

 Telemetry.Metrics

 v0.6.2

 Table of contents

 	Rationale

 	Writing Reporters

 	Modules

 	Telemetry.Metrics

 	Telemetry.Metrics.ConsoleReporter

 	Telemetry.Metrics.Counter

 	Telemetry.Metrics.Distribution

 	Telemetry.Metrics.LastValue

 	Telemetry.Metrics.Sum

 	Telemetry.Metrics.Summary

Rationale

The design proposed by Telemetry.Metrics might look controversial - unlike most of the libraries
available on the BEAM, it doesn't aggregate metrics itself, it merely defines what users should
expect when using the reporters.
If Telemetry.Metrics would aggregate metrics, the way those aggregations work would be imposed
on the system where the metrics are published to. For example, counters in StatsD are reset on
every flush and can be decremented, whereas counters in Prometheus are monotonically increasing.
Telemetry.Metrics doesn't focus on those details - instead, it describes what the end user,
operator, expects to see when using the metric of particular type. This implies that in most
cases aggregated metrics won't be visible inside the BEAM, but in exchange aggregations can be
implemented in a way that makes most sense for particular system.
Finally, one could also implement an in-VM "reporter" which would aggregate the metrics and expose
them inside the BEAM. When there is a need to swap the reporters, and if both reporters are
following the metric types specification, then the end result of aggregation is the same,
regardless of the backend system in use.

Writing Reporters

Reporters are a crucial part of Telemetry.Metrics ecosystem. Without them, metric
definitions are merely... definitions. This guide aims to help in writing reporters
in a proper way.
Before writing the reporter for your favourite monitoring system, make sure that one isn't
already available on Hex.pm - it might make sense to contribute and improve the existing
solution than starting from scratch.

Let's get started!

 Specification

	Reporters MUST accept a list of metric definitions as input when being started
	Reporters MUST attach handlers to events contained in these definitions
	Reporters MUST extract the measurement and selected tags specified by the metric definitions
	Reporters SHOULD handle events in a way that makes sense for whatever it
is publishing to
	Reporters MUST clean up on exit by detaching all event handlers they have created
	Reporters MUST honor keep recording rule functions
	Reporters MUST skip events with missing or invalid measurements or tags

 Accepting Metric Definitions as Input

This one is quite easy - you need to give your users a way to actually tell you what metrics
they want to track. It's essential to give users an option to provide metric definitions
at runtime (e.g. when their application starts). For example, let's say you're building a
PigeonReporter.
If the reporter was process-based, you could provide a start_link/1 function that accepts
a list of metric definitions:
metrics = [
 counter("..."),
 last_value("..."),
 summary("...")
]

PigeonReporter.start_link(metrics: metrics)
If the reporter doesn't support metrics of particular type, it may either:
	Log a warning and discard the metric
	Log a warning and convert the metric to an equivalent type. For example, a reporter
may convert an histogram into a summary or simpler metric in case it is not supported

We recommend all reporters to include a summary table of which metrics are supported and
their equivalents on the adapter terminology.
Reporter-specific options for individual metrics may be passed on the :reporter_options
key of the metric definitions. These options can be used to define options such as sample
rates, percentiles, rates, etc. Reporters should validate any options they accept and
provide useful exception messages.

 Attaching event handlers

Event handlers are attached using :telemetry.attach/4 function. To reduce overhead of
installing many event handlers, you can install a single handler for multiple metrics
based on the same event but note that any exception will cause all metrics on under that
handler. You can achieve this by grouping the metrics by event name:
Enum.group_by(metrics, & &1.event_name)
Note that handler IDs need to be unique - you can generate completely random blobs of
data, or use something that you know needs to be unique anyway, e.g. some combination
of reporter name, event name, and something which is different for multiple instances
of the same reporter (PID is a good choice as most reporters should be backed by a process):
id = {PigeonReporter, metric.event_name, self()}
Putting it all together:
for {event, metrics} <- Enum.group_by(metrics, & &1.event_name) do
 id = {__MODULE__, event, self()}
 :telemetry.attach(id, event, &handle_event/4, metrics)
end

 Reacting to events

When consuming events, there are five steps to take into account:
	If a keep recording rule function has been provided, the reporter MUST record the metric
only if the function returns true.

