

 telemetry_metrics_prometheus_core

 v1.2.1

 Table of contents

 	Modules

 	TelemetryMetricsPrometheus.Core

TelemetryMetricsPrometheus.Core

Prometheus Reporter for Telemetry.Metrics definitions.
Provide a list of metric definitions to the child_spec/1 function. It's recommended to
add this to your supervision tree.
def start(_type, _args) do
 # List all child processes to be supervised
 children = [
 {TelemetryMetricsPrometheus.Core, [
 metrics: [
 counter("http.request.count"),
 sum("http.request.payload_size", unit: :byte),
 sum("websocket.connection.count", reporter_options: [prometheus_type: :gauge]),
 last_value("vm.memory.total", unit: :byte)
]
]}
]

 opts = [strategy: :one_for_one, name: ExampleApp.Supervisor]
 Supervisor.start_link(children, opts)
end
Note that aggregations for distributions (histogram) only occur at scrape time.
These aggregations only have to process events that have occurred since the last
scrape, so it's recommended at this time to keep an eye on scrape durations if
you're reporting a large number of distributions or you have a high tag cardinality.

 Telemetry.Metrics to Prometheus Equivalents

Metric types:
	Counter - Counter
	Distribution - Histogram
	LastValue - Gauge
	Sum - Counter/Gauge
	Summary - Summary (Not supported)

 Units

Prometheus recommends the usage of base units for compatibility - Base Units.
This is simple to do with :telemetry and Telemetry.Metrics as all memory
related measurements in the BEAM are reported in bytes and Metrics provides
automatic time unit conversions.
Note that measurement unit should used as part of the reported name in the case of
histograms and gauges to Prometheus. As such, it is important to explicitly define
the unit of measure for these types when the unit is time or memory related.
It is suggested to not mix units, e.g. seconds with milliseconds.
It is required to define your buckets according to the end unit translation
since this measurements are converted at the time of handling the event, prior
to bucketing.
Memory
Report memory as :byte.
Time
Report durations as :second. The BEAM and :telemetry events use :native time
units. Converting to seconds is as simple as adding the conversion tuple for
the unit - {:native, :second}

 Naming

Telemetry.Metrics definition names do not translate easily to Prometheus naming
conventions. By default, the name provided when creating your definition uses parts
of the provided name to determine what event to listen to and which event measurement
to use.
For example, "http.request.duration" results in listening for [:http, :request]
events and use :duration from the event measurements. Prometheus would recommend
a name of http_request_duration_seconds as a good name.
It is therefore recommended to use the name in your definition to reflect the name
you wish to see reported, e.g. http.request.duration.seconds or [:http, :request, :duration, :seconds] and use the :event_name override and :measurement options in your definition.
Example:
Metrics.distribution(
 "http.request.duration.seconds",
 event_name: [:http, :request, :complete],
 measurement: :duration,
 unit: {:native, :second},
 reporter_options: [
 buckets: [0.01, 0.025, 0.05, 0.1, 0.2, 0.5, 1]
]
)
The exporter sanitizes names to Prometheus' requirements (Metric Naming) and joins the event name parts with an underscore.

 Labels

Labels in Prometheus are referred to as :tags in Telemetry.Metrics - see the docs
for more information on tag usage.
Important: Each tag + value results in a separate time series. For distributions, this
is further complicated as a time series is created for each bucket plus one for measurements
exceeding the limit of the last bucket - +Inf.
It is recommended, but not required, to abide by Prometheus' best practices regarding labels -
Label Best Practices

 Reporter Options

In some cases you may want to configure the aspects of a metric definition's
underlying Prometheus metric, such as the bucket boundaries for a
distribution. This can be achieved by passing :reporter_options to the
metric definition.
The supported :reporter_options are:
	:buckets - a list of bucket boundaries for distributions. This reporter
option is mandatory for distributions. Example:

Example:
Metrics.distribution(
 "http.request.duration.seconds",
 event_name: [:http, :request, :complete],
 measurement: :duration,
 unit: {:native, :second},
 reporter_options: [
 buckets: [0.01, 0.025, 0.05, 0.1, 0.2, 0.5, 1]
]
)
	:prometheus_type - the Prometheus type that should be used for a sum,
either :counter or :gauge. Prometheus counters are monotonic, so a gauge
should be used when a sum can increase and decrease. Defaults to :counter.

Example:
Metrics.sum("websocket.connection.count", reporter_options: [prometheus_type: :gauge])

 Missing or Invalid Measurements and Tags

If a measurement value is missing or non-numeric, the error is logged at the debug level
and the event is not recorded. Events with missing tags are also logged and skipped.

