

 syn

 v3.4.0

 Table of contents

 	README

 	LICENSE

 	
 Modules

 	syn

 	syn_event_handler

 README

[image: CI] [image: Hex pm]
Syn
Syn (short for synonym) is a scalable global Process Registry and Process Group manager for Erlang and Elixir,
able to automatically manage dynamic clusters (addition / removal of nodes) and to recover from net splits.
Syn is a replacement for Erlang/OTP
global's registry and
pg modules. The main differences with these OTP's implementations are:
	OTP's global module chooses Consistency over Availability, therefore it can become difficult to scale
when registration rates are elevated and the cluster becomes larger. If eventual consistency is acceptable in your
case, Syn can considerably increase the registry's performance.
	Syn allows to attach metadata to every process, which also gets synchronized across the cluster.
	Syn implements cluster-wide callbacks on the main events, which are also properly triggered
after net splits.

[Documentation]
Introduction
What is a Process Registry?
A global Process Registry allows registering a process on all the nodes of a cluster with a single Key.
Consider this the process equivalent of a DNS server: in the same way you can retrieve an IP address from a domain name,
you can retrieve a process from its Key.
Typical Use Case: registering on a system a process that handles a physical device (using its serial number).
What is a Process Group?
A global Process Group is a named group which contains many processes, possibly running on different nodes.
With the group Name, you can retrieve on any cluster node the list of these processes, or publish a message to all of them.
This mechanism allows for Publish / Subscribe patterns.
Typical Use Case: a chatroom.
What is Syn?
Syn is a Process Registry and Process Group manager that has the following features:
	Global Process Registry (i.e. a process is uniquely identified with a Key across all the nodes of a cluster).
	Global Process Group manager (i.e. a group is uniquely identified with a Name across all the nodes of a cluster).
	Any term can be used as Key and Name.
	PubSub mechanism: messages can be published to all members of a Process Group (globally on all the cluster or locally on a single node).
	Subclusters by using Scopes allows great scalability.
	Dynamically sized clusters (addition / removal of nodes is handled automatically).
	Net Splits automatic resolution.
	Fast writes.
	Configurable callbacks.
	Processes are automatically monitored and removed from the Process Registry and Process Groups if they die.

Notes
In any distributed system you are faced with a consistency challenge, which is often resolved by having one master arbiter
performing all write operations (chosen with a mechanism of leader election),
or through atomic transactions.
Syn was born for applications of the IoT field. In this context,
Keys used to identify a process are often the physical object's unique identifier (for instance, its serial or MAC address),
and are therefore already defined and unique before hitting the system. The consistency challenge is less of a problem in this case,
since the likelihood of concurrent incoming requests that would register processes with the same Key is extremely low and, in most cases, acceptable.
In addition, write speeds were a determining factor in the architecture of Syn.
Therefore, Availability has been chosen over Consistency and Syn implements
strong eventual consistency.
Installation
Elixir
Add it to your deps:
defp deps do
 [{:syn, "~> 3.4"}]
end
Erlang
If you're using rebar3, add syn as a dependency in your project's rebar.config file:
{deps, [
 {syn, {git, "git://github.com/ostinelli/syn.git", {tag, "3.4.0"}}}
]}.
Or, if you're using Hex.pm as package manager (with the rebar3_hex plugin):
{deps, [
 {syn, "3.4.0"}
]}.
Ensure that syn is started with your application, for example by adding it in your .app file to the list of applications:
{application, my_app, [
 %% ...
 {applications, [
 kernel,
 stdlib,
 sasl,
 syn,
 %% ...
]},
 %% ...
]}.
Quickstart
Registry
Elixir
iex> :syn.add_node_to_scopes([:users])
:ok
iex> pid = self()
#PID<0.105.0>
iex> :syn.register(:users, "hedy", pid)
:ok
iex> :syn.lookup(:users, "hedy")
{#PID<0.105.0>,:undefined}
iex> :syn.register(:users, "hedy", pid, [city: "Milan"])
:ok
iex> :syn.lookup(:users, "hedy")
{#PID<0.105.0>,[city: "Milan"]}
iex> :syn.registry_count(:users)
1
Erlang
1> syn:add_node_to_scopes([users]).
ok
2> Pid = self().
<0.93.0>
3> syn:register(users, "hedy", Pid).
ok
4> syn:lookup(users, "hedy").
{<0.93.0>,undefined}
5> syn:register(users, "hedy", Pid, [{city, "Milan"}]).
ok
6> syn:lookup(users, "hedy").
{<0.93.0>,[{city, "Milan"}]}
7> syn:registry_count(users).
1
Process Groups
Elixir
iex> :syn.add_node_to_scopes([:users])
:ok
iex> pid = self()
#PID<0.88.0>
iex> :syn.join(:users, {:italy, :lombardy}, pid)
:ok
iex> :syn.members(:users, {:italy, :lombardy})
[{#PID<0.88.0>,:undefined}]
iex> :syn.is_member(:users, {:italy, :lombardy}, pid)
true
iex> :syn.publish(:users, {:italy, :lombardy}, "hello lombardy!")
{:ok,1}
iex> flush()
Shell got "hello lombardy!"
ok
Erlang
1> syn:add_node_to_scopes([users]).
ok
2> Pid = self().
<0.88.0>
3> syn:join(users, {italy, lombardy}, Pid).
ok
4> syn:members(users, {italy, lombardy}).
[{<0.88.0>,undefined}]
5> syn:is_member(users, {italy, lombardy}, Pid).
true
6> syn:publish(users, {italy, lombardy}, "hello lombardy!").
{ok,1}
7> flush().
Shell got "hello lombardy!"
ok
Contributing
So you want to contribute? That's great! Please follow the guidelines below. It will make it easier to get merged in.
Before implementing a new feature, please submit a ticket to discuss what you intend to do. Your feature might
already be in the works, or an alternative implementation might have already been discussed.
Do not commit to master in your fork. Provide a clean branch without merge commits. Every pull request should have
its own topic branch. In this way, every additional adjustments to the original pull request might be done easily,
and squashed with git rebase -i. The updated branch will be visible in the same pull request, so there will be no need
to open new pull requests when there are changes to be applied.
Ensure that proper testing is included. To run Syn tests you simply have to be in the project's root directory and run:
$ make test

