

 sworm

 v0.5.13

 Table of contents

 	Sworm

 	Modules

 	Sworm

Sworm

[image: Build status]
[image: Hex pm]
[image: Hex Docs]
[image: Total Download]
[image: License]
[image: Last Updated]
A combination of a global, distributed process registry and
supervisor, rolled into one, friendly API.
This library aims to be a drop-in replacement for
Swarm, but it is built on top of
Horde.
Usage
Sworms can be defined using a macro and then added to your supervision
tree. To replicate Swarm, create the following module:
defmodule Swarm do
 use Sworm
end
You are not entirely done yet! Unlike the original Swarm, which has a
"singleton" process tree, you will need to add each Sworm to your
own application's supervision tree:
 children = [
 Swarm,
 ...
]
Now you can call Swarm.registered(), Swarm.register_name etc like you're used to.
Architecture
Sworm combines Horde's DynamicSupervisor and Registry modules to
reproduce the Swarm library.
To be able to register an aribtrary {m, f, a} specification with
Sworm, it spawns a delegate process and uses this process as the
primary process for name registration and supervision. This delegate
process then spawns and links the actual process as specified in the
MFA.
This way, any MFA can be used with Sworm like it can with Swarm, and
does not need to be aware of it, because the delegate process handles
name registration, process shutdown on name conflicts, and process handoff.
Node affinity / node deny-/allowlisting
Contrarily to Swarm, Sworm does not have a deny- or allowlisting
mechanism. By design, each Sworm in the cluster only distributes
processes among those nodes that explicitly have that particular sworm
started in its supervision tree.
Sworm maintains a cluster-global directory CRDT of registered Sworms,
keeping track of on which node which type(s) of Sworm run.
This ensures that processes are only started through Sworm on nodes
that the sworm itself is also running on, instead of assuming that the
cluster is homogenous and processes can run on each node, like Swarm
does.
For an even more finegrained control over process placement, you can pass in a
custom :distribution_strategy option on compile time, like this:
defmodule MyTemporaryProcesses do
 use Sworm, distribution_strategy: Horde.UniformQuorumDistribution
end
The default distribution strategy is Horde.UniformDistribution.
Child restart strategy
By default, the restart strategy in the child
specification of the supervision tree is set to
:transient. To change this, declare the restart: option in your
Sworm module like this:
defmodule MyTemporaryProcesses do
 use Sworm, restart: :temporary
end
CRDT options
To override Horde's :delta_crdt_options, pass them in the use statement:
defmodule MyTemporaryProcesses do
 use Sworm, delta_crdt_options: [sync_interval: 100]
end
These CRDT options are used for both the internal Registry and the DynamicSupervisor CRDTs.
Process state handoff
Each individual Sworm can be configured to perform state a handoff to
transition the state of the process.
The case here is that when a node shuts down, Sworm will move the
processes running on that node onto one of the other nodes of the
cluster. By default, these processes are started with a clean sheet,
e.g., the state of the process is lost. But when the Sworm is
configured to perform process handoffs, the processes in the sworm are
given some time to hand off their state into the cluster, so that the
state can be restored right after the process is started again on
another node.
Process handoff in Sworm works differently from the Swarm library.

Process handoff must be explicitly enabled per sworm:
defmodule MyProcesses do
 use Sworm, handoff: true
end
Or, in config.exs:
config :sworm, MyProcesses, handoff: true
When a handoff occurs, the process that is about to exit, receives the
following message:
{MyProcesses, :begin_handoff, delegate, ref}
If it wants to pass on its internal state it needs to send the
delegate a corresponding ack:
send(delegate, {ref, :handoff_state, some_state})
Now, on the other node, the new process will be started in the normal
way, however, right after it is started it will receive the
:end_handoff signal:
 {MyProcesses, :end_handoff, some_state}
It can then restore its state to the state that was sent by its
predecessor.
The most basic implementation in a genserver process of this flow is this:
def handle_info({MyProcesses, :begin_handoff, delegate, ref}, state) do
 send(delegate, {ref, :handoff_state, state})
 {:noreply, state}
end

def handle_info({MyProcesses, :end_handoff, state}, _state) do
 {:noreply, state}
end
Installation
If available in Hex, the package can be installed
by adding sworm to your list of dependencies in mix.exs:
def deps do
 [
 {:sworm, "~> 0.1"}
]
end
Documentation can be generated with ExDoc
and published on HexDocs. Once published, the docs can
be found at https://hexdocs.pm/sworm.

