

 TermUI

 v0.2.0

 Table of contents

 	TermUI

 	Changelog

 	User Guides

 	User Guides

 	Overview

 	Getting Started

 	The Elm Architecture

 	Events

 	Styling

 	Layout

 	Widgets

 	Terminal

 	Commands

 	Advanced Widgets

 	Developer Guides

 	Developer Guides

 	Architecture Overview

 	Runtime Internals

 	Rendering Pipeline

 	Event System

 	Buffer Management

 	Terminal Layer

 	Elm Implementation

 	Creating Widgets

 	Testing Framework

 	
 Modules

 	TermUI.ANSI

 	TermUI.Capabilities

 	TermUI.Capabilities.Fallbacks

 	TermUI.Clipboard

 	TermUI.Clipboard.PasteAccumulator

 	TermUI.Clipboard.Selection

 	TermUI.Command

 	TermUI.Command.Executor

 	TermUI.Component.Helpers

 	TermUI.Component.Introspection

 	TermUI.Component.StatePersistence

 	TermUI.ComponentRegistry

 	TermUI.ComponentServer

 	TermUI.ComponentSupervisor

 	TermUI.Container

 	TermUI.Dev.DevMode

 	TermUI.Dev.HotReload

 	TermUI.Dev.PerfMonitor

 	TermUI.Dev.StateInspector

 	TermUI.Dev.UIInspector

 	TermUI.Elm.Helpers

 	TermUI.Event.Custom

 	TermUI.Event.Focus

 	TermUI.Event.Key

 	TermUI.Event.Mouse

 	TermUI.Event.Paste

 	TermUI.Event.Propagation

 	TermUI.Event.Resize

 	TermUI.Event.Tick

 	TermUI.Event.Transformation

 	TermUI.EventRouter

 	TermUI.Focus

 	TermUI.Focus.Indicator

 	TermUI.Focus.Tracker

 	TermUI.Focus.Traversal

 	TermUI.FocusManager

 	TermUI.Message

 	TermUI.MessageQueue

 	TermUI.Mouse

 	TermUI.Mouse.Router

 	TermUI.Mouse.Tracker

 	TermUI.Parser

 	TermUI.Parser.Events

 	TermUI.Parser.Events.FocusEvent

 	TermUI.Parser.Events.KeyEvent

 	TermUI.Parser.Events.MouseEvent

 	TermUI.Parser.Events.PasteEvent

 	TermUI.Parser.Events.ResizeEvent

 	TermUI.Platform

 	TermUI.Platform.Unix

 	TermUI.Platform.Windows

 	TermUI.Renderer.BufferManager

 	TermUI.Renderer.CursorOptimizer

 	TermUI.Renderer.Diff

 	TermUI.Renderer.DisplayWidth

 	TermUI.Renderer.FramerateLimiter

 	TermUI.Renderer.SequenceBuffer

 	TermUI.Runtime.NodeRenderer

 	TermUI.Runtime.State

 	TermUI.Shortcut

 	TermUI.SpatialIndex

 	TermUI.StatefulComponent

 	TermUI.Style

 	TermUI.Terminal

 	TermUI.Test.Assertions

 	TermUI.Test.ComponentHarness

 	TermUI.Test.EventSimulator

 	TermUI.Test.TestRenderer

 	TermUI.Theme

 	TermUI.ViewCache

 	TermUI.Widget.Block

 	TermUI.Widget.Button

 	TermUI.Widget.Label

 	TermUI.Widget.List

 	TermUI.Widget.PickList

 	TermUI.Widget.Progress

 	TermUI.Widget.TextInput

 	Core

 	TermUI

 	TermUI.Component

 	TermUI.Elm

 	TermUI.Event

 	TermUI.Runtime

 	Widgets

 	TermUI.Widgets.AlertDialog

 	TermUI.Widgets.BarChart

 	TermUI.Widgets.Canvas

 	TermUI.Widgets.ClusterDashboard

 	TermUI.Widgets.CommandPalette

 	TermUI.Widgets.ContextMenu

 	TermUI.Widgets.Dialog

 	TermUI.Widgets.FormBuilder

 	TermUI.Widgets.Gauge

 	TermUI.Widgets.LineChart

 	TermUI.Widgets.LogViewer

 	TermUI.Widgets.Menu

 	TermUI.Widgets.ProcessMonitor

 	TermUI.Widgets.ScrollBar

 	TermUI.Widgets.Sparkline

 	TermUI.Widgets.SplitPane

 	TermUI.Widgets.StreamWidget

 	TermUI.Widgets.StreamWidget.Consumer

 	TermUI.Widgets.SupervisionTreeViewer

 	TermUI.Widgets.Table

 	TermUI.Widgets.Table.Column

 	TermUI.Widgets.Tabs

 	TermUI.Widgets.TextInput

 	TermUI.Widgets.Toast

 	TermUI.Widgets.ToastManager

 	TermUI.Widgets.TreeView

 	TermUI.Widgets.Viewport

 	TermUI.Widgets.VisualizationHelper

 	TermUI.Widgets.WidgetHelpers

 	Rendering

 	TermUI.Component.RenderNode

 	TermUI.Renderer.Buffer

 	TermUI.Renderer.Cell

 	TermUI.Renderer.Style

 	Layout

 	TermUI.Layout.Alignment

 	TermUI.Layout.Cache

 	TermUI.Layout.Constraint

 	TermUI.Layout.Constraint.Fill

 	TermUI.Layout.Constraint.Length

 	TermUI.Layout.Constraint.Max

 	TermUI.Layout.Constraint.Min

 	TermUI.Layout.Constraint.Percentage

 	TermUI.Layout.Constraint.Ratio

 	TermUI.Layout.Solver

 	Terminal

 	TermUI.Terminal.EscapeParser

 	TermUI.Terminal.InputReader

 	TermUI.Terminal.State

 TermUI

[image: Hex.pm]
[image: Docs]
[image: License]
A direct-mode Terminal UI framework for Elixir/BEAM, inspired by BubbleTea (Go) and Ratatui (Rust).
TermUI leverages BEAM's unique strengths—fault tolerance, actor model, hot code reloading—to build robust terminal applications using The Elm Architecture.
 [image: Blue Theme]

 Changelog - TermUI v0.2.0

 Changelog

All notable changes to this project will be documented in this file.
The format is based on Keep a Changelog,
and this project adheres to Semantic Versioning.
Unreleased
0.2.0 - 2024-12-01
Added
	New Widgets
	PickList - Modal selection list for choosing items from a scrollable list
	FormBuilder - Structured form handling with validation and field management
	CommandPalette - VS Code-style fuzzy-search command discovery interface
	TreeView - Hierarchical data display with expand/collapse navigation
	SplitPane - Resizable multi-pane layouts with draggable dividers
	LogViewer - Real-time log display with filtering and scrolling
	StreamWidget - Backpressure-aware data streaming with GenStage integration
	ProcessMonitor - BEAM process introspection and monitoring
	SupervisionTreeViewer - OTP supervision hierarchy visualization
	ClusterDashboard - Distributed cluster node visualization and monitoring
	TextInput - Single-line and multi-line text input with cursor navigation

	Backend Abstraction
	Backend behaviour for terminal abstraction
	Raw backend for full terminal control
	TTY backend for line-based terminals
	Test backend for unit testing
	Automatic backend selection based on terminal capabilities
	Character set selection (Unicode/ASCII) with graceful degradation

	Rendering
	Overlay node support in NodeRenderer for absolute-positioned widgets (AlertDialog, Dialog, ContextMenu, Toast)

	Documentation
	Advanced widgets user guide
	Updated widget examples with run.exs entry points

0.1.0 - 2024-11-26
Added
	Initial release

	Core Framework
	Elm Architecture implementation (use TermUI.Elm)
	Runtime with 60 FPS rendering loop
	Event system for keyboard and mouse input
	Command system for side effects

	Rendering Engine
	ETS-based double buffering
	Differential rendering (only changed cells are updated)
	ANSI escape sequence batching
	Style system with colors and attributes

	Layout System
	Constraint-based layout solver
	Flexbox-style alignment
	Stack layouts (vertical/horizontal)

	Widgets
	Gauge (bar and arc styles with color zones)
	Sparkline (trend visualization)
	BarChart (horizontal/vertical)
	LineChart (Braille-based)
	Table (with selection and scrolling)
	Menu (hierarchical with submenus)
	Tabs (tabbed interface)
	Dialog (modal dialogs)
	Viewport (scrollable content)
	Canvas (custom drawing)
	Toast (notifications)
	ScrollBar
	ContextMenu
	AlertDialog

	Terminal Support
	Raw mode activation
	Cross-platform compatibility (Linux, macOS, Windows 10+)
	Terminal capability detection
	Color degradation (true color → 256 → 16)

	Developer Experience
	Development mode with hot reload
	Performance monitoring
	Testing framework
	Comprehensive documentation

Documentation
	User guides (overview, getting started, architecture, events, styling, layout, widgets)
	Developer guides (architecture, runtime, rendering, events, buffers, terminal, creating widgets)
	Widget examples with READMEs

 User Guides - TermUI v0.2.0

 TermUI User Guides

Welcome to the TermUI documentation. These guides cover everything you need to build terminal user interfaces with Elixir.
Guides
	Overview - Introduction to TermUI and its architecture
	Getting Started - Build your first TermUI application
	The Elm Architecture - Understanding the component model
	Events - Handling keyboard, mouse, and other input
	Styling - Colors, attributes, and themes
	Layout - Positioning and sizing components
	Widgets - Using pre-built components
	Terminal - Terminal modes and capabilities
	Commands - Side effects and async operations
	Advanced Widgets - Navigation, visualization, data streaming, and BEAM introspection widgets

Quick Start
defmodule MyApp do
 use TermUI.Elm

 def init(_opts), do: %{count: 0}

 def event_to_msg(%Event.Key{key: :up}, _), do: {:msg, :inc}
 def event_to_msg(%Event.Key{key: :down}, _), do: {:msg, :dec}
 def event_to_msg(%Event.Key{key: "q"}, _), do: {:msg, :quit}
 def event_to_msg(_, _), do: :ignore

 def update(:inc, s), do: {%{s | count: s.count + 1}, []}
 def update(:dec, s), do: {%{s | count: s.count - 1}, []}
 def update(:quit, s), do: {s, [:quit]}

 def view(state), do: text("Count: #{state.count}")
end

Run with: TermUI.Runtime.run(root: MyApp)
Requirements
	Elixir 1.15+
	OTP 28+
	Terminal with ANSI support

Examples
See the examples/ directory for complete applications:
	dashboard - System monitoring dashboard with gauges, sparklines, and tables

 Overview - TermUI v0.2.0

 TermUI Overview

TermUI is a direct-mode Terminal UI framework for Elixir/BEAM applications. It enables building rich, interactive terminal interfaces that leverage the BEAM's unique strengths: fault tolerance, the actor model, hot code reloading, and distribution.
What is TermUI?
TermUI provides everything you need to build terminal-based user interfaces:
	The Elm Architecture - A proven pattern for building interactive UIs with predictable state management
	Rich Widget Library - Pre-built components like gauges, tables, sparklines, and more
	Declarative Styling - Fluent API for colors, attributes, and themes
	Flexible Layout - Constraint-based layout system with automatic sizing
	Full Input Support - Keyboard, mouse, paste, and focus events
	High Performance - Differential rendering at 60 FPS with minimal terminal updates

Architecture Overview
┌───┐
│ Your Application │
│ ┌───┐ │
│ │ Elm Components │ │
│ │ init → event_to_msg → update → view │ │
│ └───┘ │
├───┤
│ TermUI Runtime │
│ ┌──────────┐ ┌──────────┐ ┌──────────┐ │
│ │ Events │ │ Commands │ │ Renderer │ │
│ └──────────┘ └──────────┘ └──────────┘ │
├───┤
│ Terminal Layer │
│ ┌──────────┐ ┌──────────┐ ┌──────────┐ │
│ │ Raw Mode │ │ Mouse │ │ Screen │ │
│ └──────────┘ └──────────┘ └──────────┘ │
└───┘
Core Concepts
The Elm Architecture
TermUI uses The Elm Architecture, a pattern for building interactive programs:
	Model - Your application state (a plain Elixir map or struct)
	Update - A function that takes a message and state, returns new state
	View - A function that renders state to the screen

defmodule Counter do
 use TermUI.Elm

 def init(_opts), do: %{count: 0}

 def event_to_msg(%Event.Key{key: :up}, _state), do: {:msg, :increment}
 def event_to_msg(%Event.Key{key: :down}, _state), do: {:msg, :decrement}
 def event_to_msg(_, _), do: :ignore

 def update(:increment, state), do: {%{state | count: state.count + 1}, []}
 def update(:decrement, state), do: {%{state | count: state.count - 1}, []}

 def view(state) do
 text("Count: #{state.count}")
 end
end
Events and Messages
Terminal input (keys, mouse, resize) arrives as events. Your component converts events to messages via event_to_msg/2. Messages drive state changes through update/2.
Commands
Side effects (timers, file I/O, etc.) are represented as commands returned from update/2. The runtime executes them asynchronously and delivers results back as messages.
Rendering
The view/1 function returns a render tree - a declarative description of what should appear on screen. TermUI diffs this against the previous frame and sends only the changes to the terminal.
Key Features
Widgets
Pre-built components for common UI patterns:
	Widget	Description
	Gauge	Progress bar with color zones
	Sparkline	Compact inline trend graph
	Table	Scrollable data table
	Menu	Selectable menu items
	TextInput	Text entry field
	Dialog	Modal dialog box

Styling
Rich styling with colors and attributes:
Style.new(fg: :cyan, bg: :black, attrs: [:bold, :underline])
Supports 16 colors, 256-color palette, and true color (24-bit RGB).
Layout
Declarative constraints for flexible layouts:
stack(:horizontal, [
 {gauge, Constraint.percentage(30)},
 {table, Constraint.fill()}
])
Terminal Features
	Raw Mode - Character-by-character input without line buffering
	Alternate Screen - Preserves user's shell history
	Mouse Tracking - Click, drag, and scroll events
	Focus Events - Know when the terminal gains/loses focus

Requirements
	Elixir 1.15+
	OTP 28+
	A terminal emulator with ANSI support

Next Steps
	Getting Started - Build your first TermUI app
	The Elm Architecture - Deep dive into the component model
	Events - Handle keyboard, mouse, and other input
	Styling - Colors, attributes, and themes
	Layout - Positioning and sizing components
	Widgets - Using built-in widgets
	Terminal - Low-level terminal control
	Commands - Side effects and async operations

 Getting Started - TermUI v0.2.0

 Getting Started

This guide walks you through creating your first TermUI application.
Installation
Add TermUI to your dependencies in mix.exs:
def deps do
 [
 {:term_ui, path: "../term_ui"} # Or from Hex when published
]
end
Then fetch dependencies:
mix deps.get

Your First Application
Let's build a simple counter that responds to keyboard input.
Step 1: Create the Component
Create lib/my_app/counter.ex:
defmodule MyApp.Counter do
 @moduledoc """
 A simple counter component demonstrating TermUI basics.
 """

 use TermUI.Elm

 alias TermUI.Event
 alias TermUI.Renderer.Style

 # Initialize state
 def init(_opts) do
 %{count: 0}
 end

 # Convert events to messages
 def event_to_msg(%Event.Key{key: key}, _state) when key in ["q", "Q"] do
 {:msg, :quit}
 end

 def event_to_msg(%Event.Key{key: :up}, _state), do: {:msg, :increment}
 def event_to_msg(%Event.Key{key: :down}, _state), do: {:msg, :decrement}
 def event_to_msg(_, _state), do: :ignore

 # Update state based on messages
 def update(:quit, state) do
 {state, [:quit]}
 end

 def update(:increment, state) do
 {%{state | count: state.count + 1}, []}
 end

 def update(:decrement, state) do
 {%{state | count: state.count - 1}, []}
 end

 # Render the view
 def view(state) do
 stack(:vertical, [
 text("Simple Counter", Style.new(fg: :cyan, attrs: [:bold])),
 text(""),
 text("Count: #{state.count}", Style.new(fg: :white)),
 text(""),
 text("[↑] Increment [↓] Decrement [Q] Quit", Style.new(fg: :bright_black))
])
 end
end
Step 2: Create the Entry Point
Create lib/my_app.ex:
defmodule MyApp do
 @moduledoc """
 Entry point for the counter application.
 """

 def run do
 TermUI.Runtime.run(root: MyApp.Counter)
 end

 def start do
 TermUI.Runtime.start_link(root: MyApp.Counter)
 end
end
Step 3: Create a Run Script
Create run.exs:
MyApp.run()
Step 4: Run the Application
mix run run.exs

You should see your counter application. Press ↑ to increment, ↓ to decrement, and Q to quit.
Understanding the Code
The use TermUI.Elm Macro
This sets up your module as an Elm Architecture component, importing necessary functions like text/1, text/2, and stack/2.
The Four Callbacks
	init/1 - Called once when the component starts. Returns initial state.

	event_to_msg/2 - Converts terminal events to application messages. Return values:
	{:msg, message} - Send message to update/2
	:ignore - Discard the event
	:propagate - Pass to parent component

	update/2 - Handles messages and returns {new_state, commands}. Commands are side effects like timers or quit requests.

	view/1 - Returns a render tree describing what to display.

Render Tree Primitives
	text(string) - Plain text
	text(string, style) - Styled text
	stack(:vertical, children) - Vertical layout
	stack(:horizontal, children) - Horizontal layout

Adding More Features
Color Based on Value
def view(state) do
 count_style = cond do
 state.count > 0 -> Style.new(fg: :green)
 state.count < 0 -> Style.new(fg: :red)
 true -> Style.new(fg: :white)
 end

 stack(:vertical, [
 text("Count: #{state.count}", count_style),
 # ...
])
end
Reset Functionality
Add to event_to_msg/2:
def event_to_msg(%Event.Key{key: key}, _state) when key in ["r", "R"] do
 {:msg, :reset}
end
Add to update/2:
def update(:reset, state) do
 {%{state | count: 0}, []}
end
Using Widgets
alias TermUI.Widgets.Gauge

def view(state) do
 # Normalize count to 0-100 range for gauge
 gauge_value = max(0, min(100, state.count + 50))

 stack(:vertical, [
 text("Counter with Gauge"),
 text(""),
 Gauge.render(value: gauge_value, width: 30),
 text(""),
 text("Count: #{state.count}")
])
end
Running in IEx
For development, you can start the app without blocking:
iex -S mix
iex> MyApp.start()
{:ok, #PID<0.123.0>}
The terminal UI will appear, and you'll return to the IEx prompt. Use TermUI.Runtime.shutdown(pid) to stop it.
Next Steps
	The Elm Architecture - Learn the pattern in depth
	Events - Handle all types of input
	Styling - Make your app visually appealing
	Widgets - Use pre-built components

 The Elm Architecture - TermUI v0.2.0

 The Elm Architecture

The Elm Architecture (TEA) is the core pattern used by TermUI for building interactive applications. It provides predictable state management and a clear separation of concerns.
Overview
The architecture consists of three parts:
	Model - The state of your application
	Update - How state changes in response to messages
	View - How state is rendered to the screen

 ┌───┐
 │ │
 │ ┌─────────┐ message ┌──────────┐ │
 │ │ View │ ◄────────── │ Update │ │
 │ └────┬────┘ └────▲─────┘ │
 │ │ │ │
 │ │ render tree │ msg │
 │ ▼ │ │
 │ ┌─────────┐ event ┌────┴─────┐ │
 │ │ Runtime │ ──────────►│event_to_ │ │
 │ │ │ │ msg │ │
 │ └─────────┘ └──────────┘ │
 │ │
 └───┘
The Four Callbacks
init/1 - Initialize State
Called once when your component starts. Receives options and returns initial state.
def init(opts) do
 name = Keyword.get(opts, :name, "World")
 %{
 name: name,
 count: 0,
 items: []
 }
end
State is typically a map, but can be any Elixir term.
event_to_msg/2 - Convert Events to Messages
Transforms terminal events into application-specific messages.
def event_to_msg(%Event.Key{key: :enter}, state) do
 {:msg, {:submit, state.input}}
end

def event_to_msg(%Event.Key{key: :escape}, _state) do
 {:msg, :cancel}
end

def event_to_msg(%Event.Mouse{action: :click, x: x, y: y}, _state) do
 {:msg, {:clicked, x, y}}
end

def event_to_msg(_event, _state) do
 :ignore
end
Return values:
	Return	Effect
	{:msg, message}	Send message to update/2
	:ignore	Discard the event
	:propagate	Pass to parent component

update/2 - Handle Messages
Receives a message and current state, returns new state and commands.
def update(:increment, state) do
 {%{state | count: state.count + 1}, []}
end

def update({:set_name, name}, state) do
 {%{state | name: name}, []}
end

def update(:save, state) do
 # Use timer with 0 delay to perform side effect on next tick
 {state, [Command.timer(0, :do_save)]}
end

def update(:do_save, state) do
 # Perform the file write synchronously
 File.write("data.txt", state.data)
 {%{state | saved: true}, []}
end
Return format: {new_state, commands}
	new_state - The updated state
	commands - List of side effects to execute (can be empty [])

view/1 - Render State
Transforms state into a render tree describing what to display.
def view(state) do
 stack(:vertical, [
 text("Hello, #{state.name}!", Style.new(fg: :cyan)),
 text(""),
 text("Count: #{state.count}"),
 render_items(state.items)
])
end

defp render_items([]), do: text("No items")
defp render_items(items) do
 stack(:vertical, Enum.map(items, fn item ->
 text("• #{item}")
 end))
end
The view function should be pure - given the same state, it always returns the same render tree.
Message Flow
Here's the complete flow when a user presses a key:
	Input - User presses ↑ key
	Event - Runtime creates %Event.Key{key: :up}
	Routing - Event sent to focused component
	Transform - event_to_msg(%Event.Key{key: :up}, state) returns {:msg, :increment}
	Update - update(:increment, state) returns {new_state, []}
	Dirty - Component marked for re-render
	Render - On next frame, view(new_state) called
	Diff - Render tree compared to previous
	Output - Only changes sent to terminal

Commands
Commands represent side effects that happen outside the pure update cycle.
def update(:start_timer, state) do
 {state, [Command.timer(1000, :timer_tick)]}
end

def update(:timer_tick, state) do
 {%{state | ticks: state.ticks + 1}, []}
end
See Commands for full documentation.
State Design
Keep State Minimal
Only store what you need to render and respond to events:
Good - minimal state
%{
 selected_index: 0,
 items: ["a", "b", "c"]
}

Avoid - derived data in state
%{
 selected_index: 0,
 items: ["a", "b", "c"],
 selected_item: "a", # Can be derived
 item_count: 3 # Can be derived
}
Derive Values in View
Compute derived values when rendering:
def view(state) do
 selected_item = Enum.at(state.items, state.selected_index)
 item_count = length(state.items)

 stack(:vertical, [
 text("Selected: #{selected_item}"),
 text("Total: #{item_count} items")
])
end
Normalize State Updates
Use helper functions for complex state changes:
def update(:next_item, state) do
 {select_next(state), []}
end

def update(:prev_item, state) do
 {select_prev(state), []}
end

defp select_next(state) do
 max_index = length(state.items) - 1
 new_index = min(state.selected_index + 1, max_index)
 %{state | selected_index: new_index}
end

defp select_prev(state) do
 new_index = max(state.selected_index - 1, 0)
 %{state | selected_index: new_index}
end
Patterns
Loading States
def init(_opts) do
 %{status: :loading, data: nil, error: nil}
end

def update(:load, state) do
 # Use timer to trigger loading on next tick
 {%{state | status: :loading}, [Command.timer(0, :do_load)]}
end

def update(:do_load, state) do
 # Perform the fetch synchronously (or spawn a Task for async)
 case fetch_data() do
 {:ok, data} ->
 {%{state | status: :ready, data: data}, []}
 {:error, reason} ->
 {%{state | status: :error, error: reason}, []}
 end
end

def view(state) do
 case state.status do
 :loading -> text("Loading...")
 :error -> text("Error: #{state.error}", Style.new(fg: :red))
 :ready -> render_data(state.data)
 end
end
Form Input
def init(_opts) do
 %{name: "", email: "", focused: :name}
end

def event_to_msg(%Event.Key{key: :tab}, _state), do: {:msg, :next_field}
def event_to_msg(%Event.Key{char: char}, state) when is_binary(char) do
 {:msg, {:input, state.focused, char}}
end

def update(:next_field, state) do
 next = case state.focused do
 :name -> :email
 :email -> :name
 end
 {%{state | focused: next}, []}
end

def update({:input, field, char}, state) do
 current = Map.get(state, field)
 {Map.put(state, field, current <> char), []}
end
Confirmation Dialogs
def init(_opts) do
 %{items: [...], confirm_delete: nil}
end

def update({:request_delete, item}, state) do
 {%{state | confirm_delete: item}, []}
end

def update(:confirm_delete, state) do
 items = List.delete(state.items, state.confirm_delete)
 {%{state | items: items, confirm_delete: nil}, []}
end

def update(:cancel_delete, state) do
 {%{state | confirm_delete: nil}, []}
end

def view(state) do
 if state.confirm_delete do
 render_confirm_dialog(state.confirm_delete)
 else
 render_items(state.items)
 end
end
Testing
The Elm Architecture makes testing straightforward:
defmodule MyApp.CounterTest do
 use ExUnit.Case

 alias MyApp.Counter

 test "init returns zero count" do
 state = Counter.init([])
 assert state.count == 0
 end

 test "increment increases count" do
 state = %{count: 5}
 {new_state, []} = Counter.update(:increment, state)
 assert new_state.count == 6
 end

 test "up key sends increment message" do
 event = %Event.Key{key: :up}
 assert {:msg, :increment} = Counter.event_to_msg(event, %{})
 end

 test "view renders count" do
 state = %{count: 42}
 tree = Counter.view(state)
 # Assert on render tree structure
 end
end
Next Steps
	Events - All event types and handling
	Commands - Side effects in detail
	Widgets - Pre-built components

 Events - TermUI v0.2.0

 Events

TermUI delivers terminal input as structured events to your components. This guide covers all event types and how to handle them.
Event Types
Key Events
Keyboard input including regular characters, special keys, and modifier combinations.
%Event.Key{
 key: :enter, # Atom for special keys, string for characters
 char: nil, # Character string (nil for special keys)
 modifiers: [:ctrl], # List of :ctrl, :alt, :shift
 timestamp: 123456789 # Monotonic time in milliseconds
}
Special Keys:
	Key	Atom
	Enter	:enter
	Escape	:escape
	Tab	:tab
	Backspace	:backspace
	Delete	:delete
	Insert	:insert
	Home	:home
	End	:end
	Page Up	:page_up
	Page Down	:page_down
	Arrow Up	:up
	Arrow Down	:down
	Arrow Left	:left
	Arrow Right	:right
	F1-F12	:f1 through :f12

Character Keys:
Regular characters are delivered as strings:
%Event.Key{key: "a", char: "a"} # Lowercase a
%Event.Key{key: "A", char: "A"} # Uppercase A (shift held)
%Event.Key{key: " ", char: " "} # Space
%Event.Key{key: "1", char: "1"} # Number 1
Handling Key Events:
Match special keys
def event_to_msg(%Event.Key{key: :enter}, _state), do: {:msg, :submit}
def event_to_msg(%Event.Key{key: :escape}, _state), do: {:msg, :cancel}

Match characters (case-insensitive)
def event_to_msg(%Event.Key{key: key}, _state) when key in ["q", "Q"] do
 {:msg, :quit}
end

Match with modifiers
def event_to_msg(%Event.Key{key: "s", modifiers: [:ctrl]}, _state) do
 {:msg, :save}
end

Match any character for text input
def event_to_msg(%Event.Key{char: char}, state) when is_binary(char) do
 {:msg, {:char_input, char}}
end

Ignore unhandled keys
def event_to_msg(%Event.Key{}, _state), do: :ignore
Mouse Events
Mouse clicks, movement, and scrolling.
%Event.Mouse{
 action: :click, # :click, :double_click, :press, :release, :drag, :move
 button: :left, # :left, :middle, :right, or nil
 x: 10, # Column (0-indexed)
 y: 5, # Row (0-indexed)
 modifiers: [], # :ctrl, :alt, :shift
 timestamp: 123456789
}
Mouse Actions:
	Action	Description
	:press	Button pressed down
	:release	Button released
	:click	Press and release
	:double_click	Two clicks in quick succession
	:drag	Movement with button held
	:move	Movement without button
	:scroll_up	Scroll wheel up
	:scroll_down	Scroll wheel down

Handling Mouse Events:
def event_to_msg(%Event.Mouse{action: :click, x: x, y: y}, _state) do
 {:msg, {:click, x, y}}
end

def event_to_msg(%Event.Mouse{action: :scroll_up}, _state) do
 {:msg, :scroll_up}
end

def event_to_msg(%Event.Mouse{action: :scroll_down}, _state) do
 {:msg, :scroll_down}
end

def event_to_msg(%Event.Mouse{action: :drag, x: x, y: y}, _state) do
 {:msg, {:drag, x, y}}
end
Mouse Tracking Modes:
Mouse events require enabling mouse tracking:
In Terminal setup (done automatically by Runtime)
Terminal.enable_mouse_tracking(:click) # Click events only
Terminal.enable_mouse_tracking(:drag) # Click and drag
Terminal.enable_mouse_tracking(:all) # All movement
Resize Events
Terminal window size changes.
%Event.Resize{
 width: 120, # New column count
 height: 40, # New row count
 timestamp: 123456789
}
Handling Resize:
def event_to_msg(%Event.Resize{width: w, height: h}, _state) do
 {:msg, {:resize, w, h}}
end

def update({:resize, width, height}, state) do
 {%{state | width: width, height: height}, []}
end
Focus Events
Terminal window focus changes.
%Event.Focus{
 action: :gained, # :gained or :lost
 timestamp: 123456789
}
Handling Focus:
def event_to_msg(%Event.Focus{action: :gained}, _state) do
 {:msg, :focus_gained}
end

def event_to_msg(%Event.Focus{action: :lost}, _state) do
 {:msg, :focus_lost}
end

def update(:focus_lost, state) do
 # Pause animations, save state, etc.
 {%{state | paused: true}, []}
end
Paste Events
Text pasted from clipboard (with bracketed paste mode).
%Event.Paste{
 content: "pasted text",
 timestamp: 123456789
}
Handling Paste:
def event_to_msg(%Event.Paste{content: text}, _state) do
 {:msg, {:paste, text}}
end

def update({:paste, text}, state) do
 {%{state | input: state.input <> text}, []}
end
Tick Events
Timer-based periodic events.
%Event.Tick{
 interval: 1000, # Interval in milliseconds
 timestamp: 123456789
}
These are typically generated by commands rather than received directly.
Custom Events
Application-defined events.
%Event.Custom{
 name: :data_loaded,
 payload: %{items: [...]},
 timestamp: 123456789
}
Event Handling Patterns
Catch-All Handler
Always include a catch-all to handle unexpected events:
def event_to_msg(_, _state), do: :ignore
Conditional Handling
Handle events differently based on state:
def event_to_msg(%Event.Key{key: :enter}, %{mode: :edit}) do
 {:msg, :confirm_edit}
end

def event_to_msg(%Event.Key{key: :enter}, %{mode: :view}) do
 {:msg, :start_edit}
end
Key Sequences
Track key sequences for shortcuts:
def init(_opts) do
 %{key_buffer: []}
end

def event_to_msg(%Event.Key{key: "g"}, %{key_buffer: ["g"]}) do
 {:msg, :go_to_top} # gg command
end

def event_to_msg(%Event.Key{key: key}, _state) when is_binary(key) do
 {:msg, {:key_pressed, key}}
end

def update({:key_pressed, key}, state) do
 buffer = [key | state.key_buffer] |> Enum.take(2)
 {%{state | key_buffer: buffer}, [Command.timer(500, :clear_buffer)]}
end

def update(:clear_buffer, state) do
 {%{state | key_buffer: []}, []}
end
Modal Input
Different handling for different modes:
def event_to_msg(event, %{mode: :normal} = state) do
 handle_normal_mode(event, state)
end

def event_to_msg(event, %{mode: :insert} = state) do
 handle_insert_mode(event, state)
end

defp handle_normal_mode(%Event.Key{key: "i"}, _state), do: {:msg, :enter_insert}
defp handle_normal_mode(%Event.Key{key: "j"}, _state), do: {:msg, :move_down}
defp handle_normal_mode(%Event.Key{key: "k"}, _state), do: {:msg, :move_up}
defp handle_normal_mode(_, _), do: :ignore

defp handle_insert_mode(%Event.Key{key: :escape}, _state), do: {:msg, :exit_insert}
defp handle_insert_mode(%Event.Key{char: char}, _state) when is_binary(char) do
 {:msg, {:insert_char, char}}
end
defp handle_insert_mode(_, _), do: :ignore
Event Constructors
Create events programmatically (useful for testing):
Key events
Event.key(:enter)
Event.key("a")
Event.key("s", modifiers: [:ctrl])

Mouse events
Event.mouse(:click, :left, 10, 5)
Event.mouse(:scroll_up, nil, 10, 5)

Other events
Event.Resize.new(120, 40)
Event.Focus.new(:gained)
Event.Paste.new("text")
Testing Events
defmodule MyApp.ComponentTest do
 use ExUnit.Case
 alias TermUI.Event

 test "enter key submits form" do
 state = %{input: "test"}
 event = Event.key(:enter)

 assert {:msg, :submit} = MyApp.Component.event_to_msg(event, state)
 end

 test "ctrl+s saves" do
 event = Event.key("s", modifiers: [:ctrl])
 assert {:msg, :save} = MyApp.Component.event_to_msg(event, %{})
 end

 test "click selects item" do
 event = Event.mouse(:click, :left, 5, 10)
 assert {:msg, {:select, 5, 10}} = MyApp.Component.event_to_msg(event, %{})
 end
end
Next Steps
	Styling - Visual styling and themes
	Commands - Timers and side effects
	Terminal - Low-level terminal control

 Styling - TermUI v0.2.0

 Styling

TermUI provides a comprehensive styling system for colors, text attributes, and themes.
Style Basics
Create styles using Style.new/1:
alias TermUI.Renderer.Style

Basic style
style = Style.new(fg: :cyan, bg: :black)

With attributes
style = Style.new(fg: :red, attrs: [:bold, :underline])

Apply to text
text("Hello, World!", style)
Colors
Named Colors (16 colors)
Standard terminal colors supported everywhere:
	Color	Normal	Bright
	Black	:black	:bright_black
	Red	:red	:bright_red
	Green	:green	:bright_green
	Yellow	:yellow	:bright_yellow
	Blue	:blue	:bright_blue
	Magenta	:magenta	:bright_magenta
	Cyan	:cyan	:bright_cyan
	White	:white	:bright_white

Style.new(fg: :cyan)
Style.new(fg: :bright_yellow, bg: :blue)
256-Color Palette
Extended palette for more color options:
Color index 0-255
Style.new(fg: 196) # Bright red
Style.new(bg: 236) # Dark gray
Color ranges:
	0-15: Standard colors (same as named)
	16-231: 6×6×6 color cube
	232-255: Grayscale ramp

True Color (24-bit RGB)
Full RGB support on modern terminals:
Style.new(fg: {255, 128, 0}) # Orange
Style.new(bg: {30, 30, 30}) # Dark gray
Default Color
Use terminal's default foreground/background:
Style.new(fg: :default)
Style.new(bg: :default)
Text Attributes
Modify text appearance:
	Attribute	Effect
	:bold	Bold/bright text
	:dim	Dimmed/faint text
	:italic	Italic text
	:underline	Underlined text
	:blink	Blinking text
	:reverse	Swap foreground/background
	:hidden	Hidden text
	:strikethrough	Strikethrough text

Style.new(attrs: [:bold])
Style.new(attrs: [:bold, :underline])
Style.new(fg: :red, attrs: [:bold, :italic])
Note: Not all terminals support all attributes. bold, underline, and reverse have the widest support.
Fluent API
Build styles with method chaining:
style = Style.new()
 |> Style.fg(:blue)
 |> Style.bg(:white)
 |> Style.bold()
 |> Style.underline()
Available methods:
	Style.fg(style, color) - Set foreground
	Style.bg(style, color) - Set background
	Style.bold(style) - Add bold
	Style.dim(style) - Add dim
	Style.italic(style) - Add italic
	Style.underline(style) - Add underline
	Style.blink(style) - Add blink
	Style.reverse(style) - Add reverse
	Style.hidden(style) - Add hidden
	Style.strikethrough(style) - Add strikethrough

Style Merging
Combine styles with later values overriding earlier:
base = Style.new(fg: :white, bg: :black)
highlight = Style.new(fg: :yellow, attrs: [:bold])

merged = Style.merge(base, highlight)
Result: fg: :yellow, bg: :black, attrs: [:bold]
Using Styles in Views
Styled Text
def view(state) do
 title_style = Style.new(fg: :cyan, attrs: [:bold])
 body_style = Style.new(fg: :white)

 stack(:vertical, [
 text("My Application", title_style),
 text(""),
 text("Welcome!", body_style)
])
end
Conditional Styling
def view(state) do
 status_style = case state.status do
 :ok -> Style.new(fg: :green)
 :warning -> Style.new(fg: :yellow)
 :error -> Style.new(fg: :red, attrs: [:bold])
 end

 text("Status: #{state.status}", status_style)
end
Style Variables
Define reusable styles:
defmodule MyApp.Styles do
 alias TermUI.Renderer.Style

 def header, do: Style.new(fg: :cyan, attrs: [:bold])
 def label, do: Style.new(fg: :bright_black)
 def value, do: Style.new(fg: :white)
 def error, do: Style.new(fg: :red, attrs: [:bold])
 def success, do: Style.new(fg: :green)
 def selected, do: Style.new(fg: :black, bg: :cyan)
end
Usage:
alias MyApp.Styles

def view(state) do
 stack(:vertical, [
 text("Dashboard", Styles.header()),
 text("CPU:", Styles.label()),
 text("#{state.cpu}%", Styles.value())
])
end
Themes
Create theme maps for consistent styling:
defmodule MyApp.Theme do
 alias TermUI.Renderer.Style

 def dark do
 %{
 header: Style.new(fg: :cyan, attrs: [:bold]),
 border: Style.new(fg: :cyan),
 text: Style.new(fg: :white),
 muted: Style.new(fg: :bright_black),
 selected: Style.new(fg: :black, bg: :cyan),
 error: Style.new(fg: :red),
 success: Style.new(fg: :green)
 }
 end

 def light do
 %{
 header: Style.new(fg: :blue, attrs: [:bold]),
 border: Style.new(fg: :blue),
 text: Style.new(fg: :black),
 muted: Style.new(fg: :bright_black),
 selected: Style.new(fg: :white, bg: :blue),
 error: Style.new(fg: :red),
 success: Style.new(fg: :green)
 }
 end
end
Usage with theme switching:
def init(_opts) do
 %{theme: :dark}
end

def event_to_msg(%Event.Key{key: "t"}, _state), do: {:msg, :toggle_theme}

def update(:toggle_theme, state) do
 new_theme = if state.theme == :dark, do: :light, else: :dark
 {%{state | theme: new_theme}, []}
end

def view(state) do
 theme = case state.theme do
 :dark -> MyApp.Theme.dark()
 :light -> MyApp.Theme.light()
 end

 stack(:vertical, [
 text("My App", theme.header),
 text("Press T to toggle theme", theme.muted)
])
end
Widget Styling
Widgets accept styles in their options:
alias TermUI.Widgets.Gauge

Gauge.render(
 value: 75,
 width: 20,
 style: Style.new(fg: :green)
)
Color Zones
Some widgets support color zones based on value:
Gauge.render(
 value: cpu_percent,
 width: 20,
 zones: [
 {0, Style.new(fg: :green)}, # 0-59%: green
 {60, Style.new(fg: :yellow)}, # 60-79%: yellow
 {80, Style.new(fg: :red)} # 80-100%: red
]
)
Best Practices
1. Use Semantic Names
Good - semantic meaning
error_style = Style.new(fg: :red)
success_style = Style.new(fg: :green)

Avoid - color-focused
red_style = Style.new(fg: :red)
2. Consider Accessibility
	Ensure sufficient contrast between foreground and background
	Don't rely solely on color to convey information
	Use bold/underline for emphasis in addition to color

3. Support Light and Dark
Design themes that work on both light and dark terminal backgrounds:
Works on dark background
Style.new(fg: :white)

Works on light background
Style.new(fg: :black)

Works on both (terminal default)
Style.new(fg: :cyan) # Typically visible on both
4. Minimize Style Changes
The renderer optimizes style changes, but fewer changes means better performance:
Good - one style for the whole line
text("Label: Value", Style.new(fg: :white))

Less efficient - multiple style changes
stack(:horizontal, [
 text("Label: ", Style.new(fg: :bright_black)),
 text("Value", Style.new(fg: :white))
])
Next Steps
	Layout - Positioning and sizing
	Widgets - Pre-built styled components
	Terminal - Terminal capabilities

 Layout - TermUI v0.2.0

 Layout

TermUI provides a declarative layout system for positioning and sizing components.
Basic Layout
Vertical Stacking
Stack elements from top to bottom:
stack(:vertical, [
 text("Header"),
 text("Body"),
 text("Footer")
])
Output:
Header
Body
Footer
Horizontal Stacking
Stack elements from left to right:
stack(:horizontal, [
 text("Left"),
 text(" | "),
 text("Right")
])
Output:
Left | Right
Nested Layouts
Combine stacks for complex layouts:
stack(:vertical, [
 text("=== Header ==="),
 stack(:horizontal, [
 text("[Sidebar]"),
 text(" "),
 text("[Main Content]")
]),
 text("=== Footer ===")
])
Output:
=== Header ===
[Sidebar] [Main Content]
=== Footer ===
Constraints
Control how space is allocated using constraints.
Fixed Size
Exact number of cells:
alias TermUI.Layout.Constraint

stack(:horizontal, [
 {text("Fixed"), Constraint.length(10)},
 {text("Rest"), Constraint.fill()}
])
Percentage
Proportion of available space:
stack(:horizontal, [
 {left_panel, Constraint.percentage(30)},
 {right_panel, Constraint.percentage(70)}
])
Fill
Take all remaining space:
stack(:horizontal, [
 {sidebar, Constraint.length(20)}, # Fixed 20 columns
 {content, Constraint.fill()} # Rest of the space
])
Ratio
Proportional distribution:
stack(:horizontal, [
 {panel_a, Constraint.ratio(1)}, # 1 part
 {panel_b, Constraint.ratio(2)}, # 2 parts
 {panel_c, Constraint.ratio(1)} # 1 part
])
Results in 25%, 50%, 25% distribution
Min and Max
Set bounds on size:
At least 10, at most 50
Constraint.percentage(30)
 |> Constraint.with_min(10)
 |> Constraint.with_max(50)
Common Layout Patterns
Header-Body-Footer
def view(state) do
 stack(:vertical, [
 {render_header(state), Constraint.length(3)},
 {render_body(state), Constraint.fill()},
 {render_footer(state), Constraint.length(1)}
])
end

defp render_header(state) do
 text("=== My Application ===", Style.new(fg: :cyan, attrs: [:bold]))
end

defp render_body(state) do
 stack(:vertical, [
 text("Main content here"),
 text("..."),
])
end

defp render_footer(state) do
 text("[Q]uit [H]elp", Style.new(fg: :bright_black))
end
Sidebar Layout
def view(state) do
 stack(:horizontal, [
 {render_sidebar(state), Constraint.length(25)},
 {render_main(state), Constraint.fill()}
])
end

defp render_sidebar(state) do
 stack(:vertical, [
 text("Navigation", Style.new(attrs: [:bold])),
 text(""),
 text("• Dashboard"),
 text("• Settings"),
 text("• Help")
])
end

defp render_main(state) do
 text("Main content area")
end
Two-Column Layout
def view(state) do
 stack(:horizontal, [
 {left_column(state), Constraint.percentage(50)},
 {right_column(state), Constraint.percentage(50)}
])
end
Dashboard Grid
def view(state) do
 stack(:vertical, [
 # Top row - three equal panels
 {stack(:horizontal, [
 {cpu_gauge(state), Constraint.ratio(1)},
 {memory_gauge(state), Constraint.ratio(1)},
 {disk_gauge(state), Constraint.ratio(1)}
]), Constraint.length(5)},

 # Bottom row - two panels
 {stack(:horizontal, [
 {process_list(state), Constraint.percentage(60)},
 {network_stats(state), Constraint.percentage(40)}
]), Constraint.fill()}
])
end
Centered Content
def view(state) do
 # Horizontal centering with fill on both sides
 stack(:horizontal, [
 {text(""), Constraint.fill()},
 {render_dialog(state), Constraint.length(40)},
 {text(""), Constraint.fill()}
])
end
Text Alignment
Align text within available space:
alias TermUI.Layout.Alignment

Left aligned (default)
text("Left", alignment: :left)

Center aligned
text("Center", alignment: :center)

Right aligned
text("Right", alignment: :right)
Box Drawing
Create bordered containers:
def render_box(title, content) do
 stack(:vertical, [
 text("┌─ #{title} " <> String.duplicate("─", 20) <> "┐"),
 stack(:horizontal, [
 text("│ "),
 content,
 text(" │")
]),
 text("└" <> String.duplicate("─", 24) <> "┘")
])
end
Responsive Layouts
Adapt layout based on terminal size:
def view(%{width: width} = state) when width < 80 do
 # Narrow layout - vertical stacking
 stack(:vertical, [
 render_sidebar(state),
 render_main(state)
])
end

def view(state) do
 # Wide layout - horizontal stacking
 stack(:horizontal, [
 {render_sidebar(state), Constraint.length(25)},
 {render_main(state), Constraint.fill()}
])
end
Handle resize events:
def event_to_msg(%Event.Resize{width: w, height: h}, _state) do
 {:msg, {:resize, w, h}}
end

def update({:resize, width, height}, state) do
 {%{state | width: width, height: height}, []}
end
Empty Space
Add spacing between elements:
Empty line
text("")

Multiple empty lines
stack(:vertical, [
 text("First"),
 text(""),
 text(""),
 text("Second")
])

Horizontal space
stack(:horizontal, [
 text("Label:"),
 text(" "), # 3 spaces
 text("Value")
])
Conditional Rendering
Show/hide elements based on state:
def view(state) do
 stack(:vertical, [
 text("Header"),
 if state.show_details do
 render_details(state)
 else
 text("")
 end,
 text("Footer")
])
end
Or use list filtering:
def view(state) do
 elements = [
 text("Header"),
 state.show_details && render_details(state),
 text("Footer")
]

 stack(:vertical, Enum.filter(elements, & &1))
end
Performance Tips
1. Avoid Deep Nesting
Flatten layouts where possible:
Less efficient
stack(:vertical, [
 stack(:vertical, [
 stack(:vertical, [
 text("Deeply nested")
])
])
])

More efficient
stack(:vertical, [
 text("Flat")
])
2. Use Constraints Sparingly
Only specify constraints when needed:
Simple case - no constraints needed
stack(:vertical, [
 text("Line 1"),
 text("Line 2")
])

Complex case - constraints needed
stack(:horizontal, [
 {sidebar, Constraint.length(20)},
 {content, Constraint.fill()}
])
3. Memoize Complex Layouts
For layouts that don't change often:
def view(state) do
 stack(:vertical, [
 render_static_header(), # Cached internally
 render_dynamic_content(state) # Recomputed each frame
])
end

Static content can be module attribute
@header text("My Application", Style.new(fg: :cyan))
defp render_static_header, do: @header
Next Steps
	Widgets - Pre-built layout-aware components
	Styling - Visual styling
	Events - Handle resize events

 Widgets - TermUI v0.2.0

 Widgets

TermUI includes pre-built widgets for common UI patterns. This guide covers the available widgets and how to use them.
Widget Types
TermUI has two types of widgets:
	Simple Widgets - Stateless, render with keyword options (Gauge, Sparkline)
	Stateful Widgets - Use the StatefulComponent pattern with new/init/handle_event/render

Simple Widgets
Gauge
Example: See examples/gauge/ for a complete demonstration.

