

 synaptic

 v0.2.6

 Table of contents

 	Synaptic

 	Synaptic Technical Overview

 	
 Modules

 	Synaptic

 	Synaptic.Application

 	Synaptic.Dev.DemoWorkflow

 	Synaptic.Engine

 	Synaptic.Eval.Integration

 	Synaptic.Experiments

 	Synaptic.Registry

 	Synaptic.Runner

 	Synaptic.RuntimeSupervisor

 	Synaptic.Scorer

 	Synaptic.Scorer.Context

 	Synaptic.Scorer.Result

 	Synaptic.Step

 	Synaptic.TestRunner

 	Synaptic.TestRunner.ExpectationValidator

 	Synaptic.TestRunner.ResultFormatter

 	Synaptic.TestRunner.YamlParser

 	Synaptic.Tools

 	Synaptic.Tools.Adapter

 	Synaptic.Tools.OpenAI

 	Synaptic.Tools.Tool

 	Synaptic.Workflow

 Synaptic

This repository hosts Synaptic, a database-free workflow engine for
LLM-assisted automations with human-in-the-loop support (Phase 1 of the spec).
If you want the full module-by-module breakdown, see TECHNICAL.md.
Current progress
	✅ Workflow DSL (use Synaptic.Workflow, step/3, commit/0)
	✅ In-memory runtime with supervised Synaptic.Runner processes
	✅ Suspension + resume API for human involvement
	✅ LLM abstraction with an OpenAI adapter (extensible later)
	✅ Test suite covering DSL compilation + runtime execution
	🔜 Persisted state, UI, distributed execution (future phases)

Using Synaptic locally
	Install deps: mix deps.get
	Provide OpenAI credentials (see below)
	Start an interactive shell when you want to run workflows locally: iex -S mix

Configuring OpenAI credentials
Synaptic defaults to the Synaptic.Tools.OpenAI adapter. Supply an API key in
one of two ways:
	Environment variable (recommended for dev):
export OPENAI_API_KEY=sk-your-key

	Config override (for deterministic deployments). In
config/dev.exs/config/runtime.exs add:
config :synaptic, Synaptic.Tools.OpenAI,
 api_key: System.fetch_env!("OPENAI_API_KEY"),
 model: "gpt-4o-mini" # or whichever you prefer

You can also swap adapters by configuring Synaptic.Tools:
config :synaptic, Synaptic.Tools, llm_adapter: MyCustomAdapter
Using different models per step
Synaptic supports two ways to specify which model to use for each LLM call:
Option 1: Named agents (recommended for reusable configurations)
Define named agents in your config with their model and other settings, then reference them by name:
In config/config.exs
config :synaptic, Synaptic.Tools,
 llm_adapter: Synaptic.Tools.OpenAI,
 agents: [
 # Fast, cost-effective model for simple tasks
 mini: [model: "gpt-4o-mini", temperature: 0.3],
 # More capable model for complex reasoning
 turbo: [model: "gpt-4o-turbo", temperature: 0.7],
 # Most capable model for critical tasks
 o1: [model: "o1-preview", temperature: 0.1]
]

In your workflow - use the agent name
Synaptic.Tools.chat(messages, agent: :mini, tools: [tool])
Synaptic.Tools.chat(messages, agent: :turbo, tools: [tool])
Benefits of named agents:
	Semantic names: agent: :mini is clearer than model: "gpt-4o-mini"
	Bundle multiple settings: model, temperature, adapter, etc. in one place
	Centralized configuration: change the model in config, not scattered across code
	Reusable: define once, use throughout your workflows

Option 2: Direct model specification
Pass the model name directly to chat/2 for one-off usage:
Use a specific model directly
Synaptic.Tools.chat(messages, model: "gpt-4o-mini", tools: [tool])
Synaptic.Tools.chat(messages, model: "gpt-4o-turbo", temperature: 0.8, tools: [tool])
Model resolution priority
When both are specified, the system resolves options in this order:
	Direct options passed to chat/2 (e.g., model:, temperature:)
	Options from the named agent (if agent: is specified)
	Global defaults from Synaptic.Tools.OpenAI config
	Hardcoded fallback: "gpt-4o-mini"

This means you can override agent settings per call:
Uses "gpt-4o-turbo" from :turbo agent, but overrides temperature to 0.5
Synaptic.Tools.chat(messages, agent: :turbo, temperature: 0.5)
You can also specify adapter: inside an agent definition if some agents need a different provider altogether.
Tool calling
Synaptic exposes a thin wrapper around OpenAI-style tool calling. Define one or
more %Synaptic.Tools.Tool{} structs (or pass a map/keyword with :name,
:description, :schema, and a one-arity :handler), then pass them via the
tools: option:
tool = %Synaptic.Tools.Tool{
 name: "lookup",
 description: "Looks up docs",
 schema: %{type: "object", properties: %{topic: %{type: "string"}}, required: ["topic"]},
 handler: fn %{"topic" => topic} -> Docs.search(topic) end
}

{:ok, response} = Synaptic.Tools.chat(messages, tools: [tool])
When the LLM requests a tool (via function_call/tool_calls), Synaptic invokes
the handler, appends the tool response to the conversation, and re-issues the
chat request until the model produces a final assistant message.
Structured JSON responses
OpenAI's response_format: %{type: "json_object"} (and compatible JSON schema
formats) are supported end-to-end. Pass the option through Synaptic.Tools.chat/2
and the OpenAI adapter will add it to the upstream payload and automatically
decode the assistant response:
{:ok, %{"summary" => summary}} =
 Synaptic.Tools.chat(messages, agent: :mini, response_format: :json_object)
If the model returns invalid JSON while JSON mode is enabled, the call fails
with {:error, :invalid_json_response} so workflows can retry or surface the
failure.
Streaming responses
Synaptic supports streaming LLM responses for real-time content delivery. When
stream: true is passed to Synaptic.Tools.chat/2, the response is streamed
and PubSub events are emitted for each chunk:
step :generate do
 messages = [%{role: "user", content: "Write a story"}]

 case Synaptic.Tools.chat(messages, stream: true) do
 {:ok, full_content} ->
 # Full content is available after streaming completes
 {:ok, %{story: full_content}}

 {:error, reason} ->
 {:error, reason}
 end
end
Subscribing to stream events:
{:ok, run_id} = Synaptic.start(MyWorkflow, %{})
:ok = Synaptic.subscribe(run_id)

Receive stream chunks in real-time
receive do
 {:synaptic_event, %{event: :stream_chunk, chunk: chunk, accumulated: accumulated}} ->
 IO.puts("New chunk: #{chunk}")
 IO.puts("So far: #{accumulated}")

 {:synaptic_event, %{event: :stream_done, accumulated: full_content}} ->
 IO.puts("Stream complete: #{full_content}")
end
Stream event structure:
	:stream_chunk - Emitted for each content chunk:
	chunk - The new chunk of text
	accumulated - All content received so far
	step - The step name
	run_id - The workflow run ID

	:stream_done - Emitted when streaming completes:
	accumulated - The complete response
	step - The step name
	run_id - The workflow run ID

Important limitations:
	Streaming automatically falls back to non-streaming mode when tools are
provided, as OpenAI's streaming API doesn't support tool calling
	Streaming doesn't support response_format options (JSON mode)
	The step function still receives the complete accumulated content when
streaming finishes

Writing workflows
defmodule ExampleFlow do
 use Synaptic.Workflow

 step :greet do
 {:ok, %{message: "Hello"}}
 end

 step :review, suspend: true, resume_schema: %{approved: :boolean} do
 case get_in(context, [:human_input, :approved]) do
 nil -> suspend_for_human("Approve greeting?")
 true -> {:ok, %{status: :approved}}
 false -> {:error, :rejected}
 end
 end

 commit()
end

{:ok, run_id} = Synaptic.start(ExampleFlow, %{})
Synaptic.resume(run_id, %{approved: true})
Starting at a specific step
For complex workflows, you can start execution at a specific step with pre-populated context. This is useful when you want to skip earlier steps or resume from a checkpoint:
Start at the :finalize step with context that simulates earlier steps
context = %{
 prepared: true,
 approval: true
}

{:ok, run_id} = Synaptic.start(
 ExampleFlow,
 context,
 start_at_step: :finalize
)
The :start_at_step option accepts a step name (atom). The provided context should contain all data that would have been accumulated up to that step. If the step name doesn't exist in the workflow, start/3 returns {:error, :invalid_step}.
This feature is particularly useful for:
	Testing specific sections of complex workflows
	Resuming workflows from checkpoints
	Debugging by starting at problematic steps
	Replaying workflows with different context