License
Copyright (c) 2015-2026 Roberto Ostinelli and Neato Robotics, Inc.
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

 LICENSE

MIT License
Copyright (c) 2015-2026 Roberto Ostinelli and Neato Robotics, Inc.
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

syn

Exposes all of the global Process Registry and Process Group APIs.
Syn implement Scopes. You may think of Scopes such as database tables, so a set of data elements, but that's where the analogy ends.
A Scope is a way to create a namespaced, logical overlay network running on top of the Erlang distribution cluster. Nodes that belong to the same Scope will form a subcluster: they will synchronize data between themselves, and themselves only.
For instance, you may have nodes in your Erlang cluster that need to handle connections to users, and other nodes that need to handle connections to physical devices. One approach is to create two Scopes: users and devices, where you can register your different types of connections.
Scopes are therefore a way to properly namespace your logic, but they also allow to build considerably larger scalable architectures, as it is possible to divide an Erlang cluster into subclusters which hold specific portions of data.
Please note any of the methods documented here will raise:
	An error({invalid_scope, Scope}) if the local node has not been added to the specified Scope.
	An error({invalid_remote_scope, Scope, RemoteNode}) if the Pid passed in as variable is running on a node that has not been added to the specified Scope, or if the remote scope process is temporarily down.

 Summary

 Functions

 add_node_to_scopes(Scopes)

 Add the local node to the specified Scopes.

 group_count(Scope)

 Returns the count of all the groups for the specified Scope.

 group_count(Scope, Node)

 Returns the count of all the groups for the specified Scope which have at least 1 process running on Node.

 group_names(Scope)

 Returns the group names for the specified Scope.

 group_names(Scope, Node)

 Returns the group names for the specified Scope which have at least 1 process running on Node.

 is_local_member(Scope, GroupName, Pid)

 Returns whether a pid() is a member of GroupName in the specified Scope running on the local node.

 is_member(Scope, GroupName, Pid)

 Returns whether a pid() is a member of GroupName in the specified Scope.

 join(Scope, Name, Pid)

 Equivalent to join(Scope, GroupName, Pid, undefined).

 join(Scope, GroupName, Pid, Meta)

 Adds a pid() with metadata to GroupName in the specified Scope.