Displays a value as a progress bar with optional color zones.
alias TermUI.Widgets.Gauge
alias TermUI.Renderer.Style

Basic gauge
Gauge.render(value: 75, width: 20)

With color zones
Gauge.render(
 value: cpu_percent,
 width: 20,
 zones: [
 {0, Style.new(fg: :green)}, # 0-59: green
 {60, Style.new(fg: :yellow)}, # 60-79: yellow
 {80, Style.new(fg: :red)} # 80-100: red
]
)

With value display
Gauge.render(
 value: 42,
 width: 30,
 show_value: true,
 show_range: true
)
Options:
	Option	Type	Default	Description
	value	number	required	Current value (0-100)
	width	integer	20	Width in characters
	zones	list	[]	Color zones [{threshold, style}]
	show_value	boolean	false	Display numeric value
	show_range	boolean	false	Display min/max
	style	Style	default	Base style

Example Output:
[████████████░░░░░░░░] 60%
Sparkline
Example: See examples/sparkline/ for a complete demonstration.

Compact inline graph showing trends.
alias TermUI.Widgets.Sparkline

Basic sparkline
Sparkline.render(values: [10, 25, 40, 30, 50, 45, 60])

With range
Sparkline.render(
 values: history,
 min: 0,
 max: 100,
 style: Style.new(fg: :cyan)
)
Options:
	Option	Type	Default	Description
	values	list	required	List of numeric values
	min	number	auto	Minimum value for scaling
	max	number	auto	Maximum value for scaling
	style	Style	default	Color style

Example Output:
▁▂▄▃▆▅█
Uses Unicode block characters (▁▂▃▄▅▆▇█) to show 8 levels of height.
Stateful Widgets
Stateful widgets follow the StatefulComponent pattern:
1. Create props with Widget.new(opts)
props = Widget.new(option: value)

2. Initialize state with Widget.init(props)
{:ok, widget_state} = Widget.init(props)

3. Handle events with Widget.handle_event(event, state)
{:ok, widget_state} = Widget.handle_event(event, widget_state)

4. Render with Widget.render(state, area)
node = Widget.render(widget_state, %{width: 80, height: 24})
Table
Example: See examples/table/ for a complete demonstration.

Scrollable data table with selection and sorting.
alias TermUI.Widgets.Table
alias TermUI.Widgets.Table.Column

Create props
props = Table.new(
 columns: [
 Column.new(:name, "Name"),
 Column.new(:age, "Age", width: 10, align: :right),
 Column.new(:city, "City", width: 15)
],
 data: [
 %{name: "Alice", age: 30, city: "NYC"},
 %{name: "Bob", age: 25, city: "LA"},
 %{name: "Carol", age: 35, city: "Chicago"}
],
 selection_mode: :single,
 on_select: fn row -> IO.inspect(row) end
)

Initialize
{:ok, table_state} = Table.init(props)

In your component's event handler
def update({:table_event, event}, state) do
 {:ok, new_table} = Table.handle_event(event, state.table)
 {%{state | table: new_table}, []}
end

In your view
def view(state) do
 Table.render(state.table, %{width: 60, height: 15})
end
Options:
	Option	Type	Default	Description
	columns	list	required	Column definitions
	data	list	required	List of row maps
	selection_mode	atom	:single	:none, :single, or :multi
	sortable	boolean	true	Enable column sorting
	on_select	function	nil	Selection callback
	header_style	Style	default	Header row style
	selected_style	Style	reverse	Selected row style

Keyboard Navigation:
	Arrow keys: Move selection
	Page Up/Down: Scroll by page
	Home/End: Jump to first/last row
	Enter: Confirm selection
	Space: Toggle selection (multi mode)

Menu
Example: See examples/menu/ for a complete demonstration.

Hierarchical menu with submenus and keyboard navigation.
alias TermUI.Widgets.Menu

Create props with item constructors
props = Menu.new(
 items: [
 Menu.action(:new, "New File", shortcut: "Ctrl+N"),
 Menu.action(:open, "Open...", shortcut: "Ctrl+O"),
 Menu.separator(),
 Menu.submenu(:recent, "Recent Files", [
 Menu.action(:file1, "document.txt"),
 Menu.action(:file2, "notes.md")
]),
 Menu.separator(),
 Menu.checkbox(:autosave, "Auto Save", checked: true),
 Menu.action(:exit, "Exit", shortcut: "Ctrl+Q")
],
 on_select: fn id -> handle_menu_action(id) end
)

Initialize
{:ok, menu_state} = Menu.init(props)

Handle events and render
{:ok, menu_state} = Menu.handle_event(event, menu_state)
Menu.render(menu_state, %{width: 30, height: 20})
Item Types:
	Constructor	Description
	Menu.action(id, label, opts)	Selectable menu item
	Menu.submenu(id, label, children)	Item with nested menu
	Menu.separator()	Visual divider
	Menu.checkbox(id, label, opts)	Toggleable item

Keyboard Navigation:
	Up/Down: Move between items
	Enter/Space: Select or expand submenu
	Left: Collapse submenu
	Right: Expand submenu
	Escape: Close menu

TextInput
Example: See examples/text_input/ for a complete demonstration.

Single-line and multi-line text input with cursor movement.
alias TermUI.Widgets.TextInput

Create props
props = TextInput.new(
 placeholder: "Enter your name...",
 width: 40,
 multiline: false
)

Initialize
{:ok, input_state} = TextInput.init(props)

Handle events
{:ok, input_state} = TextInput.handle_event(event, input_state)

Get current value
value = TextInput.get_value(input_state)

Render
TextInput.render(input_state, %{width: 50, height: 1})
Options:
	Option	Type	Default	Description
	value	string	""	Initial text value
	placeholder	string	""	Placeholder text
	width	integer	40	Field width
	multiline	boolean	false	Enable multi-line mode
	max_visible_lines	integer	5	Lines before scrolling
	enter_submits	boolean	false	Enter submits vs newline
	on_change	function	nil	Value change callback
	on_submit	function	nil	Submit callback

Keyboard Controls:
	Left/Right: Move cursor
	Up/Down: Move between lines (multiline)
	Home/End: Start/end of line
	Ctrl+Home/End: Start/end of text
	Backspace/Delete: Delete characters
	Ctrl+Enter: Insert newline (multiline)
	Enter: Submit or newline

Helper Functions:
Get current value
TextInput.get_value(state) # => "current text"

Get cursor position
TextInput.get_cursor(state) # => {row, col}

Get line count
TextInput.get_line_count(state) # => 3

Set focus
state = TextInput.set_focused(state, true)

Clear input
state = TextInput.clear(state)
Dialog
Example: See examples/dialog/ for a complete demonstration.

Modal dialog with buttons.
alias TermUI.Widgets.Dialog

Create props
props = Dialog.new(
 title: "Confirm Delete",
 content: text("Are you sure you want to delete this file?"),
 buttons: [
 %{id: :cancel, label: "Cancel"},
 %{id: :confirm, label: "Delete", style: :danger}
],
 width: 50,
 on_confirm: fn button_id -> handle_action(button_id) end
)

Initialize and use
{:ok, dialog_state} = Dialog.init(props)
{:ok, dialog_state} = Dialog.handle_event(event, dialog_state)
Dialog.render(dialog_state, %{width: 80, height: 24})
Options:
	Option	Type	Default	Description
	title	string	required	Dialog title
	content	node	nil	Dialog body content
	buttons	list	[{id: :ok, label: "OK"}]	Button definitions
	width	integer	40	Dialog width
	closeable	boolean	true	Escape closes dialog
	on_close	function	nil	Close callback
	on_confirm	function	nil	Button activation callback

Keyboard Navigation:
	Tab/Shift+Tab: Move between buttons
	Enter/Space: Activate focused button
	Escape: Close dialog

PickList
Example: See examples/pick_list/ for a complete demonstration.

Modal selection dialog with type-ahead filtering.
alias TermUI.Widget.PickList

Create props
props = %{
 items: ["Apple", "Banana", "Cherry", "Date", "Elderberry"],
 title: "Select Fruit",
 width: 40,
 height: 12,
 on_select: fn item -> handle_selection(item) end,
 on_cancel: fn -> handle_cancel() end
}

Initialize
{:ok, picklist_state} = PickList.init(props)

Handle events
{:ok, picklist_state} = PickList.handle_event(event, picklist_state)

Render
PickList.render(picklist_state, %{width: 80, height: 24})
Options:
	Option	Type	Default	Description
	items	list	required	List of items to display
	title	string	"Select"	Modal title
	width	integer	40	Modal width
	height	integer	10	Modal height
	on_select	function	nil	Selection callback fn item -> ... end
	on_cancel	function	nil	Cancel callback fn -> ... end
	style	map	%{}	Border/text style
	highlight_style	map	inverted	Selected item style

Keyboard Controls:
	Up/Down: Navigate items
	Page Up/Down: Jump 10 items
	Home/End: Jump to first/last
	Enter: Confirm selection
	Escape: Cancel
	Typing: Filter items (type-ahead)
	Backspace: Remove filter character

Building Custom Widgets
Create reusable widgets as functions:
defmodule MyApp.Widgets do
 import TermUI.Component.Helpers
 alias TermUI.Renderer.Style

 @doc """
 Renders a labeled value pair.
 """
 def labeled_value(label, value, opts \\ []) do
 label_style = Keyword.get(opts, :label_style, Style.new(fg: :bright_black))
 value_style = Keyword.get(opts, :value_style, Style.new(fg: :white))

 stack(:horizontal, [
 text("#{label}: ", label_style),
 text(to_string(value), value_style)
])
 end

 @doc """
 Renders a bordered box with title.
 """
 def box(title, content, opts \\ []) do
 width = Keyword.get(opts, :width, 40)
 border_style = Keyword.get(opts, :border_style, Style.new(fg: :cyan))

 inner_width = width - 4
 top_border = "┌─ " <> title <> " " <> String.duplicate("─", inner_width - String.length(title) - 1) <> "┐"
 bottom_border = "└" <> String.duplicate("─", width - 2) <> "┘"

 stack(:vertical, [
 text(top_border, border_style),
 stack(:horizontal, [
 text("│ ", border_style),
 content,
 text(" │", border_style)
]),
 text(bottom_border, border_style)
])
 end

 @doc """
 Renders a status indicator.
 """
 def status_indicator(status) do
 {symbol, style} = case status do
 :ok -> {"●", Style.new(fg: :green)}
 :warning -> {"●", Style.new(fg: :yellow)}
 :error -> {"●", Style.new(fg: :red)}
 :unknown -> {"○", Style.new(fg: :bright_black)}
 end

 text(symbol, style)
 end
end
Usage:
import MyApp.Widgets

def view(state) do
 stack(:vertical, [
 box("System Status", stack(:vertical, [
 stack(:horizontal, [
 status_indicator(:ok),
 text(" "),
 labeled_value("CPU", "#{state.cpu}%")
]),
 stack(:horizontal, [
 status_indicator(:warning),
 text(" "),
 labeled_value("Memory", "#{state.memory}%")
])
]))
])
end
Widget Composition
Combine widgets for complex UIs:
alias TermUI.Widgets.{Gauge, Sparkline, Table}

def view(state) do
 stack(:vertical, [
 # Header with gauges
 stack(:horizontal, [
 box("CPU", Gauge.render(value: state.cpu, width: 15)),
 box("Memory", Gauge.render(value: state.mem, width: 15))
]),

 # Sparkline history
 box("Network", stack(:vertical, [
 stack(:horizontal, [
 text("RX: "),
 Sparkline.render(values: state.rx_history)
]),
 stack(:horizontal, [
 text("TX: "),
 Sparkline.render(values: state.tx_history)
])
])),

 # Process table (stateful widget)
 Table.render(state.table, %{width: 60, height: 10})
])
end
Full Example: Component with TextInput
defmodule MyApp.SearchForm do
 use TermUI.Elm

 alias TermUI.Event
 alias TermUI.Widgets.TextInput

 def init(_opts) do
 props = TextInput.new(
 placeholder: "Search...",
 width: 40
)
 {:ok, input_state} = TextInput.init(props)

 %{
 input: TextInput.set_focused(input_state, true),
 results: []
 }
 end

 def event_to_msg(%Event.Key{key: :enter}, state) do
 query = TextInput.get_value(state.input)
 {:msg, {:search, query}}
 end

 def event_to_msg(%Event.Key{key: "q"}, %{input: input}) do
 # Only quit if input is empty
 if TextInput.get_value(input) == "" do
 {:msg, :quit}
 else
 {:msg, {:input_event, %Event.Key{key: "q", char: "q"}}}
 end
 end

 def event_to_msg(event, _state) do
 {:msg, {:input_event, event}}
 end

 def update(:quit, state), do: {state, [:quit]}

 def update({:input_event, event}, state) do
 {:ok, new_input} = TextInput.handle_event(event, state.input)
 {%{state | input: new_input}, []}
 end

 def update({:search, query}, state) do
 results = perform_search(query)
 {%{state | results: results}, []}
 end

 def view(state) do
 stack(:vertical, [
 text("Search:", Style.new(fg: :cyan)),
 TextInput.render(state.input, %{width: 50, height: 1}),
 text(""),
 render_results(state.results)
])
 end

 defp perform_search(query), do: []
 defp render_results([]), do: text("No results")
 defp render_results(results) do
 stack(:vertical, Enum.map(results, &text(&1)))
 end
end
Next Steps
	Advanced Widgets - Navigation, visualization, streaming, and BEAM introspection widgets
	Styling - Customize widget appearance
	Layout - Position widgets
	Events - Handle widget interactions

 Terminal - TermUI v0.2.0

 Terminal

TermUI manages low-level terminal operations automatically, but understanding these features helps you build better applications.
Terminal Modes
Cooked Mode (Default)
Normal terminal operation:
	Line buffering (input sent on Enter)
	Character echoing
	Signal handling (Ctrl+C sends SIGINT)

Raw Mode
TermUI's operating mode:
	Character-by-character input
	No echoing
	No signal handling
	Full control over display

The runtime enables raw mode automatically. It's restored when your app exits.
Alternate Screen
Terminals have two screen buffers:
	Main screen - The normal scrollback buffer
	Alternate screen - A separate buffer for full-screen apps

TermUI uses the alternate screen, preserving the user's shell history. When your app exits, the terminal returns to the main screen with history intact.
┌─────────────────────┐ ┌─────────────────────┐
│ $ ls │ │ ┌─────────────────┐ │
│ file1.txt │ │ │ Your TermUI │ │
│ file2.txt │ --> │ │ Application │ │
│ $ my_app │ │ │ │ │
│ │ │ └─────────────────┘ │
│ Main Screen │ │ Alternate Screen │
└─────────────────────┘ └─────────────────────┘
 │
 │ (exit)
 ▼
 ┌─────────────────────┐
 │ $ ls │
 │ file1.txt │
 │ file2.txt │
 │ $ my_app │
 │ $ │
 │ Back to Main │
 └─────────────────────┘
Mouse Tracking
TermUI can capture mouse events.
Tracking Modes
	Mode	Events Captured
	:click	Button press/release
	:drag	Click + drag movements
	:all	All mouse movement

The runtime enables click tracking by default.
Mouse Coordinates
Mouse positions are 0-indexed:
	x = column (0 = leftmost)
	y = row (0 = topmost)

def event_to_msg(%Event.Mouse{action: :click, x: x, y: y}, state) do
 # Check if click is within a region
 if x >= 10 and x < 30 and y >= 5 and y < 10 do
 {:msg, :button_clicked}
 else
 :ignore
 end
end
Scroll Events
Mouse wheel generates scroll events:
def event_to_msg(%Event.Mouse{action: :scroll_up}, _state) do
 {:msg, :scroll_up}
end

def event_to_msg(%Event.Mouse{action: :scroll_down}, _state) do
 {:msg, :scroll_down}
end
Focus Events
Know when the terminal window gains or loses focus:
def event_to_msg(%Event.Focus{action: :gained}, _state) do
 {:msg, :focus_gained}
end

def event_to_msg(%Event.Focus{action: :lost}, _state) do
 {:msg, :focus_lost}
end

def update(:focus_lost, state) do
 # Pause updates, dim display, etc.
 {%{state | paused: true}, []}
end

def update(:focus_gained, state) do
 # Resume updates
 {%{state | paused: false}, []}
end
Note: Focus events require terminal support. They work on most modern terminals (xterm, iTerm2, Alacritty, Kitty, Windows Terminal).
Terminal Size
Getting Size
Query current dimensions:
{:ok, {rows, cols}} = TermUI.Terminal.get_terminal_size()
Handling Resize
Respond to window size changes:
def event_to_msg(%Event.Resize{width: w, height: h}, _state) do
 {:msg, {:resize, w, h}}
end

def update({:resize, width, height}, state) do
 {%{state | width: width, height: height}, []}
end

def view(state) do
 if state.width < 80 do
 render_compact_layout(state)
 else
 render_full_layout(state)
 end
end
Cursor Control
The runtime manages cursor visibility and position. The cursor is hidden during normal operation to avoid flicker.
For text input widgets that need a visible cursor:
The cursor position is managed by the renderer
Your TextInput widget indicates where the cursor should be
TextInput.render(
 value: state.text,
 cursor_position: state.cursor_pos,
 focused: true # Shows cursor
)
Color Support
Detection
TermUI detects terminal color capabilities:
	16 colors (basic)
	256 colors (extended)
	True color (24-bit RGB)

Graceful Degradation
Use named colors for maximum compatibility:
Works everywhere
Style.new(fg: :red)

Requires 256-color support
Style.new(fg: 196)

Requires true color support
Style.new(fg: {255, 100, 50})
The renderer automatically degrades colors for less capable terminals.
Clipboard
Paste Events
Bracketed paste mode delivers pasted text as a single event:
def event_to_msg(%Event.Paste{content: text}, _state) do
 {:msg, {:paste, text}}
end

def update({:paste, text}, state) do
 # Insert pasted text at cursor
 new_text = state.text <> text
 {%{state | text: new_text}, []}
end
Without bracketed paste, pasted text would arrive as individual key events, which is slower and may trigger unintended shortcuts.
Terminal Requirements
Minimum Requirements
	ANSI escape sequence support
	UTF-8 encoding
	80x24 minimum size

Recommended
	256-color or true color support
	Mouse tracking support
	Focus event support
	Unicode box drawing characters

Supported Terminals
Tested and working:
	Terminal	Platform	Notes
	Alacritty	Cross-platform	Full support
	Kitty	Linux/macOS	Full support
	iTerm2	macOS	Full support
	WezTerm	Cross-platform	Full support
	GNOME Terminal	Linux	Full support
	Windows Terminal	Windows	Full support
	Terminal.app	macOS	Limited mouse
	xterm	Cross-platform	Full support

SSH Sessions
TermUI works over SSH when the remote terminal supports required features. The runtime detects terminal capabilities through multiple methods to ensure SSH compatibility.
Error Handling
Terminal Not Available
Handle cases where no terminal is present:
case TermUI.Runtime.start_link(root: MyApp) do
 {:ok, pid} ->
 # Running normally
 pid

 {:error, :not_a_terminal} ->
 IO.puts("Error: Must run in a terminal")
 System.halt(1)
end
Cleanup on Crash
The runtime traps exits and restores terminal state even if your app crashes:
In Runtime.init/1
Process.flag(:trap_exit, true)

In Runtime.terminate/2
Terminal.restore() # Always runs
This ensures users don't get stuck in raw mode with no echo.
Direct Terminal Access
For advanced use cases, access terminal functions directly:
alias TermUI.Terminal

These are managed by Runtime, but available if needed:
Terminal.enable_raw_mode()
Terminal.disable_raw_mode()
Terminal.enter_alternate_screen()
Terminal.leave_alternate_screen()
Terminal.show_cursor()
Terminal.hide_cursor()
Terminal.clear_screen()
Terminal.set_cursor_position(row, col)
Warning: Direct terminal access can interfere with the runtime. Use only when necessary.
Next Steps
	Events - Handle terminal input
	Commands - Async operations
	Styling - Colors and attributes

 Commands - TermUI v0.2.0

 Commands

Commands represent side effects in TermUI applications. They're returned from update/2 and executed asynchronously by the runtime.
Why Commands?
The Elm Architecture keeps update/2 pure - it only transforms state based on messages. Side effects like timers, file I/O, and HTTP requests are described as commands and executed by the runtime.
Benefits:
	Testable - Test state logic without mocking side effects
	Predictable - State changes are synchronous and traceable
	Composable - Combine multiple commands easily

Command Basics
Return commands from update/2:
def update(:start_timer, state) do
 # Return new state AND a list of commands
 {state, [Command.timer(1000, :timer_done)]}
end

def update(:timer_done, state) do
 # Handle the result
 {%{state | timer_fired: true}, []}
end
Available Commands
Timer
Execute a message after a delay:
Fire :timeout message after 5 seconds
Command.timer(5000, :timeout)

With data in the message
Command.timer(1000, {:delayed_action, some_data})
Quit
Request application shutdown:
def update(:quit, state) do
 {state, [:quit]}
end

Or using Command module
def update(:quit, state) do
 {state, [Command.quit()]}
end
The runtime will:
	Stop accepting new events
	Clean up resources
	Restore terminal state
	Exit the process

None
Explicit no-op (useful for conditional commands):
def update(:maybe_save, state) do
 cmd = if state.dirty do
 Command.timer(0, :do_save)
 else
 Command.none()
 end
 {state, [cmd]}
end
Command Patterns
Debouncing
Delay action until input stops:
def init(_opts) do
 %{search: "", debounce_ref: nil}
end

def update({:search_input, text}, state) do
 # Cancel previous timer if any
 commands = if state.debounce_ref do
 [] # Previous timer will be ignored
 else
 []
 end

 # Start new debounce timer
 ref = make_ref()
 commands = commands ++ [Command.timer(300, {:do_search, ref})]

 {%{state | search: text, debounce_ref: ref}, commands}
end

def update({:do_search, ref}, %{debounce_ref: ref} = state) do
 # Ref matches - this is the latest search
 # Perform search...
 {%{state | results: search(state.search)}, []}
end

def update({:do_search, _old_ref}, state) do
 # Ref doesn't match - ignore stale search
 {state, []}
end
Chained Operations
Sequence multiple async operations:
def update(:start_workflow, state) do
 {%{state | step: :loading}, [Command.timer(0, :step_1)]}
end

def update(:step_1, state) do
 # Do step 1...
 {%{state | step: :step_1_done}, [Command.timer(100, :step_2)]}
end

def update(:step_2, state) do
 # Do step 2...
 {%{state | step: :step_2_done}, [Command.timer(100, :step_3)]}
end

def update(:step_3, state) do
 {%{state | step: :complete}, []}
end
Polling
Periodic updates:
def init(_opts) do
 # Start polling immediately
 %{data: nil}
end

def update(:init, state) do
 {state, [Command.timer(0, :poll)]}
end

def update(:poll, state) do
 # Fetch new data
 new_data = fetch_data()

 # Schedule next poll
 {%{state | data: new_data}, [Command.timer(5000, :poll)]}
end
Conditional Commands
Build command list based on state:
def update(:save, state) do
 commands = []

 # Always show saving indicator
 commands = commands ++ [Command.timer(0, :show_saving)]

 # Maybe backup first
 commands = if state.backup_enabled do
 commands ++ [Command.timer(0, :backup)]
 else
 commands
 end

 # Do the save
 commands = commands ++ [Command.timer(100, :do_save)]

 {state, commands}
end
Error Handling
Handle command failures:
def update(:load_data, state) do
 {%{state | loading: true}, [Command.timer(0, :do_load)]}
end

def update(:do_load, state) do
 case fetch_data() do
 {:ok, data} ->
 {%{state | loading: false, data: data, error: nil}, []}

 {:error, reason} ->
 {%{state | loading: false, error: reason}, []}
 end
end

def view(state) do
 cond do
 state.loading -> text("Loading...")
 state.error -> text("Error: #{state.error}", Style.new(fg: :red))
 true -> render_data(state.data)
 end
end
Animation
Frame-based animation:
@frame_interval 50 # ~20 FPS

def init(_opts) do
 %{frame: 0, animating: false}
end

def update(:start_animation, state) do
 {%{state | animating: true, frame: 0}, [Command.timer(@frame_interval, :animate)]}
end

def update(:animate, %{animating: true} = state) do
 next_frame = state.frame + 1

 if next_frame >= 60 do
 # Animation complete
 {%{state | animating: false}, []}
 else
 # Continue animation
 {%{state | frame: next_frame}, [Command.timer(@frame_interval, :animate)]}
 end
end

def update(:animate, state) do
 # Animation was stopped
 {state, []}
end

def update(:stop_animation, state) do
 {%{state | animating: false}, []}
end
Spinner
Indeterminate progress indicator:
@spinner_frames ["⠋", "⠙", "⠹", "⠸", "⠼", "⠴", "⠦", "⠧", "⠇", "⠏"]
@spinner_interval 80

def init(_opts) do
 %{loading: false, spinner_frame: 0}
end

def update(:start_loading, state) do
 {%{state | loading: true}, [Command.timer(@spinner_interval, :spin)]}
end

def update(:spin, %{loading: true} = state) do
 next_frame = rem(state.spinner_frame + 1, length(@spinner_frames))
 {%{state | spinner_frame: next_frame}, [Command.timer(@spinner_interval, :spin)]}
end

def update(:spin, state) do
 {state, []}
end

def update(:stop_loading, state) do
 {%{state | loading: false}, []}
end

def view(state) do
 if state.loading do
 frame = Enum.at(@spinner_frames, state.spinner_frame)
 text("#{frame} Loading...")
 else
 text("Ready")
 end
end
Multiple Commands
Return multiple commands at once:
def update(:initialize, state) do
 commands = [
 Command.timer(0, :load_config),
 Command.timer(0, :load_data),
 Command.timer(0, :start_heartbeat)
]
 {state, commands}
end
Commands execute concurrently. Results arrive as separate messages.
Testing Commands
Test that correct commands are returned:
defmodule MyApp.ComponentTest do
 use ExUnit.Case
 alias TermUI.Command

 test "quit returns quit command" do
 state = %{count: 0}
 {_new_state, commands} = MyApp.Component.update(:quit, state)

 assert :quit in commands
 end

 test "start timer returns timer command" do
 state = %{}
 {_new_state, commands} = MyApp.Component.update(:start, state)

 assert [Command.timer(1000, :tick)] == commands
 end
end
Custom Commands
For operations not covered by built-in commands, use timer with immediate execution:
def update(:custom_operation, state) do
 # Timer with 0 delay executes on next message loop
 {state, [Command.timer(0, :do_custom)]}
end

def update(:do_custom, state) do
 # Perform the operation synchronously
 result = perform_custom_operation()
 {%{state | result: result}, []}
end
For truly async operations (HTTP, file I/O), spawn a task:
def update(:fetch_data, state) do
 # Start async task
 Task.start(fn ->
 result = HTTPClient.get(url)
 # Send result back to runtime
 send(self(), {:data_loaded, result})
 end)

 {%{state | loading: true}, []}
end

In event_to_msg or handle_info
def event_to_msg({:data_loaded, result}, _state) do
 {:msg, {:data_loaded, result}}
end
Next Steps
	Elm Architecture - How commands fit in
	Events - Handle command results
	Widgets - Animated widgets

 Advanced Widgets - TermUI v0.2.0

 Advanced Widgets

TermUI includes advanced widgets for complex UI patterns including navigation, overlays, visualization, data streaming, and BEAM introspection. This guide covers these widgets and how to use them.
All advanced widgets use the StatefulComponent pattern:
1. Create props with Widget.new(opts)
props = Widget.new(option: value)

2. Initialize state with Widget.init(props)
{:ok, widget_state} = Widget.init(props)

3. Handle events with Widget.handle_event(event, state)
{:ok, widget_state} = Widget.handle_event(event, widget_state)

4. Render with Widget.render(state, area)
node = Widget.render(widget_state, %{width: 80, height: 24})
Navigation Widgets
Tabs
Example: See examples/tabs/ for a complete demonstration.

Tabbed interface for organizing content into switchable panels.
alias TermUI.Widgets.Tabs

Create props
props = Tabs.new(
 tabs: ["Overview", "Details", "Settings"],
 on_change: fn index -> handle_tab_change(index) end
)

Initialize and use
{:ok, tabs_state} = Tabs.init(props)
{:ok, tabs_state} = Tabs.handle_event(event, tabs_state)
Tabs.render(tabs_state, %{width: 60, height: 1})
Options:
	Option	Type	Default	Description
	tabs	list	required	Tab labels
	on_change	function	nil	Tab change callback
	style	Style	default	Tab bar style
	selected_style	Style	reverse	Selected tab style
	closeable	boolean	false	Show close buttons

Context Menu
Example: See examples/context_menu/ for a complete demonstration.

Right-click context menu that appears at cursor position.
alias TermUI.Widgets.ContextMenu

Create props
props = ContextMenu.new(
 items: [
 %{label: "Cut", shortcut: "Ctrl+X", action: :cut},
 %{label: "Copy", shortcut: "Ctrl+C", action: :copy},
 %{label: "Paste", shortcut: "Ctrl+V", action: :paste},
 :separator,
 %{label: "Delete", action: :delete}
],
 position: {10, 5},
 on_select: fn action -> handle_menu_action(action) end
)

Initialize and use
{:ok, menu_state} = ContextMenu.init(props)
{:ok, menu_state} = ContextMenu.handle_event(event, menu_state)
ContextMenu.render(menu_state, %{width: 30, height: 10})
Item Structure:
%{
 label: "Menu Item", # Display text
 shortcut: "Ctrl+X", # Optional shortcut hint
 action: :action_atom, # Action identifier
 disabled: false # Optional disabled state
}
Overlay Widgets
Alert Dialog
Example: See examples/alert_dialog/ for a complete demonstration.

Modal dialog for confirmations and messages with standard button configurations.
alias TermUI.Widgets.AlertDialog

Create props
props = AlertDialog.new(
 type: :confirm,
 title: "Delete File",
 message: "Are you sure you want to delete this file?",
 buttons: :yes_no,
 on_result: fn result -> handle_result(result) end
)

Initialize and use
{:ok, dialog_state} = AlertDialog.init(props)
{:ok, dialog_state} = AlertDialog.handle_event(event, dialog_state)
AlertDialog.render(dialog_state, %{width: 80, height: 24})
Options:
	Option	Type	Default	Description
	type	atom	:info	:info, :warning, :error, :success, :confirm
	title	string	""	Dialog title
	message	string	required	Dialog message
	buttons	atom/list	:ok	:ok, :ok_cancel, :yes_no, or custom list
	on_result	function	nil	Result callback

Type Icons:
	:info - ℹ (blue)
	:warning - ⚠ (yellow)
	:error - ✖ (red)
	:success - ✔ (green)
	:confirm - ? (cyan)

Toast
Example: See examples/toast/ for a complete demonstration.

Non-blocking notification that auto-dismisses. Use ToastManager to manage multiple toasts with stacking.
alias TermUI.Widgets.ToastManager

Create manager in your init
def init(_opts) do
 %{
 toast_manager: ToastManager.new(
 position: :bottom_right,
 default_duration: 3000,
 max_toasts: 5
)
 }
end

Add toasts
def update({:show_toast, type, message}, state) do
 manager = ToastManager.add_toast(state.toast_manager, message, type)
 {%{state | toast_manager: manager}, []}
end

Update on tick (removes expired toasts)
def update(:tick, state) do
 manager = ToastManager.tick(state.toast_manager)
 {%{state | toast_manager: manager}, []}
end

Render in view
def view(state) do
 stack(:vertical, [
 render_main_content(state),
 ToastManager.render(state.toast_manager, %{width: 80, height: 24, x: 0, y: 0})
])
end
ToastManager Options:
	Option	Type	Default	Description
	position	atom	:bottom_right	Toast position (see below)
	max_toasts	integer	5	Maximum simultaneous toasts
	default_duration	integer	3000	Default duration in ms
	spacing	integer	1	Vertical spacing between toasts

Positions: :top_left, :top_center, :top_right, :bottom_left, :bottom_center, :bottom_right
Toast Types: :info (ℹ blue), :success (✓ green), :warning (⚠ yellow), :error (✗ red)
ToastManager Functions:
Add a toast
manager = ToastManager.add_toast(manager, "Message", :success)
manager = ToastManager.add_toast(manager, "Message", :warning, duration: 5000)

Update (removes expired toasts)
manager = ToastManager.tick(manager)

Get visible toast count
count = ToastManager.toast_count(manager)

Clear all toasts
manager = ToastManager.clear_all(manager)
Visualization Widgets
Bar Chart
Example: See examples/bar_chart/ for a complete demonstration.

Horizontal or vertical bar chart for categorical data.
alias TermUI.Widgets.BarChart

Render directly (simple widget)
BarChart.render(
 data: [
 %{label: "Sales", value: 150},
 %{label: "Marketing", value: 80},
 %{label: "Engineering", value: 200}
],
 width: 40,
 show_values: true,
 show_labels: true
)
Options:
	Option	Type	Default	Description
	data	list	required	List of %{label, value} maps
	direction	atom	:horizontal	:horizontal or :vertical
	width	integer	40	Chart width
	height	integer	10	Chart height (vertical only)
	show_values	boolean	true	Display values
	show_labels	boolean	true	Display labels

Example Output:
Sales ████████████████ 150
Marketing ████████ 80
Engineering █████████████████████ 200
Line Chart
Example: See examples/line_chart/ for a complete demonstration.

Line chart using Braille characters for sub-character resolution.
alias TermUI.Widgets.LineChart

Single series
LineChart.render(
 data: [10, 25, 18, 30, 22, 35, 28],
 width: 40,
 height: 8
)

Multiple series
LineChart.render(
 series: [
 %{data: cpu_history, style: Style.new(fg: :green)},
 %{data: mem_history, style: Style.new(fg: :yellow)}
],
 width: 60,
 height: 10,
 min: 0,
 max: 100
)
Options:
	Option	Type	Default	Description
	data	list	-	Single series data
	series	list	-	Multiple series with styles
	width	integer	40	Chart width
	height	integer	8	Chart height
	min	number	auto	Y-axis minimum
	max	number	auto	Y-axis maximum

Canvas
Example: See examples/canvas/ for a complete demonstration.

Direct drawing surface for custom visualizations.
alias TermUI.Widgets.Canvas

Create canvas props
props = Canvas.new(
 width: 60,
 height: 20
)

{:ok, canvas_state} = Canvas.init(props)

Draw on canvas
canvas_state = canvas_state
 |> Canvas.draw_rect(0, 0, 59, 19)
 |> Canvas.draw_line(0, 10, 59, 10)
 |> Canvas.draw_text(25, 0, "Title", Style.new(fg: :cyan))

Canvas.render(canvas_state, %{width: 60, height: 20})
Drawing Functions:
	Function	Description
	draw_text(x, y, text, style)	Draw text at position
	draw_line(x1, y1, x2, y2)	Draw line between points
	draw_rect(x, y, w, h, opts)	Draw rectangle
	fill_rect(x, y, w, h, char)	Fill rectangle with character
	clear()	Clear canvas

Layout Widgets
Viewport
Example: See examples/viewport/ for a complete demonstration.

Scrollable view of content larger than the display area. The Viewport widget clips content to a visible region and supports both keyboard and mouse scrolling.
alias TermUI.Widgets.Viewport

Create props
props = Viewport.new(
 content: my_large_content(), # The content to scroll (render node)
 content_width: 200, # Total width of content
 content_height: 100, # Total height of content
 width: 60, # Viewport width
 height: 20, # Viewport height
 scroll_x: 0, # Initial horizontal scroll
 scroll_y: 0, # Initial vertical scroll
 scroll_bars: :both # :none, :vertical, :horizontal, or :both
)

{:ok, viewport_state} = Viewport.init(props)
{:ok, viewport_state} = Viewport.handle_event(scroll_event, viewport_state)
Viewport.render(viewport_state, %{width: 60, height: 20})
Keyboard Navigation:
	Arrow keys: Scroll by one line/column
	Page Up/Down: Scroll by viewport height
	Home/End: Scroll to top/bottom
	Ctrl+Home/End: Scroll to top-left/bottom-right

Mouse Support:
	Mouse wheel: Scroll vertically
	Click on scroll bar track: Page scroll
	Drag scroll bar thumb: Direct scroll positioning

Helper Functions:
Get current scroll position
{x, y} = Viewport.get_scroll(state)

Set scroll position (clamped to valid range)
state = Viewport.set_scroll(state, 50, 100)

Scroll to make a position visible
state = Viewport.scroll_into_view(state, target_x, target_y)

Update content
state = Viewport.set_content(state, new_content)

Update content dimensions
state = Viewport.set_content_size(state, new_width, new_height)

Check if scrollable
Viewport.can_scroll_vertical?(state) # true/false
Viewport.can_scroll_horizontal?(state) # true/false
Complete Example:
defmodule MyApp do
 use TermUI.Elm
 alias TermUI.Widgets.Viewport

 def init(_opts) do
 # Create large scrollable content
 content = generate_large_content()

 props = Viewport.new(
 content: content,
 content_width: 200,
 content_height: 500,
 width: 60,
 height: 20,
 scroll_bars: :both
)

 {:ok, viewport} = Viewport.init(props)
 %{viewport: viewport}
 end

 def event_to_msg(event, _state) do
 {:msg, {:viewport_event, event}}
 end

 def update({:viewport_event, event}, state) do
 {:ok, new_viewport} = Viewport.handle_event(event, state.viewport)
 {%{state | viewport: new_viewport}, []}
 end

 def view(state) do
 Viewport.render(state.viewport, %{width: 60, height: 20})
 end

 defp generate_large_content do
 lines = for i <- 1..500 do
 {:text, "Line #{i}: Lorem ipsum dolor sit amet, consectetur adipiscing elit"}
 end
 stack(:vertical, lines)
 end
end
Split Pane
Example: See examples/split_pane/ for a complete demonstration.

Resizable split layout for IDE-style interfaces.
alias TermUI.Widgets.SplitPane

Create props
props = SplitPane.new(
 direction: :horizontal,
 initial_ratio: 0.3,
 min_size: 10,
 max_size: 50,
 on_resize: fn ratio -> handle_resize(ratio) end
)

{:ok, pane_state} = SplitPane.init(props)
{:ok, pane_state} = SplitPane.handle_event(event, pane_state)
SplitPane.render(pane_state, %{width: 100, height: 30})
Options:
	Option	Type	Default	Description
	direction	atom	:horizontal	:horizontal or :vertical
	initial_ratio	float	0.5	Split ratio (0.0-1.0)
	min_size	integer	5	Minimum pane size
	max_size	integer	nil	Maximum pane size
	draggable	boolean	true	Allow resize

Tree View
Example: See examples/tree_view/ for a complete demonstration.

Hierarchical data with expand/collapse.
alias TermUI.Widgets.TreeView

Create props
props = TreeView.new(
 data: [
 %{
 id: :src,
 label: "src",
 icon: "📁",
 children: [
 %{id: :main, label: "main.ex", icon: "📄"},
 %{id: :utils, label: "utils.ex", icon: "📄"}
]
 },
 %{id: :readme, label: "README.md", icon: "📄"}
],
 on_select: fn node_id -> handle_select(node_id) end
)

{:ok, tree_state} = TreeView.init(props)
{:ok, tree_state} = TreeView.handle_event(event, tree_state)
TreeView.render(tree_state, %{width: 40, height: 20})
Node Structure:
%{
 id: unique_id, # Required
 label: "Node Name",
 icon: "📁", # Optional icon
 children: [...] # Optional child nodes
}
Input Widgets
Form Builder
Example: See examples/form_builder/ for a complete demonstration.