Parallel steps
Use parallel_step/3 when you want to fan out work, wait for all tasks, and
continue once every branch returns. The block must return a list of functions
that accept the current context:
parallel_step :generate_initial_content do
 [
 fn ctx -> TitleDescriptionSteps.generate_and_update(ctx) end,
 fn ctx -> MetadataSteps.generate_and_update(ctx) end,
 fn ctx -> ConceptOutlinerSteps.execute(ctx) end
]
end

step :persist_concepts do
 PersistenceSteps.persist_concepts(context)
end
Each parallel task returns {:ok, map} or {:error, reason}. Synaptic runs the
tasks concurrently and merges their maps into the workflow context before
continuing to the next step/3.
Async steps
Use async_step/3 to trigger a task and immediately continue with the rest of
the workflow. Async steps execute in the background with the same retry and
error semantics as regular steps. Their return values are merged into the
context once they finish, and the workflow completes after every async task
has resolved:
async_step :notify_observers do
 Notifications.deliver(context)
 {:ok, %{notifications_sent: true}}
end

step :persist_final_state do
 {:ok, %{status: :saved}}
end
If an async step fails, Synaptic applies the configured :retry budget. Once
retries are exhausted the workflow transitions to :failed, even if later
steps already ran.
Step-level scorers (quality & evaluation)
Synaptic supports step-level scorers that evaluate the outcome of each step
and emit metrics via Telemetry (similar in spirit to Mastra scorers).
	Attach scorers to a step using the :scorers option:
defmodule MyWorkflow do
 use Synaptic.Workflow

 alias MyApp.Scorers.{UserDataCompleteness, WelcomeEmailTone}

 step :collect_user_data,
 scorers: [UserDataCompleteness] do
 {:ok, %{user: %{name: "Jane", email: "jane@example.com"}}}
 end

 step :send_welcome_email,
 scorers: [{WelcomeEmailTone, model: :gpt_4o_mini}] do
 # your side effects / LLM calls here
 {:ok, %{email_sent?: true}}
 end

 commit()
end

	Implement a scorer by conforming to the Synaptic.Scorer behaviour:
defmodule MyApp.Scorers.UserDataCompleteness do
 @behaviour Synaptic.Scorer

 alias Synaptic.Scorer.{Context, Result}

 @impl true
 def score(%Context{step: step, run_id: run_id, output: output}, _metadata) do
 required = [:user]
 present? = Enum.all?(required, &Map.has_key?(output, &1))

 Result.new(
 name: "user_data_completeness",
 step: step.name,
 run_id: run_id,
 score: if(present?, do: 1.0, else: 0.0),
 reason:
 if present?,
 do: "All required keys present: #{inspect(required)}",
 else: "Missing required keys: #{inspect(required -- Map.keys(output))}"
)
 end
end

Scorers are executed asynchronously after each successful step and emit a
Telemetry span under [:synaptic, :scorer]. Your application can subscribe to
these events to persist scores (e.g. to Postgres, Prometheus, or Braintrust) or
build dashboards. See Synaptic.Scorer and Synaptic.WorkflowScorerIntegrationTest
for more detailed examples.
Sending scorer metrics to Braintrust
You can forward scorer events directly to Braintrust (or any external eval
service) from your host app by attaching a Telemetry handler:
:telemetry.attach(
 "synaptic-braintrust-scorers",
 [:synaptic, :scorer, :stop],
 fn _event, _measurements, metadata, _config ->
 # Example shape – adapt to your Braintrust client / API
 Braintrust.log_score(%{
 run_id: metadata.run_id,
 workflow: inspect(metadata.workflow),
 step: Atom.to_string(metadata.step_name),
 scorer: inspect(metadata.scorer),
 score: metadata.score,
 reason: metadata.reason
 })
 end,
 nil
)
As long as your Braintrust client exposes a log_score/1 (or equivalent)
function, this pattern lets Synaptic remain storage-agnostic while you push
scores into Braintrust for dashboards, model comparisons, or regression tests.
Eval Integrations
For a more structured approach to integrating with eval services, implement the
Synaptic.Eval.Integration behaviour. This provides a standardized way to observe
both LLM calls and scorer results:
defmodule MyApp.Eval.BraintrustIntegration do
 @behaviour Synaptic.Eval.Integration

 @impl Synaptic.Eval.Integration
 def on_llm_call(_event, measurements, metadata, config) do
 usage = Map.get(metadata, :usage, %{})

 Braintrust.log({
 run_id: metadata.run_id,
 step: metadata.step_name,
 model: metadata.model,
 prompt_tokens: Map.get(usage, :prompt_tokens, 0),
 completion_tokens: Map.get(usage, :completion_tokens, 0),
 total_tokens: Map.get(usage, :total_tokens, 0),
 duration_ms: System.convert_time_unit(measurements.duration, :native, :millisecond)
 })
 end

 @impl Synaptic.Eval.Integration
 def on_scorer_result(_event, _measurements, metadata, _config) do
 Braintrust.log_score({
 run_id: metadata.run_id,
 step: metadata.step_name,
 scorer: metadata.scorer,
 score: metadata.score,
 reason: metadata.reason
 })
 end
end
Then attach it in your application startup:
defmodule MyApp.Application do
 def start(_type, _args) do
 # ... other setup ...

 Synaptic.Eval.Integration.attach(MyApp.Eval.BraintrustIntegration, %{
 api_key: System.get_env("BRAINTRUST_API_KEY"),
 project: "my-project"
 })

 # ... rest of startup ...
 end
end
See Synaptic.Eval.Integration for more details on combining LLM metrics with
scorer results.
Stopping a run
To cancel a workflow early (for example, if a human rejected it out-of-band),
call:
Synaptic.stop(run_id, :user_cancelled)
The optional second argument becomes the :reason in the PubSub event and
history entry. Synaptic.stop/2 returns :ok if the run was alive and
{:error, :not_found} otherwise.
You can also stop a run from inside a workflow step by returning
{:stop, reason} from the step handler:
step :validate do
 if valid?(context) do
 {:ok, %{validated: true}}
 else
 # Stop the workflow early with a domain-specific reason
 {:stop, :validation_failed}
 end
end
This works for regular step/3, async_step/3, and parallel_step/3:
	In all cases, {:stop, reason} marks the run as :stopped, appends a
%{event: :stopped, reason: reason} entry to history, and publishes a
corresponding PubSub event (just like Synaptic.stop/2).
	Retries are not applied for {:stop, reason} – it is treated as an
intentional, terminal outcome rather than an error.

Dev-only demo workflow
When running with MIX_ENV=dev, the module Synaptic.Dev.DemoWorkflow is loaded
so you can exercise the engine end-to-end without writing your own flow yet. In
one terminal start an IEx shell:
MIX_ENV=dev iex -S mix

Then kick off the sample workflow:
{:ok, run_id} = Synaptic.start(Synaptic.Dev.DemoWorkflow, %{topic: "Intro to GenServers"})
Synaptic.inspect(run_id)
=> prompts you (twice) for learner info before producing an outline

Synaptic.resume(run_id, %{approved: true})
Synaptic.history(run_id)
You can also start the demo workflow at a specific step:
Start at :generate_learning_plan with pre-answered questions
context = %{
 topic: "Elixir Concurrency",
 clarification_answers: %{
 "q_background" => "I know basic Elixir",
 "q_goal" => "Build distributed systems"
 },
 pending_questions: [],
 current_question: nil,
 question_source: :fallback
}

{:ok, run_id} = Synaptic.start(
 Synaptic.Dev.DemoWorkflow,
 context,
 start_at_step: :generate_learning_plan
)
The demo first asks the LLM to suggest 2–3 clarifying questions, then loops
through them (suspending after each) before generating the outline. If no OpenAI
credentials are configured it automatically falls back to canned questions +
plan so you can still practice the suspend/resume loop.
Telemetry
Synaptic emits Telemetry events for workflow execution so host applications can
collect metrics (e.g. via Phoenix LiveDashboard, Prometheus, StatsD, or custom
handlers). The library focuses on emitting events; your app is responsible for
attaching handlers and exporting them.
Step timing
Every workflow step is wrapped in a Telemetry span:
	Events	[:synaptic, :step, :start]
	[:synaptic, :step, :stop]
	[:synaptic, :step, :exception] (if the step crashes)

	Measurements (on :stop / :exception)	:duration – native units (convert to ms with System.convert_time_unit/3
or via telemetry_metrics unit: {:native, :millisecond})