 Summary

 Types

 metrics()

 prometheus_option()

 prometheus_options()

 Functions

 child_spec(options)

 Reporter's child spec.

 scrape(name \\ :prometheus_metrics)

 Returns a metrics scrape in Prometheus exposition format for the given reporter
name - defaults to :prometheus_metrics.

 start_link(options)

 Start the TelemetryMetricsPrometheus.Core.Supervisor

 Types

 Link to this type

 metrics()

 View Source

 @type metrics() :: [Telemetry.Metrics.t()]

 Link to this type

 prometheus_option()

 View Source

 @type prometheus_option() :: {:metrics, metrics()} | {:name, atom()}

 Link to this type

 prometheus_options()

 View Source

 @type prometheus_options() :: [prometheus_option()]

 Functions

 Link to this function

 child_spec(options)

 View Source

 @spec child_spec(prometheus_options()) :: Supervisor.child_spec()

Reporter's child spec.
This function allows you to start the reporter under a supervisor like this:
children = [
 {TelemetryMetricsPrometheus.Core, options}
]
See start_link/1 for options.

 Link to this function

 scrape(name \\ :prometheus_metrics)

 View Source

 @spec scrape(name :: atom()) :: String.t()

Returns a metrics scrape in Prometheus exposition format for the given reporter
name - defaults to :prometheus_metrics.

 Link to this function

 start_link(options)

 View Source

 @spec start_link(prometheus_options()) :: GenServer.on_start()

Start the TelemetryMetricsPrometheus.Core.Supervisor
Available options:
	:name - name of the reporter instance. Defaults to :prometheus_metrics
	:metrics - a list of metrics to track.
	:start_async - used to configure how the TelemetryMetricsPrometheus.Core.Supervisor
GenServer starts. When set to false, all of the metrics defined in :metrics are
initialized in the GenServer's init/1 callback effectively blocking the supervision
tree from proceeding until all Telemetry event handlers are initialized. This is
useful if subsequent supervision tree children emit events on start up and you don't
want to miss those events due to an async start. Defaults to true.

 OEBPS/dist/epub-TCI3LGHF.js
(()=>{var d=document.querySelector.bind(document),i=document.querySelectorAll.bind(document);function r(o){document.readyState!=="loading"?o():document.addEventListener("DOMContentLoaded",o)}var c="ex_doc:settings",h={tooltips:!0,theme:null,livebookUrl:null},s=class{constructor(){this._subscribers=[],this._settings=h,this._loadSettings()}get(){return this._settings}update(t){let e=this._settings;this._settings={...this._settings,...t},this._subscribers.forEach(n=>n(this._settings,e)),this._storeSettings()}getAndSubscribe(t){this._subscribers.push(t),t(this._settings)}_loadSettings(){try{let t=localStorage.getItem(c);if(t){let e=JSON.parse(t);this._settings={...this._settings,...e}}this._loadSettingsLegacy()}catch(t){console.error(`Failed to load settings: ${t}`)}}_storeSettings(){try{this._storeSettingsLegacy(),localStorage.setItem(c,JSON.stringify(this._settings))}catch(t){console.error(`Failed to persist settings: ${t}`)}}_loadSettingsLegacy(){localStorage.getItem("tooltipsDisabled")!==null&&(this._settings={...this._settings,tooltips:!1}),localStorage.getItem("night-mode")==="true"&&(this._settings={...this._settings,nightMode:!0}),this._settings.nightMode===!0&&(this._settings={...this._settings,theme:"dark"})}_storeSettingsLegacy(){this._settings.tooltips?localStorage.removeItem("tooltipsDisabled"):localStorage.setItem("tooltipsDisabled","true"),this._settings.nightMode!==null?localStorage.setItem("night-mode",this._settings.nightMode===!0?"true":"false"):localStorage.removeItem("night-mode"),this._settings.theme!==null?(localStorage.setItem("night-mode",this._settings.theme==="dark"?"true":"false"),this._settings.nightMode=this._settings.theme==="dark"):(delete this._settings.nightMode,localStorage.removeItem("night-mode"))}},f=new s;function l(){["warning","info","error","neutral","tip"].forEach(t=>{i(`blockquote h3.${t}, blockquote h4.${t}`).forEach(e=>{e.closest("blockquote").classList.add(t)})})}document.addEventListener("click",function(o){if(window.innerWidth<=768){let t=o.target.closest('a[href^="#"]');if(t){o.preventDefault();let e=t.getAttribute("href").substring(1),n=document.getElementById(e);if(n){let u=n.getBoundingClientRect().top+window.scrollY-45;window.scrollTo({top:u,behavior:"smooth"})}}}});var m="hll";function g(){p()}function p(){i("[data-group-id]").forEach(t=>{let e=t.getAttribute("data-group-id");t.addEventListener("mouseenter",n=>{a(e,!0)}),t.addEventListener("mouseleave",n=>{a(e,!1)})})}function a(o,t){i(`[data-group-id="${o}"]`).forEach(n=>{n.classList.toggle(m,t)})}r(()=>{g(),l()});})();