	Extract event measurements from the event. Measurements are optional, so we must skip
reporting that particular measurement if it is not available;

	Extract all the relevant tags from the event metadata (if they are supported by the reporter);

	Implement the logic specific to the reporter;

	How to react to errors. One option is to let the handle_event/4 callback fail, but
that means we will no longer listen to any future event. Another option is to rescue any
error and log them. That's the approach we will take in this example. However, be careful!
If an event always contains bad data, then we will log an error every time it is emitted;

Let's see a simple handler implementation that takes all of those four items into account:
def handle_event(_event_name, measurements, metadata, metrics) do
 for metric <- metrics do
 try do
 if measurement = keep?(metric, metadata) && extract_measurement(metric, measurements) do
 tags = extract_tags(metric, metadata)

 # record and send
 end
 rescue
 e ->
 Logger.error("Could not format metric #{inspect metric}")
 Logger.error(Exception.format(:error, e, __STACKTRACE__))
 end
 end
end
The implementation of keep?/2 might look like:
defp keep?(%{keep: keep}, metadata) when keep != nil, do: keep.(metadata)
defp keep?(_metric, _metadata), do: true
The implementation of extract_measurement/2 might look as follows:
def extract_measurement(metric, measurements) do
 case metric.measurement do
 fun when is_function(fun, 1) -> fun.(measurements)
 key -> measurements[key]
 end
end
Since :measurement in the metric definition can be both an arbitrary term (to be used
as key to fetch the measurement) or a function, we need to handle both cases.
Note: Telemetry.Metrics can't guarantee that the extracted measurement's value is a number.
Each reporter can handle this scenario properly, either by logging a warning, detaching
the handler etc.

We also need to implement the extract_tags/2 function:
def extract_tags(metric, metadata) do
 tag_values = metric.tag_values.(metadata)
 Map.take(tag_values, metric.tags)
end
First we need to apply last-minute transformation to the metadata using the :tag_values
function, then we fetch all transformed metadata, ignoring any tag that may not be available.

 Detaching Handlers on Termination

To leave the system in a clean state, the reporter must detach the event handlers it installed
when it's being stopped or terminated unexpectedely. This can be done by trapping exits in the
init function and implementing the terminate callback, or having a dedicated process
responsible only for the cleanup (e.g. by using monitors).

 Documentation

It's extremely important that reporters document how Telemetry.Metrics metric types, names,
and tags are translated to metric types and identifiers in the system they publish metrics to
(this is particularly important for a summary metric which is broadly defined). They should also
document if some metric types are not supported at all.

 Examples

This repository ships with a Telemetry.Metrics.ConsoleReporter that prints data to the
terminal as an example. Official reporters can be found in the BEAM Telemetry Github Organization. You may search for other reporters on hex.pm.

Telemetry.Metrics

Common interface for defining metrics based on
:telemetry events.
Metrics are aggregations of Telemetry events with specific names, providing
a view of the system's behaviour over time.
To give a more concrete example, imagine that somewhere in your code there is
a function which sends an HTTP request, measures the time it took to get a
response, and emits an event with the information:
:telemetry.execute([:http, :request, :stop], %{duration: duration})
You could define a counter metric, which counts how many HTTP requests were
completed:
Telemetry.Metrics.counter("http.request.stop.duration")
or you could use a summary metric to see statistics about the request duration:
Telemetry.Metrics.summary("http.request.stop.duration")
This documentation is going to cover all the available metrics and how to use
them, as well as options, and how to integrate those metrics with reporters.

 Metrics

There are five metric types provided by Telemetry.Metrics:
	counter/2 which counts the total number of emitted events
	sum/2 which keeps track of the sum of selected measurement
	last_value/2 holding the value of the selected measurement from
the most recent event
	summary/2 calculating statistics of the selected measurement,
like maximum, mean, percentiles etc.
	distribution/2 which builds a histogram of selected measurement

The first argument to all metric functions is the metric name. Metric
name can be provided as a string (e.g. "http.request.stop.duration") or a
list of atoms ([:http, :request, :stop, :duration]). The metric name is
automatically used to infer the telemetry event and measurement. For example,
In the "http.request.stop.duration" example, the source event name is
[:http, :request, :stop] and metric values are drawn from :duration
measurement. Like this:
[:http , :request, :stop] :duration
<----- event name ------> <-- measurement -->
You can also explicitly specify the event name and measurement
if you prefer.
The second argument is a list of options. Below is the description of the
options common to all metric types:
	:event_name - the source event name. Can be represented either as a
string (e.g. "http.request") or a list of atoms ([:http, :request]).
By default the event name is all but the last segment of the metric name.
	:measurement - the event measurement used as a source of a metric values.
By default it is the last segment of the metric name. It can be:	an arbitrary term
	a key in the event's measurements map
	an unary function accepting the whole measurements map and returning the
actual value to be used.
	a binary function accepting the measurements and metadata maps and
returning the actual value to be used.