 leave(Scope, GroupName, Pid)

 Removes a pid() from GroupName in the specified Scope.

 local_group_count(Scope)

 Equivalent to group_count(Scope, node()).

 local_group_names(Scope)

 Equivalent to group_names(Scope, node()).

 local_member_count(Scope, GroupName)

 Equivalent to member_count(Scope, GroupName, node()).

 local_members(Scope, GroupName)

 Returns the list of all members for GroupName in the specified Scope running on the local node.

 local_publish(Scope, GroupName, Message)

 Publish a message to all group members running on the local node in the specified Scope.

 local_registry_count(Scope)

 Equivalent to registry_count(Scope, node()).

 lookup(Scope, Name)

 Looks up a registry entry in the specified Scope.

 member(Scope, GroupName, Pid)

 Returns the member for GroupName in the specified Scope.

 member_count(Scope, GroupName)

 Returns the count of all members for the specified Scope and GroupName.

 member_count(Scope, GroupName, Node)

 Returns the count of all members for the specified Scope and GroupName which have at least 1 process running on Node.

 members(Scope, GroupName)

 Returns the list of all members for GroupName in the specified Scope.

 multi_call(Scope, GroupName, Message)

 Equivalent to multi_call(Scope, GroupName, Message, 5000).

 multi_call(Scope, GroupName, Message, Timeout)

 Calls all group members in the specified Scope and collects their replies.

 multi_call_reply(Caller, Reply)

 Allows a group member to reply to a multi call.

 node_scopes()

 Retrieves the Scopes that the node has been added to.

 publish(Scope, GroupName, Message)

 Publish a message to all group members in the specified Scope.

 register(Scope, Name, Pid)

 Equivalent to register(Scope, Name, Pid, undefined).

 register(Scope, Name, Pid, Meta)

 Registers a process with metadata in the specified Scope.

 registry_count(Scope)

 Returns the count of all registered processes for the specified Scope.

 registry_count(Scope, Node)

 Returns the count of all registered processes for the specified Scope running on a node.

 set_event_handler(Module)

 Sets the handler module.

 start()

 Starts Syn manually.

 stop()

 Stops Syn manually.

 subcluster_nodes(Manager, Scope)

 Returns the nodes of the subcluster for the specified Scope.

 unregister(Scope, Name)

 Unregisters a process from specified Scope.

 update_member(Scope, GroupName, Pid, Fun)

 Updates the GroupName member metadata in the specified Scope.

 update_registry(Scope, Name, Fun)

 Updates the registered Name metadata in the specified Scope.

 Functions

 add_node_to_scopes(Scopes)

 -spec add_node_to_scopes(Scopes :: [atom()]) -> ok.

Add the local node to the specified Scopes.
There are 2 ways to add a node to Scopes. One is by using this method, the other is to set the environment variable syn with the key scopes. In this latter case, you're probably best off using an application configuration file:
You only need to add a node to a scope once.
Elixir
 config :syn,
 scopes: [:devices, :users]
Erlang
 {syn, [
 {scopes, [devices, users]}
]}
Examples
Elixir
 iex> :syn.add_node_to_scopes([:devices])
 :ok
Erlang
 1> syn:add_node_to_scopes([devices]).
 ok

 group_count(Scope)

 -spec group_count(Scope :: atom()) -> non_neg_integer().

Returns the count of all the groups for the specified Scope.
Examples
Elixir
 iex> :syn.group_count(:users)
 321778
Erlang
 1> syn:group_count(users).
 321778

 group_count(Scope, Node)

 -spec group_count(Scope :: atom(), Node :: node()) -> non_neg_integer().

Returns the count of all the groups for the specified Scope which have at least 1 process running on Node.

 group_names(Scope)

 -spec group_names(Scope :: atom()) -> [GroupName :: term()].

Returns the group names for the specified Scope.
The order of the group names is not guaranteed to be the same on all calls.
Examples
Elixir
 iex> :syn.group_names(:users)
 ["area-1", "area-2"]
Erlang
 1> syn:group_names(users).
 ["area-1", "area-2"]

 group_names(Scope, Node)

 -spec group_names(Scope :: atom(), Node :: node()) -> [GroupName :: term()].