Structured forms with validation and multiple field types.
alias TermUI.Widgets.FormBuilder

Create props
props = FormBuilder.new(
 fields: [
 %{id: :username, type: :text, label: "Username", required: true},
 %{id: :password, type: :password, label: "Password", required: true,
 validators: [&validate_password/1]},
 %{id: :role, type: :select, label: "Role",
 options: [{"admin", "Admin"}, {"user", "User"}]},
 %{id: :notifications, type: :checkbox, label: "Email notifications"},
 %{id: :theme, type: :radio, label: "Theme",
 options: [{"light", "Light"}, {"dark", "Dark"}]}
],
 submit_label: "Register",
 label_width: 15,
 field_width: 30
)

{:ok, form_state} = FormBuilder.init(props)

Handle events
{:ok, form_state} = FormBuilder.handle_event(event, form_state)

Get form values
values = FormBuilder.get_values(form_state)

Render
FormBuilder.render(form_state, %{width: 60, height: 20})
Field Types:
	Type	Description
	:text	Single-line text input
	:password	Masked password input
	:checkbox	Boolean checkbox
	:radio	Radio button group
	:select	Dropdown selection
	:multi_select	Multiple selection

Field Options:
%{
 id: :field_name,
 type: :text,
 label: "Field Label",
 required: true,
 placeholder: "Enter value...",
 validators: [&custom_validator/1],
 visible_when: fn values -> values[:other_field] == true end
}
Command Palette
Example: See examples/command_palette/ for a complete demonstration.

VS Code-style command interface with fuzzy search.
alias TermUI.Widgets.CommandPalette

Create props
props = CommandPalette.new(
 commands: [
 %{id: :save, label: "Save File", shortcut: "Ctrl+S", category: :file},
 %{id: :open, label: "Open File", shortcut: "Ctrl+O", category: :file},
 %{id: :find, label: "Find", shortcut: "Ctrl+F", category: :edit},
 %{id: :replace, label: "Find and Replace", shortcut: "Ctrl+H", category: :edit}
],
 on_select: fn command_id -> execute_command(command_id) end,
 on_close: fn -> hide_palette() end,
 placeholder: "Type a command..."
)

{:ok, palette_state} = CommandPalette.init(props)
{:ok, palette_state} = CommandPalette.handle_event(event, palette_state)
CommandPalette.render(palette_state, %{width: 80, height: 24})
Command Structure:
%{
 id: :command_id,
 label: "Command Label",
 shortcut: "Ctrl+K", # Optional
 category: :file, # Optional, for grouping
 description: "Details" # Optional
}
Data Streaming Widgets
Log Viewer
Example: See examples/log_viewer/ for a complete demonstration.

High-performance log viewer with virtual scrolling, search, and filtering.
alias TermUI.Widgets.LogViewer

Create props
props = LogViewer.new(
 max_lines: 10000,
 wrap_lines: false,
 show_line_numbers: true,
 show_timestamps: true
)

{:ok, viewer_state} = LogViewer.init(props)

Add log lines
viewer_state = LogViewer.append_line(viewer_state, %{
 timestamp: DateTime.utc_now(),
 level: :info,
 message: "Application started",
 source: "MyApp"
})

Handle events and render
{:ok, viewer_state} = LogViewer.handle_event(event, viewer_state)
LogViewer.render(viewer_state, %{width: 100, height: 30})
Log Line Structure:
%{
 timestamp: ~U[2024-01-15 10:30:00Z],
 level: :info, # :debug, :info, :warning, :error
 message: "Log message",
 source: "MyApp.Worker" # Optional
}
Keyboard Controls:
	↑/↓ - Scroll line by line
	PgUp/PgDn - Scroll by page
	Home/End - Jump to start/end
	/ - Start search
	f - Toggle filter
	t - Toggle tail mode
	w - Toggle line wrap

Stream Widget
Example: See examples/stream_widget/ for a complete demonstration.

GenStage-integrated widget for real-time data streams with backpressure.
alias TermUI.Widgets.StreamWidget

Create props
props = StreamWidget.new(
 buffer_size: 1000,
 rate_limit: 60, # updates per second
 overflow: :drop_oldest
)

{:ok, stream_state} = StreamWidget.init(props)

Push data to stream
stream_state = StreamWidget.push(stream_state, data_item)

Handle events and render
{:ok, stream_state} = StreamWidget.handle_event(event, stream_state)
StreamWidget.render(stream_state, %{width: 80, height: 20})
Options:
	Option	Type	Default	Description
	buffer_size	integer	1000	Maximum buffered items
	rate_limit	integer	60	Max renders per second
	overflow	atom	:drop_oldest	:drop_oldest, :drop_newest

BEAM Introspection Widgets
These widgets leverage Erlang's runtime introspection capabilities for live system visualization.
Process Monitor
Example: See examples/process_monitor/ for a complete demonstration.

Live BEAM process inspection with sorting, filtering, and process control.
alias TermUI.Widgets.ProcessMonitor

props = ProcessMonitor.new(
 update_interval: 1000,
 show_system_processes: false,
 thresholds: %{
 queue_warning: 1000,
 queue_critical: 10_000,
 memory_warning: 50_000_000,
 memory_critical: 200_000_000
 }
)

{:ok, monitor_state} = ProcessMonitor.init(props)

Handle timer messages for auto-refresh
{:ok, monitor_state} = ProcessMonitor.handle_info(:refresh, monitor_state)

Handle events and render
{:ok, monitor_state} = ProcessMonitor.handle_event(event, monitor_state)
ProcessMonitor.render(monitor_state, %{width: 100, height: 30})
Keyboard Controls:
	↑/↓ - Navigate processes
	Enter - Toggle details panel
	s/S - Cycle sort field / Toggle direction
	/ - Filter by name
	k - Kill process (with confirmation)
	r - Refresh

Display Columns:
	PID
	Name (registered or initial call)
	Reductions
	Memory
	Message Queue
	Status

Supervision Tree Viewer
Example: See examples/supervision_tree_viewer/ for a complete demonstration.

Visualize supervision hierarchies with live status.
alias TermUI.Widgets.SupervisionTreeViewer

props = SupervisionTreeViewer.new(
 root: MyApp.Supervisor,
 update_interval: 2000,
 show_pids: true,
 expand_all: false
)

{:ok, tree_state} = SupervisionTreeViewer.init(props)

Handle timer messages for auto-refresh
{:ok, tree_state} = SupervisionTreeViewer.handle_info(:refresh, tree_state)

Handle events and render
{:ok, tree_state} = SupervisionTreeViewer.handle_event(event, tree_state)
SupervisionTreeViewer.render(tree_state, %{width: 80, height: 25})
Keyboard Controls:
	↑/↓ - Navigate tree
	Enter - Expand/collapse node
	e/c - Expand/collapse all
	i - Inspect process state
	r - Restart process (with confirmation)
	/ - Filter tree
	Escape - Clear filter

Status Indicators:
	● Running (green)
	↻ Restarting (yellow)
	✖ Terminated (red)
	? Undefined (gray)

Strategy Display:
	1:1 - one_for_one
	1:* - one_for_all
	1:→ - rest_for_one

Cluster Dashboard
Example: See examples/cluster_dashboard/ for a complete demonstration.

Distributed Erlang cluster visualization.
alias TermUI.Widgets.ClusterDashboard

props = ClusterDashboard.new(
 update_interval: 2000,
 show_health_metrics: true,
 show_pg_groups: true,
 show_global_names: true
)

{:ok, dashboard_state} = ClusterDashboard.init(props)

Handle timer messages for auto-refresh
{:ok, dashboard_state} = ClusterDashboard.handle_info(:refresh, dashboard_state)

Handle events and render
{:ok, dashboard_state} = ClusterDashboard.handle_event(event, dashboard_state)
ClusterDashboard.render(dashboard_state, %{width: 100, height: 30})
View Modes:
	Nodes - Connected nodes with status and metrics
	Globals - :global registered names
	PG Groups - :pg process groups
	Events - Connection/disconnection log

Keyboard Controls:
	↑/↓ - Navigate list
	Enter - Toggle details
	n - Nodes view
	g - Globals view
	p - PG groups view
	e - Events view
	r - Refresh

Features:
	Network partition detection
	Node health metrics (memory, processes, schedulers)
	Connection event history

Full Example: Using BEAM Introspection Widgets
defmodule MyApp.SystemMonitor do
 use TermUI.Elm

 alias TermUI.Event
 alias TermUI.Widgets.ProcessMonitor
 alias TermUI.Renderer.Style

 def init(_opts) do
 props = ProcessMonitor.new(
 update_interval: 1000,
 show_system_processes: false
)
 {:ok, monitor_state} = ProcessMonitor.init(props)

 %{
 monitor: monitor_state,
 last_refresh: DateTime.utc_now()
 }
 end

 def event_to_msg(%Event.Key{key: "q"}, _state), do: {:msg, :quit}
 def event_to_msg(%Event.Key{key: "r"}, _state), do: {:msg, :refresh}
 def event_to_msg(event, _state), do: {:msg, {:monitor_event, event}}

 def update(:quit, state), do: {state, [:quit]}

 def update(:refresh, state) do
 {:ok, monitor} = ProcessMonitor.handle_info(:refresh, state.monitor)
 {%{state | monitor: monitor, last_refresh: DateTime.utc_now()}, []}
 end

 def update({:monitor_event, event}, state) do
 {:ok, monitor} = ProcessMonitor.handle_event(event, state.monitor)
 {%{state | monitor: monitor}, []}
 end

 # Auto-refresh timer
 def handle_info(:tick, state) do
 {:ok, monitor} = ProcessMonitor.handle_info(:refresh, state.monitor)
 {%{state | monitor: monitor, last_refresh: DateTime.utc_now()},
 [Command.timer(1000, :tick)]}
 end

 def view(state) do
 stack(:vertical, [
 text("System Monitor", Style.new(fg: :cyan, attrs: [:bold])),
 text("Last refresh: #{state.last_refresh}", Style.new(fg: :bright_black)),
 text(""),
 ProcessMonitor.render(state.monitor, %{width: 100, height: 25}),
 text(""),
 text("[R] Refresh [Q] Quit", Style.new(fg: :bright_black))
])
 end
end
Next Steps
	Widgets - Basic widgets guide
	Styling - Customize widget appearance
	Layout - Position widgets
	Events - Handle widget interactions

 Developer Guides - TermUI v0.2.0

 Developer Guides

Technical documentation for TermUI internals and architecture.
Guides
	Guide	Description
	01-architecture-overview.md	System layers, process hierarchy, data flow
	02-runtime-internals.md	GenServer event loop, state management, lifecycle
	03-rendering-pipeline.md	View → Buffer → Diff → Output stages
	04-event-system.md	Input parsing, escape sequences, dispatch
	05-buffer-management.md	ETS double buffering, cell storage
	06-terminal-layer.md	Raw mode, ANSI sequences, platform handling
	07-elm-implementation.md	The Elm Architecture adapted for OTP
	08-creating-widgets.md	How to create and contribute new widgets
	09-testing-framework.md	Component and widget testing framework

Reading Order
For new contributors:
	Architecture Overview - Understand the layers
	Elm Implementation - Learn the component model
	Runtime Internals - See how components are orchestrated
	Event System - Follow input from terminal to component
	Rendering Pipeline - Follow output from component to terminal
	Buffer Management - Understand the ETS buffer system
	Terminal Layer - Low-level terminal details

Key Concepts
Three-Layer Architecture
┌─────────────────────────────────────┐
│ Widget Layer │ ← Components (Elm Architecture)
├─────────────────────────────────────┤
│ Renderer Layer │ ← Buffers, Diff, Output
├─────────────────────────────────────┤
│ Port Layer │ ← Terminal I/O
└─────────────────────────────────────┘
Data Flow
Event → event_to_msg → Message → update → State → view → Render Tree → Buffer → Diff → Terminal
Key Files
	File	Purpose
	lib/term_ui/runtime.ex	Central GenServer orchestrating everything
	lib/term_ui/renderer/buffer.ex	ETS-backed screen buffer
	lib/term_ui/renderer/diff.ex	Differential rendering algorithm
	lib/term_ui/renderer/sequence_buffer.ex	ANSI sequence batching
	lib/term_ui/terminal.ex	Raw mode and terminal control
	lib/term_ui/terminal/input_reader.ex	Stdin reading and event parsing
	lib/term_ui/terminal/escape_parser.ex	Escape sequence parsing

Diagrams
All guides include Mermaid diagrams. To view them:
	GitHub renders Mermaid automatically
	VS Code with Markdown Preview Mermaid extension
	Mermaid Live Editor

 Architecture Overview - TermUI v0.2.0

 Architecture Overview

This guide provides a high-level view of TermUI's internal architecture for developers contributing to the framework.
System Layers
TermUI is organized into distinct layers, each with clear responsibilities:
graph TB
 subgraph "Application Layer"
 App[User Application]
 Elm[Elm Components]
 end

 subgraph "Framework Layer"
 Runtime[Runtime
GenServer]
 MQ[MessageQueue]
 Cmd[Command Executor]
 end

 subgraph "Rendering Layer"
 NR[NodeRenderer]
 BM[BufferManager
ETS]
 Diff[Diff Algorithm]
 SB[SequenceBuffer]
 end

 subgraph "Terminal Layer"
 Term[Terminal
GenServer]
 IR[InputReader]
 EP[EscapeParser]
 end

 subgraph "System"
 TTY[/dev/tty]
 STDIN[stdin]
 STDOUT[stdout]
 end

 App --> Elm
 Elm --> Runtime
 Runtime --> MQ
 Runtime --> Cmd
 Runtime --> NR
 NR --> BM
 BM --> Diff
 Diff --> SB
 SB --> Term
 Term --> TTY
 Term --> STDOUT
 IR --> STDIN
 IR --> EP
 EP --> Runtime
Layer Responsibilities
Application Layer
User code that defines the UI behavior:
	Component modules using use TermUI.Elm
	State management via init/update/view
	Event handling via event_to_msg

Framework Layer
Core orchestration managing the application lifecycle:
	Module	Responsibility
	Runtime	Event dispatch loop, component lifecycle, render scheduling
	MessageQueue	FIFO queue for component messages
	Command	Side effect execution (timers, I/O)

Rendering Layer
Visual output transforming state to terminal sequences:
	Module	Responsibility
	NodeRenderer	Traverses render tree, produces cells
	BufferManager	Double-buffered ETS tables
	Diff	Computes minimal update operations
	SequenceBuffer	Batches ANSI escape sequences

Terminal Layer
Low-level I/O interfacing with the terminal:
	Module	Responsibility
	Terminal	Raw mode, screen control, cursor
	InputReader	Reads stdin in raw mode
	EscapeParser	Converts bytes to Event structs

Key Design Decisions
1. GenServer-Based Runtime
The Runtime is a GenServer that:
	Serializes event processing
	Manages component state
	Schedules rendering at 60 FPS
	Handles graceful shutdown

Simplified runtime state
%Runtime.State{
 root_module: MyApp,
 root_state: %{...},
 components: %{root: %{module: MyApp, state: %{...}}},
 message_queue: %MessageQueue{},
 dirty: true,
 render_interval: 16
}
2. ETS-Based Buffers
Screen buffers use ETS for:
	Lock-free concurrent reads
	O(1) cell access
	Atomic batch updates
	Memory efficiency

Cell storage: {{row, col}, cell}
:ets.insert(buffer.table, {{5, 10}, %Cell{char: "X", fg: :red}})
3. Differential Rendering
Only changed cells are sent to the terminal:
graph LR
 A[Current Buffer] --> D{Diff}
 B[Previous Buffer] --> D
 D --> O[Operations]
 O --> S[SequenceBuffer]
 S --> T[Terminal]
4. Message-Based Architecture
All communication uses messages:
	Events → Messages via event_to_msg/2
	Commands execute async, return messages
	No direct state mutation

Module Dependency Graph
graph TD
 subgraph "Public API"
 TUI[TermUI]
 Runtime[Runtime]
 end

 subgraph "Components"
 Elm[Elm]
 Component[Component]
 Container[Container]
 end

 subgraph "Events"
 Event[Event]
 EventKey[Event.Key]
 EventMouse[Event.Mouse]
 end

 subgraph "Rendering"
 Style[Style]
 Cell[Cell]
 Buffer[Buffer]
 BufferMgr[BufferManager]
 Diff[Diff]
 NodeRenderer[NodeRenderer]
 SeqBuffer[SequenceBuffer]
 end

 subgraph "Terminal"
 Terminal[Terminal]
 InputReader[InputReader]
 EscapeParser[EscapeParser]
 ANSI[ANSI]
 end

 TUI --> Runtime
 Runtime --> Elm
 Runtime --> BufferMgr
 Runtime --> Terminal
 Runtime --> InputReader

 Elm --> Component
 Elm --> Event

 InputReader --> EscapeParser
 EscapeParser --> Event

 NodeRenderer --> Buffer
 NodeRenderer --> Cell
 NodeRenderer --> Style

 BufferMgr --> Buffer
 Buffer --> Cell

 Diff --> Buffer
 Diff --> Cell

 SeqBuffer --> Style
 SeqBuffer --> ANSI

 Terminal --> ANSI
Process Architecture
At runtime, TermUI spawns these processes:
graph TB
 subgraph "Supervision Tree"
 App[Application Supervisor]
 Runtime[Runtime GenServer]
 Terminal[Terminal GenServer]
 BufferMgr[BufferManager GenServer]
 InputReader[InputReader Process]
 end

 App --> Runtime
 App --> Terminal
 App --> BufferMgr
 Runtime -.->|spawns| InputReader

 InputReader -->|{:input, event}| Runtime
 Runtime -->|render| BufferMgr
 Runtime -->|escape sequences| Terminal
Data Flow
Input Path
sequenceDiagram
 participant TTY as Terminal
 participant IR as InputReader
 participant EP as EscapeParser
 participant RT as Runtime
 participant Comp as Component

 TTY->>IR: Raw bytes
 IR->>EP: Binary data
 EP->>RT: Event struct
 RT->>Comp: event_to_msg()
 Comp->>RT: {:msg, message}
 RT->>Comp: update()
 Comp->>RT: {new_state, commands}
 RT->>RT: Mark dirty
Output Path
sequenceDiagram
 participant RT as Runtime
 participant Comp as Component
 participant NR as NodeRenderer
 participant BM as BufferManager
 participant Diff as Diff
 participant SB as SequenceBuffer
 participant Term as Terminal

 RT->>Comp: view()
 Comp->>RT: Render tree
 RT->>NR: Render to buffer
 NR->>BM: Write cells
 RT->>BM: Get buffers
 BM->>RT: Current, Previous
 RT->>Diff: diff()
 Diff->>RT: Operations
 RT->>SB: Build sequences
 SB->>Term: ANSI output
File Organization
lib/term_ui/
├── term_ui.ex # Public API
├── runtime.ex # Core event loop
├── elm.ex # Elm Architecture macro
├── event.ex # Event types
├── command.ex # Command types
├── message_queue.ex # Message queueing
│
├── terminal/
│ ├── terminal.ex # Terminal GenServer
│ ├── input_reader.ex # Stdin reader
│ └── escape_parser.ex # Sequence parser
│
├── renderer/
│ ├── style.ex # Style struct
│ ├── cell.ex # Cell struct
│ ├── buffer.ex # Buffer operations
│ ├── buffer_manager.ex # Double buffering
│ ├── diff.ex # Diff algorithm
│ ├── sequence_buffer.ex # ANSI batching
│ └── node_renderer.ex # Tree → cells
│
├── layout/
│ ├── constraint.ex # Size constraints
│ └── solver.ex # Constraint solver
│
└── widgets/
 ├── gauge.ex # Gauge widget
 ├── sparkline.ex # Sparkline widget
 └── table.ex # Table widget
Next Steps
	Runtime Internals - Deep dive into the event loop
	Rendering Pipeline - How frames are produced
	Event System - Input handling details

 Runtime Internals - TermUI v0.2.0

 Runtime Internals

The Runtime (TermUI.Runtime) is the central orchestrator of a TermUI application. This guide explains its internal workings.
Overview
The Runtime is a GenServer that:
	Manages component state
	Dispatches events to components
	Processes messages through the update cycle
	Executes commands
	Schedules and performs rendering

State Structure
%TermUI.Runtime.State{
 # Component configuration
 root_module: MyApp.Counter, # Root component module
 root_state: %{count: 0}, # Root component state

 # Component registry
 components: %{
 root: %{module: MyApp.Counter, state: %{count: 0}}
 },

 # Message processing
 message_queue: %MessageQueue{}, # Pending messages
 pending_commands: %{}, # Executing commands

 # Rendering
 dirty: false, # Needs re-render?
 render_interval: 16, # ~60 FPS
 buffer_manager: #PID<...>, # BufferManager process
 dimensions: {80, 24}, # {cols, rows}

 # Terminal
 terminal_started: true, # Terminal available?
 input_reader: #PID<...>, # InputReader process

 # Lifecycle
 focused_component: :root, # Currently focused
 shutting_down: false # Shutdown in progress?
}
Lifecycle
stateDiagram-v2
 [*] --> Initializing: start_link/1
 Initializing --> Running: init complete
 Running --> Running: events/messages
 Running --> ShuttingDown: shutdown/1
 ShuttingDown --> [*]: terminate/2
Initialization
def init(opts) do
 # 1. Trap exits for cleanup
 Process.flag(:trap_exit, true)

 # 2. Initialize terminal
 {terminal_started, buffer_manager, dimensions} = initialize_terminal()

 # 3. Initialize root component
 root_state = root_module.init(opts)

 # 4. Start input reader
 {:ok, reader} = InputReader.start_link(target: self())

 # 5. Schedule first render
 schedule_render(render_interval)

 {:ok, state}
end
Main Loop
The Runtime handles these message types:
graph TD
 subgraph "GenServer Callbacks"
 CI[handle_cast :event] --> DE[dispatch_event]
 CM[handle_cast :message] --> EM[enqueue_message]
 CR[handle_cast :shutdown] --> IS[initiate_shutdown]
 IR[handle_info :render] --> PR[process_render_tick]
 II[handle_info :input] --> DE
 end

 DE --> ETM[event_to_msg]
 ETM --> EM
 EM --> MQ[MessageQueue]
 MQ --> PM[process_messages]
 PM --> UP[component.update]
 UP --> EC[execute_commands]
 UP --> MD[mark_dirty]

 PR --> PM
 PR --> DR[do_render]
 PR --> SR[schedule_render]
Event Dispatch
Events are routed based on type:
defp dispatch_event(%Event.Key{} = event, state) do
 # Keyboard → focused component
 dispatch_to_component(state.focused_component, event, state)
end

defp dispatch_event(%Event.Mouse{} = event, state) do
 # Mouse → component at position (future: spatial index)
 dispatch_to_component(:root, event, state)
end

defp dispatch_event(%Event.Resize{} = event, state) do
 # Resize → broadcast to all
 broadcast_event(event, state)
end
Component Dispatch
defp dispatch_to_component(component_id, event, state) do
 %{module: module, state: component_state} = state.components[component_id]

 case module.event_to_msg(event, component_state) do
 {:msg, message} ->
 enqueue_message(component_id, message, state)

 :ignore ->
 state

 :propagate ->
 # Would bubble to parent
 state
 end
end
Message Processing
Messages are processed in FIFO order:
sequenceDiagram
 participant Q as MessageQueue
 participant RT as Runtime
 participant C as Component

 RT->>Q: flush()
 Q->>RT: [messages]

 loop For each message
 RT->>C: update(msg, state)
 C->>RT: {new_state, commands}
 RT->>RT: Update component state
 RT->>RT: Mark dirty if changed
 RT->>RT: Collect commands
 end

 RT->>RT: execute_commands(all_commands)
defp process_messages(state) do
 {messages, queue} = MessageQueue.flush(state.message_queue)

 {state, commands} =
 Enum.reduce(messages, {state, []}, fn {component_id, msg}, {acc, cmds} ->
 {new_state, new_cmds} = process_message(component_id, msg, acc)
 {new_state, cmds ++ new_cmds}
 end)

 execute_commands(commands, state)
end
Command Execution
Commands are side effects returned from update/2:
defp execute_commands(commands, state) do
 # Check for quit command
 if has_quit_command?(commands) do
 GenServer.cast(self(), :shutdown)
 %{state | shutting_down: true}
 else
 # Track pending commands
 pending = Enum.reduce(commands, state.pending_commands, fn cmd, acc ->
 command_id = make_ref()
 Map.put(acc, command_id, cmd)
 end)

 %{state | pending_commands: pending}
 end
end
Timer Commands
Timer commands use Process.send_after/3:
When timer fires, result delivered as message
def handle_info({:command_result, component_id, cmd_id, result}, state) do
 state = handle_command_result(component_id, cmd_id, result, state)
 {:noreply, state}
end
Render Cycle
Rendering is scheduled at a fixed interval (default 16ms ≈ 60 FPS):
defp process_render_tick(state) do
 # 1. Process pending messages
 state = process_messages(state)

 # 2. Render if dirty
 state = if state.dirty and not state.shutting_down do
 do_render(state)
 else
 state
 end

 # 3. Schedule next tick
 unless state.shutting_down do
 schedule_render(state.render_interval)
 end

 state
end

defp schedule_render(interval) do
 Process.send_after(self(), :render, interval)
end
Render Flow
defp do_render(state) do
 # 1. Get render tree from component
 %{module: module, state: comp_state} = state.components[:root]
 render_tree = module.view(comp_state)

 # 2. Clear current buffer
 BufferManager.clear_current(state.buffer_manager)

 # 3. Render tree to buffer
 NodeRenderer.render_to_buffer(render_tree, state.buffer_manager)

 # 4. Diff against previous
 current = BufferManager.get_current_buffer(state.buffer_manager)
 previous = BufferManager.get_previous_buffer(state.buffer_manager)
 operations = Diff.diff(current, previous)

 # 5. Output to terminal
 render_operations(operations)

 # 6. Swap buffers
 BufferManager.swap_buffers(state.buffer_manager)

 %{state | dirty: false}
end
Shutdown
Graceful shutdown preserves terminal state:
sequenceDiagram
 participant App as Application
 participant RT as Runtime
 participant IR as InputReader
 participant Term as Terminal

 App->>RT: shutdown()
 RT->>RT: shutting_down = true
 RT->>RT: Stop render scheduling
 RT->>IR: stop()
 RT->>RT: Clear components
 RT->>RT: send(:stop_runtime)
 RT->>Term: restore()
 Term->>Term: Disable raw mode
 Term->>Term: Leave alt screen
 Term->>Term: Show cursor
 RT->>App: :normal exit
def terminate(_reason, state) do
 # Stop input reader
 if state.input_reader do
 InputReader.stop(state.input_reader)
 end

 # Restore terminal
 if state.terminal_started do
 Terminal.restore()
 end

 :ok
end
Error Handling
The Runtime protects against component crashes:
In event_to_msg
try do
 module.event_to_msg(event, component_state)
rescue
 error ->
 Logger.error("Component crashed in event_to_msg: #{inspect(error)}")
 state # Return unchanged
end

In update
try do
 module.update(message, component_state)
rescue
 error ->
 Logger.error("Component crashed in update: #{inspect(error)}")
 {state, []} # Return unchanged, no commands
end

In view
try do
 module.view(component_state)
rescue
 error ->
 Logger.error("Component crashed in view: #{inspect(error)}")
 {:text, "[Render Error]"} # Fallback render
end
Performance Considerations
Message Batching
Multiple events arriving between render ticks are batched:
Event 1 → Queue
Event 2 → Queue
Event 3 → Queue
Render tick → Process all 3 → Single render
Dirty Tracking
Components are only re-rendered when state changes:
dirty = state.dirty or new_component_state != component_state
Buffer Swapping
Double buffering avoids copying:
O(1) pointer swap, not O(rows*cols) copy
def swap_buffers(state) do
 %{state | current: state.previous, previous: state.current}
end
Testing the Runtime
Start without terminal for testing
{:ok, runtime} = Runtime.start_link(
 root: TestComponent,
 skip_terminal: true
)

Send events
Runtime.send_event(runtime, Event.key(:enter))

Wait for processing
Runtime.sync(runtime)

Check state
state = Runtime.get_state(runtime)
assert state.root_state.submitted == true
Next Steps
	Rendering Pipeline - Detailed render flow
	Event System - Input handling
	Buffer Management - ETS buffers

 Rendering Pipeline - TermUI v0.2.0

 Rendering Pipeline

This guide explains how TermUI transforms component state into terminal output.
Pipeline Overview
graph LR
 subgraph "1. View"
 S[State] --> V[view/1]
 V --> RT[Render Tree]
 end

 subgraph "2. Rasterize"
 RT --> NR[NodeRenderer]
 NR --> CB[Current Buffer]
 end

 subgraph "3. Diff"
 CB --> D{Diff}
 PB[Previous Buffer] --> D
 D --> OPS[Operations]
 end

 subgraph "4. Serialize"
 OPS --> SB[SequenceBuffer]
 SB --> ANSI[ANSI Sequences]
 end

 subgraph "5. Output"
 ANSI --> IO[IO.write]
 IO --> T[Terminal]
 end
Stage 1: View
The component's view/1 function produces a render tree:
def view(state) do
 stack(:vertical, [
 text("Counter", Style.new(fg: :cyan, attrs: [:bold])),
 text("Value: #{state.count}")
])
end
Render Tree Nodes
The tree consists of tuples describing content:
Text node
{:text, "Hello", %Style{}}

Stack (layout container)
{:stack, :vertical, [child1, child2, ...]}
{:stack, :horizontal, [child1, child2, ...]}

Styled wrapper
{:styled, %Style{}, child}

Fragment (multiple nodes)
{:fragment, [child1, child2, ...]}

Raw cells
{:cells, [%Cell{}, %Cell{}, ...]}

Viewport (scrollable clipped region)
%{
 type: :viewport,
 content: child_node, # Content to render
 scroll_x: 0, # Horizontal scroll offset
 scroll_y: 0, # Vertical scroll offset
 width: 40, # Viewport width
 height: 20 # Viewport height
}
Stage 2: Rasterize
NodeRenderer traverses the tree and writes cells to the buffer:
graph TD
 RT[Render Tree] --> NR[NodeRenderer]

 subgraph "NodeRenderer.render_to_buffer/2"
 NR --> Walk[Walk Tree]
 Walk --> Pos[Track Position]
 Pos --> Style[Apply Styles]
 Style --> Write[Write Cells]
 end

 Write --> BM[BufferManager]
 BM --> ETS[(ETS Table)]
Node Rendering
defp render_node({:text, content, style}, row, col, buffer) do
 # Convert each grapheme to a styled cell
 cells = content
 |> String.graphemes()
 |> Enum.with_index()
 |> Enum.map(fn {char, i} ->
 {row, col + i, Style.to_cell(style, char)}
 end)

 BufferManager.set_cells(buffer, cells)
 {row, col + String.length(content)}
end

defp render_node({:stack, :vertical, children}, row, col, buffer) do
 Enum.reduce(children, {row, col}, fn child, {r, c} ->
 {new_row, _} = render_node(child, r, c, buffer)
 {new_row + 1, col} # Move to next row
 end)
end

defp render_node({:stack, :horizontal, children}, row, col, buffer) do
 Enum.reduce(children, {row, col}, fn child, {r, c} ->
 {_, new_col} = render_node(child, r, c, buffer)
 {row, new_col} # Move to next column
 end)
end
Viewport Rendering
Viewport nodes clip content to a visible region with scroll offsets:
defp render_viewport(content, buffer, dest_row, dest_col, style,
 scroll_x, scroll_y, vp_width, vp_height) do
 # 1. Create temporary buffer for full content
 {:ok, temp_buffer} = Buffer.new(content_height, content_width)

 # 2. Render content to temporary buffer
 render_node(content, temp_buffer, 1, 1, style)

 # 3. Copy visible region to destination buffer
 for dy <- 0..(vp_height - 1), dx <- 0..(vp_width - 1) do
 src_row = scroll_y + 1 + dy
 src_col = scroll_x + 1 + dx
 cell = Buffer.get_cell(temp_buffer, src_row, src_col)
 Buffer.set_cell(buffer, dest_row + dy, dest_col + dx, cell)
 end

 # 4. Clean up temporary buffer
 Buffer.destroy(temp_buffer)

 {vp_width, vp_height}
end
This approach:
	Renders full content to an off-screen buffer
	Copies only the visible portion based on scroll offsets
	Clips content automatically to viewport dimensions

Stage 3: Diff
The diff algorithm compares current and previous buffers:
graph TB
 subgraph "Diff Algorithm"
 CB[Current Buffer] --> GR[Get Rows]
 PB[Previous Buffer] --> GR
 GR --> CR[Compare Rows]
 CR --> FS[Find Spans]
 FS --> MS[Merge Spans]
 MS --> GO[Generate Ops]
 end

 GO --> OPS[Operations List]
Diff Process
def diff(current, previous) do
 {rows, cols} = Buffer.dimensions(current)

 1..rows
 |> Enum.flat_map(fn row ->
 diff_row(current, previous, row, cols)
 end)
 |> optimize_operations()
end
Finding Changed Spans
def find_changed_spans(current_cells, previous_cells, row) do
 current_cells
 |> Enum.zip(previous_cells)
 |> Enum.reduce({[], nil}, fn {{col, curr}, {_, prev}}, acc ->
 if Cell.equal?(curr, prev) do
 close_span(acc)
 else
 extend_span(acc, col, curr, row)
 end
 end)
 |> finalize()
end
Span Merging
Small gaps between spans are merged to reduce cursor movements:
Before: [CHANGED]...[CHANGED] (3 char gap)
After: [CHANGED...CHANGED] (merged)
@merge_gap_threshold 3

defp merge_spans(spans) do
 Enum.reduce(spans, [], fn span, acc ->
 case acc do
 [prev | rest] when span.start_col - prev.end_col <= @merge_gap_threshold ->
 [merge(prev, span) | rest]
 _ ->
 [span | acc]
 end
 end)
end
Operation Types
@type operation ::
 {:move, row, col} # Move cursor
 | {:style, Style.t()} # Set SGR attributes
 | {:text, String.t()} # Output text
 | :reset # Reset all attributes
Stage 4: Serialize
SequenceBuffer converts operations to ANSI escape sequences:
graph LR
 subgraph "SequenceBuffer"
 OPS[Operations] --> P[Process]
 P --> M[Move: ESC row;col H]
 P --> S[Style: ESC params m]
 P --> T[Text: raw chars]
 M --> B[Buffer]
 S --> B
 T --> B
 B --> F[Flush]
 end

 F --> IO[iodata]
Style Delta Encoding
Only changed style attributes are emitted:
defp style_to_sgr_params(style, last_style) do
 params = []

 # Only emit fg if changed
 params = if style.fg != last_style.fg do
 [color_to_sgr(:fg, style.fg) | params]
 else
 params
 end

 # Only emit bg if changed
 params = if style.bg != last_style.bg do
 [color_to_sgr(:bg, style.bg) | params]
 else
 params
 end

 # Handle attribute changes
 # ...

 params
end
SGR Sequence Building
defp build_sgr_sequence(params) do
 # ESC[param1;param2;...m
 ["\e[", Enum.intersperse(params, ";"), "m"]
end

Examples:
Red foreground: \e[31m
Bold + blue: \e[1;34m
Reset: \e[0m
Stage 5: Output
The final iodata is written to the terminal:
defp render_operations(operations) do
 seq_buffer = SequenceBuffer.new()

 seq_buffer =
 Enum.reduce(operations, seq_buffer, fn op, buf ->
 apply_operation(op, buf)
 end)

 # Reset at end to avoid style bleeding
 seq_buffer = SequenceBuffer.append!(seq_buffer, "\e[0m")

 {output, _} = SequenceBuffer.flush(seq_buffer)
 IO.write(output)
end
Optimization Techniques
1. Cursor Movement Optimization
Choose shortest cursor movement sequence:
Absolute: \e[row;colH (variable length)
Relative: \e[nA/B/C/D (if small delta)

defp optimal_move(from_row, from_col, to_row, to_col) do
 # Calculate costs and choose cheapest
end
2. Batch Cell Writes
ETS batch insert for multiple cells:
def set_cells(buffer, cells) do
 entries = Enum.map(cells, fn {row, col, cell} ->
 {{row, col}, cell}
 end)
 :ets.insert(buffer.table, entries)
end
3. Style Deduplication
Adjacent cells with same style share one SGR sequence:
Instead of:
\e[31mH\e[31me\e[31ml\e[31ml\e[31mo
Produces:
\e[31mHello
4. Frame Rate Limiting
Rendering capped at 60 FPS (16ms intervals):
Even if 100 events arrive, max 60 renders/sec
schedule_render(16) # milliseconds
Performance Metrics
Typical Frame Budget
For 60 FPS, each frame has ~16ms:
	Stage	Typical Time
	View	0.1-1ms
	Rasterize	0.5-2ms
	Diff	0.2-1ms
	Serialize	0.1-0.5ms
	Output	0.5-2ms
	Total	1.4-6.5ms

Scaling Factors
	Factor	Impact
	Screen size	O(rows × cols) for full diff
	Changed cells	O(n) where n = changed
	Style changes	More SGR sequences
	Unicode width	Display width calculation

Debugging Rendering
Inspect Render Tree
def view(state) do
 tree = build_tree(state)
 IO.inspect(tree, label: "Render Tree")
 tree
end
Inspect Operations
In Runtime.do_render/1
operations = Diff.diff(current, previous)
IO.inspect(operations, label: "Diff Operations")
Buffer Contents
buffer = BufferManager.get_current_buffer()
{rows, cols} = Buffer.dimensions(buffer)

for row <- 1..rows do
 cells = Buffer.get_row(buffer, row)
 line = Enum.map_join(cells, & &1.char)
 IO.puts(line)
end
Next Steps
	Buffer Management - ETS buffer details
	Terminal Layer - ANSI sequence handling
	Event System - Input processing

 Event System - TermUI v0.2.0

 Event System

This guide explains how TermUI captures, parses, and dispatches terminal input events.
Event Flow Overview
graph LR
 subgraph "Terminal"
 KB[Keyboard] --> TTY[/dev/tty]
 MS[Mouse] --> TTY
 end

 subgraph "Input Layer"
 TTY --> IR[InputReader]
 IR --> EP[EscapeParser]
 EP --> EV[Event Structs]
 end

 subgraph "Dispatch"
 EV --> RT[Runtime]
 RT --> R[Route]
 R --> C[Component]
 end

 subgraph "Processing"
 C --> ETM[event_to_msg]
 ETM --> MSG[Message]
 MSG --> UPD[update]
 end
Input Reader
TermUI.Terminal.InputReader reads raw bytes from stdin:
defmodule TermUI.Terminal.InputReader do
 use GenServer

 def init(target) do
 # Spawn reader process that uses IO.getn
 parent = self()
 reader_pid = spawn_link(fn -> io_reader_loop(parent) end)
 {:ok, %{target: target, reader: reader_pid}}
 end

 defp io_reader_loop(parent) do
 case IO.getn("", 1) do
 :eof ->
 send(parent, {:io_data, :eof})

 data when is_binary(data) ->
 send(parent, {:io_data, data})
 io_reader_loop(parent)
 end
 end

 def handle_info({:io_data, data}, state) do
 # Buffer data, parse sequences, emit events
 # ...
 end
end
Why IO.getn?
	Integrates with OTP's terminal handling
	Works in raw mode
	Cross-platform (Unix/Windows)
	Non-blocking when data available

Escape Parser
TermUI.Terminal.EscapeParser converts bytes to events:
graph TD
 subgraph "Parser State Machine"
 B[Bytes] --> C{First Byte?}
 C -->|ESC 0x1B| E[Escape Sequence]
 C -->|0x00-0x1F| CTRL[Control Char]
 C -->|0x20-0x7E| PRINT[Printable]
 C -->|0x80+| UTF8[UTF-8]

 E --> E2{Second Byte?}
 E2 -->|[| CSI[CSI Sequence]
 E2 -->|O| SS3[SS3 Sequence]
 E2 -->|other| ALT[Alt+Key]

 CSI --> CSIP[Parse Params]
 CSIP --> CSIF{Final Byte?}
 CSIF -->|A-D| ARROW[Arrow Keys]
 CSIF -->|~| SPECIAL[Special Keys]
 CSIF -->|M/m| MOUSE[Mouse Event]
 end
Sequence Types
	Prefix	Name	Example	Event
	ESC[A	CSI	Arrow up	%Event.Key{key: :up}
	ESC[<0;10;5M	SGR Mouse	Click at 10,5	%Event.Mouse{...}
	ESCOP	SS3	F1	%Event.Key{key: :f1}
	ESCa	Alt	Alt+a	%Event.Key{key: "a", modifiers: [:alt]}

Parsing Implementation
def parse(<<0x1B, rest::binary>>) do
 parse_escape_sequence(rest)
end

def parse(<<char, rest::binary>>) when char in 32..126 do
 # Printable ASCII
 event = Event.key(<<char>>)
 {[event], rest}
end

defp parse_escape_sequence(<<"[", rest::binary>>) do
 parse_csi_sequence(rest)
end

defp parse_escape_sequence(<<"O", rest::binary>>) do
 parse_ss3_sequence(rest)
end
CSI Sequence Parsing
Arrow keys
defp parse_csi_sequence(<<"A", rest::binary>>), do: {:ok, Event.key(:up), rest}
defp parse_csi_sequence(<<"B", rest::binary>>), do: {:ok, Event.key(:down), rest}
defp parse_csi_sequence(<<"C", rest::binary>>), do: {:ok, Event.key(:right), rest}
defp parse_csi_sequence(<<"D", rest::binary>>), do: {:ok, Event.key(:left), rest}

Special keys with tilde
defp parse_csi_sequence(<<"1~", rest::binary>>), do: {:ok, Event.key(:home), rest}
defp parse_csi_sequence(<<"3~", rest::binary>>), do: {:ok, Event.key(:delete), rest}
defp parse_csi_sequence(<<"5~", rest::binary>>), do: {:ok, Event.key(:page_up), rest}
defp parse_csi_sequence(<<"6~", rest::binary>>), do: {:ok, Event.key(:page_down), rest}

Mouse (SGR format)
defp parse_csi_sequence(<<"<", rest::binary>>) do
 parse_sgr_mouse(rest)
end
Mouse Event Parsing
SGR mouse format: ESC[<Cb;Cx;CyM (press) or ESC[<Cb;Cx;Cym (release)
defp decode_mouse_event(cb, cx, cy, terminator) do
 button_code = cb &&& 0b11 # Lower 2 bits
 is_scroll = (cb &&& 64) != 0
 is_motion = (cb &&& 32) != 0

 {action, button} = cond do
 is_scroll and button_code == 0 -> {:scroll_up, nil}
 is_scroll and button_code == 1 -> {:scroll_down, nil}
 is_motion -> {:drag, decode_button(button_code)}
 terminator == :release -> {:release, :left}
 true -> {:press, decode_button(button_code)}
 end

 # Extract modifiers from bits 2-4
 modifiers = []
 modifiers = if (cb &&& 4) != 0, do: [:shift | modifiers], else: modifiers
 modifiers = if (cb &&& 8) != 0, do: [:alt | modifiers], else: modifiers
 modifiers = if (cb &&& 16) != 0, do: [:ctrl | modifiers], else: modifiers

 Event.mouse(action, button, cx - 1, cy - 1, modifiers: modifiers)
end
Escape Sequence Timeout
Lone ESC key vs ESC sequence start:
sequenceDiagram
 participant U as User
 participant IR as InputReader
 participant EP as Parser
 participant T as Timer

 U->>IR: ESC key
 IR->>EP: 0x1B
 EP->>T: Start 50ms timer
 Note over EP: Buffer: ESC

 alt More bytes arrive
 U->>IR: [key
 IR->>EP: 0x5B
 EP->>T: Cancel timer
 EP->>EP: Parse CSI sequence
 else Timeout
 T->>EP: Timeout!
 EP->>EP: Emit Event.key(:escape)
 end
@escape_timeout 50 # milliseconds

def handle_info({:io_data, data}, state) do
 state = cancel_timer(state)
 buffer = state.buffer <> data
 {events, remaining} = EscapeParser.parse(buffer)