	Metadata	:run_id – workflow run id
	:workflow – workflow module
	:step_name – atom step name
	:type – :default | :parallel | :async

	:status – :ok | :suspend | :error | :unknown

Example: log all step timings from your host app:
:telemetry.attach(
 "synaptic-step-logger",
 [:synaptic, :step, :stop],
 fn _event, measurements, metadata, _config ->
 duration_ms =
 System.convert_time_unit(measurements.duration, :native, :millisecond)

 IO.inspect(
 %{
 workflow: metadata.workflow,
 step: metadata.step_name,
 type: metadata.type,
 status: metadata.status,
 duration_ms: duration_ms
 },
 label: "Synaptic step"
)
 end,
 nil
)
Example: expose a histogram metric (e.g. for LiveDashboard/Prometheus):
import Telemetry.Metrics

def metrics do
 [
 summary("synaptic.step.duration",
 event_name: [:synaptic, :step, :stop],
 measurement: :duration,
 unit: {:native, :millisecond},
 tags: [:workflow, :step_name, :type, :status],
 tag_values: fn metadata ->
 %{
 workflow: inspect(metadata.workflow),
 step_name: metadata.step_name,
 type: metadata.type,
 status: metadata.status
 }
 end
)
]
end
LLM call metrics
Every LLM call made via Synaptic.Tools.chat/2 is wrapped in a Telemetry span:
	Events	[:synaptic, :llm, :start]
	[:synaptic, :llm, :stop]
	[:synaptic, :llm, :exception] (if the call crashes)

	Measurements (on :stop / :exception)	:duration – native units (convert to ms with System.convert_time_unit/3)
	:prompt_tokens – Number of tokens in the prompt (if available from adapter)
	:completion_tokens – Number of tokens in the completion (if available)
	:total_tokens – Total tokens used (if available)

	Metadata	:run_id – workflow run id (when available)
	:step_name – step name (atom, when available)
	:adapter – adapter module (e.g., Synaptic.Tools.OpenAI)
	:model – model name/identifier
	:stream – boolean indicating if streaming was used
	:usage – optional usage map with token counts (adapter-specific)

Example: log all LLM calls with token usage:
:telemetry.attach(
 "synaptic-llm-logger",
 [:synaptic, :llm, :stop],
 fn _event, measurements, metadata, _config ->
 duration_ms =
 System.convert_time_unit(measurements.duration, :native, :millisecond)

 usage = Map.get(metadata, :usage, %{})

 IO.inspect(
 %{
 run_id: metadata.run_id,
 step: metadata.step_name,
 adapter: metadata.adapter,
 model: metadata.model,
 stream: metadata.stream,
 duration_ms: duration_ms,
 prompt_tokens: Map.get(usage, :prompt_tokens, 0),
 completion_tokens: Map.get(usage, :completion_tokens, 0),
 total_tokens: Map.get(usage, :total_tokens, 0)
 },
 label: "Synaptic LLM call"
)
 end,
 nil
)
Usage Metrics: Adapters may optionally return usage metrics (token counts, cost, etc.)
in their responses. The OpenAI adapter automatically extracts and returns usage information
from API responses. Other adapters can implement this by returning a three-element tuple:
{:ok, content, %{usage: %{...}}}. See Synaptic.Tools.Adapter for details.
Side-effect metrics
Side effects declared via side_effect/2 are also instrumented:
	Run-time events (when the side effect executes)	Span: [:synaptic, :side_effect] → :start, :stop, :exception

	Skip events (when tests set skip_side_effects: true)	[:synaptic, :side_effect, :skip]

	Metadata	:run_id – workflow run id (when available)
	:step_name – the surrounding step name
	:side_effect – optional identifier from name: option (or nil)

Example workflow usage:
step :save_user do
 side_effect name: :db_insert_user do
 Database.insert(context.user)
 end

 {:ok, %{user_saved: true}}
end
Example handler for timing side effects:
:telemetry.attach(
 "synaptic-side-effect-logger",
 [:synaptic, :side_effect, :stop],
 fn _event, measurements, metadata, _config ->
 duration_ms =
 System.convert_time_unit(measurements.duration, :native, :millisecond)

 IO.inspect(
 %{
 run_id: metadata.run_id,
 step: metadata.step_name,
 side_effect: metadata.side_effect,
 duration_ms: duration_ms
 },
 label: "Synaptic side effect"
)
 end,
 nil
)
You can turn these into metrics the same way as step timings, e.g. a
summary("synaptic.side_effect.duration", ...) with tags [:step_name, :side_effect].
Observing runs via PubSub
Subscribe to a run to receive lifecycle events from Synaptic.PubSub:
:ok = Synaptic.subscribe(run_id)

receive do
 {:synaptic_event, %{event: :waiting_for_human, message: msg}} -> IO.puts("Waiting: #{msg}")
 {:synaptic_event, %{event: :step_completed, step: step}} -> IO.puts("Finished #{step}")
after
 5_000 -> IO.puts("no events yet")
end

Synaptic.unsubscribe(run_id)
Events include :waiting_for_human, :resumed, :step_completed, :retrying,
:step_error, :failed, :stopped, and :completed. Each payload also
contains :run_id and :current_step, so LiveView processes can map events to
the UI state they represent.
Testing streaming in IEx
The demo workflow now supports streaming in the :generate_learning_plan step. Here are IEx commands to test streaming functionality:
Basic streaming test:
Start the workflow with a topic
{:ok, run_id} = Synaptic.start(Synaptic.Dev.DemoWorkflow, %{topic: "Elixir Concurrency"})

Subscribe to events
:ok = Synaptic.subscribe(run_id)

Answer the questions (if prompted)
Synaptic.inspect(run_id)
If waiting, resume with answers:
Synaptic.resume(run_id, %{answer: "I know basic Elixir"})
Synaptic.resume(run_id, %{answer: "Build distributed systems"})

Watch for streaming events
receive do
 {:synaptic_event, %{event: :stream_chunk, chunk: chunk, accumulated: acc, step: step}} ->
 IO.puts("[#{step}] Chunk: #{chunk}")
 IO.puts("[#{step}] Accumulated: #{acc}")
 # Continue listening...
after
 10_000 -> IO.puts("No stream events received")
end
Complete streaming workflow with event loop:
Start workflow and subscribe
{:ok, run_id} = Synaptic.start(Synaptic.Dev.DemoWorkflow, %{topic: "Phoenix LiveView"})
:ok = Synaptic.subscribe(run_id)

Helper function to listen for all events
listen_for_events = fn ->
 receive do
 {:synaptic_event, %{event: :stream_chunk, chunk: chunk, step: step}} ->
 IO.write(chunk)
 listen_for_events.()

 {:synaptic_event, %{event: :stream_done, accumulated: full, step: step}} ->
 IO.puts("\n\n[#{step}] Stream complete!")
 IO.puts("Full content:\n#{full}")

 {:synaptic_event, %{event: :waiting_for_human, message: msg, step: step}} ->
 IO.puts("\n[#{step}] Waiting: #{msg}")
 snapshot = Synaptic.inspect(run_id)
 IO.inspect(snapshot.waiting, label: "Waiting details")

 {:synaptic_event, %{event: :step_completed, step: step}} ->
 IO.puts("\n[#{step}] Step completed")

 {:synaptic_event, %{event: :completed}} ->
 IO.puts("\n✓ Workflow completed!")
 snapshot = Synaptic.inspect(run_id)
 IO.inspect(snapshot.context, label: "Final context")

 other ->
 IO.inspect(other, label: "Other event")
 listen_for_events.()
 after
 30_000 ->
 IO.puts("\nTimeout waiting for events")
 snapshot = Synaptic.inspect(run_id)
 IO.inspect(snapshot, label: "Current state")
 end
end

Start listening
listen_for_events.()
Skip to streaming step directly:
Start at the streaming step with pre-answered questions
context = %{
 topic: "Elixir Pattern Matching",
 clarification_answers: %{
 "q_background" => "Beginner",
 "q_goal" => "Write cleaner code"
 },
 pending_questions: [],
 current_question: nil,
 question_source: :fallback
}

{:ok, run_id} = Synaptic.start(
 Synaptic.Dev.DemoWorkflow,
 context,
 start_at_step: :generate_learning_plan
)

:ok = Synaptic.subscribe(run_id)

Watch the stream in real-time
Stream.repeatedly(fn ->
 receive do
 {:synaptic_event, %{event: :stream_chunk, chunk: chunk}} ->
 IO.write(chunk)
 :continue

