attachment.new("/path/to/attachment.png", filename: "image.png", type: :inline)
Attachment.new("/path/to/attachment.png", filename: "image.png", content_type: "image/png", type: :inline)
Attachment.new(params["file"], type: :inline) # Where params["file"] is a %Plug.Upload
Attachment.new({:data, File.read!("/path/to/attachment.png")}, filename: "image.png", content_type: "image/png", type: :inline)
Inline attachments by default use their filename
(or basename of the path if filename is not specified) as cid,
in relevant adapters.
Attachment.new("/data/file.png", type: :inline)
Gives you something like this:

You can optionally override this default by passing in the cid option:
Attachment.new("/data/file.png", type: :inline, cid: "custom-cid")

Swoosh.Mailer

Defines a mailer.
A mailer is a wrapper around an adapter that makes it easy for you to swap the
adapter without having to change your code.
It is also responsible for doing some sanity checks before handing down the
email to the adapter.
When used, the mailer expects :otp_app as an option.
The :otp_app should point to an OTP application that has the mailer
configuration. For example, the mailer:
defmodule Sample.Mailer do
 use Swoosh.Mailer, otp_app: :sample
end
Could be configured with:
config :sample, Sample.Mailer,
 adapter: Swoosh.Adapters.Sendgrid,
 api_key: "SG.x.x"
Most of the configuration that goes into the config is specific to the adapter,
so check the adapter's documentation for more information.
Per module configuration is also supported, it has priority over mix configs:
defmodule Sample.Mailer do
 use Swoosh.Mailer, otp_app: :sample,
 adapter: Swoosh.Adapters.Sendgrid,
 api_key: "SG.x.x"
end
Usage
Once configured you can use your mailer like this:
in an IEx console
iex> email = new |> from("tony.stark@example.com") |> to("steve.rogers@example.com")
%Swoosh.Email{from: {"", "tony.stark@example.com"}, ...}
iex> Mailer.deliver(email)
{:ok, %{...}}
Dynamic config
You can also pass an extra config argument to deliver/2 that will be merged
with your Mailer's config:
in an IEx console
iex> email = new |> from("tony.stark@example.com") |> to("steve.rogers@example.com")
%Swoosh.Email{from: {"", "tony.stark@example.com"}, ...}
iex> Mailer.deliver(email, domain: "jarvis.com")
{:ok, %{...}}
Telemetry
Each mailer outputs the following telemetry events:
	[:swoosh, :deliver, :start]: occurs when Mailer.deliver/2 begins.
	[:swoosh, :deliver, :stop]: occurs when Mailer.deliver/2 completes.
	[:swoosh, :deliver, :exception]: occurs when Mailer.deliver/2 throws an exception.
	[:swoosh, :deliver_many, :start]: occurs when Mailer.deliver_many/2 begins.
	[:swoosh, :deliver_many, :stop]: occurs when Mailer.deliver_many/2 completes.
	[:swoosh, :deliver_many, :exception]: occurs when Mailer.deliver_many/2 throws an exception.

Capturing events
You can capture events by calling :telemetry.attach/4 or :telemetry.attach_many/4. Here's an example:
tracks the number of emails sent successfully/errored
defmodule MyHandler do
 def handle_event([:swoosh, :deliver, :stop], _measurements, metadata, _config) do
 if Map.get(metadata, :error) do
 StatsD.increment("mail.sent.failure", 1, %{mailer: metadata.mailer})
 else
 StatsD.increment("mail.sent.success", 1, %{mailer: metadata.mailer})
 end
 end

 def handle_event([:swoosh, :deliver, :exception], _measurements, metadata, _config) do
 StatsD.increment("mail.sent.failure", 1, %{mailer: metadata.mailer})
 end

 def handle_event([:swoosh, :deliver_many, :stop], _measurements, metadata, _config) do
 if Map.get(metadata, :error) do
 StatsD.increment("mail.sent.failure", length(metadata.emails), %{mailer: metadata.mailer})
 else
 StatsD.increment("mail.sent.success", length(metadata.emails), %{mailer: metadata.mailer})
 end
 end

 def handle_event([:swoosh, :deliver_many, :exception], _measurements, metadata, _config) do
 StatsD.increment("mail.sent.failure", length(metadata.emails), %{mailer: metadata.mailer})
 end
end
in Application.start/2 callback:
:telemetry.attach_many("my-handler", [
 [:swoosh, :deliver, :stop],
 [:swoosh, :deliver, :exception],
 [:swoosh, :deliver_many, :stop],
 [:swoosh, :deliver_many, :exception],
], &MyHandler.handle_event/4, nil)

 Summary

 Functions

 deliver(email, config)

 Delivers an email.

 deliver_many(emails, config)

 The implementation for deliver_many/2 is on case-by-case basis. Check the adapter that you use
to see if it has deliver_many/2 implemented.

 Functions

 deliver(email, config)

Delivers an email.

 deliver_many(emails, config)

The implementation for deliver_many/2 is on case-by-case basis. Check the adapter that you use
to see if it has deliver_many/2 implemented.

Swoosh.Email

Defines an Email.
This module defines a Swoosh.Email struct and the main functions for composing an email. As it is the contract for
the public APIs of Swoosh it is a good idea to make use of these functions rather than build the struct yourself.
Email fields
	from - the email address of the sender, example: {"Tony Stark", "tony.stark@example.com"}
	to - the email address for the recipient(s), example: [{"Steve Rogers", "steve.rogers@example.com"}]
	subject - the subject of the email, example: "Hello, Avengers!"
	cc - the intended carbon copy recipient(s) of the email, example: [{"Bruce Banner", "hulk.smash@example.com"}]
	bcc - the intended blind carbon copy recipient(s) of the email, example: [{"Janet Pym", "wasp.avengers@example.com"}]
	text_body - the content of the email in plaintext, example: "Hello"
	html_body - the content of the email in HTML, example: "<h1>Hello</h1>"
	reply_to - the email address that should receive replies, example: {"Clint Barton", "hawk.eye@example.com"}
	headers - a map of headers that should be included in the email, example: %{"X-Accept-Language" => "en-us, en"}
	attachments - a list of attachments that should be included in the email, example: [%{path: "/data/uuid-random", filename: "att.zip", content_type: "application/zip"}]
	assigns - a map of values that correspond with any template variables, example: %{"first_name" => "Bruce"}

Private
This key is reserved for use with adapters, libraries and frameworks.
	private - a map of values that are for use by libraries/frameworks, example: %{phoenix_template: "welcome.html.eex"}	client_options will be passed to underlying http client post call

Provider options
This key allow users to make use of provider-specific functionality by passing along addition parameters.
	provider_options - a map of values that are specific to adapter provider, example: %{async: true}

Examples
email =
 new()
 |> to("tony.stark@example.com")
 |> from("bruce.banner@example.com")
 |> text_body("Welcome to the Avengers")
The composable nature makes it very easy to continue expanding upon a given Email.
email =
 email
 |> cc({"Steve Rogers", "steve.rogers@example.com"})
 |> cc("wasp.avengers@example.com")
 |> bcc(["thor.odinson@example.com", {"Henry McCoy", "beast.avengers@example.com"}])
 |> html_body("<h1>Special Welcome</h1>")
You can also directly pass arguments to the new/1 function.
email = new(from: "tony.stark@example.com", to: "steve.rogers@example.com", subject: "Hello, Avengers!")

 Summary

 Types

 address()

 html_body()

 mailbox()

 name()

 subject()

 t()

 text_body()

 Functions

 assign(email, key, value)

 Stores a new variable key and value in the email.

 attachment(email, path)

 Add a new attachment in the email.

 bcc(email, recipients)

 Adds new recipients in the bcc field.

 cc(email, recipients)

 Adds new recipients in the cc field.

 from(email, from)

 Sets a recipient in the from field.

 header(email, name, value)

 Adds a new header in the email.

 html_body(email, html_body)

 Sets the html_body field.

 new(opts \\ [])

 Returns a Swoosh.Email struct.

 put_bcc(email, recipients)

 Puts new recipients in the bcc field.

 put_cc(email, recipients)

 Puts new recipients in the cc field.

 put_private(email, key, value)

 Stores a new private key and value in the email.

 put_provider_option(email, key, value)

 Stores a new provider_option key and value in the email.

 put_to(email, recipients)

 Puts new recipients in the to field.

 reply_to(email, reply_to)

 Sets a recipient in the reply_to field. May also set a list of recipients as reply_to, but the
support for it on adapters is on case-by-case basis.

 subject(email, subject)

 Sets the subject field.

 text_body(email, text_body)

 Sets the text_body field.

 to(email, recipients)

 Adds new recipients in the to field.

 Types

 address()

 @type address() :: String.t()

 html_body()

 @type html_body() :: String.t()

 mailbox()

 @type mailbox() :: {name(), address()}

 name()

 @type name() :: String.t()

 subject()

 @type subject() :: String.t()

 t()

 @type t() :: %Swoosh.Email{
 assigns: map(),
 attachments: [Swoosh.Attachment.t()],
 bcc: [mailbox()] | [],
 cc: [mailbox()] | [],
 from: mailbox() | nil,
 headers: map(),
 html_body: html_body() | nil,
 private: map(),
 provider_options: map(),
 reply_to: [mailbox()] | mailbox() | nil,
 subject: String.t(),
 text_body: text_body() | nil,
 to: [mailbox()]
}

 text_body()

 @type text_body() :: String.t()

 Functions

 assign(email, key, value)

 @spec assign(t(), atom(), any()) :: t()

Stores a new variable key and value in the email.
This store is meant for variables used in templating. The name should be specified as an atom, the value can be any
term.
Examples
iex> new() |> assign(:username, "ironman")
%Swoosh.Email{assigns: %{username: "ironman"}, attachments: [], bcc: [],
 cc: [], from: nil, headers: %{}, html_body: nil, private: %{},
 provider_options: %{}, reply_to: nil, subject: "", text_body: nil, to: []}

 attachment(email, path)

 @spec attachment(t(), binary() | Swoosh.Attachment.t()) :: t()

Add a new attachment in the email.
You can pass the path to a file, a Swoosh.Attachment or a %Plug.Upload{} struct
as an argument. If you give a path we will detect the MIME type and determine the filename
automatically.
You can also send an inline-attachment used for embedding images in the body of emails by specifying type: :inline
Examples
iex> new() |> attachment("/data/att.zip")
%Swoosh.Email{assigns: %{}, bcc: [], cc: [], from: nil,
 headers: %{}, html_body: nil, private: %{}, provider_options: %{},
 reply_to: nil, subject: "", text_body: nil, to: [],
 attachments: [%Swoosh.Attachment{path: "/data/att.zip",
 content_type: "application/zip", filename: "att.zip",
 type: :attachment, data: nil, headers: [], cid: nil}]}
iex> new() |> attachment(Swoosh.Attachment.new("/data/att.zip"))
%Swoosh.Email{assigns: %{}, bcc: [], cc: [], from: nil,
 headers: %{}, html_body: nil, private: %{}, provider_options: %{},
 reply_to: nil, subject: "", text_body: nil, to: [],
 attachments: [%Swoosh.Attachment{path: "/data/att.zip",
 content_type: "application/zip", filename: "att.zip",
 type: :attachment, data: nil, headers: [], cid: nil}]}
iex> new() |> attachment(%Plug.Upload{path: "/data/abcdefg", content_type: "test/type", filename: "att.zip"})
%Swoosh.Email{assigns: %{}, bcc: [], cc: [], from: nil,
 headers: %{}, html_body: nil, private: %{}, provider_options: %{},
 reply_to: nil, subject: "", text_body: nil, to: [],
 attachments: [%Swoosh.Attachment{path: "/data/abcdefg",
 content_type: "test/type", filename: "att.zip",
 type: :attachment, data: nil, headers: [], cid: nil}]}
iex> new() |> attachment(Swoosh.Attachment.new("/data/att.png", type: :inline))
%Swoosh.Email{assigns: %{}, bcc: [], cc: [], from: nil,
 headers: %{}, html_body: nil, private: %{}, provider_options: %{},
 reply_to: nil, subject: "", text_body: nil, to: [],
 attachments: [%Swoosh.Attachment{path: "/data/att.png",
 content_type: "image/png", filename: "att.png",
 type: :inline, data: nil, headers: [], cid: "att.png"}]}

 bcc(email, recipients)

 @spec bcc(t(), Swoosh.Email.Recipient.t() | [Swoosh.Email.Recipient.t()]) :: t()

Adds new recipients in the bcc field.
iex> new() |> bcc("steve.rogers@example.com")
%Swoosh.Email{assigns: %{}, attachments: [], bcc: [{"", "steve.rogers@example.com"}],
 cc: [], from: nil, headers: %{}, html_body: nil,
 private: %{}, provider_options: %{}, reply_to: nil, subject: "",
 text_body: nil, to: []}

 cc(email, recipients)

 @spec cc(t(), Swoosh.Email.Recipient.t() | [Swoosh.Email.Recipient.t()]) :: t()

Adds new recipients in the cc field.
Examples
iex> new() |> cc("steve.rogers@example.com")
%Swoosh.Email{assigns: %{}, attachments: [], bcc: [],
 cc: [{"", "steve.rogers@example.com"}], from: nil, headers: %{}, html_body: nil,
 private: %{}, provider_options: %{}, reply_to: nil, subject: "",
 text_body: nil, to: []}

 from(email, from)

 @spec from(t(), Swoosh.Email.Recipient.t()) :: t()

Sets a recipient in the from field.
Examples
iex> new() |> from({"Steve Rogers", "steve.rogers@example.com"})
%Swoosh.Email{assigns: %{}, attachments: [], bcc: [], cc: [], from: {"Steve Rogers", "steve.rogers@example.com"},
 headers: %{}, html_body: nil, private: %{}, provider_options: %{},
 reply_to: nil, subject: "", text_body: nil, to: []}

iex> new() |> from("steve.rogers@example.com")
%Swoosh.Email{assigns: %{}, attachments: [], bcc: [], cc: [], from: {"", "steve.rogers@example.com"},
 headers: %{}, html_body: nil, private: %{}, provider_options: %{},
 reply_to: nil, subject: "", text_body: nil, to: []}

 header(email, name, value)

