

 table_rex

 v4.1.0

 [image: Logo]

 Table of contents

 	Changelog

 	Modules

 	TableRex

 	TableRex.Cell

 	TableRex.Column

 	TableRex.Renderer

 	TableRex.Renderer.Text

 	TableRex.Renderer.Text.Meta

 	TableRex.Table

 	TableRex.Error

Changelog

v4.1.0 (2025-02-16)
Feature:
	Adds GitHub Flavoured Markdown support to the horizontal_style parameter.
This allows TableRex to output tables while skipping the very top and bottom
of the frames, which happens to be exactly how GitHub Flavoured Markdown
renders tables.

Bugfix:
	Fixes Elixir 1.17 warnings about function call without parens.
	Fixes Elixir 1.19 warnings about map update ops.

v4.0.0 (2023-06-28)
Dropped official support for Elixir 1.7->1.12. Only 1.13 & up.
No other changes.
v3.2.0 (2023-06-28)
New features:
	CJK/Unicode character support at the cell level. Non-ascii characters
should no longer break rendering.

	We now have row-level support for colored backgrounds and foregrounds,
see some examples.

	Tables can now have no rows if they wish; that constraint has been relaxed
& tables will render fine without any rows (e.g if they just have a header).

v3.1.1 (2021-01-30)
Bugfix: Fixes a multiline text rendering crash when inputs had differing
lengths. Thanks to @chulkilee for the fix.
No breaking changes.
v3.1.0 (2020-12-31)
Multiline cell support 🎉
Thanks to @rubysolo, TableRex's ASCII-style plain text renderer has gained the
ability to render multiline strings without any extra effort on behalf of the
calling clients, simply insert your line breaks into your strings and the
feature will handle rendering with correct padding, coloring & alignment.
No (known) breaking changes.
v3.0.0 (2020-04-19)
No external API changes, but we are dropping support for Elixir v1.7 and below
along with Erlang OTP v20 and below and as such the major version number is
bumping to appreciate that.
v2.0.0 (2018-04-30)
Version 2 has no external API breaking changes but we are bumping the major version
number as the internal data structure of the %Cell{} struct has changed. See
note below.
New features:
	sort! Tables can now have a basic sort function which uses Elixir's term
ordering to sort your table rows by a specific column in either ascending or
descending order. Please see the README for usage; many thanks to everyone
at @elixir-poa for this change.

	you are now free to add your own ANSI color wrappers to text within an inline
cell, the extra characters this adds are ignored as part of width calculations
and therefore the structure of the table no longer breaks when you do this.
Thanks to @geolessel for this change.

%Cell{} struct change
Previously Cells only stored the string-coerced version of the data you wanted
to insert into the table. This was limiting as it meant we could not sort your
tables as type information was lost in that process. It also opens up TableRex
to many other features now that we keep the original data.
The stringified value of a Cell used to be stored at value, it is now stored
at rendered_value - with the original being stored at raw_value.
To migrate:
	If you are creating Cells, instead of passing value, pass raw_value.
	If you are using Cells, it's likely you'll want to use Cell.rendered_value
which is now what the removed Cell.value used to be.

v1.0.0 (2017-12-11)
The API seems stable enough, sans major complaints, and has no major open bugs
so here is our version 1 release!
This release brings only new feature:
	TableRex has gained the ability to stretch the table width to accommodate long
titles, thanks to @matt-harvey.

And one breaking change:
	We are dropping support for Elixir v1.2.x and Erlang 18.x. For the time
being, we support the latest 3 minor versions of Elixir, and the latest 2
major versions for Erlang.