 # Send complete events
 Enum.each(events, &send(state.target, {:input, &1}))

 # Set timeout if partial escape sequence
 state = if EscapeParser.partial_sequence?(remaining) do
 ref = Process.send_after(self(), :escape_timeout, @escape_timeout)
 %{state | buffer: remaining, timer_ref: ref}
 else
 %{state | buffer: remaining}
 end

 {:noreply, state}
end

def handle_info(:escape_timeout, state) do
 # Emit buffered bytes as individual events
 # ...
end
Event Structs
Key Event
defmodule TermUI.Event.Key do
 defstruct [
 :key, # Atom (:enter, :up) or String ("a")
 :char, # Character or nil
 :modifiers, # [:ctrl, :alt, :shift]
 :timestamp # System.monotonic_time(:millisecond)
]
end
Mouse Event
defmodule TermUI.Event.Mouse do
 defstruct [
 :action, # :press, :release, :click, :drag, :scroll_up, :scroll_down
 :button, # :left, :middle, :right, nil
 :x, :y, # 0-indexed coordinates
 :modifiers,
 :timestamp
]
end
Other Events
Window resize
defmodule TermUI.Event.Resize do
 defstruct [:width, :height, :timestamp]
end

Terminal focus
defmodule TermUI.Event.Focus do
 defstruct [:action, :timestamp] # :gained or :lost
end

Bracketed paste
defmodule TermUI.Event.Paste do
 defstruct [:content, :timestamp]
end
Event Dispatch
The Runtime routes events to components:
defp dispatch_event(%Event.Key{} = event, state) do
 # Keyboard → focused component
 dispatch_to_component(state.focused_component, event, state)
end

defp dispatch_event(%Event.Mouse{x: x, y: y} = event, state) do
 # Mouse → component at position
 # Future: use spatial index
 dispatch_to_component(:root, event, state)
end

defp dispatch_event(%Event.Resize{} = event, state) do
 # Resize → broadcast to all
 broadcast_event(event, state)
end

defp dispatch_event(%Event.Focus{} = event, state) do
 # Focus → broadcast to all
 broadcast_event(event, state)
end
Event to Message
Components convert events to messages:
defp dispatch_to_component(component_id, event, state) do
 %{module: module, state: comp_state} = state.components[component_id]

 case module.event_to_msg(event, comp_state) do
 {:msg, message} ->
 # Enqueue for processing
 enqueue_message(component_id, message, state)

 :ignore ->
 # Discard event
 state

 :propagate ->
 # Bubble to parent (future)
 state
 end
end
Enabling Terminal Features
Mouse Tracking
Enable SGR mouse tracking
Terminal.enable_mouse_tracking(:click)

Sequences sent:
\e[?1000h - Enable X11 mouse
\e[?1006h - Enable SGR format
Focus Events
Enable focus reporting
Terminal.enable_focus_events()

Sequence: \e[?1004h
Terminal sends: \e[I (focus) or \e[O (blur)
Bracketed Paste
Enable bracketed paste
Terminal.enable_bracketed_paste()

Sequence: \e[?2004h
Pasted text wrapped: \e[200~ ... \e[201~
Testing Events
Create Events Programmatically
Key events
event = Event.key(:enter)
event = Event.key("a", modifiers: [:ctrl])

Mouse events
event = Event.mouse(:click, :left, 10, 5)
event = Event.mouse(:scroll_up, nil, 10, 5)

Other
event = Event.Resize.new(120, 40)
event = Event.Focus.new(:gained)
Test Event Handling
defmodule MyComponentTest do
 use ExUnit.Case

 test "up arrow increments" do
 state = %{count: 0}
 event = Event.key(:up)

 assert {:msg, :increment} = MyComponent.event_to_msg(event, state)

 {new_state, []} = MyComponent.update(:increment, state)
 assert new_state.count == 1
 end
end
Next Steps
	Terminal Layer - Raw mode and escape sequences
	Runtime Internals - Event dispatch
	Buffer Management - Screen buffers

 Buffer Management - TermUI v0.2.0

 Buffer Management

This guide explains TermUI's screen buffer system using ETS for efficient cell storage and double buffering for flicker-free updates.
Architecture
graph TB
 subgraph "BufferManager GenServer"
 BM[BufferManager]
 BM --> PT[(persistent_term)]
 end

 subgraph "Buffer References"
 PT --> CB[Current Buffer]
 PT --> PB[Previous Buffer]
 PT --> DF[Dirty Flag]
 end

 subgraph "ETS Storage"
 CB --> ETSC[(ETS Table
Current)]
 PB --> ETSP[(ETS Table
Previous)]
 end

 subgraph "Atomic"
 DF --> AT[atomics ref]
 end

 NR[NodeRenderer] --> CB
 Diff[Diff] --> CB
 Diff --> PB
Buffer Structure
A Buffer wraps an ETS table:
defmodule TermUI.Renderer.Buffer do
 defstruct [
 :table, # ETS table reference
 :rows, # Number of rows
 :cols # Number of columns
]

 @type t :: %__MODULE__{
 table: :ets.tid(),
 rows: pos_integer(),
 cols: pos_integer()
 }
end
Cell Storage
Cells are stored as {{row, col}, cell} tuples:
Cell at row 5, column 10
:ets.insert(buffer.table, {{5, 10}, %Cell{char: "X", fg: :red}})

Lookup
[{_, cell}] = :ets.lookup(buffer.table, {5, 10})
ETS Configuration
def new(rows, cols) do
 table = :ets.new(:screen_buffer, [
 :set, # Key-value storage
 :public, # Any process can read/write
 read_concurrency: true, # Optimized for concurrent reads
 write_concurrency: true # Optimized for concurrent writes
])

 # Initialize with empty cells
 buffer = %__MODULE__{table: table, rows: rows, cols: cols}
 clear(buffer)

 {:ok, buffer}
end
Double Buffering
Two buffers swap roles each frame:
sequenceDiagram
 participant NR as NodeRenderer
 participant C as Current
 participant P as Previous
 participant D as Diff

 Note over C,P: Frame N

 NR->>C: Write cells
 D->>C: Read current
 D->>P: Read previous
 D->>D: Compute diff

 Note over C,P: Swap

 C->>P: Becomes previous
 P->>C: Becomes current

 Note over C,P: Frame N+1

 NR->>C: Write cells (was P)
BufferManager Implementation
defmodule TermUI.Renderer.BufferManager do
 use GenServer

 def init(opts) do
 rows = Keyword.fetch!(opts, :rows)
 cols = Keyword.fetch!(opts, :cols)

 {:ok, current} = Buffer.new(rows, cols)
 {:ok, previous} = Buffer.new(rows, cols)

 # Dirty flag using atomics for lock-free access
 dirty = :atomics.new(1, signed: false)

 # Store in persistent_term for direct access
 :persistent_term.put({__MODULE__, :current}, current)
 :persistent_term.put({__MODULE__, :previous}, previous)
 :persistent_term.put({__MODULE__, :dirty}, dirty)

 {:ok, %{current: current, previous: previous, dirty: dirty}}
 end
end
Buffer Swap
def handle_call(:swap_buffers, _from, state) do
 # O(1) pointer swap
 new_state = %{state | current: state.previous, previous: state.current}

 # Update persistent_term references
 :persistent_term.put({__MODULE__, :current}, new_state.current)
 :persistent_term.put({__MODULE__, :previous}, new_state.previous)

 {:reply, :ok, new_state}
end
Direct Access
Most buffer operations bypass the GenServer for performance:
These read from persistent_term (no GenServer call)
def get_current_buffer do
 :persistent_term.get({__MODULE__, :current})
end

def get_previous_buffer do
 :persistent_term.get({__MODULE__, :previous})
end

def dirty? do
 dirty = :persistent_term.get({__MODULE__, :dirty})
 :atomics.get(dirty, 1) == 1
end

def mark_dirty do
 dirty = :persistent_term.get({__MODULE__, :dirty})
 :atomics.put(dirty, 1, 1)
 :ok
end
Buffer Operations
Writing Cells
def set_cell(buffer, row, col, cell) do
 if in_bounds?(buffer, row, col) do
 :ets.insert(buffer.table, {{row, col}, cell})
 :ok
 else
 {:error, :out_of_bounds}
 end
end

def set_cells(buffer, cells) do
 entries = Enum.map(cells, fn {row, col, cell} ->
 {{row, col}, cell}
 end)
 :ets.insert(buffer.table, entries)
 :ok
end
Reading Cells
def get_cell(buffer, row, col) do
 case :ets.lookup(buffer.table, {row, col}) do
 [{_, cell}] -> cell
 [] -> Cell.empty()
 end
end

def get_row(buffer, row) do
 # Match all cells in row
 pattern = {{row, :_}, :_}
 cells = :ets.match_object(buffer.table, pattern)

 # Sort by column and extract cells
 cells
 |> Enum.sort_by(fn {{_, col}, _} -> col end)
 |> Enum.map(fn {_, cell} -> cell end)
end
Clearing
def clear(buffer) do
 clear_region(buffer, 1, 1, buffer.cols, buffer.rows)
end

def clear_region(buffer, start_row, start_col, width, height) do
 empty = Cell.empty()

 entries =
 for row <- start_row..(start_row + height - 1),
 col <- start_col..(start_col + width - 1),
 in_bounds?(buffer, row, col) do
 {{row, col}, empty}
 end

 :ets.insert(buffer.table, entries)
 :ok
end
Cell Structure
defmodule TermUI.Renderer.Cell do
 defstruct [
 char: " ", # Single grapheme
 fg: :default, # Foreground color
 bg: :default, # Background color
 attrs: MapSet.new(), # Text attributes
 width: 1, # Display width (1 or 2)
 wide_placeholder: false
]
end
Cell Comparison
Used by the diff algorithm:
def equal?(a, b) do
 a.char == b.char and
 a.fg == b.fg and
 a.bg == b.bg and
 MapSet.equal?(a.attrs, b.attrs) and
 a.width == b.width and
 a.wide_placeholder == b.wide_placeholder
end
Wide Characters
CJK and emoji characters take 2 cells:
Primary cell
primary = %Cell{char: "中", width: 2}

Placeholder for second column
placeholder = %Cell{char: "", width: 0, wide_placeholder: true}

Both must be written
:ets.insert(buffer.table, [
 {{row, col}, primary},
 {{row, col + 1}, placeholder}
])
Dirty Flag
Tracks whether re-render is needed:
graph LR
 subgraph "Write Path"
 W[Write Cell] --> MD[mark_dirty]
 MD --> A[(atomics)]
 end

 subgraph "Render Path"
 RT[Render Tick] --> CD{dirty?}
 CD -->|true| R[Render]
 CD -->|false| S[Skip]
 R --> CL[clear_dirty]
 end
Using atomics for lock-free access:
Mark dirty (from any process)
def mark_dirty do
 dirty = :persistent_term.get({__MODULE__, :dirty})
 :atomics.put(dirty, 1, 1)
end

Check dirty (from render loop)
def dirty? do
 dirty = :persistent_term.get({__MODULE__, :dirty})
 :atomics.get(dirty, 1) == 1
end

Clear dirty (after render)
def clear_dirty do
 dirty = :persistent_term.get({__MODULE__, :dirty})
 :atomics.put(dirty, 1, 0)
end
Resize Handling
def handle_call({:resize, rows, cols}, _from, state) do
 # Create new buffers with new dimensions
 {:ok, new_current} = Buffer.resize(state.current, rows, cols)
 {:ok, new_previous} = Buffer.resize(state.previous, rows, cols)

 new_state = %{state | current: new_current, previous: new_previous}

 # Update persistent_term
 :persistent_term.put({__MODULE__, :current}, new_current)
 :persistent_term.put({__MODULE__, :previous}, new_previous)

 {:reply, :ok, new_state}
end
Content Preservation
def resize(buffer, new_rows, new_cols) do
 {:ok, new_buffer} = new(new_rows, new_cols)

 # Copy cells that fit in new dimensions
 old_entries = :ets.tab2list(buffer.table)

 entries_to_copy =
 old_entries
 |> Enum.filter(fn {{row, col}, _} ->
 row <= new_rows and col <= new_cols
 end)

 :ets.insert(new_buffer.table, entries_to_copy)

 # Clean up old table
 :ets.delete(buffer.table)

 {:ok, new_buffer}
end
Performance Characteristics
	Operation	Complexity	Notes
	get_cell	O(1)	ETS hash lookup
	set_cell	O(1)	ETS insert
	set_cells	O(n)	Batch insert
	get_row	O(cols)	Match + sort
	clear	O(rows × cols)	Full buffer
	swap_buffers	O(1)	Pointer swap
	dirty?	O(1)	Atomic read

Memory Usage
Each cell: ~100-200 bytes depending on content
For 80×24 terminal: ~200KB per buffer (400KB total)
For 200×50 terminal: ~2MB per buffer (4MB total)
Cleanup
def terminate(_reason, state) do
 # Remove persistent_term entries
 :persistent_term.erase({__MODULE__, :current})
 :persistent_term.erase({__MODULE__, :previous})
 :persistent_term.erase({__MODULE__, :dirty})

 # Delete ETS tables
 Buffer.destroy(state.current)
 Buffer.destroy(state.previous)

 :ok
end

Buffer.destroy/1
def destroy(buffer) do
 :ets.delete(buffer.table)
end
Next Steps
	Rendering Pipeline - How buffers are used
	Terminal Layer - Output to terminal
	Architecture Overview - System context

 Terminal Layer - TermUI v0.2.0

 Terminal Layer

This guide covers TermUI's low-level terminal interface, including raw mode, escape sequences, and platform handling.
Components
graph TB
 subgraph "Terminal Layer"
 TG[Terminal GenServer]
 IR[InputReader]
 EP[EscapeParser]
 ANSI[ANSI Module]
 end

 subgraph "System"
 TTY[/dev/tty]
 STDIN[stdin]
 STDOUT[stdout]
 end

 TG --> TTY
 TG --> STDOUT
 IR --> STDIN
 IR --> EP
 ANSI --> TG
Terminal GenServer
TermUI.Terminal manages terminal state:
defmodule TermUI.Terminal do
 use GenServer

 defstruct [
 :original_mode, # Saved terminal state
 :raw_mode_enabled, # Currently in raw mode?
 :mouse_mode, # Mouse tracking mode
 :resize_callbacks # Processes to notify on resize
]
end
Initialization
def init(_opts) do
 state = %__MODULE__{
 original_mode: nil,
 raw_mode_enabled: false,
 mouse_mode: nil,
 resize_callbacks: []
 }
 {:ok, state}
end
Raw Mode
Enabling Raw Mode
OTP 28+ uses the native shell API:
def enable_raw_mode do
 if terminal?() do
 # OTP 28+ native raw mode
 :shell.start_interactive({:noshell, :raw})
 :ok
 else
 {:error, :not_a_terminal}
 end
end
Terminal Detection
Multiple methods for SSH compatibility:
defp terminal? do
 cond do
 io_has_terminal?() -> true
 File.exists?("/dev/tty") -> true
 check_tty() -> true
 true -> false
 end
end

defp io_has_terminal? do
 case :io.getopts(:standard_io) do
 {:ok, opts} -> Keyword.get(opts, :terminal, false) == true
 _ -> false
 end
end

defp check_tty do
 case System.cmd("test", ["-t", "0"], stderr_to_stdout: true) do
 {_, 0} -> true
 _ -> false
 end
rescue
 _ -> false
end
Restoring Terminal
def restore do
 # Disable raw mode
 disable_raw_mode()

 # Leave alternate screen
 leave_alternate_screen()

 # Show cursor
 show_cursor()

 # Disable mouse tracking
 disable_mouse_tracking()

 # Reset all attributes
 write_to_terminal("\e[0m")

 :ok
end
Escape Sequences
ANSI Module
TermUI.ANSI generates escape sequences:
defmodule TermUI.ANSI do
 # Cursor movement
 def cursor_position(row, col), do: "\e[#{row};#{col}H"
 def cursor_up(n \\ 1), do: "\e[#{n}A"
 def cursor_down(n \\ 1), do: "\e[#{n}B"
 def cursor_forward(n \\ 1), do: "\e[#{n}C"
 def cursor_back(n \\ 1), do: "\e[#{n}D"

 # Cursor visibility
 def hide_cursor, do: "\e[?25l"
 def show_cursor, do: "\e[?25h"

 # Screen control
 def clear_screen, do: "\e[2J"
 def clear_line, do: "\e[2K"
 def enter_alternate_screen, do: "\e[?1049h"
 def leave_alternate_screen, do: "\e[?1049l"

 # Style reset
 def reset, do: "\e[0m"
end
SGR (Select Graphic Rendition)
Text styling sequences:
Colors
defp color_to_sgr(:fg, :default), do: "39"
defp color_to_sgr(:fg, :black), do: "30"
defp color_to_sgr(:fg, :red), do: "31"
defp color_to_sgr(:fg, :green), do: "32"
... etc

defp color_to_sgr(:bg, :default), do: "49"
defp color_to_sgr(:bg, :black), do: "40"
... etc

256 colors
defp color_to_sgr(:fg, n) when is_integer(n), do: "38;5;#{n}"
defp color_to_sgr(:bg, n) when is_integer(n), do: "48;5;#{n}"

True color
defp color_to_sgr(:fg, {r, g, b}), do: "38;2;#{r};#{g};#{b}"
defp color_to_sgr(:bg, {r, g, b}), do: "48;2;#{r};#{g};#{b}"

Attributes
defp attr_to_sgr(:bold), do: "1"
defp attr_to_sgr(:dim), do: "2"
defp attr_to_sgr(:italic), do: "3"
defp attr_to_sgr(:underline), do: "4"
defp attr_to_sgr(:blink), do: "5"
defp attr_to_sgr(:reverse), do: "7"
defp attr_to_sgr(:hidden), do: "8"
defp attr_to_sgr(:strikethrough), do: "9"

Attribute off
defp attr_off_sgr(:bold), do: "22"
defp attr_off_sgr(:underline), do: "24"
... etc
Sequence Buffer
Batches sequences for efficient output:
defmodule TermUI.Renderer.SequenceBuffer do
 defstruct [
 buffer: [], # Accumulated iodata
 size: 0, # Current size
 threshold: 4096, # Auto-flush threshold
 last_style: nil # For delta encoding
]

 def append(buffer, data) do
 new_size = buffer.size + IO.iodata_length(data)
 new_buffer = %{buffer | buffer: [data | buffer.buffer], size: new_size}

 if new_size >= buffer.threshold do
 {flushed, reset} = flush(new_buffer)
 {:flush, flushed, reset}
 else
 {:ok, new_buffer}
 end
 end

 def flush(buffer) do
 data = buffer.buffer |> Enum.reverse()
 {data, %{buffer | buffer: [], size: 0}}
 end
end
Style Delta Encoding
Only emit changed attributes:
def append_style(buffer, style) do
 params = style_to_sgr_params(style, buffer.last_style)

 if params == [] do
 buffer
 else
 sequence = build_sgr_sequence(params)
 buffer = append!(buffer, sequence)
 %{buffer | last_style: style}
 end
end

defp style_to_sgr_params(style, nil) do
 # No previous - emit all
 build_full_sgr_params(style)
end

defp style_to_sgr_params(style, last) do
 params = []

 # Only emit if changed
 params = if style.fg != last.fg do
 fg = style.fg || :default
 [color_to_sgr(:fg, fg) | params]
 else
 params
 end

 params = if style.bg != last.bg do
 bg = style.bg || :default
 [color_to_sgr(:bg, bg) | params]
 else
 params
 end

 # Handle attribute changes...
 params
end
Mouse Tracking
Modes
def enable_mouse_tracking(mode) do
 sequences = case mode do
 :click ->
 # X11 mouse button events
 ["\e[?1000h", "\e[?1006h"]

 :drag ->
 # Button events + motion while pressed
 ["\e[?1002h", "\e[?1006h"]

 :all ->
 # All mouse events including motion
 ["\e[?1003h", "\e[?1006h"]
 end

 Enum.each(sequences, &write_to_terminal/1)
 :ok
end

def disable_mouse_tracking do
 sequences = [
 "\e[?1000l", # Disable X11
 "\e[?1002l", # Disable drag
 "\e[?1003l", # Disable all
 "\e[?1006l" # Disable SGR
]
 Enum.each(sequences, &write_to_terminal/1)
 :ok
end
SGR Mouse Format
More precise than X10 format:
ESC [< Cb ; Cx ; Cy M (button press)
ESC [< Cb ; Cx ; Cy m (button release)

Cb = button info (bits encode button, modifiers, motion)
Cx = column (1-indexed)
Cy = row (1-indexed)
Focus Events
def enable_focus_events do
 write_to_terminal("\e[?1004h")
end

def disable_focus_events do
 write_to_terminal("\e[?1004l")
end

Terminal sends:
\e[I - Focus gained
\e[O - Focus lost
Terminal Size
Query Size
def get_terminal_size do
 case :io.columns() do
 {:ok, cols} ->
 case :io.rows() do
 {:ok, rows} -> {:ok, {rows, cols}}
 _ -> {:error, :unknown}
 end
 _ ->
 {:error, :unknown}
 end
end
Resize Detection
Register for SIGWINCH
def register_resize_callback(pid) do
 GenServer.cast(__MODULE__, {:register_resize, pid})
end

On resize signal
def handle_info(:sigwinch, state) do
 case get_terminal_size() do
 {:ok, {rows, cols}} ->
 # Notify all registered processes
 Enum.each(state.resize_callbacks, fn pid ->
 send(pid, {:terminal_resize, {rows, cols}})
 end)
 _ ->
 :ok
 end
 {:noreply, state}
end
Alternate Screen
sequenceDiagram
 participant App as Application
 participant Term as Terminal
 participant Scr as Screen

 App->>Term: enter_alternate_screen()
 Term->>Scr: ESC[?1049h
 Note over Scr: Switch to alt buffer

 Note over App: TUI runs...

 App->>Term: leave_alternate_screen()
 Term->>Scr: ESC[?1049l
 Note over Scr: Restore main buffer
def enter_alternate_screen do
 write_to_terminal("\e[?1049h")
end

def leave_alternate_screen do
 write_to_terminal("\e[?1049l")
end
Bracketed Paste
def enable_bracketed_paste do
 write_to_terminal("\e[?2004h")
end

def disable_bracketed_paste do
 write_to_terminal("\e[?2004l")
end

Pasted text arrives as:
\e[200~ <paste content> \e[201~
Platform Differences
Unix/Linux/macOS
	/dev/tty for terminal access
	stty for fallback mode control
	SIGWINCH for resize detection

Windows
	ConPTY for modern terminals
	Different escape sequence support
	Windows Terminal provides full ANSI support

defp platform do
 case :os.type() do
 {:unix, _} -> :unix
 {:win32, _} -> :windows
 end
end
Error Recovery
Terminal Restoration
Always restore on exit:
def terminate(_reason, state) do
 # Best-effort restoration
 try do
 restore()
 rescue
 _ -> :ok
 end
 :ok
end
Crash Recovery
The runtime traps exits:
def init(opts) do
 Process.flag(:trap_exit, true)
 # ...
end

def terminate(_reason, state) do
 # Terminal.restore() always called
 if state.terminal_started do
 Terminal.restore()
 end
 :ok
end
Debugging
Raw Escape Sequences
See actual bytes
IO.inspect(data, binaries: :as_binaries)

Example output:
<<27, 91, 49, 59, 51, 49, 109>>
= ESC [1 ; 3 1 m
= bold + red foreground
Terminal State
Check if in raw mode
:io.getopts(:standard_io)
=> {:ok, [terminal: true, ...]}
Next Steps
	Event System - Input parsing
	Rendering Pipeline - Output flow
	Buffer Management - Screen buffers

 Elm Implementation - TermUI v0.2.0

 Elm Architecture Implementation

This guide explains how TermUI implements The Elm Architecture (TEA) pattern adapted for OTP/Elixir.
The Pattern
graph TD
 subgraph "Elm Architecture"
 S[State] --> V[view/1]
 V --> RT[Render Tree]
 RT --> T[Terminal]

 E[Event] --> ETM[event_to_msg/2]
 ETM --> M[Message]
 M --> U[update/2]
 U --> NS[New State]
 NS --> S
 U --> CMD[Commands]
 CMD --> EX[Execute]
 EX --> M
 end
Component Behaviour
Every TermUI component implements the TermUI.Component behaviour:
defmodule TermUI.Component do
 @callback init(opts :: keyword()) :: state :: term()
 @callback event_to_msg(event :: Event.t(), state :: term()) ::
 {:msg, msg :: term()} | :ignore | :propagate
 @callback update(msg :: term(), state :: term()) ::
 {new_state :: term(), commands :: [command()]}
 @callback view(state :: term()) :: render_tree :: term()
end
Example Component
defmodule Counter do
 @behaviour TermUI.Component

 import TermUI.View
 alias TermUI.Event

 # Initialize state
 @impl true
 def init(_opts), do: %{count: 0}

 # Convert events to messages
 @impl true
 def event_to_msg(%Event.Key{key: :up}, _state), do: {:msg, :increment}
 def event_to_msg(%Event.Key{key: :down}, _state), do: {:msg, :decrement}
 def event_to_msg(%Event.Key{key: "q"}, _state), do: {:msg, :quit}
 def event_to_msg(_event, _state), do: :ignore

 # Update state based on messages
 @impl true
 def update(:increment, state), do: {%{state | count: state.count + 1}, []}
 def update(:decrement, state), do: {%{state | count: state.count - 1}, []}
 def update(:quit, state), do: {state, [:quit]}

 # Render current state
 @impl true
 def view(state) do
 stack(:vertical, [
 text("Counter: #{state.count}"),
 text("↑/↓ to change, q to quit")
])
 end
end
Data Flow
1. Init Phase
sequenceDiagram
 participant U as User
 participant RT as Runtime
 participant C as Component
 participant BM as BufferManager

 U->>RT: start_link(root: Counter)
 RT->>C: init(opts)
 C->>RT: initial_state
 RT->>BM: allocate buffers
 RT->>RT: schedule_render
 RT->>C: view(state)
 C->>RT: render_tree
 RT->>BM: render to buffer
Runtime.init/1
def init(opts) do
 root_module = Keyword.fetch!(opts, :root)

 # Call component's init
 root_state = root_module.init(opts)

 state = %State{
 root_module: root_module,
 root_state: root_state,
 # ...
 }

 # Schedule first render
 schedule_render(state.render_interval)

 {:ok, state}
end
2. Event Phase
sequenceDiagram
 participant T as Terminal
 participant IR as InputReader
 participant RT as Runtime
 participant C as Component

 T->>IR: raw bytes
 IR->>IR: parse escape sequences
 IR->>RT: Event struct
 RT->>C: event_to_msg(event, state)

 alt {:msg, message}
 C->>RT: {:msg, :increment}
 RT->>RT: enqueue message
 else :ignore
 C->>RT: :ignore
 Note over RT: Event discarded
 else :propagate
 C->>RT: :propagate
 Note over RT: Bubble to parent
 end
Runtime handles input from InputReader
def handle_info({:input, event}, state) do
 state = dispatch_event(event, state)
 {:noreply, state}
end

defp dispatch_event(event, state) do
 case state.root_module.event_to_msg(event, state.root_state) do
 {:msg, message} ->
 enqueue_message(:root, message, state)

 :ignore ->
 state

 :propagate ->
 # Future: bubble to parent component
 state
 end
end
3. Update Phase
sequenceDiagram
 participant RT as Runtime
 participant MQ as MessageQueue
 participant C as Component
 participant CMD as CommandExecutor

 RT->>MQ: flush()
 MQ->>RT: [messages]

 loop Each message
 RT->>C: update(msg, state)
 C->>RT: {new_state, commands}
 RT->>RT: mark_dirty if changed
 end

 RT->>CMD: execute(commands)
 CMD->>RT: schedule results
defp process_messages(state) do
 {messages, queue} = MessageQueue.flush(state.message_queue)

 {state, all_commands} =
 Enum.reduce(messages, {state, []}, fn {component_id, msg}, {acc, cmds} ->
 {new_state, new_cmds} = process_single_message(component_id, msg, acc)
 {new_state, cmds ++ new_cmds}
 end)

 execute_commands(all_commands, %{state | message_queue: queue})
end

defp process_single_message(:root, msg, state) do
 {new_root_state, commands} = state.root_module.update(msg, state.root_state)

 dirty = state.dirty or new_root_state != state.root_state

 {%{state | root_state: new_root_state, dirty: dirty}, commands}
end
4. View Phase
sequenceDiagram
 participant RT as Runtime
 participant C as Component
 participant NR as NodeRenderer
 participant BM as BufferManager
 participant D as Diff
 participant T as Terminal

 RT->>C: view(state)
 C->>RT: render_tree
 RT->>BM: clear current
 RT->>NR: render_to_buffer(tree)
 NR->>BM: set_cells(cells)
 RT->>D: diff(current, previous)
 D->>RT: operations
 RT->>T: write operations
 RT->>BM: swap_buffers
defp do_render(state) do
 # 1. Get render tree
 render_tree = state.root_module.view(state.root_state)

 # 2. Clear and render to buffer
 BufferManager.clear_current()
 NodeRenderer.render_to_buffer(render_tree)

 # 3. Diff against previous
 current = BufferManager.get_current_buffer()
 previous = BufferManager.get_previous_buffer()
 operations = Diff.diff(current, previous)

 # 4. Output to terminal
 render_operations(operations)

 # 5. Swap buffers for next frame
 BufferManager.swap_buffers()

 %{state | dirty: false}
end
Commands
Commands are side effects returned from update/2:
graph LR
 subgraph "Command Types"
 Q[:quit] --> Shutdown
 T[{:timer, ms, msg}] --> TimerProcess
 A[{:async, fun, msg}] --> TaskProcess
 end

 TimerProcess --> MQ[MessageQueue]
 TaskProcess --> MQ
Built-in Commands
Quit application
def update(:quit, state), do: {state, [:quit]}

Set timer
def update(:start_timer, state) do
 {state, [{:timer, 1000, :tick}]}
end

Async operation
def update(:fetch_data, state) do
 task = fn -> HTTP.get!("/api/data") end
 {state, [{:async, task, :data_received}]}
end
Command Execution
defp execute_commands(commands, state) do
 Enum.reduce(commands, state, fn cmd, acc ->
 execute_command(cmd, acc)
 end)
end

defp execute_command(:quit, state) do
 GenServer.cast(self(), :shutdown)
 %{state | shutting_down: true}
end

defp execute_command({:timer, ms, msg}, state) do
 command_id = make_ref()
 Process.send_after(self(), {:command_result, :root, command_id, msg}, ms)

 pending = Map.put(state.pending_commands, command_id, {:timer, msg})
 %{state | pending_commands: pending}
end

defp execute_command({:async, fun, msg_wrapper}, state) do
 command_id = make_ref()
 parent = self()

 Task.start(fn ->
 result = fun.()
 send(parent, {:command_result, :root, command_id, {msg_wrapper, result}})
 end)

 pending = Map.put(state.pending_commands, command_id, {:async, msg_wrapper})
 %{state | pending_commands: pending}
end
Command Results
def handle_info({:command_result, component_id, cmd_id, result}, state) do
 state = %{state | pending_commands: Map.delete(state.pending_commands, cmd_id)}
 state = enqueue_message(component_id, result, state)
 {:noreply, state}
end
Message Queue
FIFO ordering with component targeting:
defmodule TermUI.Runtime.MessageQueue do
 defstruct queue: :queue.new()

 def enqueue(mq, component_id, message) do
 %{mq | queue: :queue.in({component_id, message}, mq.queue)}
 end

 def flush(mq) do
 messages = :queue.to_list(mq.queue)
 {messages, %{mq | queue: :queue.new()}}
 end

 def empty?(mq) do
 :queue.is_empty(mq.queue)
 end
end
Render Tree Nodes
The view/1 function returns a tree of render nodes:
Text with optional style
{:text, "Hello", %Style{fg: :red}}

Vertical or horizontal stack
{:stack, :vertical, [child1, child2]}
{:stack, :horizontal, [child1, child2]}

Style wrapper
{:styled, %Style{bg: :blue}, child}

Fragment (no container)
{:fragment, [child1, child2, child3]}

Raw cells
{:cells, [%Cell{char: "█", fg: :green}, ...]}
View Helpers
defmodule TermUI.View do
 def text(content), do: {:text, content, Style.new()}
 def text(content, style), do: {:text, content, style}

 def stack(direction, children) when direction in [:vertical, :horizontal] do
 {:stack, direction, List.flatten(children)}
 end

 def styled(style, child), do: {:styled, style, child}

 def fragment(children), do: {:fragment, List.flatten(children)}
end
State Immutability
All state updates create new values:
Good - create new state
def update(:increment, state) do
 {%{state | count: state.count + 1}, []}
end

Bad - mutation (doesn't work in Elixir anyway)
def update(:increment, state) do
 state.count = state.count + 1 # Compile error!
 {state, []}
end
Nested State Updates
def update({:set_user_name, name}, state) do
 # Update nested map
 new_user = %{state.user | name: name}
 {%{state | user: new_user}, []}
end

Or with put_in
def update({:set_user_name, name}, state) do
 {put_in(state, [:user, :name], name), []}
end
Error Handling
Components are wrapped in error protection:
defp safe_event_to_msg(module, event, state) do
 try do
 module.event_to_msg(event, state)
 rescue
 error ->
 Logger.error("event_to_msg crashed: #{inspect(error)}")
 :ignore
 end
end

defp safe_update(module, msg, state) do
 try do
 module.update(msg, state)
 rescue
 error ->
 Logger.error("update crashed: #{inspect(error)}")
 {state, []}
 end
end

defp safe_view(module, state) do
 try do
 module.view(state)
 rescue
 error ->
 Logger.error("view crashed: #{inspect(error)}")
 {:text, "[Render Error]", Style.new(fg: :red)}
 end
end
Comparison with Original Elm
	Aspect	Elm	TermUI
	Language	Elm (ML-style)	Elixir
	Runtime	Browser/JavaScript	BEAM/OTP
	Model	Model type	Component state (any term)
	Msg	Msg union type	Any Elixir term
	Cmd	Cmd Msg	List of command tuples
	Sub	Sub Msg	Commands + Input events
	view	Virtual DOM	Render tree
	update	Pure function	Pure function
	Side effects	Elm runtime	Runtime + Commands

Key Differences
	No subscriptions: TermUI uses commands and the InputReader instead
	Commands as data: Commands are simple tuples, not opaque types
	event_to_msg: Additional callback to separate event parsing from state updates
	Process model: Components could be separate processes (future)

Testing Components
defmodule CounterTest do
 use ExUnit.Case

 alias TermUI.Event

 test "init returns zero count" do
 assert Counter.init([]) == %{count: 0}
 end

 test "up arrow increments" do
 state = %{count: 5}
 event = Event.key(:up)

 assert {:msg, :increment} = Counter.event_to_msg(event, state)

 {new_state, commands} = Counter.update(:increment, state)
 assert new_state.count == 6
 assert commands == []
 end

 test "quit returns quit command" do
 state = %{count: 0}

 {^state, commands} = Counter.update(:quit, state)
 assert :quit in commands
 end

 test "view renders count" do
 state = %{count: 42}
 tree = Counter.view(state)

 # Inspect tree structure
 {:stack, :vertical, [text_node | _]} = tree
 {:text, content, _style} = text_node
 assert content =~ "42"
 end
end
Best Practices
1. Keep State Minimal
Good - only essential data
%{
 items: [...],
 selected_index: 0,
 filter: ""
}

Avoid - derived data in state
%{
 items: [...],
 filtered_items: [...], # Derive in view instead
 item_count: 10 # Derive from items
}
2. Use Pattern Matching in event_to_msg
Good - specific patterns
def event_to_msg(%Event.Key{key: :enter}, _state), do: {:msg, :submit}
def event_to_msg(%Event.Key{key: :escape}, _state), do: {:msg, :cancel}
def event_to_msg(%Event.Key{key: key}, _state) when key in ["q", "Q"], do: {:msg, :quit}
def event_to_msg(_event, _state), do: :ignore

Avoid - complex logic in event_to_msg
def event_to_msg(event, state) do
 cond do
 event.key == :enter and state.mode == :edit -> {:msg, :save}
 event.key == :enter and state.mode == :view -> {:msg, :edit}
 # ... many conditions
 end
end
3. Messages as Intent
Good - messages describe intent
:increment
:decrement
{:select_item, index}
{:set_filter, text}

Avoid - messages that are too low-level
{:set_count, 5} # Doesn't express why
{:keypress, :up} # Already handled by event_to_msg
4. Commands for Side Effects
Good - side effects via commands
def update(:refresh, state) do
 {%{state | loading: true}, [{:async, &fetch_data/0, :data_loaded}]}
end

Avoid - side effects in update
def update(:refresh, state) do
 data = HTTP.get!("/api") # Blocks, can crash
 {%{state | data: data}, []}
end
Next Steps
	Architecture Overview - System layers
	Runtime Internals - Event loop details
	Event System - Input handling

 Creating Widgets - TermUI v0.2.0

 Creating New Widgets

This guide explains how to create new widgets for TermUI and contribute them to the project.
Widget Types
TermUI supports two types of widgets:
1. Stateless Widgets (Display Only)
Simple widgets that render based on input props without maintaining internal state.
Examples: Gauge, Sparkline, BarChart, LineChart
Use when: The widget only displays data and doesn't need to track interactions.
2. Stateful Widgets (Interactive)
Widgets that maintain internal state and handle user events.
Examples: Menu, Table, Tabs, Dialog, Viewport
Use when: The widget needs to track selection, focus, scroll position, or other interactive state.
Creating a Stateless Widget
Step 1: Create the Widget Module
Create a new file in lib/term_ui/widgets/:
defmodule TermUI.Widgets.MyWidget do
 @moduledoc """
 MyWidget displays [description].

 ## Usage

 MyWidget.render(
 value: 42,
 width: 20,
 style: Style.new(fg: :cyan)
)

 ## Options

 - `:value` - The value to display (required)
 - `:width` - Widget width (default: 20)
 - `:style` - Style for the widget
 """

 import TermUI.Component.RenderNode

 @doc """
 Renders the widget.

 ## Options

 - `:value` - Required. The value to display.
 - `:width` - Optional. Width in characters (default: 20).
 - `:style` - Optional. Style to apply.
 """
 @spec render(keyword()) :: TermUI.Component.RenderNode.t()
 def render(opts) do
 value = Keyword.fetch!(opts, :value)
 width = Keyword.get(opts, :width, 20)
 style = Keyword.get(opts, :style)

 # Build your render tree
 content = format_value(value, width)

 if style do
 styled(text(content), style)
 else
 text(content)
 end
 end

 # Helper function for convenience
 @doc """
 Renders with default styling.
 """
 def simple(value, opts \\ []) do
 render([{:value, value} | opts])
 end

 # Private helpers
 defp format_value(value, width) do
 value
 |> to_string()
 |> String.pad_trailing(width)
 end
end
Key Points for Stateless Widgets
	Import RenderNode helpers: import TermUI.Component.RenderNode
	Use Keyword.fetch!/2 for required options
	Use Keyword.get/3 for optional options with defaults
	Return a RenderNode struct from render/1
	Provide convenience functions like simple/2 for common use cases

Creating a Stateful Widget
Step 1: Create the Widget Module
defmodule TermUI.Widgets.MyStatefulWidget do
 @moduledoc """
 MyStatefulWidget provides [description].