 @spec header(t(), String.t(), String.t()) :: t()

Adds a new header in the email.
The name and value must be specified as strings.
Examples
iex> new() |> header("X-Magic-Number", "7")
%Swoosh.Email{assigns: %{}, attachments: [], bcc: [], cc: [], from: nil,
 headers: %{"X-Magic-Number" => "7"}, html_body: nil, private: %{},
 provider_options: %{}, reply_to: nil, subject: "", text_body: nil, to: []}

 html_body(email, html_body)

 @spec html_body(t(), html_body() | nil) :: t()

Sets the html_body field.
The HTML body must be a string that containing the HTML content.
Examples
iex> new() |> html_body("<h1>Hello</h1>")
%Swoosh.Email{assigns: %{}, attachments: [], bcc: [],
 cc: [], from: nil, headers: %{}, html_body: "<h1>Hello</h1>",
 private: %{}, provider_options: %{}, reply_to: nil, subject: "",
 text_body: nil, to: []}

 new(opts \\ [])

 @spec new(none() | Enum.t()) :: t()

Returns a Swoosh.Email struct.
You can pass a keyword list or a map argument to the function that will be used
to populate the fields of that struct. Note that it will silently ignore any
fields that it doesn't know about.
Examples
iex> new()
%Swoosh.Email{}

iex> new(subject: "Hello, Avengers!")
%Swoosh.Email{subject: "Hello, Avengers!"}

iex> new(from: "tony.stark@example.com")
%Swoosh.Email{from: {"", "tony.stark@example.com"}}
iex> new(from: {"Tony Stark", "tony.stark@example.com"})
%Swoosh.Email{from: {"Tony Stark", "tony.stark@example.com"}}

iex> new(to: "steve.rogers@example.com")
%Swoosh.Email{to: [{"", "steve.rogers@example.com"}]}
iex> new(to: {"Steve Rogers", "steve.rogers@example.com"})
%Swoosh.Email{to: [{"Steve Rogers", "steve.rogers@example.com"}]}
iex> new(to: [{"Bruce Banner", "bruce.banner@example.com"}, "thor.odinson@example.com"])
%Swoosh.Email{to: [{"Bruce Banner", "bruce.banner@example.com"}, {"", "thor.odinson@example.com"}]}

iex> new(cc: "steve.rogers@example.com")
%Swoosh.Email{cc: [{"", "steve.rogers@example.com"}]}
iex> new(cc: {"Steve Rogers", "steve.rogers@example.com"})
%Swoosh.Email{cc: [{"Steve Rogers", "steve.rogers@example.com"}]}
iex> new(cc: [{"Bruce Banner", "bruce.banner@example.com"}, "thor.odinson@example.com"])
%Swoosh.Email{cc: [{"Bruce Banner", "bruce.banner@example.com"}, {"", "thor.odinson@example.com"}]}

iex> new(bcc: "steve.rogers@example.com")
%Swoosh.Email{bcc: [{"", "steve.rogers@example.com"}]}
iex> new(bcc: {"Steve Rogers", "steve.rogers@example.com"})
%Swoosh.Email{bcc: [{"Steve Rogers", "steve.rogers@example.com"}]}
iex> new(bcc: [{"Bruce Banner", "bruce.banner@example.com"}, "thor.odinson@example.com"])
%Swoosh.Email{bcc: [{"Bruce Banner", "bruce.banner@example.com"}, {"", "thor.odinson@example.com"}]}

iex> new(html_body: "<h1>Welcome, Avengers</h1>")
%Swoosh.Email{html_body: "<h1>Welcome, Avengers</h1>"}

iex> new(text_body: "Welcome, Avengers")
%Swoosh.Email{text_body: "Welcome, Avengers"}

iex> new(reply_to: "edwin.jarvis@example.com")
%Swoosh.Email{reply_to: {"", "edwin.jarvis@example.com"}}
iex> new(reply_to: {"Edwin Jarvis", "edwin.jarvis@example.com"})
%Swoosh.Email{reply_to: {"Edwin Jarvis", "edwin.jarvis@example.com"}}

iex> new(headers: %{"X-Accept-Language" => "en"})
%Swoosh.Email{headers: %{"X-Accept-Language" => "en"}}

iex> new(assigns: %{user_id: 10})
%Swoosh.Email{assigns: %{user_id: 10}}

iex> new(provider_options: %{async: true})
%Swoosh.Email{provider_options: %{async: true}}
You can obviously combine these arguments together:
iex> new(to: "steve.rogers@example.com", subject: "Hello, Avengers!")
%Swoosh.Email{to: [{"", "steve.rogers@example.com"}], subject: "Hello, Avengers!"}

 put_bcc(email, recipients)

 @spec put_bcc(t(), Swoosh.Email.Recipient.t() | [Swoosh.Email.Recipient.t()]) :: t()

Puts new recipients in the bcc field.
It will replace any previously added bcc recipients.

 put_cc(email, recipients)

 @spec put_cc(t(), Swoosh.Email.Recipient.t() | [Swoosh.Email.Recipient.t()]) :: t()

Puts new recipients in the cc field.
It will replace any previously added cc recipients.

 put_private(email, key, value)

 @spec put_private(t(), atom(), any()) :: t()

Stores a new private key and value in the email.
This store is meant to be for libraries/framework usage. The name should be
specified as an atom, the value can be any term.
Examples
iex> new() |> put_private(:phoenix_template, "welcome.html")
%Swoosh.Email{assigns: %{}, attachments: [], bcc: [], cc: [], from: nil,
 headers: %{}, html_body: nil, private: %{phoenix_template: "welcome.html"},
 provider_options: %{}, reply_to: nil, subject: "", text_body: nil, to: []}

 put_provider_option(email, key, value)

 @spec put_provider_option(t(), atom(), any()) :: t()

Stores a new provider_option key and value in the email.
This store is meant for adapter usage, to aid provider-specific functionality.
The name should be specified as an atom, the value can be any term.
Examples
iex> new() |> put_provider_option(:async, true)
%Swoosh.Email{assigns: %{}, attachments: [], bcc: [], cc: [], from: nil,
 headers: %{}, html_body: nil, private: %{}, provider_options: %{async: true},
 reply_to: nil, subject: "", text_body: nil, to: []}

 put_to(email, recipients)

 @spec put_to(t(), Swoosh.Email.Recipient.t() | [Swoosh.Email.Recipient.t()]) :: t()

Puts new recipients in the to field.
It will replace any previously added to recipients.

 reply_to(email, reply_to)

 @spec reply_to(t(), Swoosh.Email.Recipient.t() | [Swoosh.Email.Recipient.t()]) :: t()

Sets a recipient in the reply_to field. May also set a list of recipients as reply_to, but the
support for it on adapters is on case-by-case basis.
Examples
iex> new() |> reply_to({"Steve Rogers", "steve.rogers@example.com"})
%Swoosh.Email{assigns: %{}, attachments: [], bcc: [], cc: [], from: nil,
 headers: %{}, html_body: nil, private: %{}, provider_options: %{},
 reply_to: {"Steve Rogers", "steve.rogers@example.com"}, subject: "", text_body: nil, to: []}

iex> new() |> reply_to("steve.rogers@example.com")
%Swoosh.Email{assigns: %{}, attachments: [], bcc: [], cc: [], from: nil,
 headers: %{}, html_body: nil, private: %{}, provider_options: %{},
 reply_to: {"", "steve.rogers@example.com"}, subject: "", text_body: nil, to: []}

iex> new() |> reply_to([{"Steve Rogers", "steve.rogers@example.com"}, "bucky.barnes@example.com"])
%Swoosh.Email{assigns: %{}, attachments: [], bcc: [], cc: [], from: nil,
 headers: %{}, html_body: nil, private: %{}, provider_options: %{},
 reply_to: [{"Steve Rogers", "steve.rogers@example.com"}, {"", "bucky.barnes@example.com"}],
 subject: "", text_body: nil, to: []}

 subject(email, subject)

 @spec subject(t(), subject()) :: t()

Sets the subject field.
The subject must be a string that contains the subject.
Examples
iex> new() |> subject("Hello, Avengers!")
%Swoosh.Email{assigns: %{}, attachments: [], bcc: [],
 cc: [], from: nil, headers: %{}, html_body: nil,
 private: %{}, provider_options: %{}, reply_to: nil, subject: "Hello, Avengers!",
 text_body: nil, to: []}

 text_body(email, text_body)

 @spec text_body(t(), text_body() | nil) :: t()

Sets the text_body field.
The text body must be a string that containing the plaintext content.
Examples
iex> new() |> text_body("Hello")
%Swoosh.Email{assigns: %{}, attachments: [], bcc: [],
 cc: [], from: nil, headers: %{}, html_body: nil,
 private: %{}, provider_options: %{}, reply_to: nil, subject: "",
 text_body: "Hello", to: []}

 to(email, recipients)

 @spec to(t(), Swoosh.Email.Recipient.t() | [Swoosh.Email.Recipient.t()]) :: t()

Adds new recipients in the to field.
Examples
iex> new() |> to("steve.rogers@example.com")
%Swoosh.Email{assigns: %{}, attachments: [], bcc: [],
 cc: [], from: nil, headers: %{}, html_body: nil,
 private: %{}, provider_options: %{}, reply_to: nil, subject: "",
 text_body: nil, to: [{"", "steve.rogers@example.com"}]}

Swoosh.Email.Recipient protocol

Recipient Protocol controls how data is formatted into an email recipient
Deriving
The protocol allows leveraging the Elixir's @derive feature to simplify protocol implementation
in trivial cases. Accepted options are:
	:name (optional)
	:address (required)

Example
defmodule MyUser do
 @derive {Swoosh.Email.Recipient, name: :name, address: :email}
 defstruct [:name, :email, :other_props]
end
or with optional name...
defmodule MySubscriber do
 @derive {Swoosh.Email.Recipient, address: :email}
 defstruct [:email, :preferences]
end
full implementation without deriving...
defmodule MyUser do
 defstruct [:name, :email, :other_props]
end

defimpl Swoosh.Email.Recipient, for: MyUser do
 def format(%MyUser{name: name, email: address} = value) do
 {name, address}
 end
end

 Summary

 Types

 t()

 Functions

 format(value)

 Formats value into a Swoosh recipient, a 2-tuple with recipient name and recipient address

 Types

 t()

 @type t() :: term()

 Functions

 format(value)

 @spec format(t()) :: Swoosh.Email.mailbox()

Formats value into a Swoosh recipient, a 2-tuple with recipient name and recipient address

Swoosh.Adapters.AmazonSES

An adapter that sends email using the Amazon Simple Email Service (SES) Query API.
This adapter does not depend on ExAws; if you are already using it, you may
prefer Swoosh.Adapters.ExAwsAmazonSES.
This email adapter makes use of the Amazon SES SendRawEmail action and generates
a SMTP style message containing the information to be emailed. This allows for
greater and more customizable email message and ensures the capability to add
attachments. As a result, however, the :gen_smtp dependency is required in order
to correctly generate the SMTP message that will be sent.
Ensure you have the dependency added in your mix.exs file:
def deps do
 [
 {:swoosh, "~> 1.0"},
 {:gen_smtp, "~> 1.0"}
]
end
Note: If Swoosh was compiled prior to :gen_smtp being installed, it may be necessary to
force a recompilation of the library. This can be accomplished using mix deps.compile swoosh --force.
This adapter requires an API Client. Swoosh comes with Hackney, Finch and Req out of the box.
See the installation section
for details.
See also:
Amazon SES Query Api Docs
Amazon SES SendRawEmail Documentation
Configuration options
Required
Note that these are handled automatically if using Swoosh.Adapters.ExAwsAmazonSES.
	:region - the AWS region
	:access_key - the IAM access key
	:secret - the IAM secret

Optional
The following request parameters can be set in the configuration:
	:ses_source - mapped to Source parameter in the API request
	:ses_source_arn - mapped to SourceArn parameter in the API request
	:ses_from_arn - mapped to FromArn parameter in the API request
	:ses_return_path_arn - mapped to ReturnPathArn parameter in the API request

See details on how to use the parameters from the SES API documentation.
Examples
config/config.exs
config :sample, Sample.Mailer,
 adapter: Swoosh.Adapters.AmazonSES,
 region: "region-endpoint",
 access_key: "aws-access-key",
 secret: "aws-secret-key"

lib/sample/mailer.ex
defmodule Sample.Mailer do
 use Swoosh.Mailer, otp_app: :sample
end
Using with tags and configuration set
import Swoosh.Email

new()
|> from("guybrush.threepwood@pirates.grog")
|> to("elaine.marley@triisland.gov")
|> subject("Mighty Pirate Newsletter")
|> text_body("Hello")
|> put_provider_option(:tags, [%{name: "name1", value: "test1"}])
|> put_provider_option(:configuration_set_name, "configuration_set_name1")
Provider Options
	:tags (list[map]) - a list of key/value pairs of a tag
	:configuration_set_name (string) - the name of the configuration set
	:security_token (string) - temporary security token obtained through
AWS Security Token Service (AWS STS)

IAM role
In case you use IAM role for authenticating AWS requests, you can fetch
temporary :access_key and :secret_key from that role, but you also need to
include additional X-Amz-Security-Token header to that request.
You can do that by adding :security_token to :provider_options.
If you don't have a static :access_key and :secret_key for your
application, you can use the Swoosh.Adapters.ExAwsAmazonSES adapter to fetch credentials
on-demand as specified in your application's :ex_aws configuration.

 Summary

 Functions

 deliver(email, config \\ [])

 Callback implementation for Swoosh.Adapter.deliver/2.

 validate_config(config)

 Callback implementation for Swoosh.Adapter.validate_config/1.

 validate_dependency()

 Callback implementation for Swoosh.Adapter.validate_dependency/0.

 Functions

 deliver(email, config \\ [])

Callback implementation for Swoosh.Adapter.deliver/2.

 validate_config(config)

Callback implementation for Swoosh.Adapter.validate_config/1.

 validate_dependency()

Callback implementation for Swoosh.Adapter.validate_dependency/0.