	:tags - a subset of metadata keys by which aggregations will be broken down.
Defaults to an empty list.
	:tag_values - a function that receives the metadata and returns a map with
the tags as keys and their respective values. Defaults to returning the
metadata itself.
	:keep - a predicate function that evaluates the metadata to conditionally
record a given event. :keep and :drop cannot be combined. Defaults to nil.
	:drop - a predicate function that evaluates the metadata to conditionally
skip recording a given event. :keep and :drop cannot be combined. Defaults to nil.
	:description - human-readable description of the metric. Might be used by
reporters for documentation purposes. Defaults to nil.
	:unit - an atom describing the unit of selected measurement, typically in
singular, such as :millisecond, :byte, :kilobyte, etc. It may also be
a tuple indicating that a measurement should be converted from one unit to
another before a metric is updated. Currently, only time and byte unit
conversions are supported. We discuss those in detail in the "Converting Units"
section.
	:reporter_options - a keyword list of reporter-specific options for the metric.

 Breaking down metric values by tags

Sometimes it's not enough to have a global overview of all HTTP requests received
or all DB queries made. It's often more helpful to break down this data, for example,
we might want to have separate metric values for each unique database table and
operation name (select, insert etc.) to see how these particular queries behave.
This is where tagging comes into play. All metric definitions accept a :tags option:
counter("db.query.duration", tags: [:table, :operation])
The above definition means that we want to keep track of the number of queries, but
we want a separate counter for each unique pair of table and operation. Tag values are
fetched from event metadata - this means that in this example, [:db, :query] events
need to include :table and :operation keys in their payload:
:telemetry.execute([:db, :query], %{duration: 198}, %{table: "users", operation: "insert"})
:telemetry.execute([:db, :query], %{duration: 112}, %{table: "users", operation: "select"})
:telemetry.execute([:db, :query], %{duration: 201}, %{table: "sessions", operation: "insert"})
:telemetry.execute([:db, :query], %{duration: 212}, %{table: "sessions", operation: "insert"})
The result of aggregating the events above looks like this:
	table	operation	count
	users	insert	1
	users	select	1
	sessions	insert	2

The approach where we create a separate metric for some unique set of properties
is called a multi-dimensional data model.

 Transforming event metadata for tagging

Finally, sometimes there is a need to modify event metadata before it's used for
tagging. Each metric definition accepts a function in :tag_values option which
transforms the metadata into desired shape. Note that this function is called for
each event, so it's important to keep it fast if the rate of events is high.

 Converting Units

It might happen that the unit of measurement we're tracking is not the desirable unit
for the metric values, e.g. events are emitted by a 3rd-party library we do not control,
or a reporter we're using requires specific unit of measurement.
For these scenarios, each metric definition accepts a :unit option in a form of a tuple:
summary("http.request.stop.duration", unit: {from_unit, to_unit})
This means that the measurement will be converted from from_unit to to_unit before
being used for updating the metric. Currently, only time and byte conversions are
supported.

 Time Conversions

Most time measurements in the Erlang VM are done in the :native unit, which we need
to convert to the desired precision. The supported time units are: :second, :millisecond,
:microsecond, :nanosecond and :native.
For example, to convert HTTP request duration from :native time unit to milliseconds
you'd write:
summary("http.request.stop.duration", unit: {:native, :millisecond})

 Byte Conversions

Some metrics, like VM memory's usage are reported in bytes. You might want to convert this
to megabytes, for example. The supported byte units are: :byte, :kilobyte and :megabyte.
In order to convert a metric value from bytes to megabytes, you can write the following:
last_value("vm.memory.total", unit: {:byte, :megabyte})