 {:synaptic_event, %{event: :stream_done}} ->
 IO.puts("\n\n✓ Streaming complete!")
 :done

 other ->
 :continue
 after
 5_000 -> :timeout
 end
end)
|> Enum.take_while(&(&1 != :done))
Monitor all events with a simple loop:
{:ok, run_id} = Synaptic.start(Synaptic.Dev.DemoWorkflow, %{topic: "OTP Behaviours"})
:ok = Synaptic.subscribe(run_id)

Simple event monitor
monitor = fn ->
 case receive do
 {:synaptic_event, %{event: :stream_chunk, chunk: chunk}} ->
 IO.write(chunk)
 monitor.()

 {:synaptic_event, %{event: event} = payload} ->
 IO.puts("\n[#{event}] #{inspect(payload, pretty: true)}")
 monitor.()

 :stop -> :ok
 after
 60_000 ->
 IO.puts("\nMonitoring timeout")
 :ok
 end
end

Run monitor in background or interactively
monitor.()
Check workflow status and view history:
Check current status
snapshot = Synaptic.inspect(run_id)
IO.inspect(snapshot, label: "Workflow snapshot")

View execution history
history = Synaptic.history(run_id)
IO.inspect(history, label: "Execution history")

List all running workflows
runs = Synaptic.list_runs()
IO.inspect(runs, label: "Active runs")
Clean up:
Unsubscribe when done
Synaptic.unsubscribe(run_id)

Or stop the workflow
Synaptic.stop(run_id, :user_requested)
Quick streaming test scripts
Two test scripts are provided for easy testing of streaming functionality:
Simple version (recommended for quick tests):
Run with default topic
MIX_ENV=dev mix run scripts/test_streaming_simple.exs

Run with custom topic
MIX_ENV=dev mix run scripts/test_streaming_simple.exs "Phoenix LiveView"

This script skips directly to the streaming step and displays chunks as they arrive.
Full interactive version:
Run with default topic
MIX_ENV=dev mix run scripts/test_streaming.exs

Run with custom topic
MIX_ENV=dev mix run scripts/test_streaming.exs "Phoenix LiveView"

Or load in IEx:
In IEx session
Code.require_file("scripts/test_streaming.exs")
TestStreaming.run("Your Topic Here")
The interactive script will:
	Let you choose between full workflow or skip to streaming step
	Subscribe to PubSub events
	Display streaming chunks in real-time as they arrive
	Auto-resume workflow steps for demo purposes
	Show final results and execution history

Testing Workflows with YAML
Synaptic includes a declarative testing framework that allows non-developers to test workflows using YAML configuration files. This is ideal for AI researchers, management, or anyone who wants to test workflows without writing code.
YAML Test Format
Create a YAML file defining your test:
name: "My Workflow Test"
workflow: "Synaptic.Dev.DemoWorkflow"
input:
 topic: "Elixir Concurrency"
start_at_step: "generate_learning_plan" # Optional: start at specific step
expectations: # Optional: validate results
 status: "completed"
 context:
 outline: ".*Elixir.*" # Regex pattern matching
 plan_source: "llm|fallback"
Required fields:
	workflow: Module name as string (e.g., "Synaptic.Dev.DemoWorkflow")
	input: Map of initial context values

Optional fields:
	name: Test name for display
	start_at_step: Step name (atom as string) to start execution from
	expectations: Validation rules	status: Expected workflow status ("completed", "failed", "waiting_for_human")
	context: Map of field paths to regex patterns for validation

Running Tests
Run a test file using the test runner script:
Basic usage
mix run scripts/run_tests.exs test/fixtures/demo_workflow_test.yaml

JSON output only
mix run scripts/run_tests.exs test/fixtures/demo_workflow_test.yaml --format json

Console output only
mix run scripts/run_tests.exs test/fixtures/demo_workflow_test.yaml --format console

Custom timeout (default: 60 seconds)
mix run scripts/run_tests.exs test/fixtures/demo_workflow_test.yaml --timeout 120000

Handling Human Input
When a workflow suspends for human input, the test runner will:
	Display the waiting message and required fields
	Prompt you to enter a JSON payload
	Resume the workflow with your input

Example prompt:
Workflow is waiting for human input
====================================

Message: Please approve the prepared payload

Required fields:
 - approved (boolean)

Enter resume payload (JSON format, or 'skip' to skip this test):
> {"approved": true}
Expectation Validation
The test framework supports optional expectations with regex matching:
	Status validation: Exact match (case-insensitive)
	Context validation: Regex patterns for field values
	Nested paths: Use dot notation (e.g., "user.name")

Example:
expectations:
 status: "completed"
 context:
 topic: "Elixir.*" # Regex: starts with "Elixir"
 plan_source: "llm|fallback" # Regex: matches "llm" or "fallback"
 "user.email": ".*@.*" # Nested path with regex
Skipping Side Effects in Tests
When testing workflows that contain side effects (database mutations, external API calls, file operations), you can skip these side effects using the side_effect/1 macro in your workflow and the skip_side_effects: true option in your YAML test.
In your workflow, wrap side effect code with the side_effect/1 macro:
defmodule MyWorkflow do
 use Synaptic.Workflow

 step :create_user do
 user = %{name: context.name, email: context.email}

 side_effect do
 Database.insert(user)
 end

 {:ok, %{user: user}}
 end

 step :send_email do
 side_effect default: {:ok, :sent} do
 EmailService.send(context.user.email, "Welcome!")
 end

 {:ok, %{email_sent: true}}
 end
end
In your YAML test, add skip_side_effects: true:
name: "Test user creation"
workflow: "MyWorkflow"
input:
 name: "John Doe"
 email: "john@example.com"
skip_side_effects: true # Skip database and other side effects
expectations:
 status: "completed"
 context:
 user: ".*John.*"
When skip_side_effects: true is set:
	All side_effect/1 blocks are skipped
	By default, skipped side effects return :ok
	Use the default: option to return a specific value when skipped
	Side effects execute normally when the flag is not set

This allows you to test workflow logic and input/output transformations without requiring actual database connections or external services.
Example Test Files
Example test files are available in test/fixtures/:
	demo_workflow_test.yaml - Full workflow execution
	demo_workflow_test_start_at_step.yaml - Starting at a specific step
	simple_workflow_test.yaml - Minimal test without expectations
	workflow_with_side_effects_test.yaml - Example with side effects skipped

Output Formats
Console output (default) provides human-readable results:
==
Test: Demo Workflow Test
==

✓ Status: PASSED

Validation Results:
 Status Check: ✓ Status matches: completed
 Context Check: ✓ All context fields match

Final Context:
 topic: Elixir Concurrency
 outline: ...
JSON output provides structured data for automation:
{
 "test_name": "Demo Workflow Test",
 "workflow": "Synaptic.Dev.DemoWorkflow",
 "run_id": "...",
 "status": "success",
 "validation": { ... },
 "context": { ... },
 "execution_time_ms": 1234
}
Running tests
Synaptic has dedicated tests under test/synaptic. Run them with:
mix test

mix test needs to open local sockets (Phoenix/Mix.PubSub). If you run in a
sandboxed environment, allow network loopback access.

What’s next
	Add persistence (DB/Ecto) so runs survive VM restarts
	Build basic UI/endpoints for human approvals + observability
	Introduce additional adapters (Anthropic, local models, tooling APIs)
	Explore distributed execution + versioning (Phase 2 roadmap)

 Synaptic Technical Overview

This document describes how the Synaptic workflow engine is structured inside the
OTP application and where to look when extending it.
Entry point and supervision tree
	Synaptic (lib/synaptic.ex) is the public API. It exposes start/3,
resume/2, inspect/1, history/1, and workflow_definition/1 which all
delegate to Synaptic.Engine.
	Synaptic.Application is the OTP application callback. Its child list starts
the workflow runtime before any Phoenix components:	Synaptic.Registry – a Registry process keyed by run id so Synaptic.Runner
processes can be addressed via {:via, Registry, {Synaptic.Registry, run_id}}.
	Synaptic.RuntimeSupervisor – a DynamicSupervisor that owns every
Synaptic.Runner process. Each workflow run is supervised independently, so a
crash only restarts that single run.
	Phoenix telemetry/pubsub/Finch/endpoint services follow afterwards.

Workflow compilation DSL
	Synaptic.Workflow is a macro module imported by workflow definitions. It:	Registers the accumulating @synaptic_steps attribute, builds Step structs
via step/3, and injects per-step handlers named __synaptic_handle__/2.
	Provides commit/0 for marking the workflow complete and
suspend_for_human/2 for pausing.
	Emits __synaptic_definition__/0, which returns %{module: workflow_module, steps: [%Synaptic.Step{}, ...]} consumed by the engine.