Swoosh.Adapters.Brevo

An adapter that sends email using the Brevo API (Transactional emails only).
For reference: Brevo API docs
This adapter requires an API Client. Swoosh comes with Hackney, Finch and Req out of the box.
See the installation section
for details.
Example
config/config.exs
config :sample, Sample.Mailer,
 adapter: Swoosh.Adapters.Brevo,
 api_key: "my-api-key"

lib/sample/mailer.ex
defmodule Sample.Mailer do
 use Swoosh.Mailer, otp_app: :sample
end
Using with provider options
import Swoosh.Email

new()
|> from("nora@example.com")
|> to("shushu@example.com")
|> subject("Hello, Wally!")
|> text_body("Hello")
|> put_provider_option(:id, 42)
|> put_provider_option(:template_id, 42)
|> put_provider_option(:params, %{param1: "a", param2: 123})
|> put_provider_option(:tags, ["tag_1", "tag_2"])
|> put_provider_option(:schedule_at, ~U[2022-11-15 11:00:00Z])
Batch Sending
This adapter supports deliver_many/2 for sending multiple emails in a single API call
using Brevo's messageVersions parameter. When using batch sending:
Global parameters (applied to all emails in the batch):
	sender - from address (taken from first email)
	attachment - attachments (taken from first email)
	tags - email tags (taken from first email)
	scheduledAt - scheduled send time (taken from first email)

Per-email parameters (can be different for each email):
	to, cc, bcc - recipients
	subject - email subject
	htmlContent, textContent - email content
	templateId - template selection
	params - template variables
	headers - custom headers
	replyTo - reply address

Provider Options
	sender_id (integer) - sender, the sender id where this library will
add email obtained from the from/1

	template_id (integer) - templateId, the Id of the active
transactional email template

	params (map) - params, a map of key/value attributes to customize the
template

	tags (list[string]) - tags, a list of tags for each email for easy
filtering

	schedule_at (UTC DateTime) - schedule_at, a UTC date-time on which the email has to schedule

 Summary

 Functions

 deliver(email, config \\ [])

 Callback implementation for Swoosh.Adapter.deliver/2.

 deliver_many(emails, config \\ [])

 Callback implementation for Swoosh.Adapter.deliver_many/2.

 validate_config(config)

 Callback implementation for Swoosh.Adapter.validate_config/1.

 validate_dependency()

 Callback implementation for Swoosh.Adapter.validate_dependency/0.

 Functions

 deliver(email, config \\ [])

Callback implementation for Swoosh.Adapter.deliver/2.

 deliver_many(emails, config \\ [])

Callback implementation for Swoosh.Adapter.deliver_many/2.

 validate_config(config)

Callback implementation for Swoosh.Adapter.validate_config/1.

 validate_dependency()

Callback implementation for Swoosh.Adapter.validate_dependency/0.

Swoosh.Adapters.CustomerIO

An adapter that sends email using the CustomerIO API.
For reference: CustomerIO API docs
This adapter requires an API Client. Swoosh comes with Hackney, Finch and Req out of the box.
See the installation section
for details.
Example
config/config.exs
config :sample, Sample.Mailer,
 adapter: Swoosh.Adapters.CustomerIO,
 api_key: "my-api-key"

lib/sample/mailer.ex
defmodule Sample.Mailer do
 use Swoosh.Mailer, otp_app: :sample
end
You can also change the API host, which defaults to https://api.customer.io/v1. For example, if
your Customer.io account is configured to use their EU datacenter:
config/config.exs
config :sample, Sample.Mailer,
 base_url: "https://api-eu.customer.io/v1"
This can also be provided to deliver/2 on a case-by-case basis.
Using with provider options
import Swoosh.Email

new()
|> from({"Xu Shang-Chi", "xu.shangchi@example.com"})
|> to({"Katy", "katy@example.com"})
|> reply_to("xu.xialing@example.com")
|> cc("yingli@example.com")
|> cc({"Xu Wenwu", "xu.wenwu@example.com"})
|> bcc("yingnan@example.com")
|> bcc({"Jon Jon", "jonjon@example.com"})
|> subject("Hello, Ten Rings!")
|> html_body("<h1>Hello</h1>")
|> text_body("Hello")
|> put_provider_option(:disable_css_preprocessing, true)
|> put_provider_option(:disable_message_retention, true)
|> put_provider_option(:fake_bcc, true)
|> put_provider_option(:message_data, %{
 my_var: %{my_message_id: 123},
 my_other_var: %{my_other_id: 1, stuff: 2}
})
|> put_provider_option(:preheader, "this is the preview")
|> put_provider_option(:queue_draft, true)
|> put_provider_option(:send_at, 1617260400)
|> put_provider_option(:send_to_unsubscribed, true)
|> put_provider_option(:tracked, false)
|> put_provider_option(:transactional_message_id, 44)
Provider Options
Supported provider options are the following:
Inserted into request body
	:disable_css_preprocessing (boolean) - Set to true to disable CSS preprocessing.
 This setting overrides the CSS preprocessing setting on the transactional_message_id
 as set in the user interface. Transactional emails have CSS preprocessing enabled by
 default.

	:disable_message_retention (boolean) - If true, the message body is not
retained in delivery history. Setting this value overrides the value set
in the settings of your transactional_message_id.

	:identifiers (map) - Identifies the person represented by your transactional
message by one of, and only one of, id, email, or cio_id.

	:fake_bcc (boolean) - If true, rather than sending true copies to BCC
addresses, Customer.io sends a copy of the message with the subject line
containing the recipient address(es).

	:message_data (map) - An object containing the key-value pairs referenced
 using liquid in your message, see :transactional_message_id.

	:preheader (string) - Also known as "preview text", this is the block of
text that users see next to, or underneath, the subject line in their inbox.

	:queue_draft (boolean) - If true, your transactional message is held as
a draft in Customer.io and not sent directly to your audience. You must go
to the Deliveries and Drafts page to send your message.

	:send_at (integer) - A unix timestamp determining when the message will be sent.
The timestamp can be up to 90 days in the future. If this value is in the past,
your message is sent immediately.

	:send_to_unsubscribed (boolean) - If false, your message is not sent to
unsubscribed recipients. Setting this value overrides the value set in the
settings of your transactional_message_id.

	:tracked (boolean) - If true, Customer.io tracks opens and link clicks
in your message.

	:transactional_message_id (integer or string) - The transactional message template that
you want to use for your message. You can call the template by its numerical ID
or by the Trigger Name that you assigned the template (case insensitive).

Using a template
You can use a template by setting the from field to TEMPLATE. This will let you set the from
address within Customer.io instead of hard-coding it in your code.
import Swoosh.Email

new()
|> from("TEMPLATE")
|> to({"Katy", "katy@example.com"})
|> subject("Hello, Ten Rings!")
|> html_body("<h1>Hello</h1>")
|> text_body("Hello")
|> put_provider_option(:transactional_message_id, "my-template-id")

 Summary

 Functions

 validate_config(config)

 Callback implementation for Swoosh.Adapter.validate_config/1.

 validate_dependency()

 Callback implementation for Swoosh.Adapter.validate_dependency/0.

 Functions

 validate_config(config)

Callback implementation for Swoosh.Adapter.validate_config/1.

 validate_dependency()

Callback implementation for Swoosh.Adapter.validate_dependency/0.

Swoosh.Adapters.Dyn

An adapter that sends email using the Dyn API.
For reference: Dyn API docs
This adapter requires an API Client. Swoosh comes with Hackney, Finch and Req out of the box.
See the installation section
for details.
Example
config/config.exs
config :sample, Sample.Mailer,
 adapter: Swoosh.Adapters.Dyn,
 api_key: "my-api-key"

lib/sample/mailer.ex
defmodule Sample.Mailer do
 use Swoosh.Mailer, otp_app: :sample
end
Sending sample email
import Swoosh.Email

new()
|> from({"Christine", "christine@example.com"})
|> to({"constance", "constance@example.com"})
|> to("ming_fleetfoot@example.com")
|> bcc([
 {"Dr. Xander Bravestone", "dr.xander_bravestone@example.com"},
 {"Prof. Sheldon Oberon", "prof.sheldon.oberon@example.com"}
])
|> subject("Hello, People!")
|> html_body("<h1>Hello</h1>")
|> text_body("Hello")

 Summary

 Functions

 deliver(email, config \\ [])

 Callback implementation for Swoosh.Adapter.deliver/2.

 validate_config(config)

 Callback implementation for Swoosh.Adapter.validate_config/1.

 validate_dependency()

 Callback implementation for Swoosh.Adapter.validate_dependency/0.

 Functions

 deliver(email, config \\ [])

Callback implementation for Swoosh.Adapter.deliver/2.

 validate_config(config)

Callback implementation for Swoosh.Adapter.validate_config/1.

 validate_dependency()

Callback implementation for Swoosh.Adapter.validate_dependency/0.

Swoosh.Adapters.ExAwsAmazonSES

An adapter that wraps Swoosh.Adapters.AmazonSES to use credentials from ExAws.
You may prefer this adapter to Swoosh.Adapters.AmazonSES if you have already
configured ExAws for your project and are using instance role credentials.
This allows you to use automatically managed, short-lived credentials, rather than provisioning
a static access key / secret key pair.
See also:
IAM Roles for EC2
IAM roles for ECS tasks
Dependencies
In addition to the :gen_smtp dependency that the AmazonSES adapter
requires, this adapter also depends on :ex_aws.
Ensure you have the dependencies added in your mix.exs file:
def deps do
 [
 {:swoosh, "~> 1.0"},
 {:gen_smtp, "~> 1.0"},
 {:ex_aws, "~> 2.1"},
 # Dependency of `:ex_aws`
 {:sweet_xml, "~> 0.6"}
]
end
Example
config/config.exs
config :ex_aws,
 access_key_id: [{:system, "AWS_ACCESS_KEY_ID"}, :instance_role],
 secret_access_key: [{:system, "AWS_SECRET_ACCESS_KEY"}, :instance_role],
 region: "us-east-1"

config :sample, Sample.Mailer,
 adapter: Swoosh.Adapters.ExAwsAmazonSES

lib/sample/mailer.ex
defmodule Sample.Mailer do
 use Swoosh.Mailer, otp_app: :sample
end
See also:
Getting started with ExAws

 Summary

 Functions

 deliver(email, config \\ [])

 Callback implementation for Swoosh.Adapter.deliver/2.

 validate_config(config)

 Callback implementation for Swoosh.Adapter.validate_config/1.

 validate_dependency()

 Callback implementation for Swoosh.Adapter.validate_dependency/0.

 Functions

 deliver(email, config \\ [])

Callback implementation for Swoosh.Adapter.deliver/2.

 validate_config(config)

Callback implementation for Swoosh.Adapter.validate_config/1.

 validate_dependency()

Callback implementation for Swoosh.Adapter.validate_dependency/0.

Swoosh.Adapters.Gmail

An adapter that sends email using Gmail api
For reference: Gmail API docs
This adapter requires an API Client. Swoosh comes with Hackney, Finch and Req out of the box.
See the installation section
for details.
Dependency
Gmail adapter requires Mail dependency to format message as RFC 2822 message.
{:mail, ">= 0.0.0"}
Because Mail library removes Bcc headers, they are being added after email is
rendered, in adapter code.
Example
config/config.exs
config :sample, Sample.Mailer,
 adapter: Swoosh.Adapters.Gmail,
 access_token: {:system, "GMAIL_API_ACCESS_TOKEN"}

To deal with token refresh, it could be a better idea to pass the access token
in via deliver config explicitly, if you don't update the environment variable
periodically. e.g.
MyMailer.deliver(my_email, access_token: my_access_token)

lib/sample/mailer.ex
defmodule Sample.Mailer do
 use Swoosh.Mailer, otp_app: :sample
end
Required config parameters
	:access_token valid OAuth2 access token
 Required scopes:	gmail.compose
See https://developers.google.com/oauthplayground when developing

 Summary

 Functions

 deliver(email, config)

 Callback implementation for Swoosh.Adapter.deliver/2.

 validate_config(config)

 Callback implementation for Swoosh.Adapter.validate_config/1.

 validate_dependency()

 Callback implementation for Swoosh.Adapter.validate_dependency/0.

 Functions

 deliver(email, config)

Callback implementation for Swoosh.Adapter.deliver/2.

 validate_config(config)

Callback implementation for Swoosh.Adapter.validate_config/1.

 validate_dependency()

Callback implementation for Swoosh.Adapter.validate_dependency/0.

Swoosh.Adapters.Lettermint

An adapter that sends email using the Lettermint API.
For reference: Lettermint API docs
This adapter requires an API Client. Swoosh comes with Hackney, Finch and Req out of the box.
See the installation section
for details.
Example
config/config.exs
config :sample, Sample.Mailer,
 adapter: Swoosh.Adapters.Lettermint,
 api_token: "my-api-token"

lib/sample/mailer.ex
defmodule Sample.Mailer do
 use Swoosh.Mailer, otp_app: :sample
end
Using with provider options
import Swoosh.Email

new()
|> from("nora@example.com")
|> to("shushu@example.com")
|> subject("Hello, Wally!")
|> text_body("Hello")
|> put_provider_option(:metadata, %{campaign: "welcome"})
|> put_provider_option(:idempotency_key, "unique-key-123")
Provider Options
	metadata (map) - Custom tracking metadata
	idempotency_key (string) - Unique key to prevent duplicate sends

 Summary

 Functions

 deliver(email, config \\ [])

 Callback implementation for Swoosh.Adapter.deliver/2.

 validate_config(config)

 Callback implementation for Swoosh.Adapter.validate_config/1.

 validate_dependency()

 Callback implementation for Swoosh.Adapter.validate_dependency/0.

 Functions

 deliver(email, config \\ [])

Callback implementation for Swoosh.Adapter.deliver/2.

 validate_config(config)

Callback implementation for Swoosh.Adapter.validate_config/1.

 validate_dependency()

Callback implementation for Swoosh.Adapter.validate_dependency/0.