 VM metrics

Telemetry.Metrics doesn't have a special treatment for the VM metrics - they need
to be based on the events like all other metrics.
:telemetry_poller package (http://hexdocs.pm/telemetry_poller) exposes a bunch of
VM-related metrics and also provides custom periodic measurements. You can add
telemetry poller as a dependency:
{:telemetry_poller, "~> 0.4"}
By simply adding :telemetry_poller as a dependency, two events will become available:
	[:vm, :memory] - contains the total memory, as well as the memory used for
binaries, processes, etc. See erlang:memory/0 for all keys;
	[:vm, :total_run_queue_lengths] - returns the run queue lengths for CPU and
IO schedulers. It contains the total, cpu and io measurements;

You can consume those events with Telemetry.Metrics with the following sample metrics:
last_value("vm.memory.total", unit: :byte)
last_value("vm.total_run_queue_lengths.total")
last_value("vm.total_run_queue_lengths.cpu")
last_value("vm.total_run_queue_lengths.io")
If you want to change the frequency of those measurements, you can set the
following configuration in your config file:
config :telemetry_poller, :default, period: 5_000 # the default
Or disable it completely with:
config :telemetry_poller, :default, false
The :telemetry_poller package also allows you to run your own poller, which is
useful to retrieve process information or perform custom measurements periodically.
For example, to keep track of the number of users, inside a supervision tree, you could do:
measurements = [
 {:process_info,
 event: [:my_app, :worker],
 name: MyApp.Worker,
 keys: [:message_queue_len, :memory]},

 {MyApp, :measure_users, []}
]

Supervisor.start_link([
 # Run the given measurements every 10 seconds
 {:telemetry_poller, measurements: measurements(), period: 10_000}
], strategy: :one_for_one)
Where MyApp.measure_users/0 could be written like this:
defmodule MyApp do
 def measure_users do
 :telemetry.execute([:my_app, :users], %{total: MyApp.users_count()}, %{})
 end
end
Now with measurements in place, you can define the metrics for the
events above:
last_value("my_app.worker.memory", unit: :byte)
last_value("my_app.worker.message_queue_len")
last_value("my_app.users.total")

 Optionally Recording Metric Events

There may be occasions where you want to record metrics differently or not at all based
upon metadata. Rather than depending on changing event names with prefixes, you can instead
provide a predicate function which returns true when you want the metric to be
processed for this event and false when you do not.
Let's examine some a few examples where optional recording can be helpful.

 Filtering on Metadata

Let's assume you are using an HTTP client library in your application which has the following
event_name: [:http_client, :request, :stop]. You use this library in multiple places and
you'd like to monitor the request duration.
You can use the event provided by the library but you have very different acceptable
performance requirements for a critical request, so it would be better to provide a different
metric name for monitoring. The client library includes a user configured :name option which
you can set and is passed in the event metadata.
Let's create a default distribution metric and one for the high performance call.
distribution(
 "http.client.request.duration",
 event_name: [:http_client, :request, :stop],
 drop: &(match?(%{name: :fast_client}, &1))
)

distribution(
 "http.fast.client.request.duration",
 event_name: [:http_client, :request, :stop],
 keep: &(match?(%{name: :fast_client}, &1))
)
With this configuration, you can now monitor these requests separately. In the first example,
any events where the client's name is :fast_client will be dropped for that metric.
Conversely, any matching events in the second example metric will be kept.
Note: only :keep OR :drop may be set, never both.

 Other Uses

Another potential use case for :keep | :drop could be per metric sampling rates. As long
as your function returns a boolean, it can determine if the event should be processed.

 Reporter Support

Event optional recording must be supported by the reporter you are using. Check your reporter's
documentation before relying on this functionality.
The keep function should be evaluated by reporters prior to tag_values using the
raw :telemetry.medatadata() values from the event.