 ## Usage

 MyStatefulWidget.new(
 items: ["one", "two", "three"],
 on_select: fn item -> handle_selection(item) end
)

 ## Keyboard Controls

 - Up/Down: Navigate items
 - Enter: Select current item
 - Escape: Close
 """

 use TermUI.StatefulComponent

 alias TermUI.Event

 # Constructor for props
 @doc """
 Creates widget props.

 ## Options

 - `:items` - List of items (required)
 - `:on_select` - Callback when item is selected
 - `:style` - Style for normal items
 - `:selected_style` - Style for selected item
 """
 @spec new(keyword()) :: map()
 def new(opts) do
 %{
 items: Keyword.fetch!(opts, :items),
 on_select: Keyword.get(opts, :on_select),
 style: Keyword.get(opts, :style),
 selected_style: Keyword.get(opts, :selected_style)
 }
 end

 # Initialize state from props
 @impl true
 def init(props) do
 state = %{
 items: props.items,
 cursor: 0,
 on_select: props.on_select,
 style: props.style,
 selected_style: props.selected_style
 }

 {:ok, state}
 end

 # Handle keyboard events
 @impl true
 def handle_event(%Event.Key{key: :up}, state) do
 new_cursor = max(0, state.cursor - 1)
 {:ok, %{state | cursor: new_cursor}}
 end

 def handle_event(%Event.Key{key: :down}, state) do
 max_index = length(state.items) - 1
 new_cursor = min(max_index, state.cursor + 1)
 {:ok, %{state | cursor: new_cursor}}
 end

 def handle_event(%Event.Key{key: :enter}, state) do
 if state.on_select do
 item = Enum.at(state.items, state.cursor)
 state.on_select.(item)
 end

 {:ok, state}
 end

 def handle_event(_event, state) do
 {:ok, state}
 end

 # Render the widget
 @impl true
 def render(state, _area) do
 rows =
 state.items
 |> Enum.with_index()
 |> Enum.map(fn {item, index} ->
 render_item(item, index, state)
 end)

 stack(:vertical, rows)
 end

 defp render_item(item, index, state) do
 is_selected = index == state.cursor
 style = if is_selected, do: state.selected_style, else: state.style

 if style do
 styled(text(item), style)
 else
 text(item)
 end
 end
end
Key Points for Stateful Widgets
	Use the behaviour: use TermUI.StatefulComponent
	Provide new/1 to create props from options
	Implement init/1 to initialize state from props
	Implement handle_event/2 for user interactions
	Implement render/2 to produce the render tree
	Return {:ok, state} or {:ok, state, commands} from event handlers

Writing Tests
Tests are required for all new widgets. See Testing Framework for comprehensive testing documentation.
Create a test file in test/term_ui/widgets/:
defmodule TermUI.Widgets.MyWidgetTest do
 use ExUnit.Case, async: true

 alias TermUI.Widgets.MyWidget

 describe "render/1" do
 test "renders with required options" do
 result = MyWidget.render(value: 42)

 assert result.type == :text
 assert result.content =~ "42"
 end

 test "applies custom width" do
 result = MyWidget.render(value: 1, width: 10)

 assert String.length(result.content) == 10
 end

 test "applies style when provided" do
 style = TermUI.Renderer.Style.new(fg: :red)
 result = MyWidget.render(value: 42, style: style)

 assert result.type == :box
 assert result.style == style
 end

 test "raises on missing required option" do
 assert_raise KeyError, fn ->
 MyWidget.render([])
 end
 end
 end

 describe "simple/2" do
 test "creates widget with defaults" do
 result = MyWidget.simple(100)

 assert result.type == :text
 end
 end
end
Test Categories to Cover
	Required options - Verify required params raise on missing
	Default values - Test behavior with minimal options
	All options - Test each option individually
	Edge cases - Empty data, zero values, extreme values
	Styling - Verify styles are applied correctly
	For stateful widgets:	Initial state from props
	Event handling (keyboard, mouse)
	State transitions
	Callback invocation

File Organization
lib/term_ui/widgets/
├── my_widget.ex # Your widget module

test/term_ui/widgets/
├── my_widget_test.exs # Your widget tests

examples/my_widget/ # Optional: example application
├── mix.exs
├── run.exs
├── README.md
└── lib/my_widget/
 ├── application.ex
 └── app.ex
Checklist Before Submitting a PR
Code Quality
	[] Widget has comprehensive @moduledoc with usage examples
	[] All public functions have @doc and @spec
	[] Follows existing code style (run mix format)
	[] No compiler warnings (mix compile --warnings-as-errors)

Testing
	[] Test file exists in test/term_ui/widgets/
	[] Tests cover all public functions
	[] Tests cover edge cases
	[] All tests pass (mix test)
	[] Tests are async when possible (use ExUnit.Case, async: true)

Documentation
	[] Module documentation explains the widget's purpose
	[] Usage examples in @moduledoc
	[] All options documented in render/1 or new/1
	[] Keyboard controls documented for stateful widgets

Optional but Appreciated
	[] Example application in examples/
	[] Example has README with installation instructions

Submitting Your PR
1. Fork and Branch
git checkout -b feature/my-widget

2. Implement and Test
Run tests
mix test test/term_ui/widgets/my_widget_test.exs

Run all tests
mix test

Check formatting
mix format --check-formatted

Check for warnings
mix compile --warnings-as-errors

3. Commit with Clear Message
git add lib/term_ui/widgets/my_widget.ex test/term_ui/widgets/my_widget_test.exs
git commit -m "Add MyWidget for [purpose]

- Implements [feature 1]
- Supports [feature 2]
- Includes comprehensive tests"

4. Create Pull Request
Your PR description should include:
	What: Brief description of the widget
	Why: Use case or motivation
	How: Key implementation details
	Testing: How to test the widget
	Screenshots: If applicable, show the widget in action

PR Requirements
	Tests must pass - CI will verify this
	Tests must be included - PRs without tests will not be merged
	Code must be formatted - Run mix format
	No new warnings - Compile with --warnings-as-errors

Examples of Good PRs
Look at existing widgets for reference:
	Simple stateless: lib/term_ui/widgets/gauge.ex
	Data visualization: lib/term_ui/widgets/sparkline.ex
	Interactive stateful: lib/term_ui/widgets/menu.ex
	Complex stateful: lib/term_ui/widgets/table.ex

Getting Help
	Open an issue to discuss your widget idea before implementing
	Ask questions in the PR if you need guidance
	Review existing widget implementations for patterns

Next Steps
	Testing Framework - Comprehensive testing guide
	Architecture Overview - Understand the system
	Elm Implementation - Learn the component model
	Rendering Pipeline - How widgets become output

 Testing Framework - TermUI v0.2.0

 Testing Framework

This guide covers TermUI's testing framework for component and widget testing.
Overview
TermUI provides a comprehensive testing framework in TermUI.Test.* with four key modules:
	Module	Purpose
	ComponentHarness	Mount and test components in isolation
	TestRenderer	Capture rendered output for inspection
	EventSimulator	Create synthetic events for testing
	Assertions	TUI-specific test assertions

Quick Start
defmodule MyWidgetTest do
 use ExUnit.Case, async: true
 use TermUI.Test.Assertions

 alias TermUI.Test.{ComponentHarness, EventSimulator, TestRenderer}

 test "widget renders and responds to events" do
 # Mount component
 {:ok, harness} = ComponentHarness.mount_test(MyWidget, initial_value: 0)

 # Render and check output
 harness = ComponentHarness.render(harness)
 renderer = ComponentHarness.get_renderer(harness)
 assert_text_exists(renderer, "Value: 0")

 # Send event and verify state change
 harness = ComponentHarness.send_event(harness, EventSimulator.simulate_key(:up))
 harness = ComponentHarness.render(harness)
 assert_text_exists(renderer, "Value: 1")

 # Cleanup
 ComponentHarness.unmount(harness)
 end
end
Component Harness
The ComponentHarness mounts components in isolation for testing without the full runtime.
Mounting Components
Basic mount
{:ok, harness} = ComponentHarness.mount_test(MyComponent)

With props
{:ok, harness} = ComponentHarness.mount_test(MyButton, label: "Click me")

With custom dimensions
{:ok, harness} = ComponentHarness.mount_test(MyWidget, width: 40, height: 10)
Rendering
Render component
harness = ComponentHarness.render(harness)

Get render result (the render tree)
render_tree = ComponentHarness.get_render(harness)

Get all renders (most recent first)
all_renders = ComponentHarness.get_renders(harness)
Sending Events
Single event
harness = ComponentHarness.send_event(harness, event)

Multiple events
harness = ComponentHarness.send_events(harness, [event1, event2, event3])

Event + render cycle (common pattern)
harness = ComponentHarness.event_cycle(harness, event)
Inspecting State
Get full state
state = ComponentHarness.get_state(harness)

Get state at path
value = ComponentHarness.get_state_at(harness, [:counter, :value])

Direct state manipulation (use sparingly)
harness = ComponentHarness.set_state(harness, %{count: 10})
harness = ComponentHarness.update_state(harness, fn s -> %{s | count: s.count + 1} end)
Cleanup
Always unmount when done
ComponentHarness.unmount(harness)

Or reset to initial state
{:ok, harness} = ComponentHarness.reset(harness)
Test Renderer
The TestRenderer captures rendered output to a buffer for inspection.
Creating a Renderer
{:ok, renderer} = TestRenderer.new(24, 80) # 24 rows, 80 columns
Writing Content
Write a string
TestRenderer.write_string(renderer, 1, 1, "Hello, World!")

Set individual cell
TestRenderer.set_cell(renderer, 1, 1, Cell.new("X", fg: :red))

Clear buffer
TestRenderer.clear(renderer)
Reading Content
Get text at position
text = TestRenderer.get_text_at(renderer, 1, 1, 5) # "Hello"

Get entire row
row_text = TestRenderer.get_row_text(renderer, 1)

Get cell
cell = TestRenderer.get_cell(renderer, 1, 1)

Get style at position
style = TestRenderer.get_style_at(renderer, 1, 1)
=> %{fg: :red, bg: :default, attrs: MapSet.new([:bold])}
Searching Content
Check if text exists at position
TestRenderer.text_at?(renderer, 1, 1, "Hello") # true/false

Check if region contains text
TestRenderer.text_contains?(renderer, 1, 1, 80, "Error")

Find all occurrences
positions = TestRenderer.find_text(renderer, "Error")
=> [{5, 10}, {12, 3}]
Snapshots
Snapshots capture buffer state for comparison:
Take snapshot
snapshot = TestRenderer.snapshot(renderer)

Compare to snapshot
TestRenderer.matches_snapshot?(renderer, snapshot) # true/false

Get differences
diffs = TestRenderer.diff_snapshot(renderer, snapshot)
=> [{row, col, expected_cell, actual_cell}, ...]

Convert to string for debugging
TestRenderer.to_string(renderer)
TestRenderer.snapshot_to_string(snapshot)
Cleanup
TestRenderer.destroy(renderer)
Event Simulator
The EventSimulator creates synthetic events without terminal input.
Keyboard Events
Basic key press
event = EventSimulator.simulate_key(:enter)
event = EventSimulator.simulate_key(:up)
event = EventSimulator.simulate_key(:escape)

Key with character
event = EventSimulator.simulate_key(:a, char: "a")

Key with modifiers
event = EventSimulator.simulate_key(:c, modifiers: [:ctrl])
event = EventSimulator.simulate_key(:s, modifiers: [:ctrl, :shift])

Function keys
event = EventSimulator.simulate_function_key(1) # F1
event = EventSimulator.simulate_function_key(12) # F12

Navigation keys
event = EventSimulator.simulate_navigation(:up)
event = EventSimulator.simulate_navigation(:page_down)
event = EventSimulator.simulate_navigation(:home)
Common Shortcuts
EventSimulator.simulate_shortcut(:copy) # Ctrl+C
EventSimulator.simulate_shortcut(:paste) # Ctrl+V
EventSimulator.simulate_shortcut(:cut) # Ctrl+X
EventSimulator.simulate_shortcut(:save) # Ctrl+S
EventSimulator.simulate_shortcut(:quit) # Ctrl+Q
EventSimulator.simulate_shortcut(:undo) # Ctrl+Z
EventSimulator.simulate_shortcut(:redo) # Ctrl+Shift+Z
EventSimulator.simulate_shortcut(:select_all) # Ctrl+A
Typing Text
Simulate typing a string (returns list of events)
events = EventSimulator.simulate_type("Hello")
=> [%Key{key: :h, char: "H"}, %Key{key: :e, char: "e"}, ...]

Send all events
harness = ComponentHarness.send_events(harness, events)
Key Sequences
Simulate sequence of keys
events = EventSimulator.simulate_sequence([:tab, :tab, :enter])

With options
events = EventSimulator.simulate_sequence([
 {:a, char: "a"},
 :tab,
 :enter
])
Mouse Events
Click
event = EventSimulator.simulate_click(10, 20) # left click
event = EventSimulator.simulate_click(10, 20, :right) # right click
event = EventSimulator.simulate_click(10, 20, :left, modifiers: [:ctrl])

Double click
event = EventSimulator.simulate_double_click(10, 20)

Mouse movement
event = EventSimulator.simulate_move(15, 25)

Drag
event = EventSimulator.simulate_drag(10, 20, :left)

Scroll
event = EventSimulator.simulate_scroll_up(10, 20)
event = EventSimulator.simulate_scroll_down(10, 20)
Other Events
Focus events
event = EventSimulator.simulate_focus_gained()
event = EventSimulator.simulate_focus_lost()

Resize
event = EventSimulator.simulate_resize(120, 40)

Paste
event = EventSimulator.simulate_paste("Pasted content")
Assertions
Import assertions with use TermUI.Test.Assertions.
Text Assertions
Assert exact text at position
assert_text(renderer, 1, 1, "Hello")

Assert text does NOT appear
refute_text(renderer, 1, 1, "Goodbye")

Assert region contains text
assert_text_contains(renderer, 1, 1, 80, "Error")
refute_text_contains(renderer, 1, 1, 80, "Success")

Assert text exists anywhere in buffer
assert_text_exists(renderer, "Error")
refute_text_exists(renderer, "Secret")

Assert entire row matches
assert_row(renderer, 1, "Hello, World!")
Style Assertions
Assert foreground color
assert_style(renderer, 1, 1, fg: :red)

Assert background color
assert_style(renderer, 1, 1, bg: :white)

Assert multiple style properties
assert_style(renderer, 1, 1, fg: :red, bg: :white, attrs: [:bold])

Assert single attribute
assert_attr(renderer, 1, 1, :bold)
refute_attr(renderer, 1, 1, :underline)
State Assertions
Assert state at path
assert_state(state, [:counter, :value], 42)
refute_state(state, [:counter, :value], 0)

Assert state exists (not nil)
assert_state_exists(state, [:user, :name])
Snapshot Assertions
Take snapshot
snapshot = TestRenderer.snapshot(renderer)

... perform operations ...

Assert matches snapshot
assert_snapshot(renderer, snapshot)
Buffer Assertions
Assert buffer is empty
assert_empty(renderer)
Testing Patterns
Testing State Transitions
test "counter increments on up arrow" do
 {:ok, harness} = ComponentHarness.mount_test(Counter, initial: 0)

 # Initial state
 assert ComponentHarness.get_state(harness).count == 0

 # Send event
 harness = ComponentHarness.send_event(harness, EventSimulator.simulate_key(:up))

 # Verify state changed
 assert ComponentHarness.get_state(harness).count == 1
end
Testing Rendered Output
test "displays current count" do
 {:ok, harness} = ComponentHarness.mount_test(Counter, initial: 42)
 harness = ComponentHarness.render(harness)

 renderer = ComponentHarness.get_renderer(harness)
 assert_text_exists(renderer, "Count: 42")
end
Testing Event Sequences
test "navigation through menu" do
 {:ok, harness} = ComponentHarness.mount_test(Menu, items: ["A", "B", "C"])

 # Navigate down twice
 harness =
 harness
 |> ComponentHarness.event_cycle(EventSimulator.simulate_key(:down))
 |> ComponentHarness.event_cycle(EventSimulator.simulate_key(:down))

 # Should be on third item
 assert ComponentHarness.get_state(harness).selected == 2
end
Testing with Snapshots
test "render output matches expected" do
 {:ok, harness} = ComponentHarness.mount_test(MyWidget)
 harness = ComponentHarness.render(harness)

 renderer = ComponentHarness.get_renderer(harness)
 snapshot = TestRenderer.snapshot(renderer)

 # Store snapshot for regression testing
 # In real tests, you'd load this from a file
 expected = %{
 rows: 24,
 cols: 80,
 cells: %{...}
 }

 assert_snapshot(renderer, expected)
end
Testing Edge Cases
test "handles empty list" do
 {:ok, harness} = ComponentHarness.mount_test(List, items: [])
 harness = ComponentHarness.render(harness)

 renderer = ComponentHarness.get_renderer(harness)
 assert_text_exists(renderer, "No items")
end

test "handles boundary navigation" do
 {:ok, harness} = ComponentHarness.mount_test(List, items: ["Only item"])

 # Try to go down when already at bottom
 harness = ComponentHarness.send_event(harness, EventSimulator.simulate_key(:down))

 # Should stay at 0
 assert ComponentHarness.get_state(harness).selected == 0
end
Best Practices
	Use async: true for isolated tests
	Always call unmount/1 to clean up resources
	Test state and render separately for clarity
	Use event_cycle/2 for common send-event-then-render pattern
	Prefer event simulation over direct state manipulation
	Use assertions for clear failure messages
	Test edge cases: empty data, boundaries, invalid input

Next Steps
	Creating Widgets - Widget implementation guide
	Architecture Overview - System architecture

 TermUI.ANSI - TermUI v0.2.0

TermUI.ANSI

ANSI escape sequence generation for terminal control.
This module provides functions to generate ANSI escape sequences for cursor
control, screen manipulation, colors, styles, and special terminal modes.
All functions return iodata for efficient concatenation.

 Summary

 Functions

 background(color)

 Generates background color sequence for basic 16-color mode.

 background_256(index)

 Generates background color sequence for 256-color palette.

 background_rgb(r, g, b)

 Generates background color sequence for true-color RGB.

 blink()

 Generates blink text attribute sequence.

 bold()

 Generates bold text attribute sequence.

 clear_line()

 Generates clear entire line sequence.

 clear_line_from_cursor()

 Generates clear line from cursor to end sequence.

 clear_line_to_cursor()

 Generates clear line from beginning to cursor sequence.

 clear_screen()

 Generates clear entire screen sequence.

 clear_screen_from_cursor()

 Generates clear screen from cursor to end sequence.

 clear_screen_to_cursor()

 Generates clear screen from beginning to cursor sequence.

 cursor_back(n \\ 1)

 Generates cursor back (left) movement sequence.

 cursor_down(n \\ 1)

 Generates cursor down movement sequence.

 cursor_forward(n \\ 1)

 Generates cursor forward (right) movement sequence.

 cursor_hide()

 Generates cursor hide sequence.

 cursor_position(row, col)

 Generates absolute cursor positioning sequence.

 cursor_show()

 Generates cursor show sequence.

 cursor_up(n \\ 1)

 Generates cursor up movement sequence.

 dim()

 Generates dim text attribute sequence.

 disable_app_cursor()

 Generates disable application cursor keys mode sequence.

 disable_bracketed_paste()

 Generates disable bracketed paste mode sequence.

 disable_focus_events()

 Generates disable focus event reporting sequence.

 disable_mouse_tracking(atom)

 Generates disable mouse tracking sequence for the specified mode.

 disable_sgr_mouse()

 Generates disable SGR mouse mode sequence.

 enable_app_cursor()

 Generates enable application cursor keys mode sequence.

 enable_bracketed_paste()

 Generates enable bracketed paste mode sequence.

 enable_focus_events()

 Generates enable focus event reporting sequence.

 enable_mouse_tracking(atom)

 Generates enable mouse tracking sequence for the specified mode.

 enable_sgr_mouse()

 Generates enable SGR mouse mode sequence for extended coordinate encoding.

 enter_alternate_screen()

 Generates enter alternate screen buffer sequence.

 foreground(color)

 Generates foreground color sequence for basic 16-color mode.

 foreground_256(index)

 Generates foreground color sequence for 256-color palette.

 foreground_rgb(r, g, b)

 Generates foreground color sequence for true-color RGB.

 format(attrs)

 Generates combined style sequence from a list of attributes.

 hidden()

 Generates hidden text attribute sequence.

 italic()

 Generates italic text attribute sequence.

 leave_alternate_screen()

 Generates leave alternate screen buffer sequence.

 reset()

 Generates reset all styles sequence.

 reset_style()

 Alias for reset/0.

 restore_cursor()

 Generates restore cursor position sequence.

 reverse()

 Generates reverse video text attribute sequence.

 save_cursor()

 Generates save cursor position sequence.

 scroll_down(n \\ 1)

 Generates scroll down sequence.

 scroll_up(n \\ 1)

 Generates scroll up sequence.

 set_scroll_region(top, bottom)

 Generates set scroll region sequence.

 strikethrough()

 Generates strikethrough text attribute sequence.

 underline()

 Generates underline text attribute sequence.

 Functions

 background(color)

 @spec background(atom()) :: iodata()

Generates background color sequence for basic 16-color mode.
Examples
iex> TermUI.ANSI.background(:blue) |> IO.iodata_to_binary()
"\e[44m"

iex> TermUI.ANSI.background(:bright_red) |> IO.iodata_to_binary()
"\e[101m"

 background_256(index)

 @spec background_256(0..255) :: iodata()

Generates background color sequence for 256-color palette.
Examples
iex> TermUI.ANSI.background_256(196) |> IO.iodata_to_binary()
"\e[48;5;196m"

 background_rgb(r, g, b)

 @spec background_rgb(0..255, 0..255, 0..255) :: iodata()

Generates background color sequence for true-color RGB.
Examples
iex> TermUI.ANSI.background_rgb(255, 128, 0) |> IO.iodata_to_binary()
"\e[48;2;255;128;0m"

 blink()

 @spec blink() :: iodata()

Generates blink text attribute sequence.

 bold()

 @spec bold() :: iodata()

Generates bold text attribute sequence.

 clear_line()

 @spec clear_line() :: iodata()

Generates clear entire line sequence.
Examples
iex> TermUI.ANSI.clear_line() |> IO.iodata_to_binary()
"\e[2K"

 clear_line_from_cursor()

 @spec clear_line_from_cursor() :: iodata()

Generates clear line from cursor to end sequence.
Examples
iex> TermUI.ANSI.clear_line_from_cursor() |> IO.iodata_to_binary()
"\e[K"

 clear_line_to_cursor()

 @spec clear_line_to_cursor() :: iodata()

Generates clear line from beginning to cursor sequence.
Examples
iex> TermUI.ANSI.clear_line_to_cursor() |> IO.iodata_to_binary()
"\e[1K"

 clear_screen()

 @spec clear_screen() :: iodata()

Generates clear entire screen sequence.
Examples
iex> TermUI.ANSI.clear_screen() |> IO.iodata_to_binary()
"\e[2J"

 clear_screen_from_cursor()

 @spec clear_screen_from_cursor() :: iodata()

Generates clear screen from cursor to end sequence.
Examples
iex> TermUI.ANSI.clear_screen_from_cursor() |> IO.iodata_to_binary()
"\e[0J"

 clear_screen_to_cursor()

 @spec clear_screen_to_cursor() :: iodata()

Generates clear screen from beginning to cursor sequence.
Examples
iex> TermUI.ANSI.clear_screen_to_cursor() |> IO.iodata_to_binary()
"\e[1J"

 cursor_back(n \\ 1)

 @spec cursor_back(pos_integer()) :: iodata()

Generates cursor back (left) movement sequence.
Examples
iex> TermUI.ANSI.cursor_back(3) |> IO.iodata_to_binary()
"\e[3D"

iex> TermUI.ANSI.cursor_back(1) |> IO.iodata_to_binary()
"\e[D"

 cursor_down(n \\ 1)

 @spec cursor_down(pos_integer()) :: iodata()

Generates cursor down movement sequence.
Examples
iex> TermUI.ANSI.cursor_down(3) |> IO.iodata_to_binary()
"\e[3B"

iex> TermUI.ANSI.cursor_down(1) |> IO.iodata_to_binary()
"\e[B"

 cursor_forward(n \\ 1)

 @spec cursor_forward(pos_integer()) :: iodata()

Generates cursor forward (right) movement sequence.
Examples
iex> TermUI.ANSI.cursor_forward(3) |> IO.iodata_to_binary()
"\e[3C"

iex> TermUI.ANSI.cursor_forward(1) |> IO.iodata_to_binary()
"\e[C"

 cursor_hide()

 @spec cursor_hide() :: iodata()

Generates cursor hide sequence.
Examples
iex> TermUI.ANSI.cursor_hide() |> IO.iodata_to_binary()
"\e[?25l"

 cursor_position(row, col)

 @spec cursor_position(pos_integer(), pos_integer()) :: iodata()

Generates absolute cursor positioning sequence.
Row and column are 1-indexed.
Examples
iex> TermUI.ANSI.cursor_position(5, 10) |> IO.iodata_to_binary()
"\e[5;10H"

iex> TermUI.ANSI.cursor_position(1, 1) |> IO.iodata_to_binary()
"\e[1;1H"

 cursor_show()

 @spec cursor_show() :: iodata()

Generates cursor show sequence.
Examples
iex> TermUI.ANSI.cursor_show() |> IO.iodata_to_binary()
"\e[?25h"

 cursor_up(n \\ 1)

 @spec cursor_up(pos_integer()) :: iodata()

Generates cursor up movement sequence.
Examples
iex> TermUI.ANSI.cursor_up(3) |> IO.iodata_to_binary()
"\e[3A"

iex> TermUI.ANSI.cursor_up(1) |> IO.iodata_to_binary()
"\e[A"

 dim()

 @spec dim() :: iodata()

Generates dim text attribute sequence.

 disable_app_cursor()

 @spec disable_app_cursor() :: iodata()

Generates disable application cursor keys mode sequence.
Examples
iex> TermUI.ANSI.disable_app_cursor() |> IO.iodata_to_binary()
"\e[?1l"

 disable_bracketed_paste()

 @spec disable_bracketed_paste() :: iodata()

Generates disable bracketed paste mode sequence.
Examples
iex> TermUI.ANSI.disable_bracketed_paste() |> IO.iodata_to_binary()
"\e[?2004l"

 disable_focus_events()

 @spec disable_focus_events() :: iodata()

Generates disable focus event reporting sequence.
Examples
iex> TermUI.ANSI.disable_focus_events() |> IO.iodata_to_binary()
"\e[?1004l"

 disable_mouse_tracking(atom)

 @spec disable_mouse_tracking(:x10 | :normal | :button | :all) :: iodata()

Generates disable mouse tracking sequence for the specified mode.
Examples
iex> TermUI.ANSI.disable_mouse_tracking(:x10) |> IO.iodata_to_binary()
"\e[?9l"

iex> TermUI.ANSI.disable_mouse_tracking(:all) |> IO.iodata_to_binary()
"\e[?1003l"

 disable_sgr_mouse()

 @spec disable_sgr_mouse() :: iodata()

Generates disable SGR mouse mode sequence.
Examples
iex> TermUI.ANSI.disable_sgr_mouse() |> IO.iodata_to_binary()
"\e[?1006l"

 enable_app_cursor()

 @spec enable_app_cursor() :: iodata()

Generates enable application cursor keys mode sequence.
Examples
iex> TermUI.ANSI.enable_app_cursor() |> IO.iodata_to_binary()
"\e[?1h"

 enable_bracketed_paste()

 @spec enable_bracketed_paste() :: iodata()

Generates enable bracketed paste mode sequence.
Examples
iex> TermUI.ANSI.enable_bracketed_paste() |> IO.iodata_to_binary()
"\e[?2004h"

 enable_focus_events()

 @spec enable_focus_events() :: iodata()

Generates enable focus event reporting sequence.
Examples
iex> TermUI.ANSI.enable_focus_events() |> IO.iodata_to_binary()
"\e[?1004h"

 enable_mouse_tracking(atom)

 @spec enable_mouse_tracking(:x10 | :normal | :button | :all) :: iodata()

Generates enable mouse tracking sequence for the specified mode.
Modes:
	:x10 - X10 mouse reporting (press only)
	:normal - Normal tracking (press and release)
	:button - Button-event tracking (press, release, motion with button)
	:all - All motion tracking (all motion events)

Examples
iex> TermUI.ANSI.enable_mouse_tracking(:x10) |> IO.iodata_to_binary()
"\e[?9h"

iex> TermUI.ANSI.enable_mouse_tracking(:all) |> IO.iodata_to_binary()
"\e[?1003h"

 enable_sgr_mouse()

 @spec enable_sgr_mouse() :: iodata()

Generates enable SGR mouse mode sequence for extended coordinate encoding.
Examples
iex> TermUI.ANSI.enable_sgr_mouse() |> IO.iodata_to_binary()
"\e[?1006h"

 enter_alternate_screen()

 @spec enter_alternate_screen() :: iodata()

Generates enter alternate screen buffer sequence.
Examples
iex> TermUI.ANSI.enter_alternate_screen() |> IO.iodata_to_binary()
"\e[?1049h"

 foreground(color)

 @spec foreground(atom()) :: iodata()

Generates foreground color sequence for basic 16-color mode.
Examples
iex> TermUI.ANSI.foreground(:red) |> IO.iodata_to_binary()
"\e[31m"

iex> TermUI.ANSI.foreground(:bright_blue) |> IO.iodata_to_binary()
"\e[94m"

 foreground_256(index)

 @spec foreground_256(0..255) :: iodata()

Generates foreground color sequence for 256-color palette.
Examples
iex> TermUI.ANSI.foreground_256(196) |> IO.iodata_to_binary()
"\e[38;5;196m"

 foreground_rgb(r, g, b)

 @spec foreground_rgb(0..255, 0..255, 0..255) :: iodata()

Generates foreground color sequence for true-color RGB.
Examples
iex> TermUI.ANSI.foreground_rgb(255, 128, 0) |> IO.iodata_to_binary()
"\e[38;2;255;128;0m"

 format(attrs)

 @spec format([atom()]) :: iodata()

Generates combined style sequence from a list of attributes.
Merges multiple attributes into a single SGR sequence for efficiency.
Examples
iex> TermUI.ANSI.format([:bold, :red]) |> IO.iodata_to_binary()
"\e[1;31m"

iex> TermUI.ANSI.format([:underline, :bright_blue, :bg_yellow]) |> IO.iodata_to_binary()
"\e[4;94;43m"

 hidden()

 @spec hidden() :: iodata()

Generates hidden text attribute sequence.

 italic()

 @spec italic() :: iodata()

Generates italic text attribute sequence.

 leave_alternate_screen()

 @spec leave_alternate_screen() :: iodata()

Generates leave alternate screen buffer sequence.
Examples
iex> TermUI.ANSI.leave_alternate_screen() |> IO.iodata_to_binary()
"\e[?1049l"

 reset()

 @spec reset() :: iodata()

Generates reset all styles sequence.
Examples
iex> TermUI.ANSI.reset() |> IO.iodata_to_binary()
"\e[0m"

 reset_style()

 @spec reset_style() :: iodata()

Alias for reset/0.

 restore_cursor()

 @spec restore_cursor() :: iodata()

Generates restore cursor position sequence.
Examples
iex> TermUI.ANSI.restore_cursor() |> IO.iodata_to_binary()
"\e[u"

 reverse()

 @spec reverse() :: iodata()

Generates reverse video text attribute sequence.

 save_cursor()

 @spec save_cursor() :: iodata()

Generates save cursor position sequence.
Examples
iex> TermUI.ANSI.save_cursor() |> IO.iodata_to_binary()
"\e[s"

 scroll_down(n \\ 1)

 @spec scroll_down(pos_integer()) :: iodata()

Generates scroll down sequence.
Examples
iex> TermUI.ANSI.scroll_down(3) |> IO.iodata_to_binary()
"\e[3T"

iex> TermUI.ANSI.scroll_down(1) |> IO.iodata_to_binary()
"\e[T"

 scroll_up(n \\ 1)

 @spec scroll_up(pos_integer()) :: iodata()

Generates scroll up sequence.
Examples
iex> TermUI.ANSI.scroll_up(3) |> IO.iodata_to_binary()
"\e[3S"

iex> TermUI.ANSI.scroll_up(1) |> IO.iodata_to_binary()
"\e[S"

 set_scroll_region(top, bottom)

 @spec set_scroll_region(pos_integer(), pos_integer()) :: iodata()

Generates set scroll region sequence.
Examples
iex> TermUI.ANSI.set_scroll_region(5, 20) |> IO.iodata_to_binary()
"\e[5;20r"

 strikethrough()

 @spec strikethrough() :: iodata()

Generates strikethrough text attribute sequence.

 underline()

 @spec underline() :: iodata()

Generates underline text attribute sequence.

 TermUI.Capabilities - TermUI v0.2.0

TermUI.Capabilities

Terminal capability detection and management.
Detects terminal capabilities through multiple methods:
	Environment variables ($TERM, $COLORTERM, $TERM_PROGRAM, $LANG)
	Terminfo database queries
	Conservative VT100 fallbacks

Results are cached in ETS for fast concurrent access.

 Summary

 Types

 color_mode()

 t()

 Functions

 clear_cache()

 Clears the cached capabilities.

 color_mode()

 Returns the color mode.

 detect()

 Detects terminal capabilities and caches them in ETS.

 get()

 Returns cached capabilities, detecting if not yet cached.

 max_colors()

 Returns the maximum number of colors supported.

 supports_256_color?()

 Returns true if terminal supports 256 colors or better.

 supports_alternate_screen?()

 Returns true if terminal supports alternate screen buffer.

 supports_bracketed_paste?()

 Returns true if terminal supports bracketed paste mode.

 supports_focus_events?()

 Returns true if terminal supports focus event reporting.

 supports_mouse?()

 Returns true if terminal supports mouse tracking.

 supports_true_color?()

 Returns true if terminal supports true-color (24-bit RGB).

 supports_unicode?()

 Returns true if terminal supports Unicode.

 Types

 color_mode()

 @type color_mode() :: :true_color | :color_256 | :color_16 | :monochrome

 t()

 @type t() :: %TermUI.Capabilities{
 alternate_screen: boolean(),
 bracketed_paste: boolean(),
 color_mode: color_mode(),
 focus_events: boolean(),
 max_colors: non_neg_integer(),
 mouse: boolean(),
 terminal_program: String.t() | nil,
 terminal_type: String.t() | nil,
 unicode: boolean()
}

 Functions

 clear_cache()

 @spec clear_cache() :: :ok

Clears the cached capabilities.

 color_mode()

 @spec color_mode() :: color_mode()

Returns the color mode.

 detect()

 @spec detect() :: t()

Detects terminal capabilities and caches them in ETS.
Returns the detected capabilities struct.

 get()

 @spec get() :: t()

Returns cached capabilities, detecting if not yet cached.

 max_colors()

 @spec max_colors() :: non_neg_integer()

Returns the maximum number of colors supported.

 supports_256_color?()

 @spec supports_256_color?() :: boolean()

Returns true if terminal supports 256 colors or better.

 supports_alternate_screen?()

 @spec supports_alternate_screen?() :: boolean()

Returns true if terminal supports alternate screen buffer.

 supports_bracketed_paste?()

 @spec supports_bracketed_paste?() :: boolean()

Returns true if terminal supports bracketed paste mode.

 supports_focus_events?()

 @spec supports_focus_events?() :: boolean()

Returns true if terminal supports focus event reporting.

 supports_mouse?()

 @spec supports_mouse?() :: boolean()

Returns true if terminal supports mouse tracking.

 supports_true_color?()

 @spec supports_true_color?() :: boolean()

Returns true if terminal supports true-color (24-bit RGB).

 supports_unicode?()

 @spec supports_unicode?() :: boolean()

Returns true if terminal supports Unicode.

 TermUI.Capabilities.Fallbacks - TermUI v0.2.0

TermUI.Capabilities.Fallbacks

Graceful degradation utilities for terminal capabilities.
Provides fallback chains for:
	Colors: true-color → 256-color → 16-color → monochrome
	Characters: Unicode box-drawing → ASCII art

 Summary

 Functions

 color_256_to_16(index)

 Converts a 256-color index to the nearest 16-color ANSI index.

 degrade_color(r, g, b, color_mode)

 Returns the appropriate color based on terminal capabilities.

 rgb_to_16(r, g, b)

 Converts an RGB color to the nearest 16-color ANSI index.

 rgb_to_256(r, g, b)

 Converts an RGB color to the nearest 256-color palette index.

 string_to_ascii(string)

 Converts a string containing Unicode to ASCII-safe version.

 unicode_to_ascii(char)

 Converts a Unicode character to its ASCII fallback.

 Functions

 color_256_to_16(index)

 @spec color_256_to_16(0..255) :: 0..15

Converts a 256-color index to the nearest 16-color ANSI index.
Returns an integer 0-15.

 degrade_color(r, g, b, color_mode)

 @spec degrade_color(
 non_neg_integer(),
 non_neg_integer(),
 non_neg_integer(),
 TermUI.Capabilities.color_mode()
) ::
 {:rgb, non_neg_integer(), non_neg_integer(), non_neg_integer()}
 | {:index_256, 0..255}
 | {:index_16, 0..15}
 | :none

Returns the appropriate color based on terminal capabilities.
Automatically degrades RGB to 256 to 16 based on capability.

 rgb_to_16(r, g, b)

 @spec rgb_to_16(non_neg_integer(), non_neg_integer(), non_neg_integer()) :: 0..15

Converts an RGB color to the nearest 16-color ANSI index.
Returns an integer 0-15.

 rgb_to_256(r, g, b)

 @spec rgb_to_256(non_neg_integer(), non_neg_integer(), non_neg_integer()) :: 0..255

Converts an RGB color to the nearest 256-color palette index.
Returns an integer 0-255.

 string_to_ascii(string)

 @spec string_to_ascii(String.t()) :: String.t()

Converts a string containing Unicode to ASCII-safe version.
Replaces all known Unicode characters with their ASCII fallbacks.

 unicode_to_ascii(char)

 @spec unicode_to_ascii(String.t()) :: String.t()

Converts a Unicode character to its ASCII fallback.
Returns the original character if no fallback is defined.

 TermUI.Clipboard - TermUI v0.2.0

TermUI.Clipboard

Clipboard integration for TermUI applications.
Provides clipboard writing via OSC 52 escape sequences and
paste event handling. Clipboard operations work across terminals
that support these features.
Usage
Write to clipboard
Clipboard.write("text to copy")

Check OSC 52 support
if Clipboard.osc52_supported?() do
 Clipboard.write(content)
end

Enable bracketed paste mode
IO.write(Clipboard.bracketed_paste_on())

 Summary

 Functions

 bracketed_paste_off()

 Returns escape sequence to disable bracketed paste mode.

 bracketed_paste_on()

 Returns escape sequence to enable bracketed paste mode.

 clear(opts \\ [])

 Clears the system clipboard via OSC 52.

 clear_sequence(opts \\ [])

 Generates OSC 52 sequence to clear the clipboard.

 osc52_supported?()

 Checks if OSC 52 clipboard is likely supported.

 paste_end_marker()

 Returns the paste end marker sequence.

 paste_start_marker()

 Returns the paste start marker sequence.

 write(content, opts \\ [])

 Writes content to the system clipboard via OSC 52.

 write_sequence(content, opts \\ [])

 Generates OSC 52 escape sequence to write to clipboard.

 Functions

 bracketed_paste_off()

 @spec bracketed_paste_off() :: String.t()

Returns escape sequence to disable bracketed paste mode.

 bracketed_paste_on()

 @spec bracketed_paste_on() :: String.t()

Returns escape sequence to enable bracketed paste mode.

 clear(opts \\ [])

 @spec clear(keyword()) :: :ok

Clears the system clipboard via OSC 52.

 clear_sequence(opts \\ [])

 @spec clear_sequence(keyword()) :: String.t()

Generates OSC 52 sequence to clear the clipboard.

 osc52_supported?()

 @spec osc52_supported?() :: boolean()

Checks if OSC 52 clipboard is likely supported.
This is a heuristic check based on terminal type. Some terminals
support OSC 52 but don't advertise it; others advertise but block it.
Known supporting terminals:
	xterm (with allowWindowOps)
	Alacritty
	Kitty
	WezTerm
	iTerm2
	foot

 paste_end_marker()

 @spec paste_end_marker() :: String.t()

Returns the paste end marker sequence.

 paste_start_marker()

 @spec paste_start_marker() :: String.t()

Returns the paste start marker sequence.

 write(content, opts \\ [])

 @spec write(
 String.t(),
 keyword()
) :: :ok

Writes content to the system clipboard via OSC 52.
This writes the escape sequence directly to the terminal.
Returns :ok on success.
Options
	:target - Clipboard target: :clipboard (default) or :primary

 write_sequence(content, opts \\ [])

 @spec write_sequence(
 String.t(),
 keyword()
) :: String.t()

Generates OSC 52 escape sequence to write to clipboard.
Returns the escape sequence string that should be written to
the terminal to set the clipboard content.
Options
	:target - Clipboard target: :clipboard (default) or :primary

Examples
iex> Clipboard.write_sequence("hello")
"\e]52;c;aGVsbG8=\e\\"

iex> Clipboard.write_sequence("test", target: :primary)
"\e]52;p;dGVzdA==\e\\"

 TermUI.Clipboard.PasteAccumulator - TermUI v0.2.0

TermUI.Clipboard.PasteAccumulator

Accumulates bracketed paste content.
Handles the state machine for collecting paste content between
paste start and end markers. Supports timeout for incomplete pastes.

 Summary

 Types

 t()

 Functions

 accumulating?(paste_accumulator)

 Checks if currently accumulating.

 add(acc, content)

 Adds content to the accumulator.

 complete(acc)

 Completes accumulation and returns the content.

 new()

 Creates a new paste accumulator.

 reset(acc)

 Resets the accumulator, discarding any partial content.

 start(acc)

 Starts accumulating paste content.

 timed_out?(paste_accumulator, timeout)

 Checks if paste has timed out.

 Types

 t()

 @type t() :: %TermUI.Clipboard.PasteAccumulator{
 accumulating: boolean(),
 content: String.t(),
 started_at: integer() | nil
}

 Functions

 accumulating?(paste_accumulator)

 @spec accumulating?(t()) :: boolean()

Checks if currently accumulating.

 add(acc, content)

 @spec add(t(), String.t()) :: t()

Adds content to the accumulator.

 complete(acc)

 @spec complete(t()) :: {String.t(), t()}

Completes accumulation and returns the content.

 new()

 @spec new() :: t()

Creates a new paste accumulator.

 reset(acc)

 @spec reset(t()) :: t()

Resets the accumulator, discarding any partial content.

 start(acc)

 @spec start(t()) :: t()

Starts accumulating paste content.

 timed_out?(paste_accumulator, timeout)

 @spec timed_out?(t(), integer()) :: boolean()

Checks if paste has timed out.
Default timeout is 5000ms.

 TermUI.Clipboard.Selection - TermUI v0.2.0

TermUI.Clipboard.Selection

Selection state management for clipboard operations.
Tracks text selection with start and end positions, supporting
selection expansion with Shift+arrow keys and clearing on
navigation without Shift.
Usage
Create selection
selection = Selection.new()

Start selection at cursor
selection = Selection.start(selection, 5)

Extend selection
selection = Selection.extend(selection, 10)

Get selected range
{start, finish} = Selection.range(selection)

Extract content
selected_text = Selection.extract(selection, "Hello World")

 Summary

 Types

 t()

 Functions

 active?(selection)

 Checks if there is an active selection.

 clear(selection)

 Clears the selection.

 contains?(selection, position)

 Checks if a position is within the selection.

 empty?(selection)

 Checks if the selection is empty (start equals end).

 expand(selection, direction, text, cursor_pos)

 Expands the selection in a direction.

 extend(selection, position)

 Extends the selection to a new position.

 extract(selection, text)

 Extracts selected content from a string.

 length(selection)

 Returns the length of the selection.

 move(selection, delta)

 Moves the selection by a delta.

 new()

 Creates a new empty selection.

 range(selection)

 Returns the selection range as {start, end}.

 select_all(selection, text)

 Selects all text.

 select_word(selection, text, position)

 Selects a word at the given position.

 start(selection, position)

 Starts a new selection at the given position.

 Types

 t()

 @type t() :: %TermUI.Clipboard.Selection{
 active: boolean(),
 anchor: integer() | nil,
 end_pos: integer() | nil,
 start_pos: integer() | nil
}

 Functions

 active?(selection)

 @spec active?(t()) :: boolean()

Checks if there is an active selection.

 clear(selection)

 @spec clear(t()) :: t()

Clears the selection.

 contains?(selection, position)

 @spec contains?(t(), integer()) :: boolean()

Checks if a position is within the selection.

 empty?(selection)

 @spec empty?(t()) :: boolean()

Checks if the selection is empty (start equals end).

 expand(selection, direction, text, cursor_pos)

 @spec expand(t(), atom(), String.t(), integer()) :: t()

Expands the selection in a direction.
Direction can be :left, :right, :word_left, :word_right,
:line_start, :line_end, :all.

 extend(selection, position)

 @spec extend(t(), integer()) :: t()

Extends the selection to a new position.
The selection extends from the anchor to the new position.

 extract(selection, text)

 @spec extract(t(), String.t()) :: String.t()

Extracts selected content from a string.
Returns empty string if no selection is active.

 length(selection)

 @spec length(t()) :: integer()

Returns the length of the selection.

 move(selection, delta)

 @spec move(t(), integer()) :: t()

Moves the selection by a delta.
Both start and end positions are adjusted.

 new()

 @spec new() :: t()

Creates a new empty selection.

 range(selection)

 @spec range(t()) :: {integer(), integer()} | nil

Returns the selection range as {start, end}.
Returns nil if no selection is active.

 select_all(selection, text)

 @spec select_all(t(), String.t()) :: t()

Selects all text.

 select_word(selection, text, position)

 @spec select_word(t(), String.t(), integer()) :: t()

Selects a word at the given position.

 start(selection, position)

 @spec start(t(), integer()) :: t()

Starts a new selection at the given position.
This sets the anchor point for the selection.

 TermUI.Command - TermUI v0.2.0

TermUI.Command

Commands represent side effects to be performed by the runtime.
Commands are data describing effects - they don't execute immediately.
The runtime interprets commands and performs the actual effects,
sending result messages back to components.
Command Types
	:timer - Deliver message after delay
	:interval - Deliver repeated messages at interval
	:file_read - Read file contents
	:send_after - Send message to component after delay
	:quit - Request application shutdown
	:none - No-op command (useful for conditional commands)

Usage
In component update function
def update(:start_timer, state) do
 cmd = Command.timer(1000, :timer_fired)
 {%{state | timer_active: true}, [cmd]}
end

def update(:timer_fired, state) do
 {%{state | timer_active: false, count: state.count + 1}, []}
end

 Summary

 Types

 command_type()

 t()

 Functions

 assign_id(command)

 Assigns a unique ID to a command for tracking.

 file_read(path, on_result)

 Creates a file read command.

 interval(interval_ms, on_result)

 Creates an interval command that delivers repeated messages.

 none()

 Creates a no-op command.

 quit(reason \\ :normal)

 Creates a quit command to request application shutdown.

 send_after(component_id, message, delay_ms)

 Creates a send_after command that sends a message to a component after delay.

 timer(delay_ms, on_result)

 Creates a timer command that delivers a message after delay.

 valid?(term)

 Checks if a term is a valid command.

 validate(arg1)

 Validates a command structure.

 with_timeout(command, timeout_ms)

 Sets a timeout for command execution.