Swoosh.Adapters.Local

An adapter that stores the email locally, using the specified storage driver.
This is especially useful in development to avoid sending real emails. You can
read the emails you have sent using functions in the
Swoosh.Adapters.Local.Storage.Memory
or the Plug.Swoosh.MailboxPreview plug.
Example
config/config.exs
config :sample, Sample.Mailer,
 adapter: Swoosh.Adapters.Local

lib/sample/mailer.ex
defmodule Sample.Mailer do
 use Swoosh.Mailer, otp_app: :sample
end

 Summary

 Functions

 deliver(email, config)

 Callback implementation for Swoosh.Adapter.deliver/2.

 deliver_many(emails, config)

 Callback implementation for Swoosh.Adapter.deliver_many/2.

 validate_config(config)

 Callback implementation for Swoosh.Adapter.validate_config/1.

 validate_dependency()

 Callback implementation for Swoosh.Adapter.validate_dependency/0.

 Functions

 deliver(email, config)

Callback implementation for Swoosh.Adapter.deliver/2.

 deliver_many(emails, config)

Callback implementation for Swoosh.Adapter.deliver_many/2.

 validate_config(config)

Callback implementation for Swoosh.Adapter.validate_config/1.

 validate_dependency()

Callback implementation for Swoosh.Adapter.validate_dependency/0.

Swoosh.Adapters.Logger

An adapter that only logs email using Logger.
It can be useful in environments where you do not necessarily want to send real
emails (eg. staging environments) or in development.
By default it only prints the recipient of the email but you can print the full
email by using log_full_email: true in the adapter configuration.
Example
config/config.exs
config :sample, Sample.Mailer,
 adapter: Swoosh.Adapters.Logger,
 level: :debug

lib/sample/mailer.ex
defmodule Sample.Mailer do
 use Swoosh.Mailer, otp_app: :sample
end

 Summary

 Functions

 deliver(email, config)

 Callback implementation for Swoosh.Adapter.deliver/2.

 validate_config(config)

 Callback implementation for Swoosh.Adapter.validate_config/1.

 validate_dependency()

 Callback implementation for Swoosh.Adapter.validate_dependency/0.

 Functions

 deliver(email, config)

Callback implementation for Swoosh.Adapter.deliver/2.

 validate_config(config)

Callback implementation for Swoosh.Adapter.validate_config/1.

 validate_dependency()

Callback implementation for Swoosh.Adapter.validate_dependency/0.

Swoosh.Adapters.Loops

An adapter that sends email using the Loops API.
For reference: Loops API docs
This adapter requires an API Client. Swoosh comes with Hackney, Finch and Req out of the box.
See the installation section
for details.
Example
config/config.exs
config :sample, Sample.Mailer,
 adapter: Swoosh.Adapters.Loops,
 api_key: "my-api-key"
lib/sample/mailer.ex
defmodule Sample.Mailer do
 use Swoosh.Mailer, otp_app: :sample
end
Using with provider options
import Swoosh.Email

new()
|> to("katy@example.com")
|> from("IGNORED") # see note below
|> put_provider_option(:data_variables, %{
 "name" => "Chris",
 "passwordResetLink" => "https://example.com/reset-password"
 })
|> put_provider_option(:transactional_id, "clfq6dinn000yl70fgwwyp82l")
Note that we need to provide a from because it's required by Swoosh. This will
be ignored though, since Loops API doesn't support setting a sender.
Provider Options
Supported provider options are the following:
Inserted into request payload
	:transactional_id (string) - The ID of the transactional email to send.

	:add_to_audience? (boolean) - If true, a contact will be created in your audience
using the email value (if a matching contact doesn’t already exist). Disabled by
default.

	:data_variables (map) - An object containing data as defined by the data variables
added to the transactional email template. Values can be of type string or number.

 Summary

 Functions

 validate_config(config)

 Callback implementation for Swoosh.Adapter.validate_config/1.

 validate_dependency()

 Callback implementation for Swoosh.Adapter.validate_dependency/0.

 Functions

 validate_config(config)

Callback implementation for Swoosh.Adapter.validate_config/1.

 validate_dependency()

Callback implementation for Swoosh.Adapter.validate_dependency/0.

Swoosh.Adapters.MailPace

An adapter that sends email using the MailPace API.
For reference: MailPace API docs
This adapter requires an API Client. Swoosh comes with Hackney, Finch and Req out of the box.
See the installation section
for details.
Example
config/config.exs
config :sample, Sample.Mailer,
 adapter: Swoosh.Adapters.MailPace,
 api_key: "my-api-key"

lib/sample/mailer.ex
defmodule Sample.Mailer do
 use Swoosh.Mailer, otp_app: :sample
end

 Summary

 Functions

 deliver(email, config \\ [])

 Callback implementation for Swoosh.Adapter.deliver/2.

 validate_config(config)

 Callback implementation for Swoosh.Adapter.validate_config/1.

 validate_dependency()

 Callback implementation for Swoosh.Adapter.validate_dependency/0.

 Functions

 deliver(email, config \\ [])

Callback implementation for Swoosh.Adapter.deliver/2.

 validate_config(config)

Callback implementation for Swoosh.Adapter.validate_config/1.

 validate_dependency()

Callback implementation for Swoosh.Adapter.validate_dependency/0.

Swoosh.Adapters.Mailgun

An adapter that sends email using the Mailgun API.
For reference: Mailgun API docs
This adapter requires an API Client. Swoosh comes with Hackney, Finch and Req out of the box.
See the installation section
for details.
Dependency
Mailgun adapter requires Plug and :multipart to work properly.
Configuration options
	:api_key - the API key used with Mailgun
	:domain - the domain you will be sending emails from. For sandbox domains, make sure to use the sandbox address, for example: https://api.mailgun.net/v3/sandbox123456.mailgun.org/messages then you should set domain: "sandbox123456.mailgun.org".
	:base_url - the url to use as the API endpoint. For EU domains, use https://api.eu.mailgun.net/v3

Example
config/config.exs
config :sample, Sample.Mailer,
 adapter: Swoosh.Adapters.Mailgun,
 api_key: "my-api-key",
 domain: "avengers.com"

lib/sample/mailer.ex
defmodule Sample.Mailer do
 use Swoosh.Mailer, otp_app: :sample
end
Using with provider options
import Swoosh.Email

new()
|> from({"T Stark", "tony.stark@example.com"})
|> to({"Steve Rogers", "steve.rogers@example.com"})
|> to("wasp.avengers@example.com")
|> reply_to("office.avengers@example.com")
|> cc({"Bruce Banner", "hulk.smash@example.com"})
|> cc("thor.odinson@example.com")
|> bcc({"Clinton Francis Barton", "hawk.eye@example.com"})
|> bcc("beast.avengers@example.com")
|> subject("Hello, Avengers!")
|> html_body("<h1>Hello</h1>")
|> text_body("Hello")
|> put_provider_option(:custom_vars, %{"key" => "value"})
|> put_provider_option(:recipient_vars, %{"steve.rogers@example.com": %{var1: 123}, "juan.diaz@example.com": %{var1: 456}})
|> put_provider_option(:sending_options, %{dkim: "yes", tracking: "no"})
|> put_provider_option(:tags, ["worldwide-peace", "unity"])
|> put_provider_option(:template_name, "avengers-templates")
|> put_provider_option(:template_options, %{version: "initial"})
Provider options
	:custom_vars (map) - used to translate to v:my-var, now
h:X-Mailgun-Variables, add custom data to email

	:recipient_vars (map) - recipient-variables, assign
custom variable for each email recipient

	:sending_options (map) - o:my-key, all the sending options

	:tags (list[string]) - o:tag, was added in before :sending_options,
kept for backward compatibility, use :sending_options instead

	:template_name (string) - template, name of template created at Mailgun

	:template_options (map) - version, text, variables and/or any future possible values

Custom headers
Headers added via Email.header/3 will be translated to (h:) values that
Mailgun recognizes.

 Summary

 Functions

 deliver(email, config \\ [])

 Callback implementation for Swoosh.Adapter.deliver/2.

 validate_config(config)

 Callback implementation for Swoosh.Adapter.validate_config/1.

 validate_dependency()

 Callback implementation for Swoosh.Adapter.validate_dependency/0.

 Functions

 deliver(email, config \\ [])

Callback implementation for Swoosh.Adapter.deliver/2.

 validate_config(config)

Callback implementation for Swoosh.Adapter.validate_config/1.

 validate_dependency()

Callback implementation for Swoosh.Adapter.validate_dependency/0.

Swoosh.Adapters.Mailjet

An adapter that sends email using the Mailjet API.
For reference: Mailjet API docs
This adapter requires an API Client. Swoosh comes with Hackney, Finch and Req out of the box.
See the installation section
for details.
Dependency
Mailjet adapter requires Plug to work properly.
Example
config/config.exs
config :sample, Sample.Mailer,
 adapter: Swoosh.Adapters.Mailjet,
 api_key: "my-api-key",
 secret: "my-secret-key"

lib/sample/mailer.ex
defmodule Sample.Mailer do
 use Swoosh.Mailer, otp_app: :sample
end
Using with provider options
import Swoosh.Email

new()
|> from({"Billi Wang", "billi_wang@example.com"})
|> to({"Nai Nai", "nainai@example.com"})
|> reply_to("a24@example.com")
|> cc({"Haiyan Wang", "haiyan_wang@example.com"})
|> cc("lujian@example.com")
|> bcc({"Hao Hao", "haohao@example.com"})
|> bcc("aiko@example.com")
|> subject("Hello, Nai Nai!")
|> html_body("<h1>Hello</h1>")
|> text_body("Hello")
|> put_provider_option(:template_id, 123)
|> put_provider_option(:template_error_deliver, true)
|> put_provider_option(:template_error_reporting, "developer@example.com")
|> put_provider_option(:variables, %{firstname: "lulu", lastname: "wang"})
|> put_provider_option(:custom_id, "custom_id")
|> put_provider_option(:event_payload, "event_payload")
Provider options
	:template_id (integer) - TemplateID, unique template id of the
template to be used as email content

	:template_error_deliver (boolean) - TemplateErrorDeliver,
send even if error in template if true, otherwise stop email delivery
immediately upon error

	:template_error_reporting (string | tuple | map) - TemplateErrorReporting,
email address or a tuple of name and email address of a recipient to send a
carbon copy upon error

	:variables (map) - Variables, custom key-value variable for the email
content

	:custom_id (string) - CustomID, custom id for the email

	:event_payload (string | map) - EventPayload, custom payload that will
be attached on the mailjet webhook events

 Summary

 Functions

 deliver(email, config \\ [])

 Callback implementation for Swoosh.Adapter.deliver/2.

 deliver_many(emails, config \\ [])

 Callback implementation for Swoosh.Adapter.deliver_many/2.

 validate_config(config)

 Callback implementation for Swoosh.Adapter.validate_config/1.

 validate_dependency()

 Callback implementation for Swoosh.Adapter.validate_dependency/0.

 Functions

 deliver(email, config \\ [])

Callback implementation for Swoosh.Adapter.deliver/2.

 deliver_many(emails, config \\ [])

Callback implementation for Swoosh.Adapter.deliver_many/2.

 validate_config(config)

Callback implementation for Swoosh.Adapter.validate_config/1.

 validate_dependency()

Callback implementation for Swoosh.Adapter.validate_dependency/0.

Swoosh.Adapters.Mailtrap

An adapter that sends email using the Mailtrap API.
For reference: Mailtrap API docs
This adapter requires an API Client. Swoosh comes with Hackney, Finch and Req out of the box.
See the installation section
for details.
Example
config/config.exs
config :sample, Sample.Mailer,
 adapter: Swoosh.Adapters.Mailtrap,
 api_key: "my-api-key"

lib/sample/mailer.ex
defmodule Sample.Mailer do
 use Swoosh.Mailer, otp_app: :sample
end
Sandbox mode
For sandbox mode, use the following config:
config/config.exs
config :sample, Sample.Mailer,
 adapter: Swoosh.Adapters.Mailtrap,
 api_key: "my-api-key",
 sandbox_inbox_id: "111111"
Using with provider options
import Swoosh.Email

new()
|> from({"Xu Shang-Chi", "xu.shangchi@example.com"})
|> to({"Katy", "katy@example.com"})
|> reply_to("xu.xialing@example.com")
|> cc("yingli@example.com")
|> cc({"Xu Wenwu", "xu.wenwu@example.com"})
|> bcc("yingnan@example.com")
|> bcc({"Jon Jon", "jonjon@example.com"})
|> subject("Hello, Ten Rings!")
|> html_body("<h1>Hello</h1>")
|> text_body("Hello")
|> put_provider_option(:custom_variables, %{
 my_var: %{my_message_id: 123},
 my_other_var: %{my_other_id: 1, stuff: 2}
})
|> put_provider_option(:category, "welcome")
Provider Options
Supported provider options are the following:
Inserted into request body
	:category (string) - an email category

	:custom_variables (map) - a map containing fields

 Summary

 Functions

 deliver(email, config \\ [])

 Callback implementation for Swoosh.Adapter.deliver/2.

 validate_config(config)

 Callback implementation for Swoosh.Adapter.validate_config/1.

 validate_dependency()

 Callback implementation for Swoosh.Adapter.validate_dependency/0.

 Functions

 deliver(email, config \\ [])

Callback implementation for Swoosh.Adapter.deliver/2.

 validate_config(config)

Callback implementation for Swoosh.Adapter.validate_config/1.

 validate_dependency()

Callback implementation for Swoosh.Adapter.validate_dependency/0.