	Synaptic.Step defines the struct + helper for calling back into the generated
handlers.

Runtime execution
	Synaptic.Engine is responsible for orchestrating Synaptic.Runners:	When Synaptic.start/3 is called it fetches the workflow definition,
generates a run id, and asks Synaptic.RuntimeSupervisor to start a new
runner with that definition + initial context.
	The :start_at_step option allows starting execution at a specific step by
name. The engine validates the step exists, finds its index in the steps
list, and passes start_at_step_index to the runner. Invalid step names
return {:error, :invalid_step}.
	resume/2, inspect/1, and history/1 are convenience wrappers around the
runner GenServer calls. stop/2 sends a shutdown request so the runner can
mark itself as :stopped, broadcast an event, and terminate cleanly.

	Synaptic.Runner is a GenServer that owns the mutable workflow state:	Holds the definition, context, current step index, status, waiting payload,
retry budgets, and history timeline.
	On init it accepts an optional :start_at_step_index option. If provided,
the runner initializes current_step_index to that value instead of 0,
allowing execution to begin at a specific step. The provided context should
contain all data that would have been accumulated up to that step.
	On init it immediately {:continue, :process_next_step} so runs execute as
soon as the child boots.
	Each step execution happens inside Task.async/await so crashes are caught
and retried via the configured :retry budget.
	Suspension is represented by setting status: :waiting_for_human and
storing %{step: ..., resume_schema: ...} in waiting. resume/2 injects a
%{human_input: payload} into context and continues the step loop.
	A step can intentionally stop a run early by returning {:stop, reason}
instead of {:ok, map} / {:suspend, info} / {:error, reason}. In that case
the runner:	Sets status: :stopped
	Appends %{event: :stopped, reason: reason} to history
	Publishes a :stopped PubSub event with the same reason
	Does not consume the step's retry budget (no retries are attempted)
This applies to sequential, async, and parallel steps (for parallel steps, the
first task that returns {:stop, reason} wins and stops the run).

	Every state transition publishes an event on Synaptic.PubSub (topic
"synaptic:run:" <> run_id) so UIs can observe :waiting_for_human,
:resumed, :step_completed, :retrying, :failed, etc. Each event
contains the :run_id and :current_step. Consumers call
Synaptic.subscribe/1 / Synaptic.unsubscribe/1 to manage those listeners.

Putting it all together (beginner-friendly flow)
	You write a workflow module using use Synaptic.Workflow. At compile
time that macro records each step/3, creates a Synaptic.Step struct for it,
and generates hidden functions (__synaptic_handle__/2 and
__synaptic_definition__/0). Nothing is executed yet—you just defined the
blueprint.
	The app boots. When you run iex -S mix,
Synaptic.Application spins up the supervision tree (Registry +
RuntimeSupervisor). They sit idle waiting for workflow runs.
	You start a run (e.g., Synaptic.start(MyWorkflow, %{foo: :bar})). The
public API calls into Synaptic.Engine, which pulls the blueprint from
MyWorkflow.__synaptic_definition__/0, generates a run id, and asks
Synaptic.RuntimeSupervisor to start a Synaptic.Runner child with that
definition + context. Optionally, you can pass start_at_step: :step_name to
begin execution at a specific step; the engine validates the step exists and
finds its index before starting the runner.
	The runner executes steps. Once the child process starts, it immediately
begins calling your step handlers in order. Returned maps merge into the
context, {:suspend, ...} pauses the run, and errors trigger retries per the
step metadata.
	You interact with the run using Synaptic.inspect/1 and Synaptic.history/1
(read-only) or Synaptic.resume/2 (writes human_input and restarts the loop).

No extra wiring is needed for new workflows—the moment your module is compiled
and available, the runtime can execute it via Synaptic.start/3.
Message routing + persistence boundaries
	There is no durable persistence yet. Context/history lives inside each
Synaptic.Runner process. Restarting the app clears all runs; this is by design
for Phase 1.
	Client code can read state via Synaptic.inspect/1 and Synaptic.history/1 to
build APIs or UIs.

Tooling and LLM adapters
	Synaptic.Tools is a thin facade with configurable adapters + agents:	Global defaults are configured in config/config.exs under Synaptic.Tools.
	Named agents can override model/temperature/adapter per workflow via the
agent: :name option.
	Synaptic.Tools.chat/2 merges options, picks the adapter, and delegates to
adapter.chat/2. Pass tools: [...] with %Synaptic.Tools.Tool{} structs to
enable OpenAI-style tool calling; the helper will execute the tool handlers
whenever the model emits tool_calls and continue the conversation until a
final assistant response is produced.

	Synaptic.Tools.OpenAI is the default adapter. It builds a Finch request with a
JSON body, sends it via Synaptic.Finch, and returns either {:ok, content} or
{:ok, content, %{usage: %{...}}} (with usage metrics). Lack of an API key raises
so misconfiguration fails fast. When stream: true is passed, it uses
Finch.stream/4 to handle Server-Sent Events (SSE) from OpenAI, parsing chunks
and accumulating content. Streaming automatically falls back to non-streaming when
tools are provided.
	Usage metrics: Adapters can optionally return usage information (token counts,
cost, etc.) in a third tuple element: {:ok, content, %{usage: %{...}}}. The
OpenAI adapter automatically extracts prompt_tokens, completion_tokens, and
total_tokens from API responses. This information is included in Telemetry events
and can be used by eval integrations.
	Telemetry: All LLM calls are instrumented with Telemetry spans under
[:synaptic, :llm], emitting :start, :stop, and :exception events with
metadata including run_id, step_name, adapter, model, stream, and
optional usage metrics.

Streaming implementation
	SSE parsing: OpenAI streaming responses use Server-Sent Events format. Each
event is a line starting with data: followed by JSON (or [DONE] to signal
completion). The adapter splits on \n\n, extracts JSON, and parses
choices[0].delta.content from each chunk.
	Content accumulation: Chunks are accumulated incrementally. The on_chunk
callback receives both the new chunk and the accumulated content so far.
	PubSub integration: Synaptic.Tools publishes :stream_chunk events for each
chunk and :stream_done when streaming completes. The Runner injects run_id
and step_name into the process dictionary so Tools can access them for event
publishing.
	Limitations: Streaming doesn't support tool calling (auto fallback) or
response_format options. The step function still receives the complete
accumulated content when streaming finishes.

Dev-only demo workflow
	Synaptic.Dev.DemoWorkflow (lib/synaptic/dev/demo_workflow.ex) is wrapped in
if Mix.env() == :dev so it only compiles in development. It demonstrates the
full lifecycle:	Collects or defaults a :request payload.
	Calls Synaptic.Tools.chat/2 to draft a plan, falling back to a canned string
if the adapter errors (e.g., missing OPENAI_API_KEY).
	Suspends for a human approval with the generated plan in metadata.

Use it from iex -S mix with:
{:ok, run_id} = Synaptic.start(Synaptic.Dev.DemoWorkflow, %{request: "Plan a kickoff"})
Synaptic.inspect(run_id)
Synaptic.resume(run_id, %{approved: true})
That sample mirrors how real workflows behave and is a good starting point for
experimentation.
Eval integrations
	Synaptic.Eval.Integration is a behaviour for integrating with 3rd party eval
services (Braintrust, LangSmith, etc.). Implementations observe LLM calls and
scorer results via Telemetry events and can combine them into complete eval records.
	The integration behaviour provides optional callbacks:	on_llm_call/4 - called when an LLM call completes (via [:synaptic, :llm, :stop])
	on_scorer_result/4 - called when a scorer completes (via [:synaptic, :scorer, :stop])
	on_step_complete/4 - called when a step completes (via [:synaptic, :step, :stop])

	Use Synaptic.Eval.Integration.attach/2 to set up Telemetry handlers that call
your integration's callbacks. This allows users to implement their own eval
integrations without modifying Synaptic core.
	LLM call metadata includes usage metrics (token counts) when available from
adapters, allowing eval services to track costs and usage alongside quality scores.

Synaptic

Synaptic provides a declarative workflow engine with a DSL for orchestrating
LLM-backed steps, human-in-the-loop pauses, and resumable executions.