From now on - as per semver, new breaking changes will increment the major release
number, new non-breaking features will increment the minor release number and
bug fixes will update the patch number.
v0.10.0 (2017-01-14)
Breaking changes
Dropped support for Elixir v1.1.x. We support the latest 3 minor versions, and
the latest 2 major versions for Erlang OTP.
Other changes:
Fixed all compiler warnings resulting from Elixir 1.3 and 1.4 releases.
v0.9.0 (2017-01-14)
Justin G (@theredcoder) has added support for header, column and cell level
foreground & background ANSI colouring. Many thanks to Justin.
v0.8.3 (2016-08-12)
Fixed warnings caused by Elixir 1.3's unsafe variable checker.
v0.8.2 (2016-08-12)
Updated some locked development dependencies to reduce warning output during usage.
v0.8.1 (2016-06-30)
Fixed a compilation bug in the new Elixir 1.3. No other changes.
v0.8.0 (2016-01-19)
Breaking changes
All Table.set_* functions have been changed to Table.put_* to better
reflect their functionality and mimic convention used elsewhere in the
Elixir ecosphere.
v0.7.0 (2016-01-09)
Breaking changes
The default alignment for columns is now :left rather than :center.
This could be a breaking change for your project as if you had not explicitly
set columns to be of a certain alignment then your tables will now be output
with columns aligned to the left rather than centered as before. This change
was made as it's much more likely that a LTR language user is going to want
left aligned columns, especially with the multiline cell support which will
land soon.
If you wish to remain using center-aligned columns then you can manipulate
your table struct by calling:
Table.set_column_meta(table, :all, align: :center)
Other changes:
Table.set_column_meta and Table.set_header_meta now can also take their
column index(es) argument as an enumerable. Previously set_header_meta could
not do this and set_column_meta could only be provided a range.
Example usage:
Table.set_column_meta(table, 0, align: :right) # aligns column 0 to the right.
Table.set_column_meta(table, 0..4, align: :right) # aligns column 0 through 4 to the right.
Table.set_column_meta(table, [0, 3, 5], align: :right) # aligns column 0, 3 & 5 to the right.
Table.set_column_meta(table, :all, align: :right) # aligns all current and future columns to the right.
Table.set_header_meta(table, 0, align: :right) # aligns header cell 0 to the right.
Table.set_header_meta(table, 0..4, align: :right) # aligns header cells 0 through 4 to the right.
Table.set_header_meta(table, [0, 3, 5], align: :right) # aligns header cells 0, 3 & 5 to the right.
v0.6.0 (2016-01-07)
No breaking changes
Table.new/0 has been supplemented with Table.new/3 which takes rows and
an optional header and title. This change was made as when the data is known
upfront it was quite verbose doing:
Table.new
|> Table.add_rows(rows)
|> Table.set_header(header)
|> Table.set_title(title)
|> Table.render
The following can now be used instead:
Table.new(rows, header, title)
|> Table.render
v0.5.0
No breaking changes
TableRex.Table.set_column_meta now supports applying the column
meta to a range of columns as so:
TableRex.Table.set_column_meta(table, 0..3, align: :right)
This would right-align columns 0 through 3.
It is different to using the :all atom as it allows for a subset.
v0.4.0
No breaking changes
Added TableRex.Table.set_header_meta/2 which allows a user
to set the cell-level attributes (namely, alignment) of a
header cell. Header cells can now be aligned individually,
separately from the default which is picked up from the column.
See issue #3.
v0.3.0
No breaking changes
Simply an update to bump the version due to an oversight as the generated
docs for older version contained documentation for uncommitted files which
were not part of the package. This has been remedied as of this version.
v0.2.0
Breaking changes
	The original TableRex.Table.render!/1, TableRex.Table.render!/2 and TableRex.Table.render!/3 have been removed and consolidated with TableRex.Table.render!/2. Choosing a custom renderer module has been moved from a first class argument into the :renderer key of the options argument.

What was previously:
Table.new
|> Table.add_row(row)
|> Table.render(CustomRenderer.Module, horizontal_style: :off)
is now:
Table.new
|> Table.add_row(row)
|> Table.render(renderer: CustomRenderer.Module, horizontal_style: :off)
 Other changes
	TableRex.Table.render!/2 has been added as a brother to TableRex.Table.render/2. It raises TableRex.Error on failure and returns the rendered string directly as opposed to it's brother which returns an Erlang style :ok/:error tuple.

v0.1.0
First release on hex.pm

TableRex

TableRex generates configurable, text-based tables for display

 Summary

 Functions

 quick_render(rows, header \\ [], title \\ nil)

 A shortcut function to render with a one-liner.
Sacrifices all customisation for those that just want sane defaults.
Returns {:ok, rendered_string} on success and {:error, reason} on failure.

 quick_render!(rows, header \\ [], title \\ nil)

 A shortcut function to render with a one-liner.
Sacrifices all customisation for those that just want sane defaults.
Returns the rendered_string on success and raises RuntimeError on failure.