Returns the group names for the specified Scope which have at least 1 process running on Node.
The order of the group names is not guaranteed to be the same on all calls.

 is_local_member(Scope, GroupName, Pid)

 -spec is_local_member(Scope :: atom(), GroupName :: term(), Pid :: pid()) -> boolean().

Returns whether a pid() is a member of GroupName in the specified Scope running on the local node.

 is_member(Scope, GroupName, Pid)

 -spec is_member(Scope :: atom(), GroupName :: term(), Pid :: pid()) -> boolean().

Returns whether a pid() is a member of GroupName in the specified Scope.

 join(Scope, Name, Pid)

 -spec join(Scope :: term(), Name :: term(), Pid :: term()) -> ok | {error, Reason :: term()}.

Equivalent to join(Scope, GroupName, Pid, undefined).

 join(Scope, GroupName, Pid, Meta)

 -spec join(Scope :: atom(), GroupName :: term(), Pid :: pid(), Meta :: term()) ->
 ok | {error, Reason :: term()}.

Adds a pid() with metadata to GroupName in the specified Scope.
A process can join multiple groups. A process may also join the same group multiple times, for example if you need to update its metadata, however it is recommended to be aware of the implications of updating metadata, see the strict_mode option for more information.
If you want to update a process' metadata by modifying its existing one, you may consider using update_member/4 instead.
When a process joins a group, Syn will automatically monitor it.
Possible error reasons:
	not_alive: The pid() being added is not alive.
	not_self: the method is being called from a process other than self(), but strict_mode is enabled.

Examples
Elixir
 iex> :syn.join(:devices, "area-1", self(), [meta: :one])
 :ok
Erlang
 1> syn:join(devices, "area-1", self(), [{meta, one}]).
 ok

 leave(Scope, GroupName, Pid)

 -spec leave(Scope :: atom(), GroupName :: term(), Pid :: pid()) -> ok | {error, Reason :: term()}.

Removes a pid() from GroupName in the specified Scope.
Possible error reasons:
	not_in_group: The pid() is not in GroupName for the specified Scope.

You don't need to remove processes that are about to die, since they are monitored by Syn and they will be removed automatically from their groups.

 local_group_count(Scope)

 -spec local_group_count(Scope :: atom()) -> non_neg_integer().

Equivalent to group_count(Scope, node()).

 local_group_names(Scope)

 -spec local_group_names(Scope :: atom()) -> [GroupName :: term()].

Equivalent to group_names(Scope, node()).

 local_member_count(Scope, GroupName)

 -spec local_member_count(Scope :: atom(), GroupName :: term()) -> non_neg_integer().

Equivalent to member_count(Scope, GroupName, node()).

 local_members(Scope, GroupName)

 -spec local_members(Scope :: atom(), GroupName :: term()) -> [{Pid :: pid(), Meta :: term()}].

Returns the list of all members for GroupName in the specified Scope running on the local node.

 local_publish(Scope, GroupName, Message)

 -spec local_publish(Scope :: atom(), GroupName :: term(), Message :: term()) ->
 {ok, RecipientCount :: non_neg_integer()}.

Publish a message to all group members running on the local node in the specified Scope.
Works similarly to publish/3 for local processes.

 local_registry_count(Scope)

 -spec local_registry_count(Scope :: atom()) -> non_neg_integer().

Equivalent to registry_count(Scope, node()).

 lookup(Scope, Name)

 -spec lookup(Scope :: atom(), Name :: term()) -> {pid(), Meta :: term()} | undefined.

Looks up a registry entry in the specified Scope.
Examples
Elixir
 iex> :syn.register(:devices, "SN-123-456789", self())
 :ok
 iex> :syn.lookup(:devices, "SN-123-456789")
 {#PID<0.105.0>, undefined}
Erlang
 1> syn:register(devices, "SN-123-456789", self()).
 ok
 2> syn:lookup(devices, "SN-123-456789").
 {<0.79.0>, undefined}

 member(Scope, GroupName, Pid)

 -spec member(Scope :: atom(), GroupName :: term(), Pid :: pid()) ->
 {Pid :: pid(), Meta :: term()} | undefined.