 Types

 command_type()

 @type command_type() :: :timer | :interval | :file_read | :send_after | :quit | :none

 t()

 @type t() :: %TermUI.Command{
 id: reference() | nil,
 on_result: term(),
 payload: term(),
 timeout: pos_integer() | :infinity,
 type: atom()
}

 Functions

 assign_id(command)

 @spec assign_id(t()) :: t()

Assigns a unique ID to a command for tracking.

 file_read(path, on_result)

 @spec file_read(Path.t(), term()) :: t()

Creates a file read command.
Returns {:ok, content} or {:error, reason} wrapped in the on_result message.
Examples
Command.file_read("/path/to/file", :file_loaded)
Results in: {:file_loaded, {:ok, "contents"}}
or: {:file_loaded, {:error, :enoent}}

 interval(interval_ms, on_result)

 @spec interval(pos_integer(), term()) :: t()

Creates an interval command that delivers repeated messages.
The interval continues until cancelled. Each tick delivers
the on_result message.
Examples
Command.interval(100, :tick)

 none()

 @spec none() :: t()

Creates a no-op command.
Useful for conditional commands where you might not need an effect.
Examples
cmd = if should_fetch?, do: Command.timer(100, :fetch), else: Command.none()

 quit(reason \\ :normal)

 @spec quit(term()) :: t()

Creates a quit command to request application shutdown.
The runtime will initiate graceful shutdown, cleaning up all resources
and restoring the terminal to its original state.
Examples
Simple quit
Command.quit()

Quit with reason
Command.quit(:normal)
Command.quit(:user_requested)

 send_after(component_id, message, delay_ms)

 @spec send_after(atom(), term(), pos_integer()) :: t()

Creates a send_after command that sends a message to a component after delay.
Unlike timer which sends to the originating component, send_after
can target any component.
Examples
Command.send_after(:other_component, :wake_up, 1000)

 timer(delay_ms, on_result)

 @spec timer(pos_integer(), term()) :: t()

Creates a timer command that delivers a message after delay.
Examples
Command.timer(1000, :timer_done)
Command.timer(500, {:tick, 1})

 valid?(term)

 @spec valid?(term()) :: boolean()

Checks if a term is a valid command.

 validate(arg1)

 @spec validate(t()) :: :ok | {:error, term()}

Validates a command structure.
Returns :ok if valid, {:error, reason} otherwise.

 with_timeout(command, timeout_ms)

 @spec with_timeout(t(), pos_integer()) :: t()

Sets a timeout for command execution.
If the command takes longer than the timeout, it's cancelled
and an error message is sent.
Examples
Command.file_read(path, :loaded)
|> Command.with_timeout(5000)

 TermUI.Command.Executor - TermUI v0.2.0

TermUI.Command.Executor

Executes commands asynchronously under a Task.Supervisor.
The executor runs commands in isolated tasks, preventing failures
from crashing the runtime. Results are sent back as messages to
the originating component.
Usage
Start the executor (usually in application supervision tree)
{:ok, executor} = Executor.start_link()

Execute a command
{:ok, command_id} = Executor.execute(executor, command, runtime_pid, component_id)

Cancel a running command
:ok = Executor.cancel(executor, command_id)

 Summary

 Types

 t()

 Functions

 cancel(executor, command_id)

 Cancels a running command by ID.

 cancel_all_for_component(executor, component_id)

 Cancels all commands for a component.

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 execute(executor, command, runtime_pid, component_id)

 Executes a command asynchronously.

 running_count(executor)

 Returns the number of currently running commands.

 start_link(opts \\ [])

 Starts the command executor.

 Types

 t()

 @type t() :: pid()

 Functions

 cancel(executor, command_id)

 @spec cancel(t(), reference()) :: :ok | {:error, :not_found}

Cancels a running command by ID.

 cancel_all_for_component(executor, component_id)

 @spec cancel_all_for_component(t(), atom()) :: :ok

Cancels all commands for a component.
Used when a component unmounts.

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 execute(executor, command, runtime_pid, component_id)

 @spec execute(t(), TermUI.Command.t(), pid(), atom()) ::
 {:ok, reference()} | {:error, term()}

Executes a command asynchronously.
Returns the command ID that can be used for cancellation.
Results are sent to the runtime as {:command_result, component_id, command_id, result}.

 running_count(executor)

 @spec running_count(t()) :: non_neg_integer()

Returns the number of currently running commands.

 start_link(opts \\ [])

 @spec start_link(keyword()) :: GenServer.on_start()

Starts the command executor.
Options
	:name - GenServer name (optional)
	:max_concurrent - Maximum concurrent commands (default: 100)

 TermUI.Component.Helpers - TermUI v0.2.0

TermUI.Component.Helpers

Common helper functions and macros for TermUI components.
This module is automatically imported when you use TermUI.Component.
It provides convenience functions for building render trees and
working with props and styles.
Render Tree Builders
	text/1, text/2 - Create text nodes
	box/1, box/2 - Create box containers
	stack/2, stack/3 - Create stacked layouts

Props Helpers
	props!/2 - Validate and extract required props

Style Helpers
	merge_styles/2 - Merge multiple styles
	compute_size/2 - Calculate content dimensions

 Summary

 Functions

 box(children, opts \\ [])

 Creates a box container.

 cells(cells, opts \\ [])

 Delegates to RenderNode.cells/2 for creating cell-based render nodes.

 compute_node_size(render_node)

 Computes the size of a render node.

 compute_size(text)

 Computes the display size of text content.

 empty()

 Creates an empty node.

 fits_in_rect?(arg, map)

 Checks if a value fits within a rect.

 merge_styles(styles)

 Merges multiple styles in order, with later styles overriding earlier ones.

 positioned_cell(x, y, char, style \\ nil)

 Creates a positioned cell for use with RenderNode.cells/2.

 props!(props, specs)

 Validates and extracts props with type checking and defaults.

 stack(direction, children, opts \\ [])

 Creates a stack layout.

 styled(node, style)

 Creates a styled wrapper around a node.

 text(content, style \\ nil)

 Creates a text node.

 truncate_text(text, max_width)

 Truncates text to fit within a given width.

 Functions

 box(children, opts \\ [])

 @spec box(
 [TermUI.Component.RenderNode.t()],
 keyword()
) :: TermUI.Component.RenderNode.t()

Creates a box container.
Examples
box([text("Content")])
box([text("Styled")], style: Style.new() |> Style.bg(:blue))

 cells(cells, opts \\ [])

 @spec cells(
 [TermUI.Component.RenderNode.positioned_cell()],
 keyword()
) :: TermUI.Component.RenderNode.t()

Delegates to RenderNode.cells/2 for creating cell-based render nodes.
Examples
cells = [positioned_cell(0, 0, "H"), positioned_cell(1, 0, "i")]
cells(cells)

 compute_node_size(render_node)

 @spec compute_node_size(TermUI.Component.RenderNode.t()) ::
 {non_neg_integer() | :auto, non_neg_integer() | :auto}

Computes the size of a render node.
For text nodes, returns the text dimensions.
For containers, returns explicit size or :auto.
Examples
compute_node_size(text("Hello"))
{5, 1}

compute_node_size(box([], width: 20, height: 10))
{20, 10}

 compute_size(text)

 @spec compute_size(String.t()) :: {non_neg_integer(), non_neg_integer()}

Computes the display size of text content.
Returns {width, height} where width is the maximum line length
and height is the number of lines.
Examples
compute_size("Hello")
{5, 1}

compute_size("Line 1\nLine 2")
{6, 2}

 empty()

 @spec empty() :: TermUI.Component.RenderNode.t()

Creates an empty node.
Examples
empty()

 fits_in_rect?(arg, map)

 @spec fits_in_rect?(
 {non_neg_integer(), non_neg_integer()},
 TermUI.Component.rect()
) :: boolean()

Checks if a value fits within a rect.
Examples
fits_in_rect?({10, 5}, %{x: 0, y: 0, width: 20, height: 10})
true

fits_in_rect?({30, 5}, %{x: 0, y: 0, width: 20, height: 10})
false

 merge_styles(styles)

 @spec merge_styles([TermUI.Renderer.Style.t() | nil]) :: TermUI.Renderer.Style.t()

Merges multiple styles in order, with later styles overriding earlier ones.
Follows CSS cascade rules - later values take precedence, attributes combine.
Examples
base = Style.new() |> Style.fg(:white)
override = Style.new() |> Style.fg(:red) |> Style.bold()
merge_styles([base, override])
Result: fg: :red, attrs: [:bold]

 positioned_cell(x, y, char, style \\ nil)

 @spec positioned_cell(
 non_neg_integer(),
 non_neg_integer(),
 String.t(),
 TermUI.Renderer.Style.t() | nil
) ::
 TermUI.Component.RenderNode.positioned_cell()

Creates a positioned cell for use with RenderNode.cells/2.
Examples
cell = positioned_cell(0, 0, "A", Style.new() |> Style.fg(:red))
%{x: 0, y: 0, cell: %Cell{char: "A", fg: :red}}

 props!(props, specs)

 @spec props!(map(), [{atom(), atom(), keyword()}]) :: map()

Validates and extracts props with type checking and defaults.
Raises ArgumentError if required props are missing or types don't match.
Spec Format
Each prop spec is a tuple: {name, type, opts}
Types: :string, :integer, :boolean, :atom, :any, :style
Options:
	:required - Prop must be present (default: false)
	:default - Default value if not provided

Examples
props!(props, [
 {:text, :string, required: true},
 {:count, :integer, default: 0},
 {:enabled, :boolean, default: true}
])
Returns %{text: "...", count: 0, enabled: true}

 stack(direction, children, opts \\ [])

 @spec stack(
 TermUI.Component.RenderNode.direction(),
 [TermUI.Component.RenderNode.t()],
 keyword()
) ::
 TermUI.Component.RenderNode.t()

Creates a stack layout.
Examples
stack(:vertical, [text("Top"), text("Bottom")])
stack(:horizontal, [text("Left"), text("Right")])

 styled(node, style)

 @spec styled(TermUI.Component.RenderNode.t(), TermUI.Renderer.Style.t()) ::
 TermUI.Component.RenderNode.t()

Creates a styled wrapper around a node.
Examples
styled(text("Hello"), Style.new() |> Style.fg(:red))

 text(content, style \\ nil)

 @spec text(String.t(), TermUI.Renderer.Style.t() | nil) ::
 TermUI.Component.RenderNode.t()

Creates a text node.
Examples
text("Hello, World!")
text("Styled", Style.new() |> Style.fg(:red))

 truncate_text(text, max_width)

 @spec truncate_text(String.t(), non_neg_integer()) :: String.t()

Truncates text to fit within a given width.
Examples
truncate_text("Hello, World!", 5)
"Hello"

truncate_text("Hi", 10)
"Hi"

 TermUI.Component.Introspection - TermUI v0.2.0

TermUI.Component.Introspection

Supervision introspection tools for debugging and monitoring.
Provides visibility into the component tree structure, component states,
and supervision metrics for debugging and monitoring purposes.
Usage
Get tree structure
tree = Introspection.get_component_tree()

Get component info
info = Introspection.get_component_info(:my_component)

Print tree visualization
Introspection.print_tree()

Get supervision metrics
metrics = Introspection.get_metrics(:my_component)

 Summary

 Functions

 aggregate_stats()

 Returns aggregate statistics for all components.

 find_by_module(module)

 Finds components by module.

 find_unstable(threshold \\ 1)

 Finds components with high restart counts.

 format_tree()

 Returns the tree as a formatted string.

 get_component_info(component_id)

 Returns detailed information about a component.

 get_component_tree()

 Returns the component tree structure.

 get_metrics(component_id)

 Returns supervision metrics for a component.

 print_tree(opts \\ [])

 Prints a text visualization of the component tree.

 Functions

 aggregate_stats()

 @spec aggregate_stats() :: map()

Returns aggregate statistics for all components.

 find_by_module(module)

 @spec find_by_module(module()) :: [map()]

Finds components by module.

 find_unstable(threshold \\ 1)

 @spec find_unstable(non_neg_integer()) :: [map()]

Finds components with high restart counts.
Parameters
	threshold - Minimum restart count (default: 1)

 format_tree()

 @spec format_tree() :: String.t()

Returns the tree as a formatted string.

 get_component_info(component_id)

 @spec get_component_info(term()) :: {:ok, map()} | {:error, :not_found}

Returns detailed information about a component.
Parameters
	component_id - Component identifier

Returns
	{:ok, info} - Component information
	{:error, :not_found} - Component not found

 get_component_tree()

 @spec get_component_tree() :: [map()]

Returns the component tree structure.
Returns
A map with tree structure:
%{
 id: term(),
 pid: pid(),
 module: module(),
 children: [...]
}

 get_metrics(component_id)

 @spec get_metrics(term()) :: {:ok, map()} | {:error, :not_found}

Returns supervision metrics for a component.
Parameters
	component_id - Component identifier

Returns
	{:ok, metrics} - Metrics map
	{:error, :not_found} - Component not found

 print_tree(opts \\ [])

 @spec print_tree(keyword()) :: :ok

Prints a text visualization of the component tree.
Options
	:io - IO device to print to (default: :stdio)

 TermUI.Component.StatePersistence - TermUI v0.2.0

TermUI.Component.StatePersistence

ETS-based state persistence for crash recovery.
This module allows components to persist their state before crashes
and recover it on restart. State is stored in an ETS table that survives
component process crashes.
Usage
Persist state (typically called on state changes)
StatePersistence.persist(:my_component, state)

Recover state on restart
case StatePersistence.recover(:my_component) do
 {:ok, state} -> {:ok, state}
 :not_found -> {:ok, initial_state}
end

Clear persisted state
StatePersistence.clear(:my_component)

 Summary

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 clear(component_id)

 Clears persisted state for a component.

 clear_all()

 Clears all persisted state.

 clear_restart_history(component_id)

 Clears restart history for a component.

 count()

 Returns the count of persisted states.

 get_metadata(component_id)

 Gets metadata about persisted state.

 get_restart_count(component_id)

 Gets the restart count for a component within the time window.

 list_persisted()

 Lists all component IDs with persisted state.

 persist(component_id, state, opts \\ [])

 Persists component state to ETS.

 record_restart(component_id)

 Records restart event for a component.

 recover(component_id, mode \\ :last_state)

 Recovers persisted state for a component.

 restart_limit_reached?(component_id)

 Checks if restart intensity limit has been reached.

 set_restart_limits(component_id, max_restarts, max_seconds)

 Sets restart intensity limits for a component.

 start_link(opts \\ [])

 Starts the state persistence server.

 Functions

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 clear(component_id)

 @spec clear(term()) :: :ok

Clears persisted state for a component.
Parameters
	component_id - Component identifier

Returns
	:ok - State cleared (or was not present)

 clear_all()

 @spec clear_all() :: :ok

Clears all persisted state.
Mainly useful for testing.

 clear_restart_history(component_id)

 @spec clear_restart_history(term()) :: :ok

Clears restart history for a component.

 count()

 @spec count() :: non_neg_integer()

Returns the count of persisted states.

 get_metadata(component_id)

 @spec get_metadata(term()) :: {:ok, map()} | :not_found

Gets metadata about persisted state.
Returns
	{:ok, metadata} - Metadata including persisted_at timestamp
	:not_found - No state persisted for this component

 get_restart_count(component_id)

 @spec get_restart_count(term()) :: non_neg_integer()

Gets the restart count for a component within the time window.

 list_persisted()

 @spec list_persisted() :: [term()]

Lists all component IDs with persisted state.

 persist(component_id, state, opts \\ [])

 @spec persist(term(), term(), keyword()) :: :ok

Persists component state to ETS.
Parameters
	component_id - Component identifier
	state - State to persist
	opts - Options	:props - Original props for last_props recovery mode

Returns
	:ok - State persisted successfully

 record_restart(component_id)

 @spec record_restart(term()) :: :ok

Records restart event for a component.
Used for tracking restart counts and detecting restart storms.

 recover(component_id, mode \\ :last_state)

 @spec recover(term(), atom()) :: {:ok, term()} | :not_found

Recovers persisted state for a component.
Parameters
	component_id - Component identifier
	mode - Recovery mode (default: :last_state)	:last_state - Return the full persisted state
	:last_props - Return only the persisted props
	:reset - Return :not_found (forces re-initialization)

Returns
	{:ok, state} - State found and returned
	:not_found - No state persisted for this component

 restart_limit_reached?(component_id)

 @spec restart_limit_reached?(term()) :: boolean()

Checks if restart intensity limit has been reached.
Returns
	true - Restart limit exceeded
	false - Within limits

 set_restart_limits(component_id, max_restarts, max_seconds)

 @spec set_restart_limits(term(), non_neg_integer(), non_neg_integer()) :: :ok

Sets restart intensity limits for a component.
Parameters
	component_id - Component identifier
	max_restarts - Maximum restarts allowed
	max_seconds - Time window in seconds

 start_link(opts \\ [])

 @spec start_link(keyword()) :: GenServer.on_start()

Starts the state persistence server.

 TermUI.ComponentRegistry - TermUI v0.2.0

TermUI.ComponentRegistry

ETS-based registry for component lookup.
The registry enables fast lookup of component processes by id,
which is essential for event routing and focus management.
Components register on mount and unregister on unmount.
Usage
Register a component
ComponentRegistry.register(:my_button, pid, Button)

Lookup by id
{:ok, pid} = ComponentRegistry.lookup(:my_button)

Lookup by pid
{:ok, id} = ComponentRegistry.lookup_id(pid)

List all
components = ComponentRegistry.list_all()

 Summary

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 clear()

 Clears all registrations.

 count()

 Returns the count of registered components.

 get_children(parent_id)

 Gets all children of a component.

 get_info(id)

 Gets full component info by id.

 get_parent(id)

 Gets the parent of a component.

 list_all()

 Lists all registered components.

 lookup(id)

 Looks up a component by id.

 lookup_id(pid)

 Looks up a component id by pid.

 register(id, pid, module)

 Registers a component in the registry.

 registered?(id)

 Checks if a component is registered.

 set_parent(id, parent_id)

 Sets the parent of a component for propagation.

 start_link(opts \\ [])

 Starts the component registry.

 unregister(id)

 Unregisters a component from the registry.

 Functions

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 clear()

 @spec clear() :: :ok

Clears all registrations.
Mainly useful for testing.

 count()

 @spec count() :: non_neg_integer()

Returns the count of registered components.

 get_children(parent_id)

 @spec get_children(term()) :: [term()]

Gets all children of a component.
Returns
List of child component ids.

 get_info(id)

 @spec get_info(term()) :: {:ok, map()} | {:error, :not_found}

Gets full component info by id.
Returns
	{:ok, %{id: term(), pid: pid(), module: module()}} - Component found
	{:error, :not_found} - Component not registered

 get_parent(id)

 @spec get_parent(term()) :: {:ok, term() | nil} | {:error, :not_found}

Gets the parent of a component.
Returns
	{:ok, parent_id} - Parent found (nil if root)
	{:error, :not_found} - Component not in parent table

 list_all()

 @spec list_all() :: [map()]

Lists all registered components.
Returns
List of %{id: term(), pid: pid(), module: module()}

 lookup(id)

 @spec lookup(term()) :: {:ok, pid()} | {:error, :not_found}

Looks up a component by id.
Returns
	{:ok, pid} - Component found
	{:error, :not_found} - Component not registered

 lookup_id(pid)

 @spec lookup_id(pid()) :: {:ok, term()} | {:error, :not_found}

Looks up a component id by pid.
Returns
	{:ok, id} - Component found
	{:error, :not_found} - Component not registered

 register(id, pid, module)

 @spec register(term(), pid(), module()) :: :ok | {:error, :already_registered}

Registers a component in the registry.
Parameters
	id - Unique identifier for the component
	pid - Process pid of the component
	module - Component module

Returns
	:ok - Successfully registered
	{:error, :already_registered} - Id already taken

 registered?(id)

 @spec registered?(term()) :: boolean()

Checks if a component is registered.

 set_parent(id, parent_id)

 @spec set_parent(term(), term() | nil) :: :ok

Sets the parent of a component for propagation.
Parameters
	id - Component id
	parent_id - Parent component id (or nil for root)

 start_link(opts \\ [])

 @spec start_link(keyword()) :: GenServer.on_start()

Starts the component registry.

 unregister(id)

 @spec unregister(term()) :: :ok

Unregisters a component from the registry.
Parameters
	id - Component identifier to unregister

Returns
	:ok - Successfully unregistered (or wasn't registered)

 TermUI.ComponentServer - TermUI v0.2.0

TermUI.ComponentServer

GenServer that manages the lifecycle of a component.
ComponentServer wraps any component implementing TermUI behaviours,
managing its lifecycle stages: init, mount, update, and unmount.
It handles prop validation, timeout enforcement, and command execution.
Lifecycle Stages
	Init - Create initial state from props
	Mount - Component enters active tree, ready for events
	Update - Props changed, state may update
	Unmount - Component removed, cleanup performed

Usage
Components are typically started via ComponentSupervisor:
{:ok, pid} = ComponentSupervisor.start_component(MyButton, %{label: "OK"})
Direct usage:
{:ok, pid} = ComponentServer.start_link(MyButton, %{label: "OK"}, [])

 Summary

 Types

 state()

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 get_lifecycle(pid)

 Gets the lifecycle state.

 get_props(pid)

 Gets the current props.

 get_state(pid)

 Gets the current component state.

 mount(pid)

 Triggers the mount lifecycle stage.

 register_hook(pid, hook_type, fun)

 Registers a lifecycle hook.

 send_event(pid, event)

 Sends an event to the component.

 start_link(module, props, opts \\ [])

 Starts a component server.

 unmount(pid)

 Triggers the unmount lifecycle stage.

 update_props(pid, new_props)

 Updates the component's props.

 Types

 state()

 @type state() :: %{
 module: module(),
 component_state: term(),
 props: map(),
 lifecycle: :initialized | :mounted | :unmounted,
 id: term(),
 hooks: %{required(atom()) => [function()]},
 recovery: :reset | :last_props | :last_state
}

 Functions

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 get_lifecycle(pid)

 @spec get_lifecycle(pid()) :: :initialized | :mounted | :unmounted

Gets the lifecycle state.

 get_props(pid)

 @spec get_props(pid()) :: map()

Gets the current props.

 get_state(pid)

 @spec get_state(pid()) :: term()

Gets the current component state.

 mount(pid)

 @spec mount(pid()) :: :ok | {:error, term()}

Triggers the mount lifecycle stage.
Called when the component is added to the active component tree.

 register_hook(pid, hook_type, fun)

 @spec register_hook(pid(), atom(), function()) :: :ok

Registers a lifecycle hook.
Hook Types
	:after_mount - Called after successful mount
	:before_unmount - Called before unmount cleanup
	:on_prop_change - Called when props change

 send_event(pid, event)

 @spec send_event(pid(), term()) :: :ok | {:error, term()}

Sends an event to the component.

 start_link(module, props, opts \\ [])

 @spec start_link(module(), map(), keyword()) :: GenServer.on_start()

Starts a component server.
Parameters
	module - Component module
	props - Initial properties
	opts - Options (:id, :timeout)

 unmount(pid)

 @spec unmount(pid()) :: :ok

Triggers the unmount lifecycle stage.
Called when the component is removed from the tree.

 update_props(pid, new_props)

 @spec update_props(pid(), map()) :: :ok | {:error, term()}

Updates the component's props.
Triggers the update callback if props have changed.

 TermUI.ComponentSupervisor - TermUI v0.2.0

TermUI.ComponentSupervisor

Dynamic supervisor for managing component processes.
Components are spawned as child processes under this supervisor,
providing fault isolation and automatic cleanup. Each component
runs as a GenServer managed by TermUI.ComponentServer.
Usage
Start a component under the supervisor
{:ok, pid} = ComponentSupervisor.start_component(MyComponent, %{text: "Hello"})

Stop a component
:ok = ComponentSupervisor.stop_component(pid)

Stop with cascade (stops all children)
:ok = ComponentSupervisor.stop_component(pid, cascade: true)
Supervision Strategy
Uses :one_for_one strategy - each component is independent.
Default restart is :transient - restart only on crash, not normal exit.
Restart Strategies
	:transient (default) - Restart only on abnormal termination
	:permanent - Always restart on termination
	:temporary - Never restart

Shutdown Options
	:shutdown - Timeout in ms (default 5000) or :brutal_kill
	:recovery - Recovery mode: :reset, :last_props, :last_state

 Summary

 Functions

 child_spec(arg)

 Returns a specification to start this module under a supervisor.

 count_children()

 Returns the count of running components.

 format_tree()

 Returns a text visualization of the component tree.

 get_component_info(id)

 Returns detailed information about a component.

 get_tree()

 Returns the component tree structure.

 start_component(module, props, opts \\ [])

 Starts a component under the supervisor.

 start_link(opts \\ [])

 Starts the component supervisor.

 stop_component(pid_or_id, opts \\ [])

 Stops a component gracefully.

 which_children()

 Returns all component pids.

 Functions

 child_spec(arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 count_children()

 @spec count_children() :: non_neg_integer()

Returns the count of running components.

 format_tree()

 @spec format_tree() :: String.t()

Returns a text visualization of the component tree.
Useful for debugging and logging.
Examples
IO.puts(ComponentSupervisor.format_tree())
└─ :root (MyApp.Root) #PID<0.123.0>
├─ :sidebar (MyApp.Sidebar) #PID<0.124.0>
└─ :content (MyApp.Content) #PID<0.125.0>

 get_component_info(id)

 @spec get_component_info(term()) :: {:ok, map()} | {:error, :not_found}

Returns detailed information about a component.
Parameters
	id - Component identifier

Returns
	{:ok, info} - Component information map
	{:error, :not_found} - Component not found

The info map contains:
	:id - Component identifier
	:pid - Process identifier
	:module - Component module
	:lifecycle - Current lifecycle stage
	:restart_count - Number of times restarted
	:uptime_ms - Milliseconds since process started
	:state - Current component state
	:props - Current props

Examples
{:ok, info} = ComponentSupervisor.get_component_info(:my_button)
info.uptime_ms
=> 12345

 get_tree()

 @spec get_tree() :: [map()]

Returns the component tree structure.
Builds a hierarchical view of all components based on their
parent-child relationships in the registry.
Returns
A list of tree nodes, where each node contains:
	:id - Component identifier
	:pid - Process identifier
	:module - Component module
	:children - List of child nodes

Examples
tree = ComponentSupervisor.get_tree()
[
%{id: :root, pid: #PID<0.123.0>, module: MyApp.Root, children: [
%{id: :child1, pid: #PID<0.124.0>, module: MyApp.Child, children: []}
]}
]

 start_component(module, props, opts \\ [])

 @spec start_component(module(), map(), keyword()) ::
 DynamicSupervisor.on_start_child()

Starts a component under the supervisor.
Parameters
	module - The component module implementing a behaviour
	props - Initial properties for the component
	opts - Options including :id for component identification

Options
	:id - Component identifier for registry lookup
	:name - Process name registration
	:timeout - Init timeout in milliseconds (default 5000)
	:restart - Restart strategy: :transient, :permanent, :temporary (default :transient)
	:shutdown - Shutdown timeout in ms or :brutal_kill (default 5000)
	:recovery - Recovery mode: :reset, :last_props, :last_state (default :last_state)

Returns
	{:ok, pid} - Component started successfully
	{:error, reason} - Failed to start

Examples
{:ok, pid} = ComponentSupervisor.start_component(Label, %{text: "Hello"})

{:ok, pid} = ComponentSupervisor.start_component(
 Button,
 %{label: "Click"},
 id: :submit_button
)

 start_link(opts \\ [])

 @spec start_link(keyword()) :: Supervisor.on_start()

Starts the component supervisor.
Called by the application supervisor during startup.

 stop_component(pid_or_id, opts \\ [])

 @spec stop_component(
 pid() | term(),
 keyword()
) :: :ok | {:error, :not_found}

Stops a component gracefully.
Triggers the unmount lifecycle before termination.
Parameters
	pid_or_id - The component process pid or id
	opts - Options	:cascade - Also stop all child components (default: false)

Returns
	:ok - Component stopped successfully
	{:error, :not_found} - Component not found

 which_children()

 @spec which_children() :: [pid()]

Returns all component pids.

 TermUI.Container - TermUI v0.2.0

TermUI.Container behaviour

Behaviour for container components that manage children.
Container extends StatefulComponent with child management capabilities.
Use this for components that contain and organize other components,
like panels, forms, tabs, or split views.
Basic Usage
defmodule MyApp.Panel do
 use TermUI.Container

 @impl true
 def init(props) do
 {:ok, %{title: props[:title] || "Panel"}}
 end

 @impl true
 def children(_state) do
 [
 {MyApp.Label, %{text: "Header"}, :header},
 {MyApp.Content, %{}, :content}
]
 end

 @impl true
 def layout(children, state, area) do
 # Arrange children within available area
 header_area = %{area | height: 1}
 content_area = %{area | y: area.y + 1, height: area.height - 1}

 [
 {Enum.at(children, 0), header_area},
 {Enum.at(children, 1), content_area}
]
 end

 @impl true
 def render(state, _area) do
 # Container render is called after children
 # Return empty if children handle all rendering
 empty()
 end

 @impl true
 def handle_event(_event, state) do
 {:ok, state}
 end
end
Child Specifications
Children are specified as tuples:
	{Module, props} - Child with auto-generated ID
	{Module, props, id} - Child with explicit ID

IDs are used for event routing and child lookup.
Layout
The layout/3 callback positions children within the container's area.
It receives the list of child specs and must return tuples of
{child_spec, area} assigning each child its rendering bounds.
Event Routing
Containers can route events to specific children or handle them directly.
Override route_event/2 to customize event routing.

 Summary

 Types

 child_layout()

 Child with assigned area

 child_spec()

 Child specification

 command()

 Command for side effects

 event()

 Event from user input

 rect()

 Available rendering area

 render_tree()

 Render tree output

 route_target()

 Event routing target

 state()

 Component state

 Callbacks

 children(state)

 Returns the list of child components.

 handle_child_message(child_id, message, state)

 Called when a child emits a message.

 handle_event(event, state)

 Handles input events.

 init(props)

 Initializes container state from props.

 layout(list, state, rect)

 Lays out children within the available area.

 render(state, rect)

 Renders the container.

 route_event(event, state)

 Routes an event to the appropriate handler.

 Types

 child_layout()

 @type child_layout() :: {child_spec(), rect()}

Child with assigned area

 child_spec()

 @type child_spec() ::
 {module(), props :: map()} | {module(), props :: map(), id :: term()}

Child specification

 command()

 @type command() :: term()

Command for side effects

 event()

 @type event() :: term()

Event from user input

 rect()

 @type rect() :: %{x: integer(), y: integer(), width: integer(), height: integer()}

Available rendering area

 render_tree()

 @type render_tree() :: TermUI.Component.RenderNode.t() | [render_tree()] | String.t()

Render tree output

 route_target()

 @type route_target() :: :self | {:child, id :: term()} | :broadcast

Event routing target

 state()

 @type state() :: term()

Component state

 Callbacks

 children(state)

 @callback children(state()) :: [child_spec()]

Returns the list of child components.
Called to determine which children the container should manage.
Children are specified as tuples with module, props, and optional ID.
Parameters
	state - Current container state

Returns
List of child specifications.
Examples
@impl true
def children(state) do
 [
 {Label, %{text: state.title}, :title},
 {Button, %{label: "OK"}, :ok_button},
 {Button, %{label: "Cancel"}, :cancel_button}
]
end

 handle_child_message(child_id, message, state)

 (optional)

 @callback handle_child_message(child_id :: term(), message :: term(), state()) ::
 {:ok, state()} | {:ok, state(), [command()]}

Called when a child emits a message.
Use to handle messages bubbling up from child components.
Parameters
	child_id - ID of the child that sent the message
	message - The message from the child
	state - Current container state

 handle_event(event, state)

 @callback handle_event(event(), state()) ::
 {:ok, state()} | {:ok, state(), [command()]} | {:stop, term(), state()}

Handles input events.
Same as StatefulComponent.handle_event/2.

 init(props)

 @callback init(props :: map()) ::
 {:ok, state()} | {:ok, state(), [command()]} | {:stop, term()}

Initializes container state from props.
Same as StatefulComponent.init/1.

 layout(list, state, rect)

 @callback layout([child_spec()], state(), rect()) :: [child_layout()]

Lays out children within the available area.
Determines the position and size of each child component.
The default implementation stacks children vertically.
Parameters
	children - List of child specifications from children/1
	state - Current container state
	area - Available area for the container

Returns
List of {child_spec, area} tuples.
Examples
@impl true
def layout(children, _state, area) do
 # Horizontal layout with equal widths
 child_width = div(area.width, length(children))

 children
 |> Enum.with_index()
 |> Enum.map(fn {child, i} ->
 child_area = %{
 x: area.x + i * child_width,
 y: area.y,
 width: child_width,
 height: area.height
 }
 {child, child_area}
 end)
end

 render(state, rect)

 @callback render(state(), rect()) :: render_tree()

Renders the container.
Called after children are rendered. Can render container chrome
(borders, titles) or return empty if children handle everything.
Same signature as StatefulComponent.render/2.

 route_event(event, state)

 (optional)

 @callback route_event(event(), state()) :: route_target()

Routes an event to the appropriate handler.
Override to customize how events are distributed to children.
Default routes all events to self.
Parameters
	event - The input event
	state - Current container state

Returns
	:self - Handle event in this container
	{:child, id} - Route to specific child
	:broadcast - Send to all children

 TermUI.Dev.DevMode - TermUI v0.2.0

TermUI.Dev.DevMode

Central coordinator for development mode features.
DevMode manages the lifecycle and state of all development tools:
	UI Inspector - Shows component boundaries
	State Inspector - Displays component state tree
	Hot Reload - Updates code without restart
	Performance Monitor - Shows FPS, memory, frame times

Usage
Enable development mode
DevMode.enable()

Toggle individual features
DevMode.toggle_ui_inspector()
DevMode.toggle_state_inspector()
DevMode.toggle_perf_monitor()

Check status
DevMode.enabled?()
DevMode.ui_inspector_enabled?()
Keyboard Shortcuts (when enabled)
	Ctrl+Shift+I: Toggle UI Inspector
	Ctrl+Shift+S: Toggle State Inspector
	Ctrl+Shift+P: Toggle Performance Monitor

 Summary

 Types

 bounds()

 component_info()

 metrics()

 state()

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 disable()

 Disables development mode.

 enable()

 Enables development mode.

 enabled?()

 Returns whether development mode is enabled.

 get_components()

 Gets all registered components.

 get_metrics()

 Gets current performance metrics.

 get_selected_component()

 Gets the currently selected component.

 get_state()

 Gets the current state for rendering overlays.

 handle_shortcut(key, modifiers)

 Handles keyboard shortcut for development mode.

 perf_monitor_enabled?()

 Returns whether performance monitor is enabled.

 record_frame(frame_time_us)

 Records a frame for FPS calculation.

 record_render_time(id, time_us)

 Records component render time.

 register_component(id, module, state, bounds)

 Registers a component for inspection.

 render_overlays(state, area)

 Renders development mode overlays.

 select_component(id)

 Selects a component for detailed inspection.

 start_link(opts \\ [])

 Starts the DevMode server.

 state_inspector_enabled?()

 Returns whether state inspector is enabled.

 toggle_hot_reload()

 Toggles hot reload.

 toggle_perf_monitor()

 Toggles performance monitor.

 toggle_state_inspector()

 Toggles state inspector panel.

 toggle_ui_inspector()

 Toggles UI inspector overlay.

 ui_inspector_enabled?()

 Returns whether UI inspector is enabled.

 unregister_component(id)

 Unregisters a component.

 update_component_state(id, state)

 Updates component state for inspection.

 Types

 bounds()

 @type bounds() :: %{x: integer(), y: integer(), width: integer(), height: integer()}

 component_info()

 @type component_info() :: %{
 module: module(),
 state: term(),
 render_time: integer(),
 bounds: bounds()
}

 metrics()

 @type metrics() :: %{
 fps: float(),
 frame_times: [integer()],
 memory: integer(),
 process_count: integer()
}

 state()

 @type state() :: %{
 enabled: boolean(),
 ui_inspector: boolean(),
 state_inspector: boolean(),
 perf_monitor: boolean(),
 hot_reload: boolean(),
 selected_component: term() | nil,
 components: %{required(term()) => component_info()},
 metrics: metrics()
}

 Functions

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 disable()

 @spec disable() :: :ok

Disables development mode.

 enable()

 @spec enable() :: :ok

Enables development mode.

 enabled?()

 @spec enabled?() :: boolean()

Returns whether development mode is enabled.

 get_components()

 @spec get_components() :: %{required(term()) => component_info()}

Gets all registered components.

 get_metrics()

 @spec get_metrics() :: metrics()

Gets current performance metrics.

 get_selected_component()

 @spec get_selected_component() :: term() | nil

Gets the currently selected component.

 get_state()

 @spec get_state() :: state()

Gets the current state for rendering overlays.

 handle_shortcut(key, modifiers)

 @spec handle_shortcut(atom(), [atom()]) :: :handled | :not_handled

Handles keyboard shortcut for development mode.

 perf_monitor_enabled?()

 @spec perf_monitor_enabled?() :: boolean()

Returns whether performance monitor is enabled.

 record_frame(frame_time_us)

 @spec record_frame(integer()) :: :ok

Records a frame for FPS calculation.

 record_render_time(id, time_us)

 @spec record_render_time(term(), integer()) :: :ok

Records component render time.

 register_component(id, module, state, bounds)

 @spec register_component(term(), module(), term(), bounds()) :: :ok

Registers a component for inspection.

 render_overlays(state, area)

 @spec render_overlays(state(), bounds()) :: term()

Renders development mode overlays.
Returns render nodes for UI inspector, state inspector, and performance monitor.

 select_component(id)

 @spec select_component(term()) :: :ok

Selects a component for detailed inspection.

 start_link(opts \\ [])

Starts the DevMode server.

 state_inspector_enabled?()

 @spec state_inspector_enabled?() :: boolean()

Returns whether state inspector is enabled.

 toggle_hot_reload()

 @spec toggle_hot_reload() :: boolean()

Toggles hot reload.

 toggle_perf_monitor()

 @spec toggle_perf_monitor() :: boolean()

Toggles performance monitor.

 toggle_state_inspector()

 @spec toggle_state_inspector() :: boolean()

Toggles state inspector panel.

 toggle_ui_inspector()

 @spec toggle_ui_inspector() :: boolean()

Toggles UI inspector overlay.

 ui_inspector_enabled?()

 @spec ui_inspector_enabled?() :: boolean()

Returns whether UI inspector is enabled.

 unregister_component(id)

 @spec unregister_component(term()) :: :ok

Unregisters a component.

 update_component_state(id, state)

 @spec update_component_state(term(), term()) :: :ok

Updates component state for inspection.

 TermUI.Dev.HotReload - TermUI v0.2.0

TermUI.Dev.HotReload

Hot Reload integration for development mode.
Watches .ex files for changes and reloads modules without restarting
the application. State is preserved across reloads where possible.
Usage
Start hot reload
HotReload.start()

Stop hot reload
HotReload.stop()

Manually reload a module
HotReload.reload_module(MyModule)
How It Works
	File watcher monitors lib/ directory for .ex changes
	On change, affected modules are identified
	Modules are recompiled using Mix
	Old code is purged and new code loaded
	Notification sent to UI

Note: Uses polling-based approach for compatibility.

 Summary

 Types

 state()

 Functions

 can_reload?(module)

 Checks if a module can be hot reloaded.

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 get_module_source(module)

 Gets the source file path for a module.

 get_recent_reloads()

 Gets recently reloaded modules.

 on_reload(callback)

 Sets callback for reload notifications.

 reload_module(module)

 Manually reloads a specific module.

 running?()

 Returns whether hot reload is running.

 start()

 Starts watching for file changes.

 start_link(opts \\ [])

 Starts the hot reload watcher.

 stop()

 Stops watching for file changes.

 Types

 state()

 @type state() :: %{
 enabled: boolean(),
 watched_dirs: [String.t()],
 file_mtimes: %{required(String.t()) => integer()},
 on_reload: (module() -> any()) | nil
}

 Functions

 can_reload?(module)

 @spec can_reload?(module()) :: boolean()

Checks if a module can be hot reloaded.
Some modules (like those with NIFs or ports) may not reload properly.

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 get_module_source(module)

 @spec get_module_source(module()) :: String.t() | nil

Gets the source file path for a module.

 get_recent_reloads()

 @spec get_recent_reloads() :: [{module(), DateTime.t()}]

Gets recently reloaded modules.

 on_reload(callback)

 @spec on_reload((module() -> any())) :: :ok

Sets callback for reload notifications.

 reload_module(module)

 @spec reload_module(module()) :: :ok | {:error, term()}

Manually reloads a specific module.

 running?()

 @spec running?() :: boolean()

Returns whether hot reload is running.

 start()

 @spec start() :: :ok

Starts watching for file changes.

 start_link(opts \\ [])

Starts the hot reload watcher.

 stop()

 @spec stop() :: :ok

Stops watching for file changes.

 TermUI.Dev.PerfMonitor - TermUI v0.2.0

TermUI.Dev.PerfMonitor

Performance Monitor for development mode.
Displays real-time performance metrics: FPS, frame time, memory usage,
and process count. Toggle with Ctrl+Shift+P when dev mode is enabled.
Metrics
	FPS: Frames per second (rolling average)
	Frame Time: Time to render each frame (graph)
	Memory: Total BEAM memory usage
	Processes: Number of BEAM processes

 Summary

 Functions

 format_bytes(bytes)

 Formats bytes into human-readable string.

 format_time(us)

 Formats microseconds into human-readable string.

 get_memory_breakdown()

 Gets detailed BEAM memory breakdown.

 get_message_queue_length(pid)

 Gets message queue length for a process.

 get_reductions(pid)

 Gets reduction count for a process (rough CPU usage indicator).

 get_scheduler_utilization()

 Gets scheduler utilization.

 render(metrics, area)

 Renders the performance monitor panel.

 values_to_sparkline(values, min_val, max_val)

 Calculates sparkline characters for a list of values.

 Functions

 format_bytes(bytes)

 @spec format_bytes(integer()) :: String.t()

Formats bytes into human-readable string.

 format_time(us)

 @spec format_time(integer()) :: String.t()

Formats microseconds into human-readable string.

 get_memory_breakdown()

 @spec get_memory_breakdown() :: map()

Gets detailed BEAM memory breakdown.

 get_message_queue_length(pid)

 @spec get_message_queue_length(pid()) :: integer()

Gets message queue length for a process.

 get_reductions(pid)

 @spec get_reductions(pid()) :: integer()

Gets reduction count for a process (rough CPU usage indicator).

 get_scheduler_utilization()

 @spec get_scheduler_utilization() :: [float()]

Gets scheduler utilization.

 render(metrics, area)

 @spec render(map(), map()) :: term()

Renders the performance monitor panel.
Returns render nodes for the metrics display.

 values_to_sparkline(values, min_val, max_val)

 @spec values_to_sparkline([number()], number(), number()) :: String.t()

Calculates sparkline characters for a list of values.

 TermUI.Dev.StateInspector - TermUI v0.2.0

TermUI.Dev.StateInspector

State Inspector panel for development mode.
Shows detailed component state in a side panel with expandable tree view.
Toggle with Ctrl+Shift+S when dev mode is enabled.
Features
	Tree view of component state
	Expand/collapse nested values
	State change highlighting
	Type information display

 Summary

 Functions

 diff_states(old_state, new_state)

 Compares two states and returns paths that changed.

 render(component_info, area)

 Renders the state inspector panel.

 render_state_tree(value, depth)

 Renders state as a tree of lines.

 Functions

 diff_states(old_state, new_state)

 @spec diff_states(term(), term()) :: [list()]

Compares two states and returns paths that changed.

 render(component_info, area)

 @spec render(map() | nil, map()) :: term()

Renders the state inspector panel.
Returns render nodes for the side panel with state tree.

 render_state_tree(value, depth)

 @spec render_state_tree(term(), integer()) :: [String.t()]

Renders state as a tree of lines.