 Reporters

So far, we have talked about metrics and how to describe them, but we haven't discussed
how those metrics are consumed and published to a system that provides data visualization,
aggregation, and more. The job of subscribing to events and processing the actual metrics
is a responsibility of reporters.
Generally speaking, a reporter is a process that you would start in your supervision
tree with a list of metrics as input. For example, Telemetry.Metrics ships with a
Telemetry.Metrics.ConsoleReporter module, which prints data to the terminal as an
example. You would start it as follows:
metrics = [
 last_value("my_app.worker.memory", unit: :byte),
 last_value("my_app.worker.message_queue_len"),
 last_value("my_app.users.total")
]

Supervisor.start_link([
 {Telemetry.Metrics.ConsoleReporter, metrics: metrics}
], strategy: :one_for_one)
Reporters take metric definitions as an input, subscribe to relevant events and
aggregate data when the events are emitted. Reporters may push metrics to StatsD,
some time-series database, or exposing a HTTP endpoint for Prometheus to scrape.
In a nutshell, Telemetry.Metrics defines only how metrics of particular type
should behave and reporters provide the actual implementation for these aggregations.
Official reporters, maintained by the Observability Working Group of the Erlang
Ecosystem Foundation, can be found on the BEAM Telemetry organization on GitHub.
You may also find community reporters on hex.pm.
You can also read the Writing Reporters page for general
information on how to write a reporter.

 Wiring it all up

Over the previous sections we discussed how to setup metrics and pass them to reporters
and how to configure a poller for measurements. We can wire it all up into a single
module as shown below. The example below would be used in the context of a Phoenix
application, where we have web metrics, database metrics (through Ecto) as well as
from the database, Phoenix metrics as well as VM metrics.
The first step is to add both :telemetry_metrics and :telemetry_poller as
dependencies:
[
 {:telemetry_poller, "~> 0.4"},
 {:telemetry_metrics, "~> 0.4"}
]
Then you could define a module that wires everything up:
defmodule MyAppWeb.Telemetry do
 use Supervisor
 import Telemetry.Metrics

 def start_link(arg) do
 Supervisor.start_link(__MODULE__, arg, name: __MODULE__)
 end

 def init(_arg) do
 children = [
 {:telemetry_poller,
 measurements: periodic_measurements(),
 period: 10_000},
 # Or TelemetryMetricsPrometheus or TelemetryMetricsFooBar
 {TelemetryMetricsStatsd, metrics: metrics()}
]

 Supervisor.init(children, strategy: :one_for_one)
 end

 defp metrics do
 [
 # VM Metrics
 last_value("vm.memory.total", unit: :byte),
 last_value("vm.total_run_queue_lengths.total"),
 last_value("vm.total_run_queue_lengths.cpu"),
 last_value("vm.total_run_queue_lengths.io"),

 last_value("my_app.worker.memory", unit: :byte),
 last_value("my_app.worker.message_queue_len"),

 # Database Time Metrics
 summary("my_app.repo.query.total_time", unit: {:native, :millisecond}),
 summary("my_app.repo.query.decode_time", unit: {:native, :millisecond}),
 summary("my_app.repo.query.query_time", unit: {:native, :millisecond}),
 summary("my_app.repo.query.idle_time", unit: {:native, :millisecond}),
 summary("my_app.repo.query.queue_time", unit: {:native, :millisecond}),

 # Phoenix Time Metrics
 summary("phoenix.endpoint.stop.duration",
 unit: {:native, :millisecond}),
 summary(
 "phoenix.router_dispatch.stop.duration",
 unit: {:native, :millisecond},
 tags: [:plug]
)
]
 end

 defp periodic_measurements do
 [
 {:process_info,
 event: [:my_app, :worker],
 name: Rumbl.Worker,
 keys: [:message_queue_len, :memory]}
]
 end
end

 Summary

 Types

 byte_unit()

 byte_unit_conversion()

 description()

 drop()

 keep()

 measurement()

 metric_name()

 The name of the metric, either as string or a list of atoms.

 metric_option()

 metric_options()

 normalized_metric_name()

 The name of the metric represented as a list of atoms.

 reporter_options()

 t()

 One of the base metric definitions.

 tag()

 tag_values()

 tags()

 time_unit()

 time_unit_conversion()

 unit()

 Functions

 counter(metric_name, options \\ [])

 Returns a definition of counter metric.

 distribution(metric_name, options \\ [])

 Returns a definition of distribution metric.

 last_value(metric_name, options \\ [])

 Returns a definition of last value metric.

 sum(metric_name, options \\ [])

 Returns a definition of sum metric.

 summary(metric_name, options \\ [])

 Returns a definition of summary metric.