Returns the member for GroupName in the specified Scope.
Examples
Elixir
 iex> :syn.join(:devices, "area-1", self(), :meta)
 :ok
 iex> :syn.member(:devices, "area-1", self())
 {#PID<0.105.0>, :meta}
Erlang
 1> syn:join(devices, "area-1", self(), meta).
 ok
 2> syn:member(devices, "area-1", self()).
 {<0.69.0>, meta}

 member_count(Scope, GroupName)

 -spec member_count(Scope :: atom(), GroupName :: term()) -> non_neg_integer().

Returns the count of all members for the specified Scope and GroupName.
Examples
Elixir
 iex> :syn.member_count(:devices, "abc123")
 512473
Erlang
 1> syn:member_count(devices, "abc123").
 512473

 member_count(Scope, GroupName, Node)

 -spec member_count(Scope :: atom(), GroupName :: term(), Node :: node()) -> non_neg_integer().

Returns the count of all members for the specified Scope and GroupName which have at least 1 process running on Node.

 members(Scope, GroupName)

 -spec members(Scope :: atom(), GroupName :: term()) -> [{Pid :: pid(), Meta :: term()}].

Returns the list of all members for GroupName in the specified Scope.
Examples
Elixir
 iex> :syn.join(:devices, "area-1", self())
 :ok
 iex> :syn.members(:devices, "area-1")
 [{#PID<0.105.0>, :undefined}]
Erlang
 1> syn:join(devices, "area-1", self()).
 ok
 2> syn:members(devices, "area-1").
 [{<0.69.0>, undefined}]

 multi_call(Scope, GroupName, Message)

 -spec multi_call(Scope :: atom(), GroupName :: term(), Message :: term()) ->
 {Replies :: [{{pid(), Meta :: term()}, Reply :: term()}],
 BadReplies :: [{pid(), Meta :: term()}]}.

Equivalent to multi_call(Scope, GroupName, Message, 5000).

 multi_call(Scope, GroupName, Message, Timeout)

 -spec multi_call(Scope :: atom(), GroupName :: term(), Message :: term(), Timeout :: non_neg_integer()) ->
 {Replies :: [{{pid(), Meta :: term()}, Reply :: term()}],
 BadReplies :: [{pid(), Meta :: term()}]}.

Calls all group members in the specified Scope and collects their replies.
When this call is issued, all members will receive a tuple in the format:
{syn_multi_call, TestMessage, Caller, Meta}
To reply, every member MUST use the method multi_call_reply/2.
Syn will wait up to the value specified in Timeout to receive all replies from the members. The responses will be added to the Replies list, while the members that do not reply in time or that crash before sending a reply will be added to the BadReplies list.

 multi_call_reply(Caller, Reply)

 -spec multi_call_reply(Caller :: term(), Reply :: term()) -> any().

Allows a group member to reply to a multi call.
See multi_call/4 for info.

 node_scopes()

 -spec node_scopes() -> [atom()].

Retrieves the Scopes that the node has been added to.

 publish(Scope, GroupName, Message)

 -spec publish(Scope :: atom(), GroupName :: term(), Message :: term()) ->
 {ok, RecipientCount :: non_neg_integer()}.

Publish a message to all group members in the specified Scope.
RecipientCount is the count of the intended recipients.
Examples
Elixir
 iex> :syn.join(:users, "area-1", self())
 :ok
 iex> :syn.publish(:users, "area-1", :my_message)
 {:ok,1}
 iex> flush()
 Shell got :my_message
 :ok
Erlang
 1> syn:join(users, "area-1", self()).
 ok
 2> syn:publish(users, "area-1", my_message).
 {ok,1}
 3> flush().
 Shell got my_message
 ok

 register(Scope, Name, Pid)

 -spec register(Scope :: atom(), Name :: term(), Pid :: term()) -> ok | {error, Reason :: term()}.

Equivalent to register(Scope, Name, Pid, undefined).

 register(Scope, Name, Pid, Meta)

 -spec register(Scope :: atom(), Name :: term(), Pid :: pid(), Meta :: term()) ->
 ok | {error, Reason :: term()}.

Registers a process with metadata in the specified Scope.
You may register the same process with different names. You may also re-register a process multiple times, for example if you need to update its metadata, however it is recommended to be aware of the implications of updating metadata, see the strict_mode option for more information.
If you want to update a process' metadata by modifying its existing one, you may consider using update_registry/3 instead.
When a process gets registered, Syn will automatically monitor it.
Possible error reasons:
	not_alive: The pid() being registered is not alive.
	taken: name is already registered with another pid().
	not_self: the method is being called from a process other than self(), but strict_mode is enabled.