 Summary

 Functions

 history(run_id)

 Returns the step-level history collected for a workflow run.

 inspect(run_id, timeout \\ 5000)

 Returns a snapshot of the current workflow state for a run id.

 list_runs()

 Returns a list of currently running workflows with their run ids, workflow
module, and snapshot context.

 resume(run_id, payload)

 Resumes a previously suspended workflow run with the supplied payload.

 start(workflow_module, input \\ %{}, opts \\ [])

 Starts a workflow module with the provided input context.

 stop(run_id, reason \\ :canceled)

 Stops a running workflow. Returns :ok when the runner terminates or
{:error, :not_found} if the run id is unknown.

 subscribe(run_id)

 Subscribes the calling process to PubSub events for the given run_id.

 unsubscribe(run_id)

 Unsubscribes the calling process from workflow events for the given run_id.

 workflow_definition(module)

 Fetches the compiled workflow definition for a module.

 Functions

 history(run_id)

Returns the step-level history collected for a workflow run.

 inspect(run_id, timeout \\ 5000)

Returns a snapshot of the current workflow state for a run id.
Options
	:timeout - Timeout in milliseconds for the snapshot call (default: 5000).
Use :infinity to wait indefinitely.

 list_runs()

Returns a list of currently running workflows with their run ids, workflow
module, and snapshot context.

 resume(run_id, payload)

Resumes a previously suspended workflow run with the supplied payload.

 start(workflow_module, input \\ %{}, opts \\ [])

Starts a workflow module with the provided input context.
Options
	:run_id - Custom run ID (defaults to auto-generated)
	:start_at_step - Start execution at a specific step by name (atom).
The step must exist in the workflow definition. The provided context
should contain all data that would have been accumulated up to that step.

Examples
Start from the beginning (default)
{:ok, run_id} = Synaptic.start(MyWorkflow, %{initial: :data})

Start at a specific step with pre-populated context
{:ok, run_id} = Synaptic.start(MyWorkflow, %{precomputed: :value}, start_at_step: :middle_step)

 stop(run_id, reason \\ :canceled)

Stops a running workflow. Returns :ok when the runner terminates or
{:error, :not_found} if the run id is unknown.

 subscribe(run_id)

Subscribes the calling process to PubSub events for the given run_id.
Events are delivered as {:synaptic_event, %{run_id: ..., event: ...}} tuples.

 unsubscribe(run_id)

Unsubscribes the calling process from workflow events for the given run_id.

 workflow_definition(module)

Fetches the compiled workflow definition for a module.

Synaptic.Application

OTP application entry point that starts the registry, runtime supervisor,
PubSub, and Finch pool required by Synaptic.

Synaptic.Dev.DemoWorkflow

A small workflow available only in the dev environment so you can try the
Synaptic engine end-to-end from iex -S mix.

Synaptic.Engine

Internal orchestrator that glues workflow definitions to runtime runners.

 Summary

 Functions

 generate_run_id()

 history(run_id)

 inspect(run_id, timeout \\ 5000)

 resume(run_id, payload)

 start(workflow_module, input, opts)

 stop(run_id, reason)

 workflow_definition(module)

 Functions

 generate_run_id()

 history(run_id)

 inspect(run_id, timeout \\ 5000)

 resume(run_id, payload)

 start(workflow_module, input, opts)

 stop(run_id, reason)

 workflow_definition(module)

Synaptic.Eval.Integration behaviour

Behaviour for integrating with 3rd party eval services like Braintrust, LangSmith, etc.
Eval integrations observe LLM calls and scorer results via Telemetry events and
can combine them into complete eval records for external services.
Example Implementation
defmodule MyApp.Eval.BraintrustIntegration do
 @behaviour Synaptic.Eval.Integration

 @impl Synaptic.Eval.Integration
 def on_llm_call(_event, measurements, metadata, config) do
 # Log LLM call with tokens, input, output
 usage = Map.get(metadata, :usage, %{})

 Braintrust.log({
 run_id: metadata.run_id,
 step: metadata.step_name,
 input: metadata.input, # You'd need to capture this separately
 output: metadata.output, # You'd need to capture this separately
 model: metadata.model,
 prompt_tokens: Map.get(usage, :prompt_tokens, 0),
 completion_tokens: Map.get(usage, :completion_tokens, 0),
 total_tokens: Map.get(usage, :total_tokens, 0),
 duration_ms: System.convert_time_unit(measurements.duration, :native, :millisecond)
 })
 end

 @impl Synaptic.Eval.Integration
 def on_scorer_result(_event, measurements, metadata, config) do
 # Log scorer result
 Braintrust.log_score({
 run_id: metadata.run_id,
 step: metadata.step_name,
 scorer: metadata.scorer,
 score: metadata.score,
 reason: metadata.reason
 })
 end
end
Attaching the Integration
Attach your integration in your application startup (e.g., in application.ex):
defmodule MyApp.Application do
 def start(_type, _args) do
 # ... other setup ...

 Synaptic.Eval.Integration.attach(MyApp.Eval.BraintrustIntegration, %{
 # Your config here
 })

 # ... rest of startup ...
 end
end
Combining LLM Metrics with Scorer Results
To combine LLM metrics with scorer results, you can:
	Store LLM call data in a process dictionary or ETS table keyed by {run_id, step_name}
	When scorer results arrive, look up the corresponding LLM call
	Combine both into a single eval record

See the README for more detailed examples.

 Summary

 Callbacks

 on_llm_call(event, measurements, metadata, config)

 Called when an LLM call completes.

 on_scorer_result(event, measurements, metadata, config)

 Called when a scorer completes.

 on_step_complete(event, measurements, metadata, config)

 Called when a step completes.

 Functions

 attach(integration_module, config \\ %{})

 Attaches Telemetry handlers for the given integration module.

 detach(integration_module)

 Detaches Telemetry handlers for the given integration module.

 Callbacks

 on_llm_call(event, measurements, metadata, config)

 @callback on_llm_call(
 event :: [atom()],
 measurements :: map(),
 metadata :: map(),
 config :: term()
) :: :ok

Called when an LLM call completes.
This callback is invoked via a Telemetry handler attached to [:synaptic, :llm, :stop].
Parameters
	event - The Telemetry event name (e.g., [:synaptic, :llm, :stop])
	measurements - Map containing :duration and optionally token counts
	metadata - Map containing:	:run_id - Workflow run identifier
	:step_name - Step name (atom)
	:adapter - Adapter module
	:model - Model name
	:stream - Boolean indicating if streaming was used
	:usage - Optional usage map with :prompt_tokens, :completion_tokens, :total_tokens

	config - Configuration passed to attach/2

 on_scorer_result(event, measurements, metadata, config)

 (optional)

 @callback on_scorer_result(
 event :: [atom()],
 measurements :: map(),
 metadata :: map(),
 config :: term()
) :: :ok

Called when a scorer completes.
This callback is invoked via a Telemetry handler attached to [:synaptic, :scorer, :stop].
Parameters
	event - The Telemetry event name (e.g., [:synaptic, :scorer, :stop])
	measurements - Map containing :duration
	metadata - Map containing:	:run_id - Workflow run identifier
	:workflow - Workflow module
	:step_name - Step name (atom)
	:scorer - Scorer module
	:status - :ok or :error
	:score - Score value (number, or nil on error)
	:reason - Reason string (or error message)

	config - Configuration passed to attach/2

 on_step_complete(event, measurements, metadata, config)

 (optional)

 @callback on_step_complete(
 event :: [atom()],
 measurements :: map(),
 metadata :: map(),
 config :: term()
) :: :ok

Called when a step completes.
This optional callback can be used to combine LLM metrics with scorer results
after a step finishes. It's invoked via a Telemetry handler attached to
[:synaptic, :step, :stop].
Parameters
	event - The Telemetry event name (e.g., [:synaptic, :step, :stop])
	measurements - Map containing :duration
	metadata - Map containing:	:run_id - Workflow run identifier
	:workflow - Workflow module
	:step_name - Step name (atom)
	:type - Step type
	:status - :ok, :suspend, :error, or :unknown

	config - Configuration passed to attach/2

 Functions

 attach(integration_module, config \\ %{})

 @spec attach(module(), config :: term()) :: :ok

Attaches Telemetry handlers for the given integration module.
This function sets up Telemetry handlers that call the integration's callbacks
when LLM calls, scorer results, or step completions occur.
Parameters
	integration_module - Module implementing Synaptic.Eval.Integration
	config - Configuration map passed to all callbacks

Example
Synaptic.Eval.Integration.attach(MyApp.Eval.BraintrustIntegration, %{
 api_key: System.get_env("BRAINTRUST_API_KEY"),
 project: "my-project"
})

 detach(integration_module)

 @spec detach(module()) :: :ok | {:error, :not_found}

Detaches Telemetry handlers for the given integration module.
Parameters
	integration_module - Module implementing Synaptic.Eval.Integration

Synaptic.Experiments

Experimental API for running workflows against multiple inputs and scorers.
This module intentionally provides a minimal, in-memory harness inspired by
Mastra's runExperiment function. It reuses the existing scorer abstraction
and the public Synaptic.start/3 + Synaptic.inspect/1 APIs without adding
new runtime behaviour to Synaptic.Runner.
The API is kept small on purpose to allow iteration as real-world use cases
emerge.