 TermUI.Dev.UIInspector - TermUI v0.2.0

TermUI.Dev.UIInspector

UI Inspector overlay for development mode.
Shows component boundaries, names, types, and render times as an overlay
on top of the application. Toggle with Ctrl+Shift+I when dev mode is enabled.
Features
	Component boundary outlines
	Component name and type labels
	Render time display
	Click to select component for state inspection

 Summary

 Functions

 create_labeled_border(label, width, char)

 Creates a top border line with embedded label.

 find_component_at(components, x, y)

 Finds component at screen position for selection.

 format_render_time(time_us)

 Formats render time for display.

 get_module_name(module)

 Extracts short module name from full module atom.

 get_state_summary(state)

 Gets summary of component state for quick display.

 render(components, selected_id, area)

 Renders the UI inspector overlay.

 render_component_boundary(id, info, selected?)

 Renders a single component's boundary and label.

 Functions

 create_labeled_border(label, width, char)

 @spec create_labeled_border(String.t(), integer(), String.t()) :: String.t()

Creates a top border line with embedded label.

 find_component_at(components, x, y)

 @spec find_component_at(map(), integer(), integer()) :: term() | nil

Finds component at screen position for selection.

 format_render_time(time_us)

 @spec format_render_time(integer()) :: String.t()

Formats render time for display.

 get_module_name(module)

 @spec get_module_name(module()) :: String.t()

Extracts short module name from full module atom.

 get_state_summary(state)

 @spec get_state_summary(term()) :: String.t()

Gets summary of component state for quick display.

 render(components, selected_id, area)

 @spec render(map(), term() | nil, map()) :: term()

Renders the UI inspector overlay.
Returns render nodes for component boundaries and labels.

 render_component_boundary(id, info, selected?)

 @spec render_component_boundary(term(), map(), boolean()) :: term()

Renders a single component's boundary and label.

 TermUI.Elm.Helpers - TermUI v0.2.0

TermUI.Elm.Helpers

Helper functions for Elm Architecture components.

 Summary

 Functions

 box(opts \\ [], list)

 Creates a box container.

 column(opts \\ [], list)

 Creates a column container (vertical layout).

 fragment(children)

 Groups multiple render nodes.

 row(opts \\ [], list)

 Creates a row container (horizontal layout).

 styled(content, style)

 Creates a styled text render node.

 text(content)

 Creates a text render node.

 Functions

 box(opts \\ [], list)

 (macro)

Creates a box container.

 column(opts \\ [], list)

 (macro)

Creates a column container (vertical layout).

 fragment(children)

Groups multiple render nodes.

 row(opts \\ [], list)

 (macro)

Creates a row container (horizontal layout).

 styled(content, style)

Creates a styled text render node.

 text(content)

Creates a text render node.

 TermUI.Event.Custom - TermUI v0.2.0

TermUI.Event.Custom

Application-defined custom event.
For app-specific events not covered by standard types.

 Summary

 Types

 t()

 Functions

 new(name, payload \\ nil, opts \\ [])

 Creates a new custom event.

 Types

 t()

 @type t() :: %TermUI.Event.Custom{name: atom(), payload: term(), timestamp: integer()}

 Functions

 new(name, payload \\ nil, opts \\ [])

Creates a new custom event.

 TermUI.Event.Focus - TermUI v0.2.0

TermUI.Event.Focus

Focus change event.
Sent to components when they gain or lose focus.

 Summary

 Types

 action()

 t()

 Functions

 new(action, opts \\ [])

 Creates a new focus event.

 Types

 action()

 @type action() :: :gained | :lost

 t()

 @type t() :: %TermUI.Event.Focus{action: action(), timestamp: integer()}

 Functions

 new(action, opts \\ [])

Creates a new focus event.

 TermUI.Event.Key - TermUI v0.2.0

TermUI.Event.Key

Keyboard input event.
Represents a key press with optional character and modifiers.

 Summary

 Types

 t()

 Functions

 new(key, opts \\ [])

 Creates a new key event.

 Types

 t()

 @type t() :: %TermUI.Event.Key{
 char: String.t() | nil,
 key: atom(),
 modifiers: [atom()],
 timestamp: integer()
}

 Functions

 new(key, opts \\ [])

Creates a new key event.

 TermUI.Event.Mouse - TermUI v0.2.0

TermUI.Event.Mouse

Mouse input event.
Represents mouse actions with position and button info.

 Summary

 Types

 action()

 button()

 t()

 Functions

 new(action, button, x, y, opts \\ [])

 Creates a new mouse event.

 Types

 action()

 @type action() ::
 :click
 | :double_click
 | :move
 | :drag
 | :scroll_up
 | :scroll_down
 | :press
 | :release

 button()

 @type button() :: :left | :middle | :right | nil

 t()

 @type t() :: %TermUI.Event.Mouse{
 action: action(),
 button: button(),
 modifiers: [atom()],
 timestamp: integer(),
 x: integer(),
 y: integer()
}

 Functions

 new(action, button, x, y, opts \\ [])

Creates a new mouse event.

 TermUI.Event.Paste - TermUI v0.2.0

TermUI.Event.Paste

Clipboard paste event.
Sent when content is pasted from the clipboard via bracketed paste mode.

 Summary

 Types

 t()

 Functions

 new(content, opts \\ [])

 Creates a new paste event.

 Types

 t()

 @type t() :: %TermUI.Event.Paste{content: String.t(), timestamp: integer()}

 Functions

 new(content, opts \\ [])

Creates a new paste event.

 TermUI.Event.Propagation - TermUI v0.2.0

TermUI.Event.Propagation

Event propagation utilities for the component tree.
Handles bubbling and capturing phases of event propagation.
Events bubble up from target to root until handled.
Propagation Phases
	Capture - Event travels from root to target (optional)
	Target - Event delivered to target component
	Bubble - Event travels from target to root (default)

Usage
Propagate event up through parent chain
Propagation.bubble(event, component_id)

Build parent chain for propagation
parents = Propagation.get_parent_chain(component_id)

 Summary

 Types

 phase()

 propagation_result()

 Functions

 bubble(event, start_id, opts \\ [])

 Bubbles an event up through the parent chain.

 capture(event, target_id)

 Captures an event down through the parent chain to target.

 get_children(component_id)

 Gets children of a component.

 get_parent_chain(component_id)

 Gets the parent chain for a component.

 set_parent(component_id, parent_id)

 Sets the parent for a component.

 stopped?(result)

 Checks if an event should stop propagating.

 with_phase(event, phase)

 Adds metadata about propagation phase to event.

 Types

 phase()

 @type phase() :: :capture | :target | :bubble

 propagation_result()

 @type propagation_result() :: :handled | :unhandled | :stopped

 Functions

 bubble(event, start_id, opts \\ [])

 @spec bubble(term(), term(), keyword()) :: propagation_result()

Bubbles an event up through the parent chain.
Starts from the given component and propagates up to parents
until a component handles the event or the root is reached.
Parameters
	event - The event to propagate
	start_id - Component to start bubbling from
	opts - Options:	:skip_start - Skip the starting component (default: false)

Returns
	:handled - A component handled the event
	:unhandled - No component handled the event

 capture(event, target_id)

 @spec capture(term(), term()) :: propagation_result()

Captures an event down through the parent chain to target.
Starts from the root and propagates down to the target component.
Each component can intercept before reaching target.
Parameters
	event - The event to propagate
	target_id - Target component

Returns
	:handled - A component handled the event
	:unhandled - No component handled the event

 get_children(component_id)

 @spec get_children(term()) :: [term()]

Gets children of a component.
Returns
List of child component ids.

 get_parent_chain(component_id)

 @spec get_parent_chain(term()) :: [term()]

Gets the parent chain for a component.
Returns list of parent component ids from immediate parent to root.
Example
If component tree is: root -> container -> button
get_parent_chain(:button)
=> [:container, :root]

 set_parent(component_id, parent_id)

 @spec set_parent(term(), term() | nil) :: :ok

Sets the parent for a component.
Used to build the component tree for propagation.
Parameters
	component_id - Child component
	parent_id - Parent component (or nil for root)

 stopped?(result)

 @spec stopped?(term()) :: boolean()

Checks if an event should stop propagating.
Events can be marked to stop propagation by returning
:stop from handle_event.

 with_phase(event, phase)

 @spec with_phase(term(), phase()) :: map()

Adds metadata about propagation phase to event.
Parameters
	event - The event
	phase - Current propagation phase

Returns
Event with :propagation_phase metadata.

 TermUI.Event.Resize - TermUI v0.2.0

TermUI.Event.Resize

Terminal resize event.
Sent when the terminal window dimensions change.

 Summary

 Types

 t()

 Functions

 new(width, height, opts \\ [])

 Creates a new resize event.

 Types

 t()

 @type t() :: %TermUI.Event.Resize{
 height: pos_integer(),
 timestamp: integer(),
 width: pos_integer()
}

 Functions

 new(width, height, opts \\ [])

Creates a new resize event.

 TermUI.Event.Tick - TermUI v0.2.0

TermUI.Event.Tick

Timer tick event.
Represents a periodic timer event for animations and time-based updates.

 Summary

 Types

 t()

 Functions

 new(interval, opts \\ [])

 Creates a new tick event.

 rate(tick)

 Returns the tick rate in Hz (ticks per second).

 Types

 t()

 @type t() :: %TermUI.Event.Tick{interval: pos_integer(), timestamp: integer()}

 Functions

 new(interval, opts \\ [])

Creates a new tick event.

 rate(tick)

Returns the tick rate in Hz (ticks per second).

 TermUI.Event.Transformation - TermUI v0.2.0

TermUI.Event.Transformation

Event transformation utilities.
Transforms events as they route to components, including:
	Coordinate transformation (screen to component-local)
	Event metadata enrichment
	Event filtering

Usage
Transform mouse coordinates to component-local
local_event = Transformation.to_local(event, component_bounds)

Add metadata to event
enriched = Transformation.with_metadata(event, %{target: :button})

 Summary

 Functions

 envelope(event, opts \\ [])

 Creates a standard event envelope with routing metadata.

 filter(events, filters)

 Filters a list of events based on criteria.

 get_metadata(event, key, default \\ nil)

 Gets metadata from an event.

 matches?(event, filters)

 Checks if an event matches a filter.

 to_local(event, arg2)

 Transforms screen coordinates to component-local coordinates.

 to_screen(event, arg2)

 Transforms component-local coordinates back to screen coordinates.

 with_metadata(event, metadata)

 Adds metadata to an event.

 Functions

 envelope(event, opts \\ [])

 @spec envelope(
 term(),
 keyword()
) :: map()

Creates a standard event envelope with routing metadata.
Parameters
	event - The raw event
	opts - Options:	:source - Source of the event
	:target - Target component id
	:timestamp - Override timestamp

Returns
Event with envelope metadata.

 filter(events, filters)

 @spec filter(
 list(),
 keyword()
) :: list()

Filters a list of events based on criteria.
Parameters
	events - List of events
	filters - Filter criteria (see matches?/2)

Returns
List of events matching all filters.

 get_metadata(event, key, default \\ nil)

 @spec get_metadata(map(), atom(), term()) :: term()

Gets metadata from an event.
Parameters
	event - The event
	key - Metadata key to get
	default - Default value if key not found

Returns
The metadata value or default.

 matches?(event, filters)

 @spec matches?(
 term(),
 keyword()
) :: boolean()

Checks if an event matches a filter.
Filter Options
	:type - Event type (:key, :mouse, :focus, :custom)
	:key - Specific key (for key events)
	:action - Specific action (for mouse/focus events)
	:button - Specific button (for mouse events)
	:modifiers - Required modifiers (any or all)
	:modifiers_all - All modifiers must be present
	:modifiers_any - Any modifier must be present

Example
Match Ctrl+C
matches?(event, type: :key, key: :c, modifiers_all: [:ctrl])

Match any click
matches?(event, type: :mouse, action: :click)

 to_local(event, arg2)

 @spec to_local(TermUI.Event.Mouse.t() | term(), map()) ::
 TermUI.Event.Mouse.t() | term()

Transforms screen coordinates to component-local coordinates.
For mouse events, subtracts the component's position from the
event coordinates so the component receives coordinates relative
to its own origin (0, 0).
Parameters
	event - Mouse event with screen coordinates
	bounds - Component bounds with x, y position

Returns
Event with transformed coordinates, or unchanged event if not a mouse event.
Example
event = %Mouse{x: 15, y: 10, ...}
bounds = %{x: 10, y: 5, width: 20, height: 10}
local = to_local(event, bounds)
local.x = 5, local.y = 5

 to_screen(event, arg2)

 @spec to_screen(TermUI.Event.Mouse.t() | term(), map()) ::
 TermUI.Event.Mouse.t() | term()

Transforms component-local coordinates back to screen coordinates.
Inverse of to_local/2.
Parameters
	event - Mouse event with local coordinates
	bounds - Component bounds with x, y position

Returns
Event with screen coordinates.

 with_metadata(event, metadata)

 @spec with_metadata(map(), map()) :: map()

Adds metadata to an event.
Creates or updates a :metadata field on the event struct.
Parameters
	event - The event to enrich
	metadata - Map of metadata to add

Returns
Event with metadata merged.
Example
event = with_metadata(key_event, %{target: :input, phase: :bubble})

 TermUI.EventRouter - TermUI v0.2.0

TermUI.EventRouter

Central event routing for TermUI components.
The EventRouter manages event distribution to components based on:
	Focus state for keyboard events
	Spatial index for mouse events
	Broadcast for system events (resize)

Usage
Route a keyboard event to focused component
EventRouter.route(%Event.Key{key: :enter})

Route a mouse event to component at position
EventRouter.route(%Event.Mouse{action: :click, x: 10, y: 5})

Set focused component
EventRouter.set_focus(:my_input)

Broadcast to all components
EventRouter.broadcast({:resize, 80, 24})
Event Flow
	Event received by router
	Router determines target based on event type
	Event delivered to target component
	If unhandled, event bubbles to parent (if propagation enabled)

 Summary

 Types

 route_result()

 Functions

 broadcast(event)

 Broadcasts an event to all registered components.

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 clear_fallback_handler()

 Clears the fallback handler.

 clear_focus()

 Clears the current focus.

 get_focus()

 Gets the currently focused component.

 route(event)

 Routes an event to the appropriate component.

 route_to(component_id, event)

 Routes an event directly to a specific component by id.

 set_fallback_handler(handler)

 Registers a global event handler for events that no component handles.

 set_focus(component_id)

 Sets the currently focused component.

 start_link(opts \\ [])

 Starts the event router.

 Types

 route_result()

 @type route_result() :: :handled | :unhandled | {:error, term()}

 Functions

 broadcast(event)

 @spec broadcast(term()) :: {:ok, non_neg_integer()}

Broadcasts an event to all registered components.
Useful for system-wide events like resize.
Returns
	{:ok, count} - Number of components that received the event

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 clear_fallback_handler()

 @spec clear_fallback_handler() :: :ok

Clears the fallback handler.

 clear_focus()

 @spec clear_focus() :: :ok

Clears the current focus.

 get_focus()

 @spec get_focus() :: {:ok, term() | nil}

Gets the currently focused component.
Returns
	{:ok, component_id} - The focused component
	{:ok, nil} - No component focused

 route(event)

 @spec route(
 TermUI.Event.Key.t()
 | TermUI.Event.Mouse.t()
 | TermUI.Event.Focus.t()
 | TermUI.Event.Custom.t()
) :: route_result()

Routes an event to the appropriate component.
Keyboard and focus events go to the focused component.
Mouse events go to the component at the mouse position.
Returns
	:handled - Event was processed by a component
	:unhandled - No component handled the event
	{:error, reason} - Routing failed

 route_to(component_id, event)

 @spec route_to(term(), term()) :: route_result()

Routes an event directly to a specific component by id.
Returns
	:handled - Component handled the event
	:unhandled - Component did not handle the event
	{:error, :not_found} - Component not found

 set_fallback_handler(handler)

 @spec set_fallback_handler((term() -> :ok)) :: :ok

Registers a global event handler for events that no component handles.
The handler receives unhandled events and can process them as needed.
Parameters
	handler - Function that receives events: fn event -> :ok end

 set_focus(component_id)

 @spec set_focus(term() | nil) :: :ok

Sets the currently focused component.
Sends focus lost event to previous focus and focus gained to new focus.
Parameters
	component_id - The component to focus, or nil to clear focus

 start_link(opts \\ [])

 @spec start_link(keyword()) :: GenServer.on_start()

Starts the event router.

 TermUI.Focus - TermUI v0.2.0

TermUI.Focus

Focus event utilities for terminal window focus tracking.
Provides escape sequences and utilities for detecting when the
terminal window gains or loses system focus. This enables optimization
opportunities like pausing animations when backgrounded.
Usage
Enable focus reporting
IO.write(Focus.enable())

Check if focus reporting is supported
if Focus.supported?() do
 IO.write(Focus.enable())
end

Disable focus reporting
IO.write(Focus.disable())

 Summary

 Functions

 disable()

 Returns escape sequence to disable focus reporting.

 enable()

 Returns escape sequence to enable focus reporting.

 gained_sequence()

 Returns the focus gained sequence.

 lost_sequence()

 Returns the focus lost sequence.

 parse(arg1)

 Parses input to detect focus events.

 supported?()

 Checks if focus reporting is likely supported.

 Functions

 disable()

 @spec disable() :: String.t()

Returns escape sequence to disable focus reporting.

 enable()

 @spec enable() :: String.t()

Returns escape sequence to enable focus reporting.

 gained_sequence()

 @spec gained_sequence() :: String.t()

Returns the focus gained sequence.

 lost_sequence()

 @spec lost_sequence() :: String.t()

Returns the focus lost sequence.

 parse(arg1)

 @spec parse(String.t()) :: {:focus, :gained | :lost} | nil

Parses input to detect focus events.
Returns {:focus, :gained}, {:focus, :lost}, or nil if not a focus event.

 supported?()

 @spec supported?() :: boolean()

Checks if focus reporting is likely supported.
This is a heuristic check based on terminal type. Many modern
terminals support focus reporting but don't advertise it.
Known supporting terminals:
	xterm (with allowWindowOps)
	iTerm2
	Alacritty
	Kitty
	WezTerm
	foot
	GNOME Terminal
	Windows Terminal

 TermUI.Focus.Indicator - TermUI v0.2.0

TermUI.Focus.Indicator

Focus indicator styles for visual focus feedback.
Provides default and customizable styles for indicating
which component has focus.
Usage
Get default focus style
style = Indicator.default_style()

Get focus style for component
style = Indicator.get_style(:my_button, opts)

Apply focus styling to a cell
cell = Indicator.apply_focus_style(cell)

 Summary

 Types

 border_style()

 indicator_style()

 Functions

 animate?()

 Checks if focus indicators should animate.

 default_style()

 Returns the default focus indicator style.

 focus_border_color()

 Gets focus border color.

 get_style(component_id, opts \\ [])

 Gets the focus indicator style for a component.

 get_theme(theme_name)

 Gets a predefined theme by name.

 themes()

 Returns predefined focus indicator themes.

 to_render_style(indicator)

 Creates a Style struct from focus indicator style.

 Types

 border_style()

 @type border_style() :: :none | :single | :double | :rounded | :thick

 indicator_style()

 @type indicator_style() :: %{
 border: border_style() | nil,
 fg: TermUI.Renderer.Style.color() | nil,
 bg: TermUI.Renderer.Style.color() | nil,
 bold: boolean()
}

 Functions

 animate?()

 @spec animate?() :: boolean()

Checks if focus indicators should animate.
Some terminals support blinking or pulsing focus indicators.
Returns
Boolean indicating animation support.

 default_style()

 @spec default_style() :: indicator_style()

Returns the default focus indicator style.
Default style uses a highlighted border color.

 focus_border_color()

 @spec focus_border_color() :: atom()

Gets focus border color.
Returns the color to use for focused component borders.
Returns
Color atom (e.g., :cyan, :blue).

 get_style(component_id, opts \\ [])

 @spec get_style(
 term(),
 keyword()
) :: indicator_style()

Gets the focus indicator style for a component.
Merges default style with component-specific overrides.
Parameters
	component_id - Component to get style for
	opts - Options:	:styles - Map of component_id => indicator_style

Returns
Focus indicator style map.

 get_theme(theme_name)

 @spec get_theme(atom()) :: indicator_style()

Gets a predefined theme by name.
Parameters
	theme_name - Name of the theme

Returns
Indicator style for the theme, or default if not found.

 themes()

 @spec themes() :: %{required(atom()) => indicator_style()}

Returns predefined focus indicator themes.
Available Themes
	:default - Cyan border with bold
	:subtle - Dim border color change
	:bold - Bright yellow with background
	:minimal - No border, just cursor

Returns
Map of theme name to indicator style.

 to_render_style(indicator)

 @spec to_render_style(indicator_style()) :: TermUI.Renderer.Style.t()

Creates a Style struct from focus indicator style.
Parameters
	indicator - Focus indicator style map

Returns
A Style struct suitable for rendering.

 TermUI.Focus.Tracker - TermUI v0.2.0

TermUI.Focus.Tracker

Focus state tracker with action registration.
Maintains focus state and executes registered actions when
focus changes. Supports optimization hooks for reducing work
when the application is backgrounded.
Usage
{:ok, tracker} = Focus.Tracker.start_link()

Register focus actions
Focus.Tracker.on_focus_lost(tracker, fn ->
 save_state()
end)

Focus.Tracker.on_focus_gained(tracker, fn ->
 refresh_content()
end)

Update focus state
Focus.Tracker.set_focus(tracker, true)

Query focus state
Focus.Tracker.has_focus?(tracker)

 Summary

 Types

 t()

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 clear_actions(tracker)

 Clears all registered actions.

 enable_auto_pause(tracker)

 Enables automatic pause when focus is lost.

 enable_auto_reduce_framerate(tracker)

 Enables automatic framerate reduction when focus is lost.

 has_focus?(tracker)

 Returns true if the application has focus.

 on_focus_gained(tracker, action)

 Registers an action to execute when focus is gained.

 on_focus_lost(tracker, action)

 Registers an action to execute when focus is lost.

 paused?(tracker)

 Returns true if animations should be paused.

 reduced_framerate?(tracker)

 Returns true if framerate should be reduced.

 set_focus(tracker, focused)

 Sets the focus state.

 set_paused(tracker, paused)

 Sets the paused state manually.

 set_reduced_framerate(tracker, reduced)

 Sets the reduced framerate state manually.

 start_link(opts \\ [])

 Starts the focus tracker.

 Types

 t()

 @type t() :: %TermUI.Focus.Tracker{
 auto_pause: boolean(),
 auto_reduce_framerate: boolean(),
 has_focus: boolean(),
 on_gained: [(-> any())],
 on_lost: [(-> any())],
 paused: boolean(),
 reduced_framerate: boolean()
}

 Functions

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 clear_actions(tracker)

 @spec clear_actions(GenServer.server()) :: :ok

Clears all registered actions.

 enable_auto_pause(tracker)

 @spec enable_auto_pause(GenServer.server()) :: :ok

Enables automatic pause when focus is lost.

 enable_auto_reduce_framerate(tracker)

 @spec enable_auto_reduce_framerate(GenServer.server()) :: :ok

Enables automatic framerate reduction when focus is lost.

 has_focus?(tracker)

 @spec has_focus?(GenServer.server()) :: boolean()

Returns true if the application has focus.

 on_focus_gained(tracker, action)

 @spec on_focus_gained(GenServer.server(), (-> any())) :: :ok

Registers an action to execute when focus is gained.

 on_focus_lost(tracker, action)

 @spec on_focus_lost(GenServer.server(), (-> any())) :: :ok

Registers an action to execute when focus is lost.

 paused?(tracker)

 @spec paused?(GenServer.server()) :: boolean()

Returns true if animations should be paused.
This is set when focus is lost and auto_pause is enabled.

 reduced_framerate?(tracker)

 @spec reduced_framerate?(GenServer.server()) :: boolean()

Returns true if framerate should be reduced.
This is set when focus is lost and auto_reduce_framerate is enabled.

 set_focus(tracker, focused)

 @spec set_focus(GenServer.server(), boolean()) :: :ok

Sets the focus state.

 set_paused(tracker, paused)

 @spec set_paused(GenServer.server(), boolean()) :: :ok

Sets the paused state manually.

 set_reduced_framerate(tracker, reduced)

 @spec set_reduced_framerate(GenServer.server(), boolean()) :: :ok

Sets the reduced framerate state manually.

 start_link(opts \\ [])

 @spec start_link(keyword()) :: GenServer.on_start()

Starts the focus tracker.

 TermUI.Focus.Traversal - TermUI v0.2.0

TermUI.Focus.Traversal

Focus traversal utilities for calculating tab order.
Provides utilities for determining the order in which components
receive focus during Tab/Shift+Tab navigation.
Tab Order
Components are ordered by:
	Explicit tab_index (lower numbers first)
	Screen position (top-to-bottom, left-to-right)

Usage
Get tab order for components
order = Traversal.calculate_order(component_ids)

Check if component should be skipped
Traversal.should_skip?(component_id)

 Summary

 Functions

 calculate_order(component_ids, opts \\ [])

 Calculates the tab order for a list of components.

 filter_focusable(component_ids, opts \\ [])

 Filters a list to only focusable components.

 next(ordered_list, current)

 Gets the next component in tab order.

 prev(ordered_list, current)

 Gets the previous component in tab order.

 should_skip?(component_id, opts \\ [])

 Checks if a component should be skipped during traversal.

 Functions

 calculate_order(component_ids, opts \\ [])

 @spec calculate_order(
 [term()],
 keyword()
) :: [term()]

Calculates the tab order for a list of components.
Returns components sorted by tab index, then by position.
Parameters
	component_ids - List of component ids
	opts - Options:	:tab_indices - Map of component_id => tab_index

Returns
Sorted list of component ids.

 filter_focusable(component_ids, opts \\ [])

 @spec filter_focusable(
 [term()],
 keyword()
) :: [term()]

Filters a list to only focusable components.
Parameters
	component_ids - List of component ids
	opts - Options passed to should_skip?/2

Returns
Filtered list of focusable component ids.

 next(ordered_list, current)

 @spec next([term()], term() | nil) :: term() | nil

Gets the next component in tab order.
Parameters
	ordered_list - Components in tab order
	current - Currently focused component (or nil)

Returns
Next component id, wrapping to first if at end.

 prev(ordered_list, current)

 @spec prev([term()], term() | nil) :: term() | nil

Gets the previous component in tab order.
Parameters
	ordered_list - Components in tab order
	current - Currently focused component (or nil)

Returns
Previous component id, wrapping to last if at beginning.

 should_skip?(component_id, opts \\ [])

 @spec should_skip?(
 term(),
 keyword()
) :: boolean()

Checks if a component should be skipped during traversal.
A component is skipped if:
	It has focusable: false
	It has disabled: true
	It has a negative tab_index

Parameters
	component_id - Component to check
	opts - Options:	:focusable - Map of component_id => boolean
	:disabled - Map of component_id => boolean
	:tab_indices - Map of component_id => integer

Returns
Boolean indicating if component should be skipped.

 TermUI.FocusManager - TermUI v0.2.0

TermUI.FocusManager

Central focus management for TermUI components.
The FocusManager tracks which component receives keyboard input,
provides focus traversal (Tab/Shift+Tab), and manages focus
trapping for modal contexts.
Usage
Get current focus
{:ok, component_id} = FocusManager.get_focused()

Set focus to component
:ok = FocusManager.set_focused(:my_input)

Tab navigation
:ok = FocusManager.focus_next()
:ok = FocusManager.focus_prev()

Focus trapping for modals
:ok = FocusManager.trap_focus(:modal_group)
:ok = FocusManager.release_focus()
Focus Stack
The FocusManager maintains a focus stack for modal contexts.
When a modal opens, it pushes the current focus and sets new focus.
When closed, focus pops back to the previous component.

 Summary

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 clear_focus()

 Clears the current focus.

 focus_next()

 Moves focus to the next focusable component in tab order.

 focus_prev()

 Moves focus to the previous focusable component in tab order.

 focused?(component_id)

 Checks if a component is currently focused.

 get_focused()

 Gets the currently focused component.

 get_groups()

 Gets all registered focus groups.

 get_stack()

 Gets the current focus stack.

 pop_focus()

 Pops focus from stack, restoring previous focus.

 push_focus(component_id)

 Pushes current focus to stack and sets new focus.

 register_group(group_id, component_ids)

 Registers a focus group for focus trapping.

 release_focus()

 Releases the current focus trap.

 request_auto_focus(component_id)

 Requests auto-focus for a component on mount.

 set_focused(component_id)

 Sets focus to a specific component.

 start_link(opts \\ [])

 Starts the focus manager.

 trap_focus(group_id)

 Traps focus within a group.

 unregister_group(group_id)

 Unregisters a focus group.

 Functions

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 clear_focus()

 @spec clear_focus() :: :ok

Clears the current focus.

 focus_next()

 @spec focus_next() :: :ok | {:error, atom()}

Moves focus to the next focusable component in tab order.
Returns
	:ok - Focus moved to next component
	{:error, :no_focusable} - No focusable components available

 focus_prev()

 @spec focus_prev() :: :ok | {:error, atom()}

Moves focus to the previous focusable component in tab order.
Returns
	:ok - Focus moved to previous component
	{:error, :no_focusable} - No focusable components available

 focused?(component_id)

 @spec focused?(term()) :: boolean()

Checks if a component is currently focused.

 get_focused()

 @spec get_focused() :: {:ok, term() | nil}

Gets the currently focused component.
Returns
	{:ok, component_id} - The focused component
	{:ok, nil} - No component focused

 get_groups()

 @spec get_groups() :: %{required(term()) => [term()]}

Gets all registered focus groups.

 get_stack()

 @spec get_stack() :: [term()]

Gets the current focus stack.

 pop_focus()

 @spec pop_focus() :: :ok | {:error, atom()}

Pops focus from stack, restoring previous focus.
Returns
	:ok - Focus restored
	{:error, :empty_stack} - No focus to restore

 push_focus(component_id)

 @spec push_focus(term()) :: :ok | {:error, atom()}

Pushes current focus to stack and sets new focus.
Useful for modal dialogs that need to restore focus when closed.
Parameters
	component_id - Component to focus

 register_group(group_id, component_ids)

 @spec register_group(term(), [term()]) :: :ok

Registers a focus group for focus trapping.
Parameters
	group_id - Unique identifier for the group
	component_ids - List of component ids in the group

 release_focus()

 @spec release_focus() :: :ok

Releases the current focus trap.

 request_auto_focus(component_id)

 @spec request_auto_focus(term()) :: :ok

Requests auto-focus for a component on mount.
Should be called from component mount if auto_focus prop is true.

 set_focused(component_id)

 @spec set_focused(term() | nil) :: :ok | {:error, atom()}

Sets focus to a specific component.
Sends blur event to the previously focused component and
focus event to the new component.
Parameters
	component_id - Component to focus, or nil to clear focus

Returns
	:ok - Focus changed successfully
	{:error, :not_focusable} - Component cannot receive focus
	{:error, :not_found} - Component not registered

 start_link(opts \\ [])

 @spec start_link(keyword()) :: GenServer.on_start()

Starts the focus manager.

 trap_focus(group_id)

 @spec trap_focus(term()) :: :ok | {:error, atom()}

Traps focus within a group.
Tab navigation will cycle within the group instead of
escaping to other components.
Parameters
	group_id - Group to trap focus within

 unregister_group(group_id)

 @spec unregister_group(term()) :: :ok

Unregisters a focus group.

 TermUI.Message - TermUI v0.2.0

TermUI.Message

Message type conventions and helpers for component messages.
Messages are component-specific types representing meaningful actions.
They carry semantic meaning—{:select_item, 3} is clearer than the raw
key event that triggered it.
Message Conventions
Components define their own message types using one of these patterns:
Simple Atom Messages
:increment
:decrement
:submit
:cancel
Tuple Messages with Data
{:select_item, 3}
{:update_text, "hello"}
{:set_value, 42}
Struct Messages (for complex data)
defmodule MyComponent.Msg do
 defmodule SelectItem do
 defstruct [:index, :source]
 end
end

%MyComponent.Msg.SelectItem{index: 3, source: :keyboard}
Event to Message Conversion
Components implement event_to_msg/2 to convert events to messages:
def event_to_msg(%Event.Key{key: :enter}, _state) do
 {:msg, :submit}
end

def event_to_msg(%Event.Key{key: :up}, _state) do
 {:msg, {:move, :up}}
end

def event_to_msg(_event, _state) do
 :ignore
end
Message Routing
Messages route to the component that should handle them. The runtime
delivers messages and components update their state in response.

 Summary

 Types

 t()

 Functions

 atom?(msg)

 Checks if a value is an atom message.

 match?(msg, pattern)

 Matches a message against a pattern.

 name(msg)

 Returns the message type/name.

 payload(msg)

 Returns the message payload.

 struct?(arg1)

 Checks if a value is a struct message.

 tuple?(msg)

 Checks if a value is a tuple message.

 valid?(msg)

 Checks if a value is a valid message.

 wrap(msg)

 Creates a wrapped message result from event_to_msg.

 Types

 t()

 @type t() :: atom() | tuple() | struct()

 Functions

 atom?(msg)

 @spec atom?(term()) :: boolean()

Checks if a value is an atom message.

 match?(msg, pattern)

 @spec match?(t(), atom()) :: boolean()

Matches a message against a pattern.
Examples
Message.match?(:submit, :submit) # true
Message.match?({:select, 3}, :select) # true
Message.match?(%Msg.SelectItem{index: 3}, Msg.SelectItem) # true

 name(msg)

 @spec name(t()) :: atom()

Returns the message type/name.
For atoms, returns the atom itself.
For tuples, returns the first element.
For structs, returns the struct module name.

 payload(msg)

 @spec payload(t()) :: term()

Returns the message payload.
For atoms, returns nil.
For tuples with 2 elements, returns the second element.
For tuples with more elements, returns a list of remaining elements.
For structs, returns the struct itself.

 struct?(arg1)

 @spec struct?(term()) :: boolean()

Checks if a value is a struct message.

 tuple?(msg)

 @spec tuple?(term()) :: boolean()

Checks if a value is a tuple message.

 valid?(msg)

 @spec valid?(term()) :: boolean()

Checks if a value is a valid message.
Messages can be atoms, tuples, or structs.

 wrap(msg)

 @spec wrap(t()) :: {:msg, t()}

Creates a wrapped message result from event_to_msg.
Returns {:msg, message} to indicate the event was converted.

 TermUI.MessageQueue - TermUI v0.2.0

TermUI.MessageQueue

Message queue for batching multiple messages before rendering.
Multiple messages may arrive between renders. We batch messages, applying
all updates before rendering once. This prevents redundant renders when
multiple events arrive quickly. The batch preserves message order for
deterministic updates.
Usage
Create a queue
queue = MessageQueue.new()

Enqueue messages
queue = MessageQueue.enqueue(queue, :increment)
queue = MessageQueue.enqueue(queue, {:set_value, 42})

Process all messages
{messages, queue} = MessageQueue.flush(queue)

Apply messages to state
state = Enum.reduce(messages, state, fn msg, state ->
 {new_state, _commands} = Component.update(msg, state)
 new_state
end)

 Summary

 Types

 message()

 t()

 Functions

 clear(queue)

 Clears the queue and resets overflow count.

 dequeue(queue)

 Removes and returns the front message.

 empty?(arg1)

 Returns true if the queue is empty.

 enqueue(queue, message)

 Enqueues a message for processing.

 enqueue_all(queue, messages)

 Enqueues multiple messages at once.

 flush(queue)

 Removes and returns all messages from the queue.

 new(opts \\ [])

 Creates a new message queue.

 overflow_count(message_queue)

 Returns the number of dropped messages due to overflow.

 peek(message_queue)

 Peeks at the front message without removing it.

 process(queue, initial_acc, fun)

 Processes all queued messages with a function.

 size(message_queue)

 Returns the number of messages in the queue.

 Types

 message()

 @type message() :: term()

 t()

 @type t() :: %TermUI.MessageQueue{
 max_size: pos_integer(),
 messages: :queue.queue(message()),
 overflow_count: non_neg_integer(),
 size: non_neg_integer()
}

 Functions

 clear(queue)

 @spec clear(t()) :: t()

Clears the queue and resets overflow count.

 dequeue(queue)

 @spec dequeue(t()) :: {{:value, message()}, t()} | {:empty, t()}

Removes and returns the front message.

 empty?(arg1)

 @spec empty?(t()) :: boolean()

Returns true if the queue is empty.

 enqueue(queue, message)

 @spec enqueue(t(), message()) :: t()

Enqueues a message for processing.
Messages are added to the back of the queue, preserving order.
If the queue is at max capacity, the message is dropped and
overflow count is incremented.

 enqueue_all(queue, messages)

 @spec enqueue_all(t(), [message()]) :: t()

Enqueues multiple messages at once.

 flush(queue)

 @spec flush(t()) :: {[message()], t()}

Removes and returns all messages from the queue.
Returns {messages, empty_queue} where messages is a list
in the order they were enqueued.

 new(opts \\ [])

 @spec new(keyword()) :: t()

Creates a new message queue.
Options
	:max_size - Maximum number of messages before dropping (default: 1000)

 overflow_count(message_queue)

 @spec overflow_count(t()) :: non_neg_integer()

Returns the number of dropped messages due to overflow.

 peek(message_queue)

 @spec peek(t()) :: {:value, message()} | :empty

Peeks at the front message without removing it.

 process(queue, initial_acc, fun)

 @spec process(t(), acc, (message(), acc -> acc)) :: {acc, t()} when acc: term()

Processes all queued messages with a function.
Applies fun to each message and the accumulator, returning
the final accumulator and empty queue.
Example
{final_state, commands, queue} = MessageQueue.process(queue, {state, []}, fn msg, {state, cmds} ->
 {new_state, new_cmds} = Component.update(msg, state)
 {new_state, cmds ++ new_cmds}
end)

 size(message_queue)

 @spec size(t()) :: non_neg_integer()

Returns the number of messages in the queue.

 TermUI.Mouse - TermUI v0.2.0

TermUI.Mouse

Mouse support utilities for terminal applications.
Provides functions to enable/disable mouse tracking modes and
utilities for working with mouse events.
Mouse Tracking Modes
	Normal (1000) - Report button press/release
	Button (1002) - Report motion while button pressed
	Any (1003) - Report all motion events
	SGR Extended (1006) - Decimal coordinates, press/release distinction

Usage
Enable mouse tracking
sequences = Mouse.enable_mouse()
IO.write(sequences)

Enable motion tracking with SGR Extended
sequences = Mouse.enable_mouse_motion()
IO.write(sequences)

Disable mouse tracking
sequences = Mouse.disable_mouse()
IO.write(sequences)

 Summary

 Functions

 click_action?(arg1)

 Checks if a mouse action is a click action.

 default_scroll_lines()

 Default number of lines to scroll per wheel tick.

 disable_mouse()

 Returns escape sequences to disable all mouse tracking.

 enable_mouse()

 Returns escape sequences to enable normal mouse tracking.

 enable_mouse_button()

 Returns escape sequences to enable button motion tracking.

 enable_mouse_motion()

 Returns escape sequences to enable all motion tracking.

 motion_action?(arg1)

 Checks if a mouse action is a motion action.

 scroll_action?(arg1)

 Checks if a mouse action is a scroll action.

 scroll_down()

 Scroll down direction constant.

 scroll_up()

 Scroll up direction constant.

 sgr_extended_off()

 Returns the escape sequence to disable SGR Extended mode.

 sgr_extended_on()

 Returns the escape sequence for SGR Extended mode.

 Functions

 click_action?(arg1)

 @spec click_action?(atom()) :: boolean()

Checks if a mouse action is a click action.

 default_scroll_lines()

Default number of lines to scroll per wheel tick.

 disable_mouse()

 @spec disable_mouse() :: String.t()

Returns escape sequences to disable all mouse tracking.

 enable_mouse()

 @spec enable_mouse() :: String.t()

Returns escape sequences to enable normal mouse tracking.
Normal mode reports button press and release events.
Also enables SGR Extended mode for accurate coordinates.

 enable_mouse_button()

 @spec enable_mouse_button() :: String.t()

Returns escape sequences to enable button motion tracking.
Button mode reports motion events while a button is pressed.
Also enables SGR Extended mode for accurate coordinates.

 enable_mouse_motion()

 @spec enable_mouse_motion() :: String.t()

Returns escape sequences to enable all motion tracking.
Any mode reports all mouse motion events.
Also enables SGR Extended mode for accurate coordinates.

 motion_action?(arg1)

 @spec motion_action?(atom()) :: boolean()

Checks if a mouse action is a motion action.

 scroll_action?(arg1)

 @spec scroll_action?(atom()) :: boolean()

Checks if a mouse action is a scroll action.

 scroll_down()

Scroll down direction constant.

 scroll_up()

Scroll up direction constant.

 sgr_extended_off()

 @spec sgr_extended_off() :: String.t()

Returns the escape sequence to disable SGR Extended mode.

 sgr_extended_on()

 @spec sgr_extended_on() :: String.t()

Returns the escape sequence for SGR Extended mode.
SGR Extended mode provides:
	Decimal coordinate encoding (no 223 limit)
	Press/release distinction via 'm' vs 'M' suffix

 TermUI.Mouse.Router - TermUI v0.2.0

TermUI.Mouse.Router

Routes mouse events to components based on position.
The router uses component bounds to determine which component
should receive a mouse event, handles z-order for overlapping
components, and transforms coordinates to component-local space.
Usage
Find component at position
{component_id, local_x, local_y} = Router.hit_test(components, x, y)

Route event to component
{target_id, transformed_event} = Router.route(components, mouse_event)

 Summary

 Types

 bounds()

 component_entry()

 components()

 Functions

 bounds_overlap?(a, b)

 Checks if two bounds overlap.

 clip_to_bounds(x, y, bounds)

 Clips coordinates to be within bounds.

 hit_test(components, x, y)

 Finds the component at the given position.

 hit_test_all(components, x, y)

 Finds all components at the given position, ordered by z-index (highest first).

 point_in_bounds?(x, y, bounds)

 Checks if a point is within bounds.

 route(components, event)

 Routes a mouse event to the appropriate component.

 to_global(bounds, local_x, local_y)

 Transforms component-local coordinates to global coordinates.

 to_local(bounds, x, y)

 Transforms global coordinates to component-local coordinates.

 Types

 bounds()

 @type bounds() :: %{x: integer(), y: integer(), width: integer(), height: integer()}

 component_entry()

 @type component_entry() :: %{bounds: bounds(), z_index: integer()}

 components()

 @type components() :: %{required(atom()) => component_entry()}

 Functions

 bounds_overlap?(a, b)

 @spec bounds_overlap?(bounds(), bounds()) :: boolean()

Checks if two bounds overlap.

 clip_to_bounds(x, y, bounds)

 @spec clip_to_bounds(integer(), integer(), bounds()) :: {integer(), integer()}

Clips coordinates to be within bounds.

 hit_test(components, x, y)

 @spec hit_test(components(), integer(), integer()) ::
 {atom(), integer(), integer()} | nil

Finds the component at the given position.
Returns {component_id, local_x, local_y} or nil if no component at position.
When multiple components overlap, returns the one with highest z_index.

 hit_test_all(components, x, y)

 @spec hit_test_all(components(), integer(), integer()) :: [
 {atom(), integer(), integer()}
]

Finds all components at the given position, ordered by z-index (highest first).
Useful for event bubbling through overlapping components.

 point_in_bounds?(x, y, bounds)

 @spec point_in_bounds?(integer(), integer(), bounds()) :: boolean()

Checks if a point is within bounds.

 route(components, event)

 @spec route(components(), TermUI.Event.Mouse.t()) ::
 {atom(), TermUI.Event.Mouse.t()} | nil

Routes a mouse event to the appropriate component.
Returns {component_id, transformed_event} where the event has
coordinates transformed to component-local space.
Returns nil if no component at the event position.

 to_global(bounds, local_x, local_y)

 @spec to_global(bounds(), integer(), integer()) :: {integer(), integer()}

Transforms component-local coordinates to global coordinates.

 to_local(bounds, x, y)

 @spec to_local(bounds(), integer(), integer()) :: {integer(), integer()}

Transforms global coordinates to component-local coordinates.