Examples
Elixir
 iex> :syn.register(:devices, "SN-123-456789", self(), [meta: :one])
 :ok
 iex> :syn.lookup(:devices, "SN-123-456789")
 {#PID<0.105.0>, [meta: :one]}
Erlang
 1> syn:register(devices, "SN-123-456789", self(), [{meta, one}]).
 ok
 2> syn:lookup(devices, "SN-123-456789")
 {<0.105.0>,[{meta, one}]}
Processes can also be registered as gen_server names, by usage of via-tuples. This way, you can use the gen_server API with these tuples without referring to the Pid directly. If you do so, you MUST use a gen_server name in format:
	{Scope, Name} or
	{Scope, Name, Meta}

i.e. your via tuple will look like {via, syn, {my_scope, <<"process name">>}} or, with meta, {via, syn, {my_scope, <<"process name">>, process_meta}}. See here below for examples.
Examples
Elixir
 iex> tuple = {:via, :syn, {:devices, "SN-123-456789"}}.
 {:via, :syn, {:devices, "SN-123-456789"}}
 iex> GenServer.start_link(__MODULE__, [], name: tuple)
 {ok, #PID<0.105.0>}
 iex> GenServer.call(tuple, :your_message)
 :your_message
Erlang
 1> Tuple = {via, syn, {devices, "SN-123-456789"}}.
 {via, syn, {devices, "SN-123-456789"}}
 2> gen_server:start_link(Tuple, your_module, []).
 {ok, <0.79.0>}
 3> gen_server:call(Tuple, your_message).
 your_message

 registry_count(Scope)

 -spec registry_count(Scope :: atom()) -> non_neg_integer().

Returns the count of all registered processes for the specified Scope.
Examples
Elixir
 iex> :syn.registry_count(:devices)
 512473
Erlang
 1> syn:registry_count(devices).
 512473

 registry_count(Scope, Node)

 -spec registry_count(Scope :: atom(), Node :: node()) -> non_neg_integer().

Returns the count of all registered processes for the specified Scope running on a node.

 set_event_handler(Module)

 -spec set_event_handler(module()) -> ok.

Sets the handler module.
Please see syn_event_handler for information on callbacks.
There are 2 ways to set a handler module. One is by using this method, the other is to set the environment variable syn with the key event_handler. In this latter case, you're probably best off using an application configuration file:
Elixir
 config :syn,
 event_handler: MyCustomEventHandler
Erlang
 {syn, [
 {event_handler, my_custom_event_handler}
]}
Examples
Elixir
 iex> :syn.set_event_handler(MyCustomEventHandler)
 ok
Erlang
 1> syn:set_event_handler(my_custom_event_handler).
 ok

 start()

 -spec start() -> ok.

Starts Syn manually.
In most cases Syn will be started as one of your application's dependencies, however you may use this helper method to start it manually.

 stop()

 -spec stop() -> ok | {error, Reason :: term()}.

Stops Syn manually.

 subcluster_nodes(Manager, Scope)

 -spec subcluster_nodes(Manager :: registry | pg, Scope :: atom()) -> [node()].

Returns the nodes of the subcluster for the specified Scope.

 unregister(Scope, Name)

 -spec unregister(Scope :: atom(), Name :: term()) -> ok | {error, Reason :: term()}.

Unregisters a process from specified Scope.
Possible error reasons:
	undefined: name is not registered.
	race_condition: the local pid() does not correspond to the cluster value, so Syn will not succeed unregistering the value and will wait for the cluster to synchronize. This is a rare occasion.

You don't need to unregister names of processes that are about to die, since they are monitored by Syn and they will be removed automatically.

 update_member(Scope, GroupName, Pid, Fun)

 -spec update_member(Scope :: atom(), GroupName :: term(), Pid :: pid(), Fun :: function()) ->
 {ok, {Pid :: pid(), Meta :: term()}} | {error, Reason :: term()}.

Updates the GroupName member metadata in the specified Scope.
Atomically calls Fun with the current metadata, and stores the return value as new metadata. It is recommended to be aware of the implications of updating metadata, see the strict_mode option for more information.
Possible error reasons:
	undefined: The pid() cannot be found in GroupName.