Swoosh.Adapters.Mandrill

An adapter that sends email using the Mandrill API.
It supports both the send and send-template endpoint. In order to use the
latter you need to set template_name in the provider_options map on
Swoosh.Email.
For reference: Mandrill API docs
This adapter requires an API Client. Swoosh comes with Hackney, Finch and Req out of the box.
See the installation section
for details.
Example
config/config.exs
config :sample, Sample.Mailer,
 adapter: Swoosh.Adapters.Mandrill,
 api_key: "my-api-key"

lib/sample/mailer.ex
defmodule Sample.Mailer do
 use Swoosh.Mailer, otp_app: :sample
end
Using with provider options
import Swoosh.Email

new()
|> from({"Rachel Chu", "rachel.chu@example.com"})
|> to({"Nick Young", "nick.young@example.com"})
|> to("astrid.leongteo@example.com")
|> reply_to("sk.starlight@example.com")
|> cc({"Goh Peik Lin", "goh.peiklin@example.com"})
|> cc("goh.wyemun@example.com")
|> bcc({"Eleanor Sung-Young", "eleanor.sungyoung@example.com"})
|> bcc("shang.suyi@example.com")
|> subject("Hello, People!")
|> html_body("<h1>Hello</h1>")
|> text_body("Hello")
|> put_provider_option(:global_merge_vars, [
 %{"name" => "a", "content" => "b"},
 %{"name" => "c", "content" => "d"}
])
|> put_provider_option(:merge_vars, [
 %{"rcpt" => "a@example.com", "vars" => %{"name" => "a", "content" => "b"}},
 %{"rcpt" => "b@example.com", "vars" => %{"name" => "b", "content" => "b"}},
])
|> put_provider_option(:merge_language, "mailchimp")
|> put_provider_option(:metadata, %{"website" => "www.example.com"})
|> put_provider_option(:template_name, "welcome-user")
|> put_provider_option(:template_content, [%{"name" => "a", "content" => "b"}])
|> put_provider_option(:subaccount, "subaccount-x")
|> put_provider_option(:tags, ["tag-1", "tag-2"])
Provider options
	:global_merge_vars (list[map]) - a list of maps of :name and
:content global variables for all recipients

	:merge_language (string) - merge tag language to use when evaluating
merge tags, and possible values are mailchimp or handlebars

	:merge_vars (list[map]) - a list of maps of :rcpt and vars for each
recipient, which will override :global_merge_vars

	:metadata (map) - a map of up to 10 fields for a user metadata

	:template_content (list[map]) - a list of maps of :name and
:content to be sent within a template

	:template_name (string) - a name or slug of the template that belongs to a
user

	:subaccount (string) - the unique id of a subaccount for this message

	:tags (list[string]) - a list of strings to tag the message with

	:return_path_domain (string) - a custom domain to use for the message's return-path

	:tracking_domain (string) - a custom domain to use for tracking opens and clicks
instead of mandrillapp.com

Template-configured 'from' address
Mandrill templates allow you to configure the 'from' address in the template itself.
To use the 'from' fields configured in the template, rather than specifying the value
explicitly, you can set
 |> from("TEMPLATE")

 Summary

 Functions

 deliver(email, config \\ [])

 Callback implementation for Swoosh.Adapter.deliver/2.

 validate_config(config)

 Callback implementation for Swoosh.Adapter.validate_config/1.

 validate_dependency()

 Callback implementation for Swoosh.Adapter.validate_dependency/0.

 Functions

 deliver(email, config \\ [])

Callback implementation for Swoosh.Adapter.deliver/2.

 validate_config(config)

Callback implementation for Swoosh.Adapter.validate_config/1.

 validate_dependency()

Callback implementation for Swoosh.Adapter.validate_dependency/0.

Swoosh.Adapters.MsGraph

An adapter that sends email using the Microsoft Graph API.
For reference: Microsoft Graph API docs
This adapter requires an API Client. Swoosh comes with Hackney, Finch and Req out of the box.
See the installation section
for details.
Dependency
Microsoft Graph adapter requires :gen_smtp to work properly.
:gen_smtp is only used to encode the email body to MIME format.
Configuration options
	:auth - either a function, a {mod, func, args} tuple, or a string that returns/is an OAuth 2.0 access token.
	:base_url - the base URL to use as the Microsoft Graph API endpoint. Defaults to the standard Microsoft Graph API endpoint.
	:url - the full URL to use as the Microsoft Graph API endpoint. If this is provided, :base_url is ignored. Useful for doing delegated sends such that the from of the email is maintained, but auth is done using the full URL (like when using a Distribution List).

Example
config/config.exs
config :sample, Sample.Mailer,
 adapter: Swoosh.Adapters.MsGraph,
 auth: fn -> Sample.OAuthTokenRequester.request_token() end

lib/sample/mailer.ex
defmodule Sample.Mailer do
 use Swoosh.Mailer, otp_app: :sample
end

 Summary

 Functions

 deliver(email, config \\ [])

 Callback implementation for Swoosh.Adapter.deliver/2.

 validate_config(config)

 Callback implementation for Swoosh.Adapter.validate_config/1.

 validate_dependency()

 Callback implementation for Swoosh.Adapter.validate_dependency/0.

 Functions

 deliver(email, config \\ [])

Callback implementation for Swoosh.Adapter.deliver/2.

 validate_config(config)

Callback implementation for Swoosh.Adapter.validate_config/1.

 validate_dependency()

Callback implementation for Swoosh.Adapter.validate_dependency/0.

Swoosh.Adapters.Mua

An adapter for sending emails using the SMTP protocol.
Dependencies
This adapter relies on the Mua and
Mail libraries.
Ensure they are added to your mix.exs file:
mix.exs
def deps do
 [
 {:swoosh, "~> 1.3"},
 {:mua, "~> 0.2.0"},
 {:mail, "~> 0.3.0"},
 # if on OTP version below 25
 # {:castore, "~> 1.0"}
]
end
Configuration
For direct email sending:
config/config.exs
config :sample, Sample.Mailer,
 adapter: Swoosh.Adapters.Mua
For sending emails via a relay:
config/config.exs
config :sample, Sample.Mailer,
 adapter: Swoosh.Adapters.Mua,
 relay: "smtp.matrix.com",
 port: 587,
 auth: [username: "neo", password: "one"]
Define your mailer module:
lib/sample/mailer.ex
defmodule Sample.Mailer do
 use Swoosh.Mailer, otp_app: :sample
end
For supported configuration options, please see option()
Sending Email Directly
When the relay option is omitted, the adapter sends emails directly to the recipients' mail servers.
All recipients must be on the same host; otherwise, a Swoosh.Adapters.Mua.MultihostError is raised.
Ensure your application can make outgoing connections to port 25 and
that your sender domain has appropriate DNS records (e.g. SPF, DKIM).
Short-lived Connections
Each deliver/2 call results in a new connection to the recipient's email server.
Sending Email via a Relay
When the relay option is set, emails are sent through the specified relay, typically requiring authentication.
For example, you can use your Gmail account with an app password.
Short-lived Connections
Each deliver/2 call results in a new connection to the relay. This is less efficient than gen_smtp which reuses long-lived connections.
Future versions of this adapter may address this issue.
CA Certificates
Starting with OTP 25, system cacerts
are used by default for the cacerts option:
config :sample, Sample.Mailer,
 adapter: Swoosh.Adapters.Mua,
 # this happens by default
 ssl: [cacerts: :public_key.cacerts_get()]
For OTP versions below 25, CAStore.file_path/0 is used for the cacertfile option:
config :sample, Sample.Mailer,
 adapter: Swoosh.Adapters.Mua,
 # this happens by default
 ssl: [cacertfile: CAStore.file_path()]
This means that for OTP versions below 25, you need to add CAStore to your project.
You can also use custom certificates:
config :sample, Sample.Mailer,
 adapter: Swoosh.Adapters.Mua,
 ssl: [cacertfile: System.fetch_env!("MY_OWN_SMTP_CACERTFILE")]
CA Certfile Cache
When using the :cacertfile option, certificates are decoded with each new connection.
To cache the decoded certificates, set :persistent_term for :mua to true:
config :mua, persistent_term: true

 Summary

 Types

 option()

 Functions

 deliver(email, config)

 Callback implementation for Swoosh.Adapter.deliver/2.

 render(email)

 validate_config(config)

 Callback implementation for Swoosh.Adapter.validate_config/1.

 validate_dependency()

 Callback implementation for Swoosh.Adapter.validate_dependency/0.

 Types

 option()

 @type option() :: Mua.option() | {:relay, Mua.host()}

 Functions

 deliver(email, config)

 @spec deliver(Swoosh.Email.t(), [option()]) ::
 {:ok, Swoosh.Email.t()}
 | {:error, Mua.error() | Swoosh.Adapters.Mua.MultihostError.t()}

Callback implementation for Swoosh.Adapter.deliver/2.

 render(email)

 validate_config(config)

Callback implementation for Swoosh.Adapter.validate_config/1.

 validate_dependency()

Callback implementation for Swoosh.Adapter.validate_dependency/0.

Swoosh.Adapters.PostUp

An adapter that sends email using the PostUp API, specifically triggered mailing. This
corresponds to transactional emails.
API reference: PostUp API docs
This adapter requires an API Client. Swoosh comes with Hackney, Finch and Req out of the box.
See the installation section
for details.
Example
config/config.exs
config :sample, Sample.Mailer,
 adapter: Swoosh.Adapters.PostUp,
 username: "BMO",
 password: "hellofootball"

lib/sample/mailer.ex
defmodule Sample.Mailer do
 use Swoosh.Mailer, otp_app: :sample
end
Using with provider options
Specify custom tags as a string delimited by semicolons:
import Swoosh.Email

new()
|> from({"BMO", "bmo@example.com"})
|> to([
 {["FirstName=Finn;LastName=Mertins;custom_tag=Something Else"], "finnthehuman@example.com"},
 {["FirstName=Jake"], "jakethedog@example.com"},
])
|> subject("BMO says hi!")
|> reply_to("Football@example.com")
|> html_body("<h1>Hello :)</h1>")
|> text_body("Hi!")
|> put_provider_option(:send_template_id, 42)
Usage with just template and no other options
Use an invalid email address to ignore the from option, which is required by Swoosh but causes
email templates to be overwritten as part of the "context" field in the request body.
import Swoosh.Email

new()
|> from("IGNORED")
|> to([
 {"FirstName=Finn;LastName=Mertins", "finnthehuman@example.com"},
 {"FirstName=Jake", "jakethedog@example.com"},
])
|> put_provider_option(:send_template_id, 42)
Provider Options
Note that most of these options are nested under the optional "content" field in the JSON request
body alongside "fromEmail", "fromName", "htmlBody", etc.
	send_template_id (integer): unique number assigned to each send template.
Required field.

	unsub_content_id (integer): ID for replacement unsubscribe content in specified template.

	reply_content_id (integer): Same as above for "reply" content.

	header_content_id (integer): Same as above for header content.

	footer_content_id (integer): Same as above for footer content.

	forward_to_friend_content_id (integer): Same as above for "forward to friend" content.

 Summary

 Functions

 validate_config(config)

 Callback implementation for Swoosh.Adapter.validate_config/1.

 validate_dependency()

 Callback implementation for Swoosh.Adapter.validate_dependency/0.

 Functions

 validate_config(config)

Callback implementation for Swoosh.Adapter.validate_config/1.

 validate_dependency()

Callback implementation for Swoosh.Adapter.validate_dependency/0.

Swoosh.Adapters.Postal

An adapter that sends email using the Postal API.
Postal is open-source, self-hosted mail delivery platform.
For reference: Postal API docs
This adapter requires an API Client. Swoosh comes with Hackney, Finch and Req out of the box.
See the installation section
for details.
Configuration options
	:api_key - Postal API key.
	:base_url - Base URL where Postal server is running.

Example
config/config.exs
config :sample, Sample.Mailer,
 adapter: Swoosh.Adapters.Postal,
 api_key: "my-api-key",
 base_url: "https://my-postal-server.com/"

lib/sample/mailer.ex
defmodule Sample.Mailer do
 use Swoosh.Mailer, otp_app: :sample
end
Using with provider options
import Swoosh.Email

new()
|> from({"T Stark", "tony.stark@example.com"})
|> to({"Steve Rogers", "steve.rogers@example.com"})
|> to("wasp.avengers@example.com")
|> reply_to("office.avengers@example.com")
|> cc({"Bruce Banner", "hulk.smash@example.com"})
|> cc("thor.odinson@example.com")
|> bcc({"Clinton Francis Barton", "hawk.eye@example.com"})
|> bcc("beast.avengers@example.com")
|> subject("Hello, Avengers!")
|> html_body("<h1>Hello</h1>")
|> text_body("Hello")
|> put_provider_option(:tag, "avengers")
|> put_provider_option(:bounce, true)

 Summary

 Functions

 validate_config(config)

 Callback implementation for Swoosh.Adapter.validate_config/1.

 validate_dependency()

 Callback implementation for Swoosh.Adapter.validate_dependency/0.

 Functions

 validate_config(config)

Callback implementation for Swoosh.Adapter.validate_config/1.

 validate_dependency()

Callback implementation for Swoosh.Adapter.validate_dependency/0.

Swoosh.Adapters.Postmark

An adapter that sends email using the Postmark API.
For reference: Postmark API docs
Example
config/config.exs
config :sample, Sample.Mailer,
 adapter: Swoosh.Adapters.Postmark,
 api_key: "my-api-key"

lib/sample/mailer.ex
defmodule Sample.Mailer do
 use Swoosh.Mailer, otp_app: :sample
end
Example of sending emails using templates
This will use Postmark's withTemplate endpoint.
import Swoosh.Email

new()
|> from({"T Stark", "tony.stark@example.com"})
|> to({"Steve Rogers", "steve.rogers@example.com"})
|> put_provider_option(:template_id, "123456")
|> put_provider_option(:template_model, %{name: "Steve", email: "steve@avengers.com"})
You can also use template_alias instead of template_id, if you use Postmark's
TemplateAlias feature.
Note that you must include the :template_model provider option even if your template
has no variables to interpolate. In this case you can pass an empty map:
put_provider_option(email, :template_model, %{})
When sending batch emails using :deliver_many do not mix emails using
templates with non-template emails. The use of templates impacts the API
endpoint used and so the batch email collection should be of the same format.
Example of sending emails with a tag
This will add a tag to the sent Postmark's email.
import Swoosh.Email

new()
|> from({"T Stark", "tony.stark@example.com"})
|> to({"Steve Rogers", "steve.rogers@example.com"})
|> subject("Hello, Avengers!")
|> put_provider_option(:tag, "some tag")
Provider Options
	:message_stream (string) – MessageStream, configure the message stream
for the email

	:metadata (map) - Metadata, add metadata to an email

	:tag (string) - Tag, to categorize outgoing email

	:template_id (string) - TemplateId, the template used when sending
email and only required if :template_alias is not specified

	:template_alias (string), TemplateAlias, the alias of a template used
when sending email and only required if :template_id is not specified

	:template_model (map), TemplateModel, a map of key/value field to be
used in the HtmlBody, TextBody, and Subject field in the template,
required alongside :template_id/:template_alias

	:track_opens (boolean) - TrackOpens, specify if open tracking needs to be enabled for this email.