Functions

 Link to this function

 quick_render(rows, header \\ [], title \\ nil)

 View Source

 @spec quick_render(list(), list(), String.t() | nil) ::
 TableRex.Renderer.render_return()

A shortcut function to render with a one-liner.
Sacrifices all customisation for those that just want sane defaults.
Returns {:ok, rendered_string} on success and {:error, reason} on failure.

 Link to this function

 quick_render!(rows, header \\ [], title \\ nil)

 View Source

 @spec quick_render!(list(), list(), String.t() | nil) :: String.t() | no_return()

A shortcut function to render with a one-liner.
Sacrifices all customisation for those that just want sane defaults.
Returns the rendered_string on success and raises RuntimeError on failure.

TableRex.Cell

Defines a struct that represents a single table cell, and helper functions.
A cell stores both the original data and the string-rendered version,
this decision was taken as a tradeoff: this way uses more memory to store
the table structure but the renderers gain the ability to get direct access
to the string-coerced data rather than having to risk repeated coercion or
handle their own storage of the computer values.
Fields:
	raw_value: The un-coerced original value

	rendered_value: The stringified value for rendering

	wrapped_lines: A list of 1 or more string values representing
the line(s) within the cell to be rendered

	align:
	:left: left align text in the cell.
	:center: center text in the cell.
	:right: right align text in the cell.
	nil: align text in cell according to column alignment.

	color: the ANSI color of the cell.

If creating a Cell manually: raw_value is the only required key to
enable that Cell to work well with the rest of TableRex. It should
be set to a piece of data that can be rendered to string.

 Summary

 Types

 t()

 Functions

 height(cell)

 to_cell(cell)

 Converts the passed value to be a normalised %Cell{} struct.

 to_cell(value, opts \\ [])

Types

 Link to this type

 t()

 View Source

 @type t() :: %TableRex.Cell{
 align: term(),
 color: term(),
 raw_value: term(),
 rendered_value: term(),
 wrapped_lines: term()
}

Functions

 Link to this function

 height(cell)

 View Source

 @spec height(t()) :: integer()

 Link to this function

 to_cell(cell)

 View Source

 @spec to_cell(t()) :: t()

Converts the passed value to be a normalised %Cell{} struct.
If a non %Cell{} value is passed, this function returns a new
%Cell{} struct with:
	the rendered_value key set to the stringified binary of the
value passed in.
	the raw_value key set to original data passed in.
	any other options passed are applied over the normal struct
defaults, which allows overriding alignment & color.

If a %Cell{} is passed in with no rendered_value key, then the
raw_value key's value is rendered and saved against it, otherwise
the Cell is passed through untouched. This is so that advanced use
cases which require direct Cell creation and manipulation are not
hindered.

 Link to this function

 to_cell(value, opts \\ [])

 View Source

 @spec to_cell(any(), list()) :: t()

TableRex.Column

Defines a struct that represents a column's metadata
The align field can be one of :left, :center or :right.

 Summary

 Types

 t()

Types

 Link to this type

 t()

 View Source

 @type t() :: %TableRex.Column{
 align: term(),
 color: term(),
 padding: term(),
 width_calc: term()
}

TableRex.Renderer behaviour

An Elixir behaviour that defines the API Renderers should conform to, allowing
for display output in a variety of formats.

 Summary

 Types

 render_return()

 Return value of the render function.

 Callbacks

 default_options()

 Returns a Map of the options and their default values required by the renderer.

 render(table, opts)

 Renders a passed %TableRex.Table{} struct into a string.

Types

 Link to this type

 render_return()

 View Source

 @type render_return() :: {:ok, String.t()} | {:error, String.t()}

Return value of the render function.

Callbacks

 Link to this callback

 default_options()

 View Source

 @callback default_options() :: map()

Returns a Map of the options and their default values required by the renderer.