 Summary

 Types

 data_item()

 Data item used when running experiments.

 summary()

 High-level summary of an experiment run.

 Functions

 run_experiment(workflow_module, data_items, opts \\ [])

 Sketch of an experiment runner that evaluates a workflow against many inputs.

 Types

 data_item()

 @type data_item() :: %{:input => map(), optional(:metadata) => map()}

Data item used when running experiments.
The :input map is passed as the initial workflow context. Arbitrary
metadata can be attached via :metadata and will be available to scorers
through their own configuration or via Telemetry subscribers.

 summary()

 @type summary() :: %{total_items: non_neg_integer()}

High-level summary of an experiment run.

 Functions

 run_experiment(workflow_module, data_items, opts \\ [])

 @spec run_experiment(module(), [data_item()], keyword()) :: %{summary: summary()}

Sketch of an experiment runner that evaluates a workflow against many inputs.
This function is intentionally conservative: it starts a real Synaptic
workflow for each input using Synaptic.start/3 and waits for completion
using Synaptic.inspect/1. Scorer execution is still driven by
Synaptic.Runner just like in normal production runs.
Returns an opaque result map for now, primarily for future extension. The
main integration point for host applications is still Telemetry
(e.g. [:synaptic, :scorer] and workflow-level events).

Synaptic.Registry

Registry used to name runner processes by run id and enumerate active runs.

 Summary

 Functions

 child_spec(opts)

 entries()

 via(run_id)

 Functions

 child_spec(opts)

 entries()

 via(run_id)

Synaptic.Runner

GenServer that executes a workflow definition, tracking context, waiting
states, retries, history, PubSub events, and suspend/resume logic.

 Summary

 Types

 state()

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 history(run_id)

 resume(run_id, payload)

 snapshot(run_id, timeout \\ 5000)

 start_link(opts)

 stop(run_id, reason \\ :canceled)

 Types

 state()

 @type state() :: %{
 run_id: String.t(),
 workflow: module(),
 steps: [Synaptic.Step.t()],
 current_step_index: non_neg_integer(),
 context: map(),
 status: :running | :waiting_for_human | :completed | :failed | :stopped,
 waiting: map() | nil,
 history: [map()],
 retry_budget: map(),
 last_error: term(),
 async_tasks: %{
 optional(pid()) => %{step: Synaptic.Step.t(), monitor_ref: reference()}
 }
}

 Functions

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 history(run_id)

 resume(run_id, payload)

 snapshot(run_id, timeout \\ 5000)

 start_link(opts)

 stop(run_id, reason \\ :canceled)

Synaptic.RuntimeSupervisor

DynamicSupervisor responsible for spinning up Synaptic.Runner processes.

 Summary

 Functions

 child_spec(arg)

 Returns a specification to start this module under a supervisor.

 start_link(opts)

 Functions

 child_spec(arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 start_link(opts)

Synaptic.Scorer behaviour

Behaviour and helper types for step-level scoring in Synaptic workflows.
A scorer evaluates the outcome of a workflow step and returns a
normalized score (typically between 0.0 and 1.0), along with
optional human-readable reasoning and arbitrary details.
Scorers are attached to steps via the workflow DSL and are invoked
automatically by Synaptic.Runner after a step completes successfully.

 Summary

 Types

 scorer_spec()

 A scorer module evaluates a step given a Synaptic.Scorer.Context
and returns a Synaptic.Scorer.Result.

 Callbacks

 score(t, metadata)

 Types

 scorer_spec()

 @type scorer_spec() ::
 module() | {module(), keyword()} | %{module: module(), opts: keyword()}

A scorer module evaluates a step given a Synaptic.Scorer.Context
and returns a Synaptic.Scorer.Result.

 Callbacks

 score(t, metadata)

 @callback score(Synaptic.Scorer.Context.t(), metadata :: map()) ::
 Synaptic.Scorer.Result.t()

Synaptic.Scorer.Context

Immutable snapshot passed to scorers when evaluating a step.
It contains the step metadata, workflow module, run identifier,
the context before and after the step, and the step's return data.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Synaptic.Scorer.Context{
 metadata: map(),
 output: map(),
 post_context: map(),
 pre_context: map(),
 run_id: String.t(),
 step: Synaptic.Step.t(),
 workflow: module()
}

Synaptic.Scorer.Result

Standardized result returned by scorers.
The score field is a numeric value (usually between 0.0 and 1.0)
that represents how well the step output satisfied the scorer's
criteria. The reason and details fields are optional but
recommended for debugging and observability.

 Summary

 Types

 t()

 Functions

 new(opts)

 Convenience constructor for scorer results.

 Types

 t()

 @type t() :: %Synaptic.Scorer.Result{
 details: map(),
 name: String.t(),
 reason: String.t() | nil,
 run_id: String.t(),
 score: number(),
 step: atom(),
 timestamp: NaiveDateTime.t() | nil
}

 Functions

 new(opts)

 @spec new(Keyword.t()) :: t()

Convenience constructor for scorer results.
The :name, :step, :run_id, and :score keys are required.
A timestamp will be filled in with NaiveDateTime.utc_now/0 if
not explicitly provided.

Synaptic.Step

Metadata structure for compiled workflow steps.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Synaptic.Step{
 input: map(),
 max_retries: non_neg_integer(),
 name: atom(),
 output: map(),
 resume_schema: map(),
 scorers: list(),
 suspend?: boolean(),
 type: :sequential | :parallel | :async
}

Synaptic.TestRunner

Main test runner module for executing Synaptic workflows from YAML test definitions.
This module orchestrates workflow execution, waiting for completion,
handling human input, and validating expectations.

 Summary

 Functions

 display_results(test_name, result, format \\ :both)

 Formats and displays test results.

 run_test(test_definition, opts \\ [])

 Runs a test from a test definition map.

 run_test_file(file_path, opts \\ [])

 Runs a test from a YAML file path.

 Functions

 display_results(test_name, result, format \\ :both)

Formats and displays test results.

 run_test(test_definition, opts \\ [])

Runs a test from a test definition map.
Returns {:ok, result} or {:error, reason}.

 run_test_file(file_path, opts \\ [])

Runs a test from a YAML file path.
Returns {:ok, result} or {:error, reason}.

Synaptic.TestRunner.ExpectationValidator

Validates test expectations against workflow execution results.
Supports regex matching for context field values.

 Summary

 Functions

 validate(snapshot, expectations)

 Validates expectations against a workflow snapshot.

 Functions

 validate(snapshot, expectations)

Validates expectations against a workflow snapshot.
Returns {:ok, validation_results} where validation_results is a map
with :status, :context, and :all_passed keys.

Synaptic.TestRunner.ResultFormatter

Formats test results for console and JSON output.

 Summary

 Functions

 format_console(test_name, result)

 Formats test results for console output.

 format_json(test_name, result)

 Formats test results as JSON.

 Functions

 format_console(test_name, result)

Formats test results for console output.

 format_json(test_name, result)

Formats test results as JSON.

Synaptic.TestRunner.YamlParser

Parses and validates YAML test definition files for Synaptic workflows.

 Summary

 Functions

 load_file(path)

 Loads and parses a YAML test file.

 parse(yaml_content)

 Parses YAML content into a test definition map.

 Functions

 load_file(path)

Loads and parses a YAML test file.
Returns {:ok, test_definition} or {:error, reason}.

 parse(yaml_content)

Parses YAML content into a test definition map.
Returns {:ok, test_definition} or {:error, reason}.

Synaptic.Tools

Helper utilities for invoking LLM providers from workflow steps.

 Summary

 Functions

 chat(messages, opts \\ [])

 Dispatches a chat completion request to the configured adapter.

 Functions

 chat(messages, opts \\ [])

Dispatches a chat completion request to the configured adapter.
Pass agent: :name to pull default options (model, temperature, adapter,
etc.) from the :agents configuration. Provide tools: [...] with
%Synaptic.Tools.Tool{} structs (or maps/keywords convertible via
Synaptic.Tools.Tool.new/1) to enable tool-calling flows.
When stream: true is passed, the response will be streamed and PubSub events
will be emitted for each chunk. Note: streaming automatically falls back to
non-streaming mode when tools are provided, as OpenAI streaming doesn't support
tool calling.