	:track_links (string) - TrackOpens, specify if link tracking needs to be enabled for this email.
 Valid values are: None, HtmlAndText, HtmlOnly, TextOnly

	:inline_css (boolean) - InlineCss, specify if Postmark should apply the style blocks as inline
attributes to the rendered HTML content. Default is true.

 Summary

 Functions

 deliver(email, config \\ [])

 Callback implementation for Swoosh.Adapter.deliver/2.

 deliver_many(emails, config \\ [])

 Callback implementation for Swoosh.Adapter.deliver_many/2.

 validate_config(config)

 Callback implementation for Swoosh.Adapter.validate_config/1.

 validate_dependency()

 Callback implementation for Swoosh.Adapter.validate_dependency/0.

 Functions

 deliver(email, config \\ [])

Callback implementation for Swoosh.Adapter.deliver/2.

 deliver_many(emails, config \\ [])

Callback implementation for Swoosh.Adapter.deliver_many/2.

 validate_config(config)

Callback implementation for Swoosh.Adapter.validate_config/1.

 validate_dependency()

Callback implementation for Swoosh.Adapter.validate_dependency/0.

Swoosh.Adapters.ProtonBridge

An adapter that sends email using the local Protonmail Bridge.
This is a very thin wrapper around the SMTP adapter.
Underneath this adapter uses the
gen_smtp library, add it to your mix.exs file.
Example
mix.exs
def deps do
 [
 {:swoosh, "~> 1.3"},
 {:gen_smtp, "~> 1.1"}
]
end

config/config.exs
config :sample, Sample.Mailer,
 adapter: Swoosh.Adapters.ProtonBridge,
 username: "tonystark",
 password: "ilovepepperpotts",

lib/sample/mailer.ex
defmodule Sample.Mailer do
 use Swoosh.Mailer, otp_app: :sample
end
SMTP
You can send emails with Protonmail SMTP service via the following SMTP configs,
using Swoosh.Adapters.SMTP adapter.
[
 relay: "smtp.protonmail.ch",
 ssl: false,
 tls: :always,
 auth: :always,
 port: 587,
 retries: 1,
 no_mx_lookups: false
]
This bridge adapter provides a special set of configs that utilize the local Protonmail Bridge.

 Summary

 Functions

 deliver(email, user_config)

 Callback implementation for Swoosh.Adapter.deliver/2.

 validate_config(config)

 Callback implementation for Swoosh.Adapter.validate_config/1.

 validate_dependency()

 Callback implementation for Swoosh.Adapter.validate_dependency/0.

 Functions

 deliver(email, user_config)

Callback implementation for Swoosh.Adapter.deliver/2.

 validate_config(config)

Callback implementation for Swoosh.Adapter.validate_config/1.

 validate_dependency()

Callback implementation for Swoosh.Adapter.validate_dependency/0.

Swoosh.Adapters.Resend

An adapter that sends email using the Resend API.
For reference:
	Sending Email API docs
	Sending Email in Batch API docs

This adapter requires an API Client. Swoosh comes with Hackney, Finch and Req out of the box.
See the installation section
for details.
Example
config/config.exs
config :sample, Sample.Mailer,
 adapter: Swoosh.Adapters.Resend,
 api_key: "re_123456789"

lib/sample/mailer.ex
defmodule Sample.Mailer do
 use Swoosh.Mailer, otp_app: :sample
end
Using with provider options
import Swoosh.Email

new()
|> from("onboarding@resend.dev")
|> to("user@example.com")
|> subject("Hello!")
|> html_body("Hello")
|> put_provider_option(:tags, [%{name: "category", value: "confirm_email"}])
|> put_provider_option(:scheduled_at, "2024-08-05T11:52:01.858Z")
|> put_provider_option(:idempotency_key, "some-unique-key-123")
|> header("X-Custom-Header", "CustomValue")
Using Templates
import Swoosh.Email

new()
|> from("onboarding@resend.dev")
|> to("user@example.com")
|> put_provider_option(:template, %{
 id: "my-template-id",
 variables: %{
 name: "John",
 action_url: "https://example.com"
 }
})
Note: When using a template, you cannot send html_body or text_body in the same email.
The template's from, subject, and reply_to can be overridden in the email struct.
Inline Images
To embed images inline using Content-ID (CID):
import Swoosh.Email

new()
|> from("onboarding@resend.dev")
|> to("user@example.com")
|> subject("Welcome!")
|> html_body(~s(<h1>Hello!</h1>))
|> attachment(
 Swoosh.Attachment.new(
 {:data, File.read!("logo.png")},
 filename: "logo.png",
 content_type: "image/png",
 type: :inline,
 cid: "logo"
)
)
Provider Options
	tags (list of maps) - List of tag objects with name and value keys
for categorizing emails (max 256 chars per value)

	scheduled_at (string) - ISO 8601 formatted date-time string to schedule
the email for later delivery (not supported in batch sending)

	idempotency_key (string) - A unique key to prevent duplicate email sends.

	template (map) - Template object with:
	id (required) - The ID or alias of the published template
	variables (optional) - Map of template variables (key/value pairs)

Batch Sending
This adapter supports deliver_many/2 for sending multiple emails in a single
API call using Resend's batch endpoint. Each email in the batch is independent
and can have different recipients, subjects, content, and tags.
Note: The batch endpoint has a maximum of 100 emails per request and does not
support scheduled_at or attachments (including inline images).

 Summary

 Functions

 deliver(email, config \\ [])

 Callback implementation for Swoosh.Adapter.deliver/2.

 deliver_many(emails, config \\ [])

 Callback implementation for Swoosh.Adapter.deliver_many/2.

 validate_config(config)

 Callback implementation for Swoosh.Adapter.validate_config/1.

 validate_dependency()

 Callback implementation for Swoosh.Adapter.validate_dependency/0.

 Functions

 deliver(email, config \\ [])

Callback implementation for Swoosh.Adapter.deliver/2.

 deliver_many(emails, config \\ [])

Callback implementation for Swoosh.Adapter.deliver_many/2.

 validate_config(config)

Callback implementation for Swoosh.Adapter.validate_config/1.

 validate_dependency()

Callback implementation for Swoosh.Adapter.validate_dependency/0.

Swoosh.Adapters.SMTP

An adapter that sends email using the SMTP protocol.
Underneath this adapter uses the
gen_smtp library, add it to your mix.exs file.
Example
mix.exs
def deps do
 [
 {:swoosh, "~> 1.3"},
 {:gen_smtp, "~> 1.1"}
]
end

config/config.exs
config :sample, Sample.Mailer,
 adapter: Swoosh.Adapters.SMTP,
 relay: "smtp.avengers.com",
 username: "tonystark",
 password: "ilovepepperpotts",
 ssl: true,
 tls: :always,
 auth: :always,
 port: 1025,
 dkim: [
 s: "default", d: "domain.com",
 private_key: {:pem_plain, File.read!("priv/keys/domain.private")}
],
 retries: 2,
 no_mx_lookups: false

lib/sample/mailer.ex
defmodule Sample.Mailer do
 use Swoosh.Mailer, otp_app: :sample
end
Note
With STARTTLS you should omit the ssl configuration or set it to false.
For more details, please see gen_smtp docs

 Summary

 Functions

 deliver(email, config)

 Callback implementation for Swoosh.Adapter.deliver/2.

 gen_smtp_config(config)

 validate_config(config)

 Callback implementation for Swoosh.Adapter.validate_config/1.

 validate_dependency()

 Callback implementation for Swoosh.Adapter.validate_dependency/0.

 Functions

 deliver(email, config)

Callback implementation for Swoosh.Adapter.deliver/2.

 gen_smtp_config(config)

 validate_config(config)

Callback implementation for Swoosh.Adapter.validate_config/1.

 validate_dependency()

Callback implementation for Swoosh.Adapter.validate_dependency/0.

Swoosh.Adapters.SMTP2GO

An adapter that sends email using the SMTP2GO API.
For reference: SMTP2GO API docs
This adapter requires an API Client. Swoosh comes with Hackney, Finch and Req out of the box.
See the installation section
for details.
Example
config/config.exs
config :sample, Sample.Mailer,
 adapter: Swoosh.Adapters.SMTP2GO,
 api_key: "my-api-key"

lib/sample/mailer.ex
defmodule Sample.Mailer do
 use Swoosh.Mailer, otp_app: :sample
end
Usage
import Swoosh.Email

new()
|> from({"Tony", "ironman@example.com"})
|> to({"Thanos", "thanos@example.com"})
|> reply_to("avengers@example.com")
|> cc("hulk@example.com")
|> bcc({"Steve Rogers", "steve.rogers@example.com"})
|> subject("I'm Ironman")
|> html_body("<h1>Hello</h1>")
|> text_body("Hello")
with template:
import Swoosh.Email

new()
|> from({"Tony", "ironman@example.com"})
|> to({"Thanos", "thanos@example.com"})
|> subject("I'm Ironman")
|> put_provider_option(:template_id, "123456")
|> put_provider_option(:template_data, %{"var1" => "value1"})

 Summary

 Functions

 deliver(email, config \\ [])

 Callback implementation for Swoosh.Adapter.deliver/2.

 validate_config(config)

 Callback implementation for Swoosh.Adapter.validate_config/1.

 validate_dependency()

 Callback implementation for Swoosh.Adapter.validate_dependency/0.

 Functions

 deliver(email, config \\ [])

Callback implementation for Swoosh.Adapter.deliver/2.

 validate_config(config)

Callback implementation for Swoosh.Adapter.validate_config/1.

 validate_dependency()

Callback implementation for Swoosh.Adapter.validate_dependency/0.

Swoosh.Adapters.Scaleway

An adapter that sends email using the Scaleway API (Transactional emails only).
For reference: Scaleway API docs
This adapter requires an API Client. Swoosh comes with Hackney, Finch and Req out of the box.
See the installation section
for details.
Example
config/config.exs
config :sample, Sample.Mailer,
 adapter: Swoosh.Adapters.Scaleway,
 project_id: "my-project-id",
 secret_key: "my-api-key"

lib/sample/mailer.ex
defmodule Sample.Mailer do
 use Swoosh.Mailer, otp_app: :sample
end
Using with provider options
import Swoosh.Email

new()
|> from("nora@example.com")
|> to("shushu@example.com")
|> subject("Hello, Wally!")
|> text_body("Hello")
|> header("Reply-To", "support@example.com")
|> put_provider_option(:send_before, ~U[2022-11-15 11:00:00Z])
Provider Options
	send_before (RFC 3339 format) - maximum date to deliver the email.

 Summary

 Functions

 deliver(email, config \\ [])

 Callback implementation for Swoosh.Adapter.deliver/2.

 validate_config(config)

 Callback implementation for Swoosh.Adapter.validate_config/1.

 validate_dependency()

 Callback implementation for Swoosh.Adapter.validate_dependency/0.

 Functions

 deliver(email, config \\ [])

Callback implementation for Swoosh.Adapter.deliver/2.

 validate_config(config)

Callback implementation for Swoosh.Adapter.validate_config/1.

 validate_dependency()

Callback implementation for Swoosh.Adapter.validate_dependency/0.

Swoosh.Adapters.Sendgrid

An adapter that sends email using the Sendgrid API.
For reference: Sendgrid API docs
This adapter requires an API Client. Swoosh comes with Hackney, Finch and Req out of the box.
See the installation section
for details.
Example
config/config.exs
config :sample, Sample.Mailer,
 adapter: Swoosh.Adapters.Sendgrid,
 api_key: "my-api-key",
 compress: true # default false

lib/sample/mailer.ex
defmodule Sample.Mailer do
 use Swoosh.Mailer, otp_app: :sample
end
Using with provider options
import Swoosh.Email

new()
|> from({"Xu Shang-Chi", "xu.shangchi@example.com"})
|> to({"Katy", "katy@example.com"})
|> reply_to("xu.xialing@example.com")
|> cc("yingli@example.com")
|> cc({"Xu Wenwu", "xu.wenwu@example.com"})
|> bcc("yingnan@example.com")
|> bcc({"Jon Jon", "jonjon@example.com"})
|> subject("Hello, Ten Rings!")
|> html_body("<h1>Hello</h1>")
|> text_body("Hello")
|> put_provider_option(:custom_args, %{
 my_var: %{my_message_id: 123},
 my_other_var: %{my_other_id: 1, stuff: 2}
})
|> put_provider_option(:asm, %{
 "group_id" => 1,
 "groups_to_display" => [1, 2, 3]
})
|> put_provider_option(:categories, ["welcome"])
|> put_provider_option(:mail_settings, %{
 sandbox_mode: %{enable: true}
})
|> put_provider_option(:tracking_settings, %{
 subscription_tracking: %{enable: false}
})
|> put_provider_option(:batch_id, "AsdFgHjklQweRTYuIopzXcVBNm0aSDfGHjklmZcVbNMqWert1znmOP2asDFjkl")
|> put_provider_option(:ip_pool_name, "my-pool-name")
|> put_provider_option(:send_at, 1617260400)
Provider Options
Supported provider options are the following:
Inserted into personalization
	:custom_args (map) - key/value pairs custom arguments that specific to
this personalization

	:substitutions (map) - key/value pairs of substitutions string applied
to the :subject and :reply-to parameter

	:dynamic_template_data (map) - key/value pairs of dynamic template data
used in Dynamic Transactional Templates, see :template_id

Inserted into request body
	:template_id (string) - an email template ID

	:asm (map) - a map contains fields below on how to handle unsubscribes

	:categories (list[string]) - list of category name for this message

	:mail_settings (map) - collection of mail settings to handle this email

	:tracking_settings (map) - collection of settings to track the metrics
of responses of email recipients

	:send_at (integer) - A unix timestamp allowing you to specify when
you want your email to be delivered.

	:batch_id (string) - An ID representing a batch of emails to be sent at
the same time. It also enables you to cancel or pause the delivery of that batch

	:ip_pool_name (string) - The name of the IP Pool you wish to send using

Sandbox mode
For sandbox mode, use put_provider_option/3:
iex> new() |> put_provider_option(:mail_settings, %{sandbox_mode: %{enable: true}})

 Summary

 Functions

 deliver(email, config \\ [])

 Callback implementation for Swoosh.Adapter.deliver/2.

 validate_config(config)

 Callback implementation for Swoosh.Adapter.validate_config/1.

 validate_dependency()

 Callback implementation for Swoosh.Adapter.validate_dependency/0.