 Types

 Link to this type

 byte_unit()

 View Source

 @type byte_unit() :: :megabyte | :kilobyte | :byte

 Link to this type

 byte_unit_conversion()

 View Source

 @type byte_unit_conversion() :: {byte_unit(), byte_unit()}

 Link to this type

 description()

 View Source

 @type description() :: nil | String.t()

 Link to this type

 drop()

 View Source

 @type drop() :: (:telemetry.event_metadata() -> boolean())

 Link to this type

 keep()

 View Source

 @type keep() :: (:telemetry.event_metadata() -> boolean())

 Link to this type

 measurement()

 View Source

 @type measurement() ::
 term()
 | (:telemetry.event_measurements() -> number())
 | (:telemetry.event_measurements(), :telemetry.event_metadata() -> number())

 Link to this type

 metric_name()

 View Source

 @type metric_name() :: String.t() | normalized_metric_name()

The name of the metric, either as string or a list of atoms.

 Link to this type

 metric_option()

 View Source

 @type metric_option() ::
 {:event_name, String.t() | :telemetry.event_name()}
 | {:measurement, measurement()}
 | {:tags, tags()}
 | {:tag_values, tag_values()}
 | {:keep, keep()}
 | {:drop, drop()}
 | {:description, description()}
 | {:unit, unit() | time_unit_conversion() | byte_unit_conversion()}
 | {:reporter_options, reporter_options()}

 Link to this type

 metric_options()

 View Source

 @type metric_options() :: [metric_option()]

 Link to this type

 normalized_metric_name()

 View Source

 @type normalized_metric_name() :: [atom(), ...]

The name of the metric represented as a list of atoms.

 Link to this type

 reporter_options()

 View Source

 @type reporter_options() :: keyword()

 Link to this type

 t()

 View Source

 @type t() ::
 Telemetry.Metrics.Counter.t()
 | Telemetry.Metrics.LastValue.t()
 | Telemetry.Metrics.Sum.t()
 | Telemetry.Metrics.Summary.t()
 | Telemetry.Metrics.Distribution.t()

One of the base metric definitions.

 Link to this type

 tag()

 View Source

 @type tag() :: term()

 Link to this type

 tag_values()

 View Source

 @type tag_values() :: (:telemetry.event_metadata() -> :telemetry.event_metadata())

 Link to this type

 tags()

 View Source

 @type tags() :: [tag()]

 Link to this type

 time_unit()

 View Source

 @type time_unit() :: :second | :millisecond | :microsecond | :nanosecond | :native

 Link to this type

 time_unit_conversion()

 View Source

 @type time_unit_conversion() :: {time_unit(), time_unit()}

 Link to this type

 unit()

 View Source

 @type unit() :: atom()

 Functions

 Link to this function

 counter(metric_name, options \\ [])

 View Source

 @spec counter(metric_name(), metric_options()) :: Telemetry.Metrics.Counter.t()

Returns a definition of counter metric.
Counter metric keeps track of the total number of specific events emitted.
The value of the counter is always incremented by one, regardless of the
value of the measurement. However, note the measurement must still be
available in the event, otherwise the event is not accounted for.
See the "Metrics" section in the top-level documentation of this module for more
information.

 Example

counter(
 "http.request.count",
 tags: [:controller, :action]
)

 Link to this function

 distribution(metric_name, options \\ [])

 View Source

 @spec distribution(metric_name(), metric_options()) ::
 Telemetry.Metrics.Distribution.t()

Returns a definition of distribution metric.
Distribution metric builds a histogram of selected measurement's values. It is up to the reporter
to decide how the boundaries of the distribution buckets are configured - via :reporter_options,
configuration of the aggregating system, or other means.
See the "Metrics" section in the top-level documentation of this module for more
information.

 Example

distribution(
 "http.request.duration",
 tags: [:controller, :action],
)

 Link to this function

 last_value(metric_name, options \\ [])

 View Source

 @spec last_value(metric_name(), metric_options()) :: Telemetry.Metrics.LastValue.t()

Returns a definition of last value metric.
Last value keeps track of the selected measurement found in the most recent event.
See the "Metrics" section in the top-level documentation of this module for more
information.

 Example

last_value(
 "vm.memory.total",
 description: "Total amount of memory allocated by the Erlang VM", unit: :byte
)

 Link to this function

 sum(metric_name, options \\ [])

 View Source

 @spec sum(metric_name(), metric_options()) :: Telemetry.Metrics.Sum.t()

Returns a definition of sum metric.
Sum metric keeps track of the sum of selected measurement's values carried by specific events.
See the "Metrics" section in the top-level documentation of this module for more
information.