 Link to this callback

 render(table, opts)

 View Source

 @callback render(
 table :: %TableRex.Table{
 columns: term(),
 default_column: term(),
 header_row: term(),
 rows: term(),
 title: term()
 },
 opts :: list()
) :: render_return()

Renders a passed %TableRex.Table{} struct into a string.

TableRex.Renderer.Text

Renderer module which handles outputting ASCII-style tables for display.

 Summary

 Functions

 default_options()

 Provides a level of sane defaults for the Text rendering module.

 render(table, opts)

 Implementation of the TableRex.Renderer behaviour.

Functions

 Link to this function

 default_options()

 View Source

Provides a level of sane defaults for the Text rendering module.

 Link to this function

 render(table, opts)

 View Source

Implementation of the TableRex.Renderer behaviour.
Available styling options.
horizontal_styles controls horizontal separators and can be one of:
	:all: display separators between and around every row.
	:header: display outer and header horizontal separators only.
	:frame: display outer horizontal separators only.
	:gfm: display all separators except top and bottom to comply with github flavored markdown
	:off: display no horizontal separators.

vertical_styles controls vertical separators and can be one of:
	:all: display between and around every column.
	:frame: display outer vertical separators only.
	:off: display no vertical separators.

TableRex.Renderer.Text.Meta

The data structure for the TableRex.Renderer.Text rendering module, it holds results
of style & dimension calculations to be passed down the render pipeline.

 Summary

 Functions

 col_width(meta, col_index)

 Retrieves the column width at the given column index.

 inner_width(meta)

 Retrieves the "inner width" of the table, which is the full width minus any frame.

 row_height(meta, row_index)

 Retrieves the row width at the given row index.

Functions

 Link to this function

 col_width(meta, col_index)

 View Source

Retrieves the column width at the given column index.

 Link to this function

 inner_width(meta)

 View Source

Retrieves the "inner width" of the table, which is the full width minus any frame.

 Link to this function

 row_height(meta, row_index)

 View Source

Retrieves the row width at the given row index.

TableRex.Table

A set of functions for working with tables.
The Table is represented internally as a struct though the
fields are private and must not be accessed directly. Instead,
use the functions in this module.

 Summary

 Types

 t()

 Functions

 add_row(table, row)

 Adds a single row to the table.

 add_rows(table, rows)

 Adds multiple rows to the table.

 clear_all_column_meta(table)

 Removes column meta for all columns, effectively resetting
column meta back to the default options across the board.

 clear_rows(table)

 Removes all row data from the table, keeping everything else.

 get_column_meta(table, col_index, key)

 Retrieves the value of a column meta option at the specified col_index.
If no value has been set, default values are returned.

 has_header?(table)

 Returns a boolean detailing if the passed table has a header row set.

 new()

 Creates a new blank table.

 new(rows, header_row \\ [], title \\ nil)

 Creates a new table with an initial set of rows and an optional header and title.

 put_cell_meta(table, col_index, row_index, cell_meta)

 Sets cell level information such as alignment.

 put_column_meta(table, col_index, col_meta)

 Sets column level information such as padding and alignment.

 put_header(table, header_row)

 Sets a list as the optional header row.
Set to nil or [] to remove an already set header from renders.

 put_header_meta(table, col_index, cell_meta)

 Sets cell level information for the header cells.

 put_title(table, title)

 Sets a string as the optional table title.
Set to nil or "" to remove an already set title from renders.

 render(table, opts \\ [])

 Renders the current table state to string, ready for display via IO.puts/2 or other means.

 render!(table, opts \\ [])

 Renders the current table state to string, ready for display via IO.puts/2 or other means.

 row_colors(result, colors)

 sort(table, column_index, order \\ :desc)

 Sorts the table rows by using the values in a specified column.

Types

 Link to this type

 t()

 View Source

 @type t() :: %TableRex.Table{
 columns: term(),
 default_column: term(),
 header_row: term(),
 rows: term(),
 title: term()
}

Functions

 Link to this function

 add_row(table, row)

 View Source

 @spec add_row(t(), list()) :: t()

Adds a single row to the table.