 Functions

 deliver(email, config \\ [])

Callback implementation for Swoosh.Adapter.deliver/2.

 validate_config(config)

Callback implementation for Swoosh.Adapter.validate_config/1.

 validate_dependency()

Callback implementation for Swoosh.Adapter.validate_dependency/0.

Swoosh.Adapters.Sendmail

An adapter that sends email using the sendmail binary.
Example
config/config.exs
config :sample, Sample.Mailer,
 adapter: Swoosh.Adapters.Sendmail,
 cmd_path: "/usr/bin/sendmail",
 cmd_args: "-N delay,failure,success",
 qmail: true # Default false

lib/sample/mailer.ex
defmodule Sample.Mailer do
 use Swoosh.Mailer, otp_app: :sample
end

 Summary

 Functions

 deliver(email, config)

 Callback implementation for Swoosh.Adapter.deliver/2.

 validate_config(config)

 Callback implementation for Swoosh.Adapter.validate_config/1.

 validate_dependency()

 Callback implementation for Swoosh.Adapter.validate_dependency/0.

 Functions

 deliver(email, config)

Callback implementation for Swoosh.Adapter.deliver/2.

 validate_config(config)

Callback implementation for Swoosh.Adapter.validate_config/1.

 validate_dependency()

Callback implementation for Swoosh.Adapter.validate_dependency/0.

Swoosh.Adapters.SocketLabs

An adapter that sends email using the SocketLabs Injection API.
For reference: SocketLabs API docs
This adapter requires an API Client. Swoosh comes with Hackney, Finch and Req out of the box.
See the installation section
for details.
Example
config/config.exs
config :sample, Sample.Mailer
 adapter: Swoosh.Adapters.SocketLabs,
 server_id: "",
 api_key: ""

lib/sample/mailer.ex
defmodule Sample.Mailer do
 use Swoosh.Mailer, otp_app: :sample
end
Using with provider options
import Swoosh.Email

new()
|> from({"Sisu", "sisu@example.com"})
|> to("raya@example.com")
|> put_provider_option(:api_template, "12345")
|> put_provider_option(:charset, "12345")
|> put_provider_option(:mailing_id, "12345")
|> put_provider_option(:message_id, "12345")
|> put_provider_option(:merge_data, %{
 "PerMessage" => %{
 "per_message1" => "value1",
 "per_message2" => "value2"
 },
 "Global" => %{
 "global1" => "value1",
 "global2" => "value2"
 }
})
Provider Options
	:api_template (string) - ApiTemplate, identifier for a content in the
Email Content Manager

	:charset (string) - Charset, character set used when creating the
email message and default to UTF8

	:mailing_id (string) - special header used to track batches of email
messages

	:message_id (string) - special header used to track individual message

	:merge_data (map) - data storage for inline Merge feature

 Summary

 Functions

 deliver(email, config \\ [])

 Callback implementation for Swoosh.Adapter.deliver/2.

 validate_config(config)

 Callback implementation for Swoosh.Adapter.validate_config/1.

 validate_dependency()

 Callback implementation for Swoosh.Adapter.validate_dependency/0.

 Functions

 deliver(email, config \\ [])

Callback implementation for Swoosh.Adapter.deliver/2.

 validate_config(config)

Callback implementation for Swoosh.Adapter.validate_config/1.

 validate_dependency()

Callback implementation for Swoosh.Adapter.validate_dependency/0.

Swoosh.Adapters.SparkPost

An adapter that sends email using the SparkPost API.
For reference: SparkPost API docs
This adapter requires an API Client. Swoosh comes with Hackney, Finch and Req out of the box.
See the installation section
for details.
Example
config/config.exs
config :sample, Sample.Mailer,
 adapter: Swoosh.Adapters.SparkPost,
 api_key: "my-api-key",
 endpoint: "https://api.sparkpost.com/api/v1"
 # or "https://YOUR_DOMAIN.sparkpostelite.com/api/v1" for enterprise

lib/sample/mailer.ex
defmodule Sample.Mailer do
 use Swoosh.Mailer, otp_app: :sample
end
Using with SparkPost templates
import Swoosh.Email

new()
|> from("tony.stark@example.com")
|> to("steve.rogers@example.com")
|> subject("Hello, Avengers!")
|> put_provider_option(:template_id, "my-first-email")
|> put_provider_option(:substitution_data, %{
 first_name: "Peter",
 last_name: "Parker"
})
Setting SparkPost transmission options
Full options can be found at SparkPost Transmissions API Docs
import Swoosh.Email

new()
|> from("tony.stark@example.com")
|> to("steve.rogers@example.com")
|> subject("Hello, Avengers!")
|> put_provider_option(:options, %{
 click_tracking: false,
 open_tracking: false,
 transactional: true,
 inline_css: true
})
Provider Options
	:options (map) - customization on how the email is sent

	:template_id (string) - id of the template to use

	:substitution_data (map) - data passed to the template language in
the content, and take precedence over the other data like :metadata

 Summary

 Functions

 deliver(email, config \\ [])

 Callback implementation for Swoosh.Adapter.deliver/2.

 validate_config(config)

 Callback implementation for Swoosh.Adapter.validate_config/1.

 validate_dependency()

 Callback implementation for Swoosh.Adapter.validate_dependency/0.

 Functions

 deliver(email, config \\ [])

Callback implementation for Swoosh.Adapter.deliver/2.

 validate_config(config)

Callback implementation for Swoosh.Adapter.validate_config/1.

 validate_dependency()

Callback implementation for Swoosh.Adapter.validate_dependency/0.

Swoosh.Adapters.Test

An adapter that sends emails as messages to the current process.
This is meant to be used during tests and works with the assertions found in
the Swoosh.TestAssertions module.
Example
config/test.exs
config :sample, Sample.Mailer,
 adapter: Swoosh.Adapters.Test

lib/sample/mailer.ex
defmodule Sample.Mailer do
 use Swoosh.Mailer, otp_app: :sample
end

 Summary

 Functions

 deliver(email, config)

 Callback implementation for Swoosh.Adapter.deliver/2.

 deliver_many(emails, config)

 Callback implementation for Swoosh.Adapter.deliver_many/2.

 validate_config(config)

 Callback implementation for Swoosh.Adapter.validate_config/1.

 validate_dependency()

 Callback implementation for Swoosh.Adapter.validate_dependency/0.

 Functions

 deliver(email, config)

Callback implementation for Swoosh.Adapter.deliver/2.

 deliver_many(emails, config)

Callback implementation for Swoosh.Adapter.deliver_many/2.

 validate_config(config)

Callback implementation for Swoosh.Adapter.validate_config/1.

 validate_dependency()

Callback implementation for Swoosh.Adapter.validate_dependency/0.

Swoosh.Adapters.ZeptoMail

An adapter that sends transactional email using the ZeptoMail API.
For reference: ZeptoMail API docs
Configuration options
	:api_key - the API key without the prefix Zoho-enczapikey used with ZeptoMail.
	:type - the type of email to send :single or :batch. Defaults to :single
	:base_url - the url to use as the API endpoint. For EU, use https://api.zeptomail.eu/v1.1

Example
config/config.exs
config :sample, Sample.Mailer,
 adapter: Swoosh.Adapters.ZeptoMail,
 api_key: "my-api-key"

lib/sample/mailer.ex
defmodule Sample.Mailer do
 use Swoosh.Mailer, otp_app: :sample
end
Using with provider options
import Swoosh.Email

new()
|> from({"T Stark", "tony.stark@example.com"})
|> to({"Steve Rogers", "steve.rogers@example.com"})
|> to("wasp.avengers@example.com")
|> reply_to("office.avengers@example.com")
|> cc({"Bruce Banner", "hulk.smash@example.com"})
|> cc("thor.odinson@example.com")
|> bcc({"Clinton Francis Barton", "hawk.eye@example.com"})
|> bcc("beast.avengers@example.com")
|> subject("Hello, Avengers!")
|> html_body("<h1>Hello</h1>")
|> text_body("Hello")
|> put_provider_option(:bounce_address, "bounce@example.com")
|> put_provider_option(:track_clicks, false)
|> put_provider_option(:track_opens, true)
|> put_provider_option(:inline_images, [%{cid: "inline-attachment-from-cache", file_cache_key: "cache-key"}])
Batch Sending
ZeptoMail does not support sending multiple different emails, however it does support sending one email
to a list of recipients.
To allow the customization of the email per recipient, a field :merge_info may be provided for each recipient.
import Swoosh.Email

email =
 new()
 |> from({"T Stark", "tony.stark@example.com"})
 |> to({"Steve Rogers", "steve.rogers@example.com"})
 |> to("wasp.avengers@example.com")
 |> subject("Hello, Avengers!")
 |> html_body("<h1>Hello Avenger from {{ team }}</h1>")
 |> put_provider_option(:merge_info,
 %{
 "steve.rogers@example.com" => %{team: "Avengers"},
 "wasp.avengers@example.com" => %{team: "Avengers 2"}
 }
)

Swoosh.Adapters.ZeptoMail.deliver(email, type: :batch)
Provider options
	:bounce_address (string) - The email address to which bounced emails will be sent.

	:track_clicks (boolean) - Enable or disable email click tracking.

	:track_opens (boolean) - Enable or disable email open tracking.

	:client_reference (string) - An identifier set by the user to track a particular transaction.

	:mime_headers (map) - The additional headers to be sent in the email for your reference purposes.

	:attachments (list) - A list of file cache keys to send as attachments.

	:inline_images (list) - A list of map (cid and file_cache_key) to include as inline attachments.

	:template_key (string) - Unique key identifier of your template.

	:template_alias (string) - Alias name given to the template key, can be used instead of template_key.

	:merge_info (map) - Use this values to replace the placeholders in the template.
In case of batch email sending, this should be a map of email address to a map of key-value.

 Summary

 Functions

 deliver(email, config \\ [])

 Callback implementation for Swoosh.Adapter.deliver/2.

 validate_config(config)

 Callback implementation for Swoosh.Adapter.validate_config/1.

 validate_dependency()

 Callback implementation for Swoosh.Adapter.validate_dependency/0.

 Functions

 deliver(email, config \\ [])

Callback implementation for Swoosh.Adapter.deliver/2.

 validate_config(config)

Callback implementation for Swoosh.Adapter.validate_config/1.

 validate_dependency()

Callback implementation for Swoosh.Adapter.validate_dependency/0.

Swoosh.ApiClient behaviour

Specification for a Swoosh API client.
It can be set to your own client with:
config :swoosh, :api_client, MyAPIClient
Swoosh comes with Swoosh.ApiClient.Hackney, Swoosh.ApiClient.Finch, and
Swoosh.ApiClient.Req.

 Summary

 Types

 body()

 headers()

 status()

 url()

 Callbacks

 init()

 Callback to initializes the given api client.

 post(url, headers, body, t)

 Callback invoked when posting to a given URL.

 Functions

 post(url, headers, body, email)

 API used by adapters to post to a given URL with headers, body, and email.

 Types

 body()

 @type body() :: binary()

 headers()

 @type headers() :: [{binary(), binary()}]

 status()

 @type status() :: pos_integer()

 url()

 @type url() :: binary()

 Callbacks

 init()

 (optional)

 @callback init() :: :ok

Callback to initializes the given api client.

 post(url, headers, body, t)

 @callback post(url(), headers(), body(), Swoosh.Email.t()) ::
 {:ok, status(), headers(), body()} | {:error, term()}

Callback invoked when posting to a given URL.

 Functions

 post(url, headers, body, email)

API used by adapters to post to a given URL with headers, body, and email.

Swoosh.ApiClient.Finch

Finch-based ApiClient for Swoosh.
config :swoosh, :api_client, Swoosh.ApiClient.Finch
In order to use Finch API client, you must start Finch and provide a :name.
Often in your supervision tree:
children = [
 {Finch, name: Swoosh.Finch}
]
Or, in rare cases, dynamically:
Finch.start_link(name: Swoosh.Finch)
If a name different from Swoosh.Finch is used, or you want to use an existing Finch instance,
you can provide the name via the config.
config :swoosh,
 api_client: Swoosh.ApiClient.Finch,
 finch_name: My.Custom.Name

Swoosh.ApiClient.Hackney

Built-in hackney-based ApiClient.

Swoosh.ApiClient.Req

Req-based ApiClient for Swoosh.
config :swoosh, :api_client, Swoosh.ApiClient.Req
Any client_options that are set will be passed along to Req.post but the
following keys will be overwritten as they are set by Swoosh explicitly:
	headers
	body
	decode_body - set to false as Adapters expect the raw response

Plug.Swoosh.MailboxPreview

Plug that serves pages useful for previewing emails in development.
	:csp_nonce_assign_key - a map of keys to assign to the conn.assigns.	:script - the key to assign the script CSP nonce to
	:style - the key to assign the style CSP nonce to

Examples
in a Phoenix router
defmodule Sample.Router do
 scope "/dev" do
 pipe_through [:browser]
 forward "/mailbox", Plug.Swoosh.MailboxPreview,
 csp_nonce_assign_key: %{script: :script_csp_nonce, style: :style_csp_nonce}
 end
end

 Summary

 Functions

 call(conn, opts)

 Callback implementation for Plug.call/2.

 init(opts)

 Callback implementation for Plug.init/1.

 Functions

 call(conn, opts)

Callback implementation for Plug.call/2.

 init(opts)

Callback implementation for Plug.init/1.

Swoosh.TestAssertions

This module contains a set of assertions functions that you can import in your
test cases.
It is meant to be used with the
Swoosh.Adapters.Test module.
Note: Swoosh.TestAssertions works for unit tests and basic integration tests.
Unfortunately, it's not going to work for feature/E2E tests.
The mechanism of assert_email_sent is based on messaging sending between processes,
and is expecting the calling process (the one that calls assert_email_sent) to be
the calling process of Mailer.deliver, or be the parent process of the whatever
does the Mailer.deliver call.
For feature/E2E tests, you should use Swoosh.Adapters.Local adapter.
In your test, instead of calling assert_email_sent, you could check what's in the
local adapter mailbox. Alternatively, you could also navigate to the
preview url with your E2E tool (e.g. wallaby) and test that the email is in the inbox.
A JSON endpoint is also available as part of the preview plug.