Note: an error in the update fun will be raised in the calling process.
Examples
Elixir
 iex> :syn.join(:devices, "area-1", self(), 10)
 :ok
 iex> :syn.update_member(:devices, "area-1", self(), fn existing_meta -> existing_meta * 2 end)
 {:ok, {#PID<0.105.0>, 20}}
Erlang
 1> syn:join(devices, "area-1", self(), 10).
 ok
 2> syn:update_member(devices, "area-1", self(), fun(ExistingMeta) -> ExistingMeta * 2 end).
 {ok, {<0.69.0>, 20}}

 update_registry(Scope, Name, Fun)

 -spec update_registry(Scope :: atom(), Name :: term(), Fun :: function()) ->
 {ok, {Pid :: pid(), Meta :: term()}} | {error, Reason :: term()}.

Updates the registered Name metadata in the specified Scope.
Atomically calls Fun with the current metadata, and stores the return value as new metadata. It is recommended to be aware of the implications of updating metadata, see the strict_mode option for more information.
Possible error reasons:
	undefined: The Name cannot be found.

Note: an error in the update fun will be raised in the calling process.
Examples
Elixir
 iex> :syn.register(:devices, "SN-123-456789", self(), 10)
 :ok
 iex> :syn.update_registry(:devices, "SN-123-456789", fn _pid, existing_meta -> existing_meta * 2 end)
 {:ok, {#PID<0.105.0>, 20}}
Erlang
 1> syn:register(devices, "SN-123-456789", self(), 10).
 ok
 2> syn:update_registry(devices, "SN-123-456789", fun(_Pid, ExistingMeta) -> ExistingMeta * 2 end).
 {ok, {<0.69.0>, 20}}

syn_event_handler behaviour

Defines Syn's callbacks.
You can specify the callback module with syn:set_event_handler/1. In your module you need to specify the behavior syn_event_handler and implement the callbacks. All callbacks are optional, so you just need to define the ones you need.
All of the callbacks, except for resolve_registry_conflict/4, are called on all the nodes of the cluster. This allows you to receive events for the processes running on nodes that get shut down, or in case of net splits.
The argument Reason in the callbacks can be:
	normal for expected operations.
	Crash reasons when processes die (for on_process_unregistered/5 and on_process_left/5).
	{syn_remote_scope_node_up, Scope, Node} for on_process_registered/5 and on_process_joined/5 when the callbacks are called due to nodes syncing.
	{syn_remote_scope_node_down, Scope, Node} for on_process_unregistered/5 and on_process_left/5 when the callbacks are called due to nodes disconnecting.
	syn_conflict_resolution for on_process_registered/5 and on_process_unregistered/5 during registry conflict resolution.
	undefined for on_process_unregistered/5 and on_process_left/5 when the processes died while the scope process had crashed.

While all callbacks do not have a direct effect on Syn (their return value is ignored), a special case is the callback resolve_registry_conflict/4. If specified, this is the method that will be used to resolve registry conflicts when detected.
In case of net splits or race conditions, a specific name might get registered simultaneously on two different nodes. When this happens, the cluster experiences a registry naming conflict.
Syn will resolve this Process Registry conflict by choosing a single process. By default, Syn keeps track of the time when a registration takes place with erlang:system_time/0, compares values between conflicting processes and:
	Keeps the one with the higher value (the process that was registered more recently).
	Kills the other process by sending a kill signal with exit(Pid, {syn_resolve_kill, Name, Meta}).

This is a very simple mechanism that can be imprecise, as system clocks are not perfectly aligned in a cluster. If something more elaborate is desired, or if you do not want the discarded process to be killed (i.e. to perform a graceful shutdown), you MAY specify a custom handler that implements the resolve_registry_conflict/4 callback. To this effect, you may also store additional data to resolve conflicts in the Meta value, since it will be passed into the callback for both of the conflicting processes.
If implemented, this method MUST return the pid() of the process that you wish to keep. The other process will not be killed, so you will have to decide what to do with it. If the custom conflict resolution method does not return one of the two Pids, or if the method crashes, none of the Pids will be killed and the conflicting name will be freed.
Important Note: the conflict resolution method will be called on the two nodes where the conflicting processes are running on. Therefore, this method MUST be defined in the same way across all nodes of the cluster and have the same effect regardless of the node it is run on, or you will experience unexpected results.
Examples
The following callback module implements the on_process_unregistered/4 and the on_process_left/4 callbacks.
Elixir
 defmodule MyCustomEventHandler do
 ‎@behaviour :syn_event_handler