Synaptic.Tools.Adapter behaviour

Behaviour for LLM adapter implementations.
Adapters must implement the chat/2 function to be compatible with
Synaptic.Tools.chat/2.
Example
defmodule MyAdapter do
 use Synaptic.Tools.Adapter

 @impl Synaptic.Tools.Adapter
 def chat(messages, opts) do
 # Your implementation here
 end
end

 Summary

 Callbacks

 chat(messages, opts)

 Sends a chat completion request to the LLM provider.

 Functions

 __using__(opts)

 Macro to implement the Adapter behaviour.

 Callbacks

 chat(messages, opts)

 @callback chat(messages :: [map()], opts :: keyword()) ::
 {:ok, String.t() | map()}
 | {:ok, String.t() | map(), %{usage: map()}}
 | {:ok, %{content: String.t() | map(), tool_calls: [map()]}}
 | {:ok, %{content: String.t() | map(), tool_calls: [map()]}, %{usage: map()}}
 | {:ok,
 %{
 required(String.t()) => String.t() | map(),
 required(String.t()) => [map()]
 }}
 | {:ok,
 %{
 required(String.t()) => String.t() | map(),
 required(String.t()) => [map()]
 }, %{usage: map()}}
 | {:error, term()}

Sends a chat completion request to the LLM provider.
Parameters
	messages - A list of message maps with :role (or "role") and :content (or "content") keys
	opts - Keyword list of options:	:stream - Boolean, if true enables streaming mode
	:tools - List of tool specifications (provider-specific format)
	:model - Model name/identifier
	:temperature - Temperature setting (float)
	:on_chunk - Callback function (chunk :: String.t(), accumulated :: String.t() -> :ok) for streaming
	:response_format - Response format specification (provider-specific)
	Other provider-specific options

Returns
	{:ok, content} - Success with content (string or decoded JSON map)
	{:ok, content, %{usage: usage_map}} - Success with content and optional usage metrics (adapter-specific)
	{:ok, %{content: content, tool_calls: tool_calls}} - Success with tool calls (atom keys)
	{:ok, %{content: content, tool_calls: tool_calls}, %{usage: usage_map}} - Success with tool calls and usage metrics
	{:ok, %{"content" => content, "tool_calls" => tool_calls}} - Success with tool calls (string keys)
	{:ok, %{"content" => content, "tool_calls" => tool_calls}, %{usage: usage_map}} - Success with tool calls and usage metrics
	{:ok, accumulated} - Success for streaming (final accumulated content as string)
	{:ok, accumulated, %{usage: usage_map}} - Success for streaming with usage metrics
	{:error, reason} - Error tuple

Usage Metrics
Adapters may optionally return usage metrics (e.g., token counts, cost) in a third tuple element.
The usage map format is adapter-specific but commonly includes:
	:prompt_tokens - Number of tokens in the prompt
	:completion_tokens - Number of tokens in the completion
	:total_tokens - Total tokens used
	Other adapter-specific metrics (cost, model-specific fields, etc.)

If usage metrics are not available, adapters should return the standard two-element tuple format.
Tool Calls Format
Tool calls should be returned as a list of maps with:
	"id" or :id - Tool call identifier
	"function" or :function - Map with:	"name" or :name - Tool name
	"arguments" or :arguments - JSON string of arguments

Streaming
When stream: true and on_chunk callback is provided:
	Call on_chunk.(chunk, accumulated) for each chunk received
	Return {:ok, final_accumulated} when streaming completes
	The accumulated value should be the full content as a string

 Functions

 __using__(opts)

 (macro)

Macro to implement the Adapter behaviour.

Synaptic.Tools.OpenAI

Minimal OpenAI chat client built on Finch.

 Summary

 Functions

 chat(messages, opts \\ [])

 Sends a chat completion request.

 Functions

 chat(messages, opts \\ [])

Sends a chat completion request.
When stream: true is passed in opts, returns a streaming response.

Synaptic.Tools.Tool

Struct describing an LLM-callable tool.

 Summary

 Types

 t()

 Functions

 new(tool)

 Builds a tool struct from a keyword list or map.

 to_openai(tool)

 Serializes the tool to an OpenAI-compatible payload.

 Types

 t()

 @type t() :: %Synaptic.Tools.Tool{
 description: String.t(),
 handler: (map() -> term()),
 name: String.t(),
 schema: map()
}

 Functions

 new(tool)

Builds a tool struct from a keyword list or map.

 to_openai(tool)

Serializes the tool to an OpenAI-compatible payload.

Synaptic.Workflow

DSL entry point for defining Synaptic workflows.

 Summary

 Functions

 async_step(name, opts \\ [], list)

 Declares an asynchronous fire-and-forget workflow step. The block receives
the accumulated context and executes like a normal step, but the workflow
immediately continues to the next step instead of waiting for this one to
finish. Results are merged back into the context once the step completes.

 commit()

 Marks that the workflow definition has declared its terminal point. In the
MVP the macro only exists to nudge authors so that tests reflect the full
lifecycle.

 definition(module)

 Produces the compiled workflow definition for the provided module.

 parallel_step(name, opts \\ [], list)

 Declares a parallel workflow step. The block must return a list of
anonymous functions that receive the workflow context (map). Each
function runs concurrently and must return {:ok, map} or {:error, term}.
The step succeeds only when all parallel tasks succeed, and their maps are
merged into the accumulated context.

 side_effect(opts \\ [], list)

 Marks a code block as a side effect (e.g., database mutations, external API calls).
When skip_side_effects: true is set in test configuration, the side effect
is skipped and returns a default value instead.

 step(name, opts \\ [], list)

 Declares a ordered workflow step. The block receives context (map)
accumulated from every previous step and must return {:ok, map},
{:error, term}, or suspend_for_human/2.

 suspend_for_human(message, metadata \\ %{}, context_updates \\ %{})

 Convenience helper returned from steps to pause execution and wait for a human
payload to resume the workflow.

 Functions

 async_step(name, opts \\ [], list)

 (macro)

Declares an asynchronous fire-and-forget workflow step. The block receives
the accumulated context and executes like a normal step, but the workflow
immediately continues to the next step instead of waiting for this one to
finish. Results are merged back into the context once the step completes.

 commit()

 (macro)

Marks that the workflow definition has declared its terminal point. In the
MVP the macro only exists to nudge authors so that tests reflect the full
lifecycle.

 definition(module)

 @spec definition(
 atom()
 | %{:__synaptic_definition__ => any(), optional(any()) => any()}
) :: any()

Produces the compiled workflow definition for the provided module.

 parallel_step(name, opts \\ [], list)

 (macro)

Declares a parallel workflow step. The block must return a list of
anonymous functions that receive the workflow context (map). Each
function runs concurrently and must return {:ok, map} or {:error, term}.
The step succeeds only when all parallel tasks succeed, and their maps are
merged into the accumulated context.

 side_effect(opts \\ [], list)

 (macro)

Marks a code block as a side effect (e.g., database mutations, external API calls).
When skip_side_effects: true is set in test configuration, the side effect
is skipped and returns a default value instead.
Options
	:default - Value to return when side effect is skipped (default: :ok)
	:name - Optional identifier for the side effect, used in Telemetry metadata

Examples
step :save_user do
 side_effect do
 Database.insert(context.user)
 end

 {:ok, %{user_saved: true}}
end

step :send_email do
 side_effect default: {:ok, :sent}, name: :welcome_email do
 EmailService.send(context.user.email, "Welcome!")
 end

 {:ok, %{email_sent: true}}
end

 step(name, opts \\ [], list)

 (macro)

Declares a ordered workflow step. The block receives context (map)
accumulated from every previous step and must return {:ok, map},
{:error, term}, or suspend_for_human/2.

 suspend_for_human(message, metadata \\ %{}, context_updates \\ %{})

Convenience helper returned from steps to pause execution and wait for a human
payload to resume the workflow.

 OEBPS/dist/epub-4WIP524F.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);function r(e){document.readyState!=="loading"?e():document.addEventListener("DOMContentLoaded",e)}var l="hll";window.addEventListener("exdoc:loaded",t);function t(){o("[data-group-id]").forEach(e=>{e.addEventListener("mouseenter",i),e.addEventListener("mouseleave",i)})}function i(e){let n=e.currentTarget,a=e.type==="mouseenter",c=n.getAttribute("data-group-id");n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach(u=>{u.classList.toggle(l,a)})}r(()=>{t()});})();