 Summary

 Types

 email_assertion()

 Functions

 assert_email_not_sent(email)

 Asserts email was not sent.

 assert_email_sent()

 Asserts any email was sent.

 assert_email_sent(email)

 Asserts email was sent.

 assert_emails_sent()

 Asserts multiple emails were sent.

 assert_emails_sent(emails)

 assert_no_email_sent()

 Asserts no emails were sent.

 refute_email_sent()

 Asserts no emails were sent.

 refute_email_sent(attributes)

 Asserts email with attributes was not sent.

 set_swoosh_global(context \\ %{})

 Sets Swoosh test adapter to global mode.

 Types

 email_assertion()

 @type email_assertion() ::
 Swoosh.Email.t() | Keyword.t() | (Swoosh.Email.t() -> boolean())

 Functions

 assert_email_not_sent(email)

 @spec assert_email_not_sent(Swoosh.Email.t()) :: false | no_return()

Asserts email was not sent.
Performs exact matching of the email struct.

 assert_email_sent()

 @spec assert_email_sent() :: tuple() | no_return()

Asserts any email was sent.

 assert_email_sent(email)

 @spec assert_email_sent(email_assertion()) :: :ok | tuple() | no_return()

Asserts email was sent.
You can pass a keyword list to match on specific params
or an anonymous function that returns a boolean.
Examples
iex> alias Swoosh.Email
iex> import Swoosh.TestAssertions

iex> email = Email.new(subject: "Hello, Avengers!")
iex> Swoosh.Adapters.Test.deliver(email, [])

assert a specific email was sent
iex> assert_email_sent(email)

assert an email with specific field(s) was sent
iex> assert_email_sent(subject: "Hello, Avengers!")

assert an email that satisfies a condition
iex> assert_email_sent(fn email ->
...> assert length(email.to) == 2
...> end)

 assert_emails_sent()

 @spec assert_emails_sent() :: tuple() | no_return()

Asserts multiple emails were sent.
You can pass a list of maps to match on specific params per email
Examples
iex> alias Swoosh.Email
iex> import Swoosh.TestAssertions

iex> emails = Enum.map(1..2, fn n -> Email.new(subject: "Hello, Avengers #{n}!") end)
iex> Swoosh.Adapters.Test.deliver_many(emails, [])

assert a specific email was sent
iex> assert_emails_sent(emails)

assert the list of emails with specific field(s) that were sent
iex> assert_emails_sent([
 %{subject: "Hello, Avengers 1!"},
 %{subject: "Hello, Avengers 2!"},
])

 assert_emails_sent(emails)

 @spec assert_emails_sent([email_assertion()]) :: :ok | tuple() | no_return()

 assert_no_email_sent()

 @spec assert_no_email_sent() :: false | no_return()

Asserts no emails were sent.

 refute_email_sent()

 (macro)

Asserts no emails were sent.

 refute_email_sent(attributes)

 (macro)

Asserts email with attributes was not sent.
Performs pattern matching using the given pattern, equivalent to pattern = email.
When a list of attributes is given, they will be converted to a pattern.
It converts list fields (:to, :cc, :bcc) to a single element list if a single value is
given (to: "email@example.com" => to: ["email@example.com"]).
After conversion, performs pattern matching using a map of email attributes, similar to
%{attributes...} = email.

 set_swoosh_global(context \\ %{})

Sets Swoosh test adapter to global mode.
In global mode, emails are consumed by the current test process,
doesn't matter which process sent it.
An ExUnit case where tests use Swoosh in global mode cannot be async: true.
Examples
defmodule MyTest do
 use ExUnit.Case, async: false

 import Swoosh.Email
 import Swoosh.TestAssertions

 setup :set_swoosh_global

 test "it sends email" do
 # ...
 assert_email_sent(subject: "Hi Avengers!")
 end
end

Swoosh.X.TestAssertions

Experimental New TestAssertions Module that may replace the old new in v2.
This module contains a set of assertions functions that you can import in your
test cases.
It is meant to be used with the
Swoosh.Adapters.Test module.
Note: Swoosh.X.TestAssertions works for unit tests and basic integration tests.
Unfortunately it's not going to work for feature/E2E tests.
The mechanism of assert_email_sent is based on messaging sending between processes,
and is expecting the calling process (the one that calls assert_email_sent) to be
the calling process of Mailer.deliver, or be the parent process of the whatever
does the Mailer.deliver call.
For feature/E2E tests, you should use Swoosh.Adapters.Local adapter.
In your test, instead of calling assert_email_sent, you could check what's in the
local adapter mailbox.

 Summary

 Types

 email_assertion()

 Functions

 assert_email_not_sent(email)

 Asserts email was not sent.

 assert_email_sent()

 Asserts any email was sent.

 assert_email_sent(email)

 Asserts email was sent.

 assert_emails_sent()

 Asserts multiple emails were sent.

 assert_emails_sent(emails)

 assert_no_email_sent()

 Asserts no emails were sent.

 flush_emails()

 Removes and returns from mailbox all sent emails.

 refute_email_sent()

 Asserts no emails were sent.

 refute_email_sent(email)

 Asserts email with attributes was not sent.

 set_swoosh_global(context \\ %{})

 Sets Swoosh test adapter to global mode.

 Types

 email_assertion()

 @type email_assertion() ::
 Swoosh.Email.t() | Keyword.t() | (Swoosh.Email.t() -> boolean())

 Functions

 assert_email_not_sent(email)

 @spec assert_email_not_sent(Swoosh.Email.t()) :: boolean() | no_return()

Asserts email was not sent.
Performs exact matching of the email struct.

 assert_email_sent()

 @spec assert_email_sent() :: boolean() | no_return()

Asserts any email was sent.

 assert_email_sent(email)

 @spec assert_email_sent(
 Swoosh.Email.t()
 | Keyword.t()
 | (Swoosh.Email.t() -> boolean())
) ::
 boolean() | no_return()

Asserts email was sent.
You can pass a keyword list to match on specific params
or an anonymous function that returns a boolean.
Examples
iex> alias Swoosh.Email
iex> import Swoosh.X.TestAssertions

iex> email = Email.new(subject: "Hello, Avengers!")
iex> Swoosh.Adapters.Test.deliver(email, [])

assert a specific email was sent
iex> assert_email_sent(email)

assert an email with specific field(s) was sent
iex> assert_email_sent(subject: "Hello, Avengers!")

assert an email that satisfies a condition
iex> assert_email_sent(fn email ->
...> assert length(email.to) == 2
...> end)

 assert_emails_sent()

 @spec assert_emails_sent() :: tuple() | no_return()

Asserts multiple emails were sent.
You can pass a list of maps to match on specific params per email
Examples
iex> alias Swoosh.Email
iex> import Swoosh.TestAssertions

iex> emails = Enum.map(1..2, fn n -> Email.new(subject: "Hello, Avengers #{n}!") end)
iex> Swoosh.Adapters.Test.deliver_many(emails, [])

assert a specific email was sent
iex> assert_emails_sent(emails)

assert the list of emails with specific field(s) that were sent
iex> assert_email_sent([
 %{subject: "Hello, Avengers 1!"},
 %{subject: "Hello, Avengers 2!"},
])

 assert_emails_sent(emails)

 @spec assert_emails_sent([email_assertion()]) :: :ok | tuple() | no_return()

 assert_no_email_sent()

 @spec assert_no_email_sent() :: boolean() | no_return()

Asserts no emails were sent.

 flush_emails()

 @spec flush_emails() :: [Swoosh.Email.t()]

Removes and returns from mailbox all sent emails.

 refute_email_sent()

 @spec refute_email_sent() :: boolean() | no_return()

Asserts no emails were sent.

 refute_email_sent(email)

 @spec refute_email_sent(Swoosh.Email.t() | list() | (Swoosh.Email.t() -> boolean())) ::
 boolean() | no_return()

Asserts email with attributes was not sent.
You can pass a keyword list to match on specific params
or an anonymous function that returns a boolean.

 set_swoosh_global(context \\ %{})

Sets Swoosh test adapter to global mode.
In global mode, emails are consumed by the current test process,
doesn't matter which process sent it.
An ExUnit case where tests use Swoosh in global mode cannot be async: true.
Examples
defmodule MyTest do
 use ExUnit.Case, async: false

 import Swoosh.Email
 import Swoosh.X.TestAssertions

 setup :set_swoosh_global

 test "it sends email" do
 # ...
 assert_email_sent(subject: "Hi Avengers!")
 end
end

Swoosh.Adapters.OhMySmtp

Deprecated - use MailPace now
Moving from OhMySMTP to MailPace
https://docs.mailpace.com/guide/moving_from_ohmysmtp

An adapter that sends email using the OhMySMTP API.
For reference: OhMySMTP API docs
This adapter requires an API Client. Swoosh comes with Hackney, Finch and Req out of the box.
See the installation section
for details.
Example
config/config.exs
config :sample, Sample.Mailer,
 adapter: Swoosh.Adapters.OhMySmtp,
 api_key: "my-api-key"

lib/sample/mailer.ex
defmodule Sample.Mailer do
 use Swoosh.Mailer, otp_app: :sample
end

 Summary

 Functions

 deliver(email, config \\ [])

 deprecated

 Callback implementation for Swoosh.Adapter.deliver/2.

 validate_config(config)

 Callback implementation for Swoosh.Adapter.validate_config/1.

 validate_dependency()

 Callback implementation for Swoosh.Adapter.validate_dependency/0.

 Functions

 deliver(email, config \\ [])

 This function is deprecated. use Swoosh.Adapter.MailPace.deliver/2 instead.

Callback implementation for Swoosh.Adapter.deliver/2.

 validate_config(config)

Callback implementation for Swoosh.Adapter.validate_config/1.

 validate_dependency()

Callback implementation for Swoosh.Adapter.validate_dependency/0.

Swoosh.Adapters.Sendinblue

Deprecated - use Brevo now
Moving from Sendinblue to Brevo
https://www.brevo.com/blog/becoming-brevo/

An adapter that sends email using the Sendinblue API (Transactional emails only).
For reference: Sendinblue API docs
This adapter requires an API Client. Swoosh comes with Hackney, Finch and Req out of the box.
See the installation section
for details.
Example
config/config.exs
config :sample, Sample.Mailer,
 adapter: Swoosh.Adapters.Sendinblue,
 api_key: "my-api-key"
lib/sample/mailer.ex
defmodule Sample.Mailer do
 use Swoosh.Mailer, otp_app: :sample
end
Using with provider options
import Swoosh.Email
new()
|> from("nora@example.com")
|> to("shushu@example.com")
|> subject("Hello, Wally!")
|> text_body("Hello")
|> put_provider_option(:id, 42)
|> put_provider_option(:template_id, 42)
|> put_provider_option(:params, %{param1: "a", param2: 123})
|> put_provider_option(:tags, ["tag_1", "tag_2"])
|> put_provider_option(:schedule_at, ~U[2022-11-15 11:00:00Z])
Provider Options
	sender_id (integer) - sender, the sender id where this library will
add email obtained from the from/1
	template_id (integer) - templateId, the Id of the active
transactional email template
	params (map) - params, a map of key/value attributes to customize the
template
	tags (list[string]) - tags, a list of tags for each email for easy
filtering
	schedule_at (UTC DateTime) - schedule_at, a UTC date-time on which the email has to schedule

 Summary

 Functions

 deliver(email, config \\ [])

 deprecated

 Callback implementation for Swoosh.Adapter.deliver/2.

 validate_config(config)

 Callback implementation for Swoosh.Adapter.validate_config/1.

 validate_dependency()

 Callback implementation for Swoosh.Adapter.validate_dependency/0.

 Functions

 deliver(email, config \\ [])

 This function is deprecated. use Swoosh.Adapters.Brevo.deliver/2 instead.

Callback implementation for Swoosh.Adapter.deliver/2.

 validate_config(config)

Callback implementation for Swoosh.Adapter.validate_config/1.

 validate_dependency()

Callback implementation for Swoosh.Adapter.validate_dependency/0.

Swoosh.Adapters.Mua.MultihostError exception

Raised when no relay is used and recipients contain addresses across multiple hosts.
For example:
email =
 Swoosh.Email.new(
 to: {"Mua", "mua@github.com"},
 cc: [{"Swoosh", "mua@swoosh.github.com"}]
)

Swoosh.Adapters.Mua.deliver(email, _no_relay_config = [])
Fields:
	:hosts - the hosts for the recipients, ["github.com", "swoosh.github.com"] in the example above

 Summary

 Types

 t()

 Functions

 message(multihost_error)

 Callback implementation for Exception.message/1.

 Types

 t()

 @type t() :: %Swoosh.Adapters.Mua.MultihostError{
 __exception__: true,
 hosts: [Mua.host()]
}

 Functions

 message(multihost_error)

Callback implementation for Exception.message/1.

Swoosh.AttachmentContentError exception

Swoosh.DeliveryError exception

 Summary

 Functions

 message(exception)

 Callback implementation for Exception.message/1.

 Functions

 message(exception)

Callback implementation for Exception.message/1.

mix swoosh.mailbox.server

Starts the mailbox preview server.
Command line options
This task accepts the same command-line arguments as run.
For additional information, refer to the documentation for Mix.Tasks.Run.
For example, to run swoosh.mailbox.server without checking dependencies:
mix swoosh.mailbox.server --no-deps-check
The --no-halt flag is automatically added.

 Summary

 Functions

 run(args)

 Callback implementation for Mix.Task.run/1.

 Functions

 run(args)

Callback implementation for Mix.Task.run/1.

 OEBPS/dist/epub-4WIP524F.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);function r(e){document.readyState!=="loading"?e():document.addEventListener("DOMContentLoaded",e)}var l="hll";window.addEventListener("exdoc:loaded",t);function t(){o("[data-group-id]").forEach(e=>{e.addEventListener("mouseenter",i),e.addEventListener("mouseleave",i)})}function i(e){let n=e.currentTarget,a=e.type==="mouseenter",c=n.getAttribute("data-group-id");n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach(u=>{u.classList.toggle(l,a)})}r(()=>{t()});})();