 ‎@impl true
 def on_process_unregistered(scope, name, pid, meta, reason) do
 end

 ‎@impl true
 def on_process_left(scope, group_name, pid, meta, reason) do
 end
 end
Erlang
 -module(my_custom_event_handler).
 -behaviour(syn_event_handler).
 -export([on_process_unregistered/4]).
 -export([on_group_process_exit/4]).

 -spec on_process_unregistered(
 Scope :: atom(),
 Name :: term(),
 Pid :: pid(),
 Meta :: term(),
 Reason :: atom()
) -> term().
 on_process_unregistered(Scope, Name, Pid, Meta, Reason) ->
 ok.

 -spec on_process_left(
 Scope :: atom(),
 GroupName :: term(),
 Pid :: pid(),
 Meta :: term(),
 Reason :: atom()
) -> term().
 on_process_left(Scope, GroupName, Pid, Meta, Reason) ->
 ok.

 Summary

 Callbacks

 on_group_process_updated/5

 on_group_process_updated/6

 on_process_joined/5

 on_process_left/5

 on_process_registered/5

 on_process_unregistered/5

 on_registry_process_updated/5

 on_registry_process_updated/6

 resolve_registry_conflict/4

 Callbacks

 on_group_process_updated/5

 (optional)

 -callback on_group_process_updated(Scope :: atom(),
 GroupName :: term(),
 Pid :: pid(),
 Meta :: term(),
 Reason :: atom()) ->
 any().

 on_group_process_updated/6

 (optional)

 -callback on_group_process_updated(Scope :: atom(),
 GroupName :: term(),
 Pid :: pid(),
 PreviousMeta :: term(),
 Meta :: term(),
 Reason :: atom()) ->
 any().

 on_process_joined/5

 (optional)

 -callback on_process_joined(Scope :: atom(),
 GroupName :: term(),
 Pid :: pid(),
 Meta :: term(),
 Reason :: atom()) ->
 any().

 on_process_left/5

 (optional)

 -callback on_process_left(Scope :: atom(),
 GroupName :: term(),
 Pid :: pid(),
 Meta :: term(),
 Reason :: atom()) ->
 any().

 on_process_registered/5

 (optional)

 -callback on_process_registered(Scope :: atom(),
 Name :: term(),
 Pid :: pid(),
 Meta :: term(),
 Reason :: atom()) ->
 any().

 on_process_unregistered/5

 (optional)

 -callback on_process_unregistered(Scope :: atom(),
 Name :: term(),
 Pid :: pid(),
 Meta :: term(),
 Reason :: atom()) ->
 any().

 on_registry_process_updated/5

 (optional)

 -callback on_registry_process_updated(Scope :: atom(),
 Name :: term(),
 Pid :: pid(),
 Meta :: term(),
 Reason :: atom()) ->
 any().

 on_registry_process_updated/6

 (optional)

 -callback on_registry_process_updated(Scope :: atom(),
 Name :: term(),
 Pid :: pid(),
 PreviousMeta :: term(),
 Meta :: term(),
 Reason :: atom()) ->
 any().

 resolve_registry_conflict/4

 (optional)

 -callback resolve_registry_conflict(Scope :: atom(),
 Name :: term(),
 {Pid1 :: pid(), Meta1 :: term(), Time1 :: non_neg_integer()},
 {Pid2 :: pid(), Meta2 :: term(), Time2 :: non_neg_integer()}) ->
 PidToKeep :: pid().

 OEBPS/dist/epub-4WIP524F.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);function r(e){document.readyState!=="loading"?e():document.addEventListener("DOMContentLoaded",e)}var l="hll";window.addEventListener("exdoc:loaded",t);function t(){o("[data-group-id]").forEach(e=>{e.addEventListener("mouseenter",i),e.addEventListener("mouseleave",i)})}function i(e){let n=e.currentTarget,a=e.type==="mouseenter",c=n.getAttribute("data-group-id");n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach(u=>{u.classList.toggle(l,a)})}r(()=>{t()});})();