Sworm

Sworm takes the accessible API from
Swarm, and combines it with
the robustness of Horde.
It strives to be a combination of a global, distributed process
registry and supervisor, accessible through a friendly API.
Usage
The concept behind Sworm is that there can be multiple, distinct
"sworms" living inside a cluster of BEAM nodes. To define a Sworm,
you define a module like this:
defmodule MyProcesses do
 use Sworm
end
Now, the MyProcesses module must be added to your application's supervison tree.
When you now start the application, you can use the functions from
the Sworm module inside your MyProcesses module:
{:ok, pid} = MyProcesses.register_name("my worker", MyWorker, :start_link, [arg1, arg2])

 Anchor for this section

 Summary

 Functions

 child_spec(sworm, opts \\ [])

 Create a child specification for adding a new Sworm to the supervisor tree.

 join(sworm, group, pid \\ self())

 Joins a process to a group.

 leave(sworm, group, pid \\ self())

 Removes a process from a group

 members(sworm, group)

 Gets all the members of a group within the sworm.

 register_name(sworm, name, pid \\ self())

 Registers the given name to the given process. Names
registered this way will not be shifted when the cluster
topology changes, and are not restarted by Sworm.

 register_name(sworm, name, m, f, a)

 Register a name in the given Sworm. This function takes a
module/function/args triplet, and starts the process, registers the
pid with the given name, and handles cluster topology changes by
restarting the process on its new node using the given MFA.

 registered(sworm)

 Gets a list of all registered names and their pids within a sworm

 start_link(sworm, opts \\ [])

 Start and link a Sworm in a standalone fashion.

 unregister_name(sworm, name)

 Unregisters the given name from the sworm.

 whereis_name(sworm, name)

 Get the pid of a registered name within a sworm.

 whereis_or_register_name(sworm, name, m, f, a)

 Either finds the named process in the sworm or registers it using
the register/4 function.

 Anchor for this section

Functions

 Link to this function

 child_spec(sworm, opts \\ [])

 @spec child_spec(sworm :: atom(), opts :: [term()]) :: Supervisor.child_spec()

Create a child specification for adding a new Sworm to the supervisor tree.

 Link to this function

 join(sworm, group, pid \\ self())

 @spec join(sworm :: atom(), term(), pid()) :: :ok | {:error, :not_found}

Joins a process to a group.
Returns an error when the given process is not part of the sworm.

 Link to this function

 leave(sworm, group, pid \\ self())

 @spec leave(sworm :: atom(), term(), pid()) :: :ok | {:error, :not_found}

Removes a process from a group
Returns an error when the given process is not part of the sworm.

 Link to this function

 members(sworm, group)

 @spec members(sworm :: atom(), term()) :: [pid()]

Gets all the members of a group within the sworm.
Returns a list of pids.

 Link to this function

 register_name(sworm, name, pid \\ self())

 @spec register_name(sworm :: atom(), name :: term(), pid :: pid()) :: :yes | :no

Registers the given name to the given process. Names
registered this way will not be shifted when the cluster
topology changes, and are not restarted by Sworm.
If no pid is given, self() is used for the registration.

 Link to this function

 register_name(sworm, name, m, f, a)

 @spec register_name(
 sworm :: atom(),
 name :: term(),
 module :: atom(),
 function :: atom(),
 args :: [term()]
) :: {:ok, pid()} | {:error, term()}

Register a name in the given Sworm. This function takes a
module/function/args triplet, and starts the process, registers the
pid with the given name, and handles cluster topology changes by
restarting the process on its new node using the given MFA.
Processes that are started this way are added to the Sworm's dynamic
Horde supervisor, distributed over the members of the Horde
according to its cluster strategy, and restarted when they crash.
When the node on which the process is spawned exits, the processes
are restarted on one of the other nodes in the cluster.

 Link to this function

 registered(sworm)

 @spec registered(sworm :: atom()) :: [{name :: term(), pid()}]

Gets a list of all registered names and their pids within a sworm

 Link to this function

 start_link(sworm, opts \\ [])

 @spec start_link(sworm :: atom(), opts :: [term()]) :: {:ok, pid()}

Start and link a Sworm in a standalone fashion.
You almost will never need this function, as it is more usual to
start a Sworm directly in a supervisor tree, using the provided
child_spec function.

 Link to this function

 unregister_name(sworm, name)

 @spec unregister_name(sworm :: atom(), name :: term()) :: :ok

Unregisters the given name from the sworm.

 Link to this function

 whereis_name(sworm, name)

 @spec whereis_name(sworm :: atom(), name :: term()) :: pid() | nil

Get the pid of a registered name within a sworm.

 Link to this function

 whereis_or_register_name(sworm, name, m, f, a)

 @spec whereis_or_register_name(
 sworm :: atom(),
 name :: term(),
 module :: atom(),
 function :: atom(),
 args :: [term()]
) :: {:ok, pid()} | {:error, term()}

Either finds the named process in the sworm or registers it using
the register/4 function.

 OEBPS/dist/epub-75RCTLK3.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);var a="hll";function c(){u()}function u(){o("[data-group-id]").forEach(e=>{let t=e.getAttribute("data-group-id");e.addEventListener("mouseenter",n=>{i(t,!0)}),e.addEventListener("mouseleave",n=>{i(t,!1)})})}function i(r,e){o(`[data-group-id="${r}"]`).forEach(n=>{n.classList.toggle(a,e)})}c();})();