 Example

sum(
 "user.session_count",
 event_name: "user.session_count",
 measurement: :delta,
 tags: [:role]
)

 Link to this function

 summary(metric_name, options \\ [])

 View Source

 @spec summary(metric_name(), metric_options()) :: Telemetry.Metrics.Summary.t()

Returns a definition of summary metric.
This metric aggregates measurement's values into statistics, e.g. minimum and maximum, mean, or
percentiles. It is up to the reporter to decide which statistics exactly are exposed.
See the "Metrics" section in the top-level documentation of this module for more
information.

 Example

summary(
 "db.query.duration",
 tags: [:table],
 unit: {:native, :millisecond}
)

Telemetry.Metrics.ConsoleReporter

A reporter that prints events and metrics to the terminal.
This is useful for debugging and discovering all available
measurements and metadata in an event.
For example, imagine the given metrics:
metrics = [
 last_value("vm.memory.binary", unit: :byte),
 counter("vm.memory.total")
]
A console reporter can be started as a child of your supervision tree as:
{Telemetry.Metrics.ConsoleReporter, metrics: metrics}
Now when the "vm.memory" telemetry event is dispatched, we will see
reports like this:
[Telemetry.Metrics.ConsoleReporter] Got new event!
Event name: vm.memory
All measurements: %{binary: 100, total: 200}
All metadata: %{}

Metric measurement: :binary (last_value)
With value: 100 byte
And tag values: %{}

Metric measurement: :total (counter)
With value: 200
And tag values: %{}
In other words, every time there is an event for any of the registered
metrics, it prints the event measurement and metadata, and then it prints
information about each metric to the user.

 Summary

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 start_link(opts)

 Functions

 Link to this function

 child_spec(init_arg)

 View Source

Returns a specification to start this module under a supervisor.
See Supervisor.

 Link to this function

 start_link(opts)

 View Source

Telemetry.Metrics.Counter

Defines a specification of counter metric.

 Summary

 Types

 t()

 Types

 Link to this type

 t()

 View Source

 @type t() :: %Telemetry.Metrics.Counter{
 description: Telemetry.Metrics.description(),
 event_name: :telemetry.event_name(),
 keep: (:telemetry.event_metadata() -> boolean()),
 measurement: Telemetry.Metrics.measurement(),
 name: Telemetry.Metrics.normalized_metric_name(),
 reporter_options: Telemetry.Metrics.reporter_options(),
 tag_values: (:telemetry.event_metadata() -> :telemetry.event_metadata()),
 tags: Telemetry.Metrics.tags(),
 unit: Telemetry.Metrics.unit()
}

Telemetry.Metrics.Distribution

Defines a specification of distribution metric.

 Summary

 Types

 t()

 Types

 Link to this type

 t()

 View Source

 @type t() :: %Telemetry.Metrics.Distribution{
 description: Telemetry.Metrics.description(),
 event_name: :telemetry.event_name(),
 keep: (:telemetry.event_metadata() -> boolean()),
 measurement: Telemetry.Metrics.measurement(),
 name: Telemetry.Metrics.normalized_metric_name(),
 reporter_options: Telemetry.Metrics.reporter_options(),
 tag_values: (:telemetry.event_metadata() -> :telemetry.event_metadata()),
 tags: Telemetry.Metrics.tags(),
 unit: Telemetry.Metrics.unit()
}

Telemetry.Metrics.LastValue

Defines a specification of last value metric.

 Summary

 Types

 t()

 Types

 Link to this type

 t()

 View Source

 @type t() :: %Telemetry.Metrics.LastValue{
 description: Telemetry.Metrics.description(),
 event_name: :telemetry.event_name(),
 keep: (:telemetry.event_metadata() -> boolean()),
 measurement: Telemetry.Metrics.measurement(),
 name: Telemetry.Metrics.normalized_metric_name(),
 reporter_options: Telemetry.Metrics.reporter_options(),
 tag_values: (:telemetry.event_metadata() -> :telemetry.event_metadata()),
 tags: Telemetry.Metrics.tags(),
 unit: Telemetry.Metrics.unit()
}

Telemetry.Metrics.Sum

Defines a specification of sum metric.