 Link to this function

 add_rows(table, rows)

 View Source

 @spec add_rows(t(), list()) :: t()

Adds multiple rows to the table.

 Link to this function

 clear_all_column_meta(table)

 View Source

 @spec clear_all_column_meta(t()) :: t()

Removes column meta for all columns, effectively resetting
column meta back to the default options across the board.

 Link to this function

 clear_rows(table)

 View Source

 @spec clear_rows(t()) :: t()

Removes all row data from the table, keeping everything else.

 Link to this function

 get_column_meta(table, col_index, key)

 View Source

 @spec get_column_meta(t(), integer(), atom()) :: any()

Retrieves the value of a column meta option at the specified col_index.
If no value has been set, default values are returned.

 Link to this function

 has_header?(table)

 View Source

 @spec has_header?(t()) :: boolean()

Returns a boolean detailing if the passed table has a header row set.

 Link to this function

 new()

 View Source

 @spec new() :: t()

Creates a new blank table.
The table created will not be able to be rendered until it has some row data.

 Examples

iex> Table.new
%TableRex.Table{}

 Link to this function

 new(rows, header_row \\ [], title \\ nil)

 View Source

 @spec new(list(), list(), String.t() | nil) :: t()

Creates a new table with an initial set of rows and an optional header and title.

 Link to this function

 put_cell_meta(table, col_index, row_index, cell_meta)

 View Source

 @spec put_cell_meta(t(), integer(), integer(), Keyword.t()) :: t()

Sets cell level information such as alignment.

 Link to this function

 put_column_meta(table, col_index, col_meta)

 View Source

 @spec put_column_meta(t(), integer() | atom() | Enum.t(), Keyword.t()) :: t()

Sets column level information such as padding and alignment.

 Link to this function

 put_header(table, header_row)

 View Source

 @spec put_header(t(), list() | nil) :: t()

Sets a list as the optional header row.
Set to nil or [] to remove an already set header from renders.

 Link to this function

 put_header_meta(table, col_index, cell_meta)

 View Source

 @spec put_header_meta(t(), integer() | Enum.t(), Keyword.t()) :: t()

Sets cell level information for the header cells.

 Link to this function

 put_title(table, title)

 View Source

 @spec put_title(t(), String.t() | nil) :: t()

Sets a string as the optional table title.
Set to nil or "" to remove an already set title from renders.

 Link to this function

 render(table, opts \\ [])

 View Source

 @spec render(t(), list()) :: TableRex.Renderer.render_return()

Renders the current table state to string, ready for display via IO.puts/2 or other means.
At least one row must have been added before rendering.
Returns {:ok, rendered_string} on success and {:error, reason} on failure.

 Link to this function

 render!(table, opts \\ [])

 View Source

 @spec render!(t(), list()) :: String.t() | no_return()

Renders the current table state to string, ready for display via IO.puts/2 or other means.
At least one row must have been added before rendering.
Returns the rendered string on success, or raises TableRex.Error on failure.

 Link to this function

 row_colors(result, colors)

 View Source

 Link to this function

 sort(table, column_index, order \\ :desc)

 View Source

 @spec sort(t(), integer(), atom()) :: t()

Sorts the table rows by using the values in a specified column.
This is very much a simple sorting function and relies on Elixir's
built-in comparison operators & types to cover the basic cases.
As each cell retains the original value it was created with, we
use that value to sort on as this allows us to sort on many
built-in types in the most obvious fashions.
Remember that rows are stored internally in reverse order that
they will be output in, to allow for fast insertion.
Parameters:
`column_index`: the 0-indexed column number to sort by
`order`: supply :desc or :asc for sort direction.
Returns a new Table, with sorted rows.

TableRex.Error exception

 OEBPS/dist/epub-75RCTLK3.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);var a="hll";function c(){u()}function u(){o("[data-group-id]").forEach(e=>{let t=e.getAttribute("data-group-id");e.addEventListener("mouseenter",n=>{i(t,!0)}),e.addEventListener("mouseleave",n=>{i(t,!1)})})}function i(r,e){o(`[data-group-id="${r}"]`).forEach(n=>{n.classList.toggle(a,e)})}c();})();