 Summary

 Types

 t()

 Types

 Link to this type

 t()

 View Source

 @type t() :: %Telemetry.Metrics.Sum{
 description: Telemetry.Metrics.description(),
 event_name: :telemetry.event_name(),
 keep: (:telemetry.event_metadata() -> boolean()),
 measurement: Telemetry.Metrics.measurement(),
 name: Telemetry.Metrics.normalized_metric_name(),
 reporter_options: Telemetry.Metrics.reporter_options(),
 tag_values: (:telemetry.event_metadata() -> :telemetry.event_metadata()),
 tags: Telemetry.Metrics.tags(),
 unit: Telemetry.Metrics.unit()
}

Telemetry.Metrics.Summary

Defines a specification of summary metric.

 Summary

 Types

 t()

 Types

 Link to this type

 t()

 View Source

 @type t() :: %Telemetry.Metrics.Summary{
 description: Telemetry.Metrics.description(),
 event_name: :telemetry.event_name(),
 keep: (:telemetry.event_metadata() -> boolean()),
 measurement: Telemetry.Metrics.measurement(),
 name: Telemetry.Metrics.normalized_metric_name(),
 reporter_options: Telemetry.Metrics.reporter_options(),
 tag_values: (:telemetry.event_metadata() -> :telemetry.event_metadata()),
 tags: Telemetry.Metrics.tags(),
 unit: Telemetry.Metrics.unit()
}

 OEBPS/dist/epub-TCI3LGHF.js
(()=>{var d=document.querySelector.bind(document),i=document.querySelectorAll.bind(document);function r(o){document.readyState!=="loading"?o():document.addEventListener("DOMContentLoaded",o)}var c="ex_doc:settings",h={tooltips:!0,theme:null,livebookUrl:null},s=class{constructor(){this._subscribers=[],this._settings=h,this._loadSettings()}get(){return this._settings}update(t){let e=this._settings;this._settings={...this._settings,...t},this._subscribers.forEach(n=>n(this._settings,e)),this._storeSettings()}getAndSubscribe(t){this._subscribers.push(t),t(this._settings)}_loadSettings(){try{let t=localStorage.getItem(c);if(t){let e=JSON.parse(t);this._settings={...this._settings,...e}}this._loadSettingsLegacy()}catch(t){console.error(`Failed to load settings: ${t}`)}}_storeSettings(){try{this._storeSettingsLegacy(),localStorage.setItem(c,JSON.stringify(this._settings))}catch(t){console.error(`Failed to persist settings: ${t}`)}}_loadSettingsLegacy(){localStorage.getItem("tooltipsDisabled")!==null&&(this._settings={...this._settings,tooltips:!1}),localStorage.getItem("night-mode")==="true"&&(this._settings={...this._settings,nightMode:!0}),this._settings.nightMode===!0&&(this._settings={...this._settings,theme:"dark"})}_storeSettingsLegacy(){this._settings.tooltips?localStorage.removeItem("tooltipsDisabled"):localStorage.setItem("tooltipsDisabled","true"),this._settings.nightMode!==null?localStorage.setItem("night-mode",this._settings.nightMode===!0?"true":"false"):localStorage.removeItem("night-mode"),this._settings.theme!==null?(localStorage.setItem("night-mode",this._settings.theme==="dark"?"true":"false"),this._settings.nightMode=this._settings.theme==="dark"):(delete this._settings.nightMode,localStorage.removeItem("night-mode"))}},f=new s;function l(){["warning","info","error","neutral","tip"].forEach(t=>{i(`blockquote h3.${t}, blockquote h4.${t}`).forEach(e=>{e.closest("blockquote").classList.add(t)})})}document.addEventListener("click",function(o){if(window.innerWidth<=768){let t=o.target.closest('a[href^="#"]');if(t){o.preventDefault();let e=t.getAttribute("href").substring(1),n=document.getElementById(e);if(n){let u=n.getBoundingClientRect().top+window.scrollY-45;window.scrollTo({top:u,behavior:"smooth"})}}}});var m="hll";function g(){p()}function p(){i("[data-group-id]").forEach(t=>{let e=t.getAttribute("data-group-id");t.addEventListener("mouseenter",n=>{a(e,!0)}),t.addEventListener("mouseleave",n=>{a(e,!1)})})}function a(o,t){i(`[data-group-id="${o}"]`).forEach(n=>{n.classList.toggle(m,t)})}r(()=>{g(),l()});})();