 TermUI.Mouse.Tracker - TermUI v0.2.0

TermUI.Mouse.Tracker

Tracks mouse state for drag and hover detection.
The tracker maintains state for:
	Drag operations (press → move → release)
	Hover detection (enter/leave events)
	Last known mouse position

Usage
Create new tracker
tracker = Tracker.new()

Process mouse events
{tracker, events} = Tracker.process(tracker, mouse_event)

Events may include:
- {:drag_start, button, x, y}
- {:drag_move, button, x, y, dx, dy}
- {:drag_end, button, x, y}
- {:hover_enter, component_id}
- {:hover_leave, component_id}

 Summary

 Types

 t()

 Functions

 button_down(tracker)

 Returns the button currently pressed.

 dragging?(tracker)

 Returns whether a drag operation is in progress.

 hovered_component(tracker)

 Returns the currently hovered component.

 new(opts \\ [])

 Creates a new mouse tracker.

 process(tracker, mouse)

 Processes a mouse event and returns updated tracker and generated events.

 reset_drag(tracker)

 Resets drag state (useful on focus loss).

 update_hover(tracker, component_id)

 Updates hover state and returns enter/leave events.

 Types

 t()

 @type t() :: %TermUI.Mouse.Tracker{
 button_down: atom() | nil,
 drag_threshold: integer(),
 dragging: boolean(),
 hovered_component: atom() | nil,
 last_position: {integer(), integer()} | nil,
 press_position: {integer(), integer()} | nil
}

 Functions

 button_down(tracker)

 @spec button_down(t()) :: atom() | nil

Returns the button currently pressed.

 dragging?(tracker)

 @spec dragging?(t()) :: boolean()

Returns whether a drag operation is in progress.

 hovered_component(tracker)

 @spec hovered_component(t()) :: atom() | nil

Returns the currently hovered component.

 new(opts \\ [])

 @spec new(keyword()) :: t()

Creates a new mouse tracker.
Options
	:drag_threshold - Pixels of movement before drag starts (default: 3)

 process(tracker, mouse)

 @spec process(t(), TermUI.Event.Mouse.t()) :: {t(), list()}

Processes a mouse event and returns updated tracker and generated events.
Generated events:
	{:drag_start, button, x, y} - Drag operation started
	{:drag_move, button, x, y, dx, dy} - Mouse moved during drag
	{:drag_end, button, x, y} - Drag operation ended

 reset_drag(tracker)

 @spec reset_drag(t()) :: t()

Resets drag state (useful on focus loss).

 update_hover(tracker, component_id)

 @spec update_hover(t(), atom() | nil) :: {t(), list()}

Updates hover state and returns enter/leave events.

 TermUI.Parser - TermUI v0.2.0

TermUI.Parser

Escape sequence parser for terminal input.
Transforms raw terminal input bytes into structured events (key presses,
mouse actions, paste content, focus changes).

 Summary

 Types

 event()

 state()

 Functions

 flush_escape(state)

 Flushes any pending escape sequence as an ESC key event.

 new()

 Creates a new parser state.

 parse(input, state)

 Parses input bytes into events.

 reset(state)

 Resets parser state while preserving configuration.

 Types

 event()

 @type event() ::
 TermUI.Parser.Events.KeyEvent.t()
 | TermUI.Parser.Events.MouseEvent.t()
 | TermUI.Parser.Events.PasteEvent.t()
 | TermUI.Parser.Events.FocusEvent.t()

 state()

 @type state() :: %{
 mode: atom(),
 buffer: binary(),
 params: [integer()],
 paste_buffer: binary()
}

 Functions

 flush_escape(state)

 @spec flush_escape(state()) :: {[event()], state()}

Flushes any pending escape sequence as an ESC key event.
Call this after a timeout when parser is in :escape state.

 new()

 @spec new() :: state()

Creates a new parser state.

 parse(input, state)

 @spec parse(binary(), state()) :: {[event()], binary(), state()}

Parses input bytes into events.
Returns {events, remaining_bytes, new_state} where:
	events - List of parsed events
	remaining_bytes - Bytes that couldn't be parsed yet (incomplete sequences)
	new_state - Parser state for next call

Examples
iex> {events, "", _state} = TermUI.Parser.parse("a", TermUI.Parser.new())
iex> [%TermUI.Parser.Events.KeyEvent{key: "a"}] = events

 reset(state)

 @spec reset(state()) :: state()

Resets parser state while preserving configuration.

 TermUI.Parser.Events - TermUI v0.2.0

TermUI.Parser.Events

Event struct definitions for parsed terminal input.

 TermUI.Parser.Events.FocusEvent - TermUI v0.2.0

TermUI.Parser.Events.FocusEvent

Represents a focus change event.
Fields
	focused - true if terminal gained focus, false if lost

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %TermUI.Parser.Events.FocusEvent{focused: boolean()}

 TermUI.Parser.Events.KeyEvent - TermUI v0.2.0

TermUI.Parser.Events.KeyEvent

Represents a keyboard input event.
Fields
	key - The key pressed (atom for special keys, string for characters)
	modifiers - List of modifiers held (:ctrl, :alt, :shift, :meta)

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %TermUI.Parser.Events.KeyEvent{
 key: atom() | String.t(),
 modifiers: [atom()]
}

 TermUI.Parser.Events.MouseEvent - TermUI v0.2.0

TermUI.Parser.Events.MouseEvent

Represents a mouse input event.
Fields
	action - :press, :release, or :motion
	button - :left, :middle, :right, :wheel_up, :wheel_down, or :none
	x - Column (1-indexed)
	y - Row (1-indexed)
	modifiers - List of modifiers held

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %TermUI.Parser.Events.MouseEvent{
 action: :press | :release | :motion,
 button: atom(),
 modifiers: [atom()],
 x: pos_integer(),
 y: pos_integer()
}

 TermUI.Parser.Events.PasteEvent - TermUI v0.2.0

TermUI.Parser.Events.PasteEvent

Represents bracketed paste content.
Fields
	content - The pasted text

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %TermUI.Parser.Events.PasteEvent{content: String.t()}

 TermUI.Parser.Events.ResizeEvent - TermUI v0.2.0

TermUI.Parser.Events.ResizeEvent

Represents a terminal resize event.
Fields
	rows - New row count
	cols - New column count

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %TermUI.Parser.Events.ResizeEvent{
 cols: pos_integer(),
 rows: pos_integer()
}

 TermUI.Platform - TermUI v0.2.0

TermUI.Platform

Platform detection and abstraction for cross-platform terminal support.
Provides unified API for platform-specific operations, automatically
selecting the appropriate implementation for the current OS.

 Summary

 Types

 platform()

 version()

 Functions

 info()

 Returns platform-specific information as a map.

 linux?()

 Returns true if running on Linux (native, not WSL).

 macos?()

 Returns true if running on macOS.

 os_version()

 Returns the OS version as a tuple.

 platform()

 Returns the current platform identifier.

 supports_feature?(feature)

 Returns true if the platform supports the given feature.

 terminal_size()

 Returns the terminal size as {rows, cols}.

 unix?()

 Returns true if running on Unix (Linux, macOS, FreeBSD).

 windows?()

 Returns true if running on Windows.

 wsl?()

 Returns true if running in Windows Subsystem for Linux (WSL).

 Types

 platform()

 @type platform() :: :linux | :macos | :windows | :freebsd | :unknown

 version()

 @type version() :: {non_neg_integer(), non_neg_integer(), non_neg_integer()} | nil

 Functions

 info()

 @spec info() :: map()

Returns platform-specific information as a map.

 linux?()

 @spec linux?() :: boolean()

Returns true if running on Linux (native, not WSL).

 macos?()

 @spec macos?() :: boolean()

Returns true if running on macOS.

 os_version()

 @spec os_version() :: version()

Returns the OS version as a tuple.
Examples
iex> TermUI.Platform.os_version()
{5, 15, 0}

iex> TermUI.Platform.os_version()
{14, 0, 0}

 platform()

 @spec platform() :: platform()

Returns the current platform identifier.
Examples
iex> TermUI.Platform.platform()
:linux

iex> TermUI.Platform.platform()
:macos

 supports_feature?(feature)

 @spec supports_feature?(atom()) :: boolean()

Returns true if the platform supports the given feature.
Features
	:signals - POSIX signal handling
	:pty - Pseudo-terminal support
	:terminfo - Terminfo database
	:vt_sequences - VT escape sequences

 terminal_size()

 @spec terminal_size() :: {pos_integer(), pos_integer()}

Returns the terminal size as {rows, cols}.
Falls back to default {24, 80} if unable to detect.

 unix?()

 @spec unix?() :: boolean()

Returns true if running on Unix (Linux, macOS, FreeBSD).

 windows?()

 @spec windows?() :: boolean()

Returns true if running on Windows.

 wsl?()

 @spec wsl?() :: boolean()

Returns true if running in Windows Subsystem for Linux (WSL).

 TermUI.Platform.Unix - TermUI v0.2.0

TermUI.Platform.Unix

Unix-specific terminal handling for Linux and macOS.
Provides platform-specific implementations for:
	Terminal size detection
	Signal handling hints
	Capability detection hints

 Summary

 Functions

 capability_hints()

 Returns hints for Unix-specific capability detection.

 detect_unix_variant()

 Returns the Unix variant (linux, macos, freebsd).

 info()

 Returns Unix-specific terminal information.

 kernel_version()

 Returns the kernel version string.

 signal_available?(signal)

 Checks if a specific signal is available.

 supported_signals()

 Returns signal names supported on Unix.

 terminfo_paths()

 Returns paths where terminfo database may be found.

 Functions

 capability_hints()

 @spec capability_hints() :: map()

Returns hints for Unix-specific capability detection.

 detect_unix_variant()

 @spec detect_unix_variant() :: :linux | :macos | :freebsd | :unknown

Returns the Unix variant (linux, macos, freebsd).

 info()

 @spec info() :: map()

Returns Unix-specific terminal information.

 kernel_version()

 @spec kernel_version() :: String.t() | nil

Returns the kernel version string.

 signal_available?(signal)

 @spec signal_available?(atom()) :: boolean()

Checks if a specific signal is available.

 supported_signals()

 @spec supported_signals() :: [atom()]

Returns signal names supported on Unix.

 terminfo_paths()

 @spec terminfo_paths() :: [String.t()]

Returns paths where terminfo database may be found.

 TermUI.Platform.Windows - TermUI v0.2.0

TermUI.Platform.Windows

Windows-specific terminal handling stubs.
Full Windows support requires NIFs or ports to call Win32 APIs.
This module provides stubs with clear error messages for future implementation.
Requirements for Full Support
	Windows 10 build 1511+ for VT sequence support
	SetConsoleMode with ENABLE_VIRTUAL_TERMINAL_PROCESSING
	SetConsoleMode with ENABLE_VIRTUAL_TERMINAL_INPUT
	GetConsoleScreenBufferInfo for terminal size
	Console event handling for resize/focus

Future Implementation
Would require NIF wrapping:
	kernel32.dll SetConsoleMode
	kernel32.dll GetConsoleMode
	kernel32.dll GetConsoleScreenBufferInfo
	Console event loop for input

 Summary

 Functions

 capability_hints()

 Returns hints for Windows-specific capability detection.

 disable_vt_processing()

 Disables VT sequence processing.

 enable_vt_processing()

 Enables VT sequence processing for the console.

 info()

 Returns Windows-specific terminal information.

 meets_minimum_version?()

 Checks if the current Windows version meets minimum requirements.

 minimum_version()

 Returns the minimum Windows version required for full support.

 terminal_size()

 Returns terminal size on Windows.

 vt_support_available?()

 Checks if Windows VT sequence support is available.

 windows_version()

 Returns the Windows version.

 Functions

 capability_hints()

 @spec capability_hints() :: map()

Returns hints for Windows-specific capability detection.

 disable_vt_processing()

 @spec disable_vt_processing() :: :ok

Disables VT sequence processing.
Note: Stub implementation.

 enable_vt_processing()

 @spec enable_vt_processing() :: {:ok, :stub} | {:error, String.t()}

Enables VT sequence processing for the console.
Note: Stub implementation. Would need NIF to call SetConsoleMode.

 info()

 @spec info() :: map()

Returns Windows-specific terminal information.
Note: Currently returns stub data as full implementation requires NIFs.

 meets_minimum_version?()

 @spec meets_minimum_version?() :: boolean()

Checks if the current Windows version meets minimum requirements.

 minimum_version()

 @spec minimum_version() :: {non_neg_integer(), non_neg_integer(), non_neg_integer()}

Returns the minimum Windows version required for full support.

 terminal_size()

 @spec terminal_size() :: {pos_integer(), pos_integer()}

Returns terminal size on Windows.
Note: Stub using Erlang's :io module. For accurate results,
would need GetConsoleScreenBufferInfo via NIF.

 vt_support_available?()

 @spec vt_support_available?() :: boolean()

Checks if Windows VT sequence support is available.
Note: Currently a stub. Would need to call GetConsoleMode to check.

 windows_version()

 @spec windows_version() ::
 {non_neg_integer(), non_neg_integer(), non_neg_integer()} | nil

Returns the Windows version.

 TermUI.Renderer.BufferManager - TermUI v0.2.0

TermUI.Renderer.BufferManager

GenServer managing double-buffered screen rendering.
The BufferManager owns two ETS-based buffers:
	Current buffer: Components write to this buffer
	Previous buffer: Contains the last rendered frame for diffing

After rendering, swap_buffers/0 exchanges the buffer references atomically.
This enables efficient differential updates without copying buffer contents.
Usage
Start the manager
{:ok, pid} = BufferManager.start_link(rows: 24, cols: 80)

Get buffer for writing
buffer = BufferManager.get_current_buffer()
Buffer.set_cell(buffer, 1, 1, Cell.new("X"))

Mark dirty after modifications
BufferManager.mark_dirty()

Check if render needed
if BufferManager.dirty?() do
 current = BufferManager.get_current_buffer()
 previous = BufferManager.get_previous_buffer()
 # ... perform diff and render ...
 BufferManager.swap_buffers()
 BufferManager.clear_dirty()
end
Concurrency
Multiple processes can write to the current buffer concurrently via ETS.
Cell writes are atomic but unordered—last writer wins for overlapping cells.
Components should write to non-overlapping regions for deterministic results.
Important: This module is designed for a single-writer pattern where one
process (typically the render loop) coordinates buffer access. If you hold a
buffer reference while another process calls swap_buffers/1, your writes
will go to the wrong buffer. To avoid this race condition:
	Complete all writes before calling swap_buffers/1
	Use a single coordinator process for the write → swap cycle
	Don't cache buffer references across swap operations

Typical Render Loop
Single process coordinates all buffer access
buffer = BufferManager.get_current_buffer()

All writes happen here
Buffer.write_string(buffer, 1, 1, "Hello")
BufferManager.mark_dirty()

Only swap after writes are complete
if BufferManager.dirty?() do
 current = BufferManager.get_current_buffer()
 previous = BufferManager.get_previous_buffer()
 operations = Diff.diff(current, previous)
 # ... render operations ...
 BufferManager.swap_buffers()
 BufferManager.clear_dirty()
end
Direct Access
Most operations bypass the GenServer for maximum throughput. Buffer references
and the dirty flag are stored in :persistent_term for lock-free access from
any process. Only swap_buffers/1 and resize/3 require GenServer coordination.
Dirty Flag
The dirty flag uses :atomics for lock-free concurrent access. Any process
can mark the buffer dirty after modifications, and the renderer checks and
clears the flag during the render cycle.

 Summary

 Types

 t()

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 clear_current(server \\ __MODULE__)

 Clears the entire current buffer.

 clear_dirty(server \\ __MODULE__)

 Clears the dirty flag after rendering.

 clear_region(server \\ __MODULE__, start_row, start_col, width, height)

 Clears a rectangular region in the current buffer.

 clear_row(server \\ __MODULE__, row)

 Clears a single row in the current buffer.

 dimensions(server \\ __MODULE__)

 Returns the buffer dimensions as {rows, cols}.

 dirty?(server \\ __MODULE__)

 Returns whether the buffer is dirty and needs rendering.

 get_cell(server \\ __MODULE__, row, col)

 Gets a cell from the current buffer.

 get_current_buffer(server \\ __MODULE__)

 Returns the current buffer for writing.

 get_previous_buffer(server \\ __MODULE__)

 Returns the previous buffer for diffing.

 mark_dirty(server \\ __MODULE__)

 Marks the buffer as dirty, indicating it needs rendering.

 resize(server \\ __MODULE__, rows, cols)

 Resizes both buffers to new dimensions.

 set_cell(server \\ __MODULE__, row, col, cell)

 Sets a cell in the current buffer.

 set_cells(server \\ __MODULE__, cells)

 Sets multiple cells in the current buffer.

 start_link(opts)

 Starts the BufferManager with the given dimensions.

 swap_buffers(server \\ __MODULE__)

 Atomically swaps the current and previous buffers.

 write_string(server \\ __MODULE__, row, col, string, opts \\ [])

 Writes a string to the current buffer.

 Types

 t()

 @type t() :: %TermUI.Renderer.BufferManager{
 current: TermUI.Renderer.Buffer.t(),
 dirty: :atomics.atomics_ref(),
 name: atom(),
 previous: TermUI.Renderer.Buffer.t()
}

 Functions

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 clear_current(server \\ __MODULE__)

 @spec clear_current(GenServer.server()) :: :ok

Clears the entire current buffer.
This is a direct access operation (no GenServer call).

 clear_dirty(server \\ __MODULE__)

 @spec clear_dirty(GenServer.server()) :: :ok

Clears the dirty flag after rendering.
This is a direct access operation (no GenServer call).

 clear_region(server \\ __MODULE__, start_row, start_col, width, height)

 @spec clear_region(
 GenServer.server(),
 pos_integer(),
 pos_integer(),
 pos_integer(),
 pos_integer()
) :: :ok

Clears a rectangular region in the current buffer.
This is a direct access operation (no GenServer call).

 clear_row(server \\ __MODULE__, row)

 @spec clear_row(GenServer.server(), pos_integer()) :: :ok

Clears a single row in the current buffer.
This is a direct access operation (no GenServer call).

 dimensions(server \\ __MODULE__)

 @spec dimensions(GenServer.server()) :: {pos_integer(), pos_integer()}

Returns the buffer dimensions as {rows, cols}.
This is a direct access operation (no GenServer call).

 dirty?(server \\ __MODULE__)

 @spec dirty?(GenServer.server()) :: boolean()

Returns whether the buffer is dirty and needs rendering.
This is a direct access operation (no GenServer call).

 get_cell(server \\ __MODULE__, row, col)

 @spec get_cell(GenServer.server(), pos_integer(), pos_integer()) ::
 TermUI.Renderer.Cell.t()

Gets a cell from the current buffer.
Convenience function that delegates to Buffer.get_cell/3.

 get_current_buffer(server \\ __MODULE__)

 @spec get_current_buffer(GenServer.server()) :: TermUI.Renderer.Buffer.t()

Returns the current buffer for writing.
Components use this buffer for all cell modifications.
This is a direct access operation (no GenServer call).

 get_previous_buffer(server \\ __MODULE__)

 @spec get_previous_buffer(GenServer.server()) :: TermUI.Renderer.Buffer.t()

Returns the previous buffer for diffing.
The renderer compares current against previous to identify changes.
This is a direct access operation (no GenServer call).

 mark_dirty(server \\ __MODULE__)

 @spec mark_dirty(GenServer.server()) :: :ok

Marks the buffer as dirty, indicating it needs rendering.
This uses an atomic operation and can be called from any process.
This is a direct access operation (no GenServer call).

 resize(server \\ __MODULE__, rows, cols)

 @spec resize(GenServer.server(), pos_integer(), pos_integer()) :: :ok

Resizes both buffers to new dimensions.
Content is preserved where it fits within the new dimensions.

 set_cell(server \\ __MODULE__, row, col, cell)

 @spec set_cell(
 GenServer.server(),
 pos_integer(),
 pos_integer(),
 TermUI.Renderer.Cell.t()
) ::
 :ok | {:error, :out_of_bounds}

Sets a cell in the current buffer.
Convenience function that delegates to Buffer.set_cell/4.

 set_cells(server \\ __MODULE__, cells)

 @spec set_cells(GenServer.server(), [
 {pos_integer(), pos_integer(), TermUI.Renderer.Cell.t()}
]) :: :ok

Sets multiple cells in the current buffer.
Cells is a list of {row, col, cell} tuples.

 start_link(opts)

 @spec start_link(keyword()) :: GenServer.on_start()

Starts the BufferManager with the given dimensions.
Options
	:rows - Number of rows (required)
	:cols - Number of columns (required)
	:name - GenServer name (default: __MODULE__)

Examples
{:ok, pid} = BufferManager.start_link(rows: 24, cols: 80)

 swap_buffers(server \\ __MODULE__)

 @spec swap_buffers(GenServer.server()) :: :ok

Atomically swaps the current and previous buffers.
After rendering, call this to make the current frame the new previous
frame for the next render cycle. This is O(1)—only references swap.

 write_string(server \\ __MODULE__, row, col, string, opts \\ [])

 @spec write_string(
 GenServer.server(),
 pos_integer(),
 pos_integer(),
 String.t(),
 keyword()
) ::
 non_neg_integer()

Writes a string to the current buffer.
Convenience function that delegates to Buffer.write_string/4.

 TermUI.Renderer.CursorOptimizer - TermUI v0.2.0

TermUI.Renderer.CursorOptimizer

Optimizes cursor movement by selecting the cheapest movement option.
Instead of always using absolute positioning (ESC[{row};{col}H), this module
calculates the byte cost of various movement options and selects the minimum.
This can reduce cursor movement overhead by 40%+ compared to naive positioning.
Movement Options
	Absolute positioning: ESC[{r};{c}H (6-10 bytes)
	Relative up/down/left/right: ESC[{n}A/B/C/D (4-6 bytes)
	Carriage return: \r (1 byte)
	Newline: \n (1 byte)
	Home: ESC[H (3 bytes)
	Literal spaces for small rightward moves (1 byte each)

Usage
Create optimizer with initial position
optimizer = CursorOptimizer.new()

Get optimal movement sequence
{sequence, new_optimizer} = CursorOptimizer.move_to(optimizer, 5, 10)

After text output, advance cursor
new_optimizer = CursorOptimizer.advance(optimizer, 5)

 Summary

 Types

 t()

 Functions

 advance(optimizer, cols)

 Advances the cursor position after text output.

 bytes_saved(cursor_optimizer)

 Returns the total bytes saved through optimization.

 cost_absolute(row, col)

 Calculates the byte cost of absolute positioning.

 cost_cr()

 Calculates the byte cost of carriage return (move to column 1).

 cost_down(n)

 Calculates the byte cost of moving cursor down.

 cost_home()

 Calculates the byte cost of home (move to 1,1).

 cost_left(n)

 Calculates the byte cost of moving cursor left.

 cost_lf()

 Calculates the byte cost of newline (move down one row).

 cost_right(n)

 Calculates the byte cost of moving cursor right.

 cost_up(n)

 Calculates the byte cost of moving cursor up.

 move_to(optimizer, target_row, target_col)

 Moves the cursor to the target position using the optimal movement sequence.

 new()

 Creates a new cursor optimizer with cursor at position (1, 1).

 new(row, col)

 Creates a cursor optimizer with cursor at the specified position.

 optimal_move(from_row, from_col, to_row, to_col)

 Finds the optimal movement sequence from current to target position.

 position(cursor_optimizer)

 Returns the current cursor position as {row, col}.

 reset(optimizer)

 Resets the cursor position to (1, 1).

 Types

 t()

 @type t() :: %TermUI.Renderer.CursorOptimizer{
 bytes_saved: non_neg_integer(),
 col: pos_integer(),
 row: pos_integer()
}

 Functions

 advance(optimizer, cols)

 @spec advance(t(), non_neg_integer()) :: t()

Advances the cursor position after text output.
Call this after outputting text to keep cursor position synchronized.

 bytes_saved(cursor_optimizer)

 @spec bytes_saved(t()) :: non_neg_integer()

Returns the total bytes saved through optimization.

 cost_absolute(row, col)

 @spec cost_absolute(pos_integer(), pos_integer()) :: pos_integer()

Calculates the byte cost of absolute positioning.
ESC[{row};{col}H costs 4 + digits(row) + digits(col) bytes.

 cost_cr()

 @spec cost_cr() :: pos_integer()

Calculates the byte cost of carriage return (move to column 1).

 cost_down(n)

 @spec cost_down(pos_integer()) :: pos_integer()

Calculates the byte cost of moving cursor down.
ESC[{n}B costs 3 + digits(n) bytes, or 3 bytes for n=1.

 cost_home()

 @spec cost_home() :: pos_integer()

Calculates the byte cost of home (move to 1,1).

 cost_left(n)

 @spec cost_left(pos_integer()) :: pos_integer()

Calculates the byte cost of moving cursor left.
ESC[{n}D costs 3 + digits(n) bytes, or 3 bytes for n=1.

 cost_lf()

 @spec cost_lf() :: pos_integer()

Calculates the byte cost of newline (move down one row).

 cost_right(n)

 @spec cost_right(pos_integer()) :: pos_integer()

Calculates the byte cost of moving cursor right.
ESC[{n}C costs 3 + digits(n) bytes, or 3 bytes for n=1.

 cost_up(n)

 @spec cost_up(pos_integer()) :: pos_integer()

Calculates the byte cost of moving cursor up.
ESC[{n}A costs 3 + digits(n) bytes, or 3 bytes for n=1.

 move_to(optimizer, target_row, target_col)

 @spec move_to(t(), pos_integer(), pos_integer()) :: {iodata(), t()}

Moves the cursor to the target position using the optimal movement sequence.
Returns {sequence, updated_optimizer} where sequence is iodata containing
the escape sequences for the movement.
Examples
iex> optimizer = CursorOptimizer.new()
iex> {seq, _opt} = CursorOptimizer.move_to(optimizer, 1, 5)
iex> IO.iodata_to_binary(seq)
"\e[5C"

 new()

 @spec new() :: t()

Creates a new cursor optimizer with cursor at position (1, 1).

 new(row, col)

 @spec new(pos_integer(), pos_integer()) :: t()

Creates a cursor optimizer with cursor at the specified position.

 optimal_move(from_row, from_col, to_row, to_col)

 @spec optimal_move(pos_integer(), pos_integer(), pos_integer(), pos_integer()) ::
 {iodata(), pos_integer()}

Finds the optimal movement sequence from current to target position.
Returns {sequence, cost} where sequence is iodata.

 position(cursor_optimizer)

 @spec position(t()) :: {pos_integer(), pos_integer()}

Returns the current cursor position as {row, col}.

 reset(optimizer)

 @spec reset(t()) :: t()

Resets the cursor position to (1, 1).

 TermUI.Renderer.Diff - TermUI v0.2.0

TermUI.Renderer.Diff

Differential rendering algorithm for terminal UI.
Compares current and previous buffers to produce minimal render operations.
The algorithm identifies changed cells, groups them into spans, and generates
operations for cursor movement, style changes, and text output.
Usage
operations = Diff.diff(current_buffer, previous_buffer)
=> [{:move, 1, 5}, {:style, style}, {:text, "Hello"}, ...]
Operation Types
	{:move, row, col} - Move cursor to position
	{:style, style} - Set text style (colors, attributes)
	{:text, string} - Output text at current cursor position
	:reset - Reset all style attributes

Algorithm
	Iterate rows in order (row-major for efficient terminal output)
	For each row, find spans of changed cells
	Optimize spans by merging small gaps
	Generate render operations for each span
	Track style to emit deltas only

 Summary

 Types

 operation()

 span()

 Functions

 diff(current, previous)

 Compares two buffers and returns a list of render operations.

 diff_row(current, previous, row, cols)

 Compares a single row and returns render operations for changed spans.

 find_changed_spans(current_cells, previous_cells, row)

 Finds spans of changed cells within a row.

 merge_spans(spans, current_cells_map)

 Merges adjacent spans when the gap is smaller than cursor move cost.

 span_to_operations(map)

 Converts a span to render operations.

 wide_char?(cell)

 Checks if a cell contains a wide character (display width > 1).

 Types

 operation()

 @type operation() ::
 {:move, pos_integer(), pos_integer()}
 | {:style, TermUI.Renderer.Style.t()}
 | {:text, String.t()}
 | :reset

 span()

 @type span() :: %{
 row: pos_integer(),
 start_col: pos_integer(),
 end_col: pos_integer(),
 cells: [TermUI.Renderer.Cell.t()]
}

 Functions

 diff(current, previous)

 @spec diff(TermUI.Renderer.Buffer.t(), TermUI.Renderer.Buffer.t()) :: [operation()]

Compares two buffers and returns a list of render operations.
The current buffer contains the new frame to render, and the previous
buffer contains the last rendered frame. Only differences are output.
Examples
{:ok, current} = Buffer.new(24, 80)
{:ok, previous} = Buffer.new(24, 80)
Buffer.write_string(current, 1, 1, "Hello")

operations = Diff.diff(current, previous)
=> [{:move, 1, 1}, {:style, %Style{}}, {:text, "Hello"}]

 diff_row(current, previous, row, cols)

 @spec diff_row(
 TermUI.Renderer.Buffer.t(),
 TermUI.Renderer.Buffer.t(),
 pos_integer(),
 pos_integer()
) ::
 [operation()]

Compares a single row and returns render operations for changed spans.

 find_changed_spans(current_cells, previous_cells, row)

 @spec find_changed_spans(
 [{pos_integer(), TermUI.Renderer.Cell.t()}],
 [{pos_integer(), TermUI.Renderer.Cell.t()}],
 pos_integer()
) :: [span()]

Finds spans of changed cells within a row.
Returns a list of spans, where each span contains contiguous changed cells.

 merge_spans(spans, current_cells_map)

 @spec merge_spans([span()], map()) :: [span()]

Merges adjacent spans when the gap is smaller than cursor move cost.
This reduces cursor movements by including unchanged cells in the output
when it's cheaper than moving the cursor around them.
The current_cells_map is used to fill gaps with actual cell content from
the current buffer, rather than empty cells.

 span_to_operations(map)

 @spec span_to_operations(span()) :: [operation()]

Converts a span to render operations.
Generates move, style, and text operations for the span.
Splits on style changes to minimize SGR sequence overhead.

 wide_char?(cell)

 @spec wide_char?(TermUI.Renderer.Cell.t()) :: boolean()

Checks if a cell contains a wide character (display width > 1).

 TermUI.Renderer.DisplayWidth - TermUI v0.2.0

TermUI.Renderer.DisplayWidth

Calculates display width of Unicode characters and strings.
Display width determines how many terminal columns a character occupies:
	Most characters are single-width (1 column)
	East Asian characters (CJK) are double-width (2 columns)
	Combining characters are zero-width (0 columns)

This module uses Unicode properties to determine width, essential for
correct cursor positioning and layout calculations.

 Summary

 Functions

 double_width?(grapheme)

 Checks if a character is double-width (East Asian Wide/Fullwidth).

 pad(string, target_width, opts \\ [])

 Pads a string to the given display width.

 string_width(string)

 Returns the total display width of a string.

 truncate(string, max_width)

 Truncates a string to fit within the given display width.

 width(grapheme)

 Returns the display width of a grapheme cluster.

 zero_width?(grapheme)

 Checks if a character is zero-width (combining character).

 Functions

 double_width?(grapheme)

 @spec double_width?(String.t()) :: boolean()

Checks if a character is double-width (East Asian Wide/Fullwidth).
Examples
iex> DisplayWidth.double_width?("日")
true

iex> DisplayWidth.double_width?("A")
false

 pad(string, target_width, opts \\ [])

 @spec pad(String.t(), non_neg_integer(), keyword()) :: String.t()

Pads a string to the given display width.
Options
	:direction - :left, :right, or :center (default: :right)
	:char - Padding character (default: " ")

Examples
iex> DisplayWidth.pad("Hi", 5)
"Hi "

iex> DisplayWidth.pad("Hi", 5, direction: :left)
" Hi"

iex> DisplayWidth.pad("日", 4)
"日 "

 string_width(string)

 @spec string_width(String.t()) :: non_neg_integer()

Returns the total display width of a string.
Examples
iex> DisplayWidth.string_width("Hello")
5

iex> DisplayWidth.string_width("日本語")
6

iex> DisplayWidth.string_width("Café")
4

 truncate(string, max_width)

 @spec truncate(String.t(), non_neg_integer()) :: {String.t(), non_neg_integer()}

Truncates a string to fit within the given display width.
Returns the truncated string and its actual display width.
Examples
iex> DisplayWidth.truncate("Hello World", 5)
{"Hello", 5}

iex> DisplayWidth.truncate("日本語", 4)
{"日本", 4}

 width(grapheme)

 @spec width(String.t()) :: non_neg_integer()

Returns the display width of a grapheme cluster.
Examples
iex> DisplayWidth.width("A")
1

iex> DisplayWidth.width("日")
2

iex> DisplayWidth.width("é") # e + combining acute
1

 zero_width?(grapheme)

 @spec zero_width?(String.t()) :: boolean()

Checks if a character is zero-width (combining character).
Examples
iex> DisplayWidth.zero_width?("\u0301") # combining acute
true

iex> DisplayWidth.zero_width?("A")
false

 TermUI.Renderer.FramerateLimiter - TermUI v0.2.0

TermUI.Renderer.FramerateLimiter

Caps rendering to a maximum FPS with dirty flag coalescing.
The FramerateLimiter schedules render cycles at regular intervals (default 60 FPS)
and only renders when the buffer is dirty. Multiple buffer writes between frames
coalesce into a single render, creating smooth animation while being efficient.
Features
	Frame timing - Configurable FPS (30, 60, 120)
	Drift compensation - Adjusts intervals based on actual elapsed time
	Dirty coalescing - Multiple writes become single render
	Immediate mode - Bypass frame timing for urgent updates
	Performance metrics - Tracks FPS, render time, skip ratio

Usage
Start with default 60 FPS
{:ok, pid} = FramerateLimiter.start_link(render_callback: fn -> :ok end)

Start with custom FPS
{:ok, pid} = FramerateLimiter.start_link(fps: 120, render_callback: fn -> :ok end)

Mark buffer as dirty (triggers render on next tick)
FramerateLimiter.mark_dirty()

Force immediate render
FramerateLimiter.render_immediate()

Get performance metrics
FramerateLimiter.stats()
Render Callback
The render callback is invoked on each frame tick when the buffer is dirty.
It should perform the actual rendering work (diff, cursor optimization, etc.).

 Summary

 Types

 fps()

 stats()

 t()

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 clear_dirty(server \\ __MODULE__)

 Clears the internal dirty flag (for standalone use without BufferManager).

 dirty?(server \\ __MODULE__)

 Returns whether the internal dirty flag is set (for standalone use).

 get_fps(server \\ __MODULE__)

 Returns the current target FPS.

 mark_dirty(server \\ __MODULE__)

 Marks the internal dirty flag (for standalone use without BufferManager).

 pause(server \\ __MODULE__)

 Pauses frame timing (stops render ticks).

 paused?(server \\ __MODULE__)

 Returns whether frame timing is paused.

 render_immediate(server \\ __MODULE__)

 Forces an immediate render, bypassing frame timing.

 reset_stats(server \\ __MODULE__)

 Resets performance statistics.

 resume(server \\ __MODULE__)

 Resumes frame timing after pause.

 set_fps(server \\ __MODULE__, fps)

 Changes the target FPS.

 start_link(opts)

 Starts the FramerateLimiter.

 stats(server \\ __MODULE__)

 Returns performance statistics.

 Types

 fps()

 @type fps() :: 30 | 60 | 120

 stats()

 @type stats() :: %{
 rendered_frames: non_neg_integer(),
 skipped_frames: non_neg_integer(),
 total_frames: non_neg_integer(),
 actual_fps: float(),
 avg_render_time_us: float(),
 slow_frames: non_neg_integer()
}

 t()

 @type t() :: %TermUI.Renderer.FramerateLimiter{
 dirty_check: (-> boolean()),
 dirty_clear: (-> :ok),
 fps: fps(),
 frame_timestamps: [integer()],
 interval_ms: float(),
 last_tick: integer(),
 paused: boolean(),
 render_callback: (-> any()),
 render_times: [non_neg_integer()],
 rendered_frames: non_neg_integer(),
 skipped_frames: non_neg_integer(),
 slow_frames: non_neg_integer(),
 timer_ref: reference() | nil
}

 Functions

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 clear_dirty(server \\ __MODULE__)

 @spec clear_dirty(GenServer.server()) :: :ok

Clears the internal dirty flag (for standalone use without BufferManager).
When using BufferManager integration, this is called automatically via the
dirty_clear callback after each render.

 dirty?(server \\ __MODULE__)

 @spec dirty?(GenServer.server()) :: boolean()

Returns whether the internal dirty flag is set (for standalone use).
When using BufferManager integration, call BufferManager.dirty?/1 instead.

 get_fps(server \\ __MODULE__)

 @spec get_fps(GenServer.server()) :: fps()

Returns the current target FPS.

 mark_dirty(server \\ __MODULE__)

 @spec mark_dirty(GenServer.server()) :: :ok

Marks the internal dirty flag (for standalone use without BufferManager).
When using BufferManager integration, call BufferManager.mark_dirty/1 instead.

 pause(server \\ __MODULE__)

 @spec pause(GenServer.server()) :: :ok

Pauses frame timing (stops render ticks).

 paused?(server \\ __MODULE__)

 @spec paused?(GenServer.server()) :: boolean()

Returns whether frame timing is paused.

 render_immediate(server \\ __MODULE__)

 @spec render_immediate(GenServer.server()) :: :ok

Forces an immediate render, bypassing frame timing.
Use for urgent updates that can't wait for the next tick.

 reset_stats(server \\ __MODULE__)

 @spec reset_stats(GenServer.server()) :: :ok

Resets performance statistics.

 resume(server \\ __MODULE__)

 @spec resume(GenServer.server()) :: :ok

Resumes frame timing after pause.

 set_fps(server \\ __MODULE__, fps)

 @spec set_fps(GenServer.server(), fps()) :: :ok

Changes the target FPS.

 start_link(opts)

 @spec start_link(keyword()) :: GenServer.on_start()

Starts the FramerateLimiter.
Options
	:fps - Target FPS: 30, 60, or 120 (default: 60)
	:render_callback - Function to call for rendering (required)
	:dirty_check - Function returning true if render needed (optional)
	:dirty_clear - Function to clear dirty flag after render (optional)
	:name - GenServer name (default: __MODULE__)

If :dirty_check and :dirty_clear are not provided, an internal dirty flag
is created. For integration with BufferManager, pass its dirty functions:
Examples
Standalone with internal dirty flag
{:ok, pid} = FramerateLimiter.start_link(
 fps: 60,
 render_callback: fn -> render_frame() end
)

With BufferManager integration
{:ok, pid} = FramerateLimiter.start_link(
 fps: 60,
 render_callback: fn -> render_frame() end,
 dirty_check: fn -> BufferManager.dirty?(manager) end,
 dirty_clear: fn -> BufferManager.clear_dirty(manager) end
)

 stats(server \\ __MODULE__)

 @spec stats(GenServer.server()) :: stats()

Returns performance statistics.
Returns a map with:
	:rendered_frames - Number of frames rendered
	:skipped_frames - Number of clean frames skipped
	:total_frames - Total frame ticks
	:actual_fps - Calculated FPS from recent frames
	:avg_render_time_us - Average render time in microseconds
	:slow_frames - Frames that exceeded target interval

 TermUI.Renderer.SequenceBuffer - TermUI v0.2.0

TermUI.Renderer.SequenceBuffer

Batches escape sequences for efficient terminal output.
Accumulates escape sequences and text in an iolist, then flushes to output
when threshold is reached or frame completes. This reduces system call
overhead and ensures atomic frame updates.
Features
	Iolist accumulator - Efficient append without copying
	Size threshold - Auto-flush when buffer exceeds limit
	SGR combining - Merges adjacent style sequences
	Statistics - Tracks bytes written and flush count

Usage
buffer = SequenceBuffer.new()
buffer = SequenceBuffer.append(buffer, "\e[1;31m")
buffer = SequenceBuffer.append(buffer, "Hello")
{data, buffer} = SequenceBuffer.flush(buffer)
IO.binwrite(data)
SGR Combining
Adjacent SGR sequences are combined into a single sequence:
Instead of: ESC[1m ESC[31m ESC[4m
Produces: ESC[1;31;4m
This reduces output bytes and terminal parsing overhead.

 Summary

 Types

 t()

 Functions

 add_sgr_param(buffer, param)

 Appends multiple SGR parameters to be combined into a single sequence.

 append(buffer, data)

 Appends data to the buffer.

 append!(buffer, data)

 Appends data to the buffer, ignoring auto-flush result.

 append_style(buffer, style)

 Appends a style, emitting SGR sequence with delta from last style.

 clear(buffer)

 Clears the buffer without flushing.

 emit_pending_sgr(buffer)

 Emits any pending SGR parameters as a combined sequence.

 empty?(sequence_buffer)

 Returns whether the buffer is empty.

 flush(buffer)

 Flushes the buffer, returning accumulated data and resetting.

 new()

 Creates a new sequence buffer with default threshold (4KB).

 new(opts)

 Creates a new sequence buffer with specified threshold.

 reset_style(buffer)

 Resets the style tracking, useful when style is explicitly reset.

 size(sequence_buffer)

 Returns the current buffer size in bytes.

 stats(sequence_buffer)

 Returns buffer statistics.

 to_iodata(sequence_buffer)

 Returns the current buffer contents as iodata without flushing.

 Types

 t()

 @type t() :: %TermUI.Renderer.SequenceBuffer{
 buffer: iolist(),
 flush_count: non_neg_integer(),
 last_style: TermUI.Renderer.Style.t() | nil,
 pending_sgr: [String.t()],
 size: non_neg_integer(),
 threshold: pos_integer(),
 total_bytes: non_neg_integer()
}

 Functions

 add_sgr_param(buffer, param)

 @spec add_sgr_param(t(), String.t()) :: t()

Appends multiple SGR parameters to be combined into a single sequence.
Call emit_pending_sgr/1 to output the combined sequence.

 append(buffer, data)

 @spec append(t(), iodata()) :: {:ok, t()} | {:flush, iodata(), t()}

Appends data to the buffer.
Returns {:ok, buffer} normally, or {:flush, data, buffer} if the
threshold was exceeded and an auto-flush occurred.

 append!(buffer, data)

 @spec append!(t(), iodata()) :: t()

Appends data to the buffer, ignoring auto-flush result.
Simpler API when you don't need to handle auto-flush immediately.

 append_style(buffer, style)

 @spec append_style(t(), TermUI.Renderer.Style.t()) :: t()

Appends a style, emitting SGR sequence with delta from last style.
Only emits parameters that changed from the previous style.

 clear(buffer)

 @spec clear(t()) :: t()

Clears the buffer without flushing.

 emit_pending_sgr(buffer)

 @spec emit_pending_sgr(t()) :: t()

Emits any pending SGR parameters as a combined sequence.

 empty?(sequence_buffer)

 @spec empty?(t()) :: boolean()

Returns whether the buffer is empty.

 flush(buffer)

 @spec flush(t()) :: {iodata(), t()}

Flushes the buffer, returning accumulated data and resetting.
Returns {iodata, new_buffer}.

 new()

 @spec new() :: t()

Creates a new sequence buffer with default threshold (4KB).

 new(opts)

 @spec new(keyword()) :: t()

Creates a new sequence buffer with specified threshold.
Options
	:threshold - Flush threshold in bytes (default: 4096)

 reset_style(buffer)

 @spec reset_style(t()) :: t()

Resets the style tracking, useful when style is explicitly reset.

 size(sequence_buffer)

 @spec size(t()) :: non_neg_integer()

Returns the current buffer size in bytes.

 stats(sequence_buffer)

 @spec stats(t()) :: {non_neg_integer(), non_neg_integer()}

Returns buffer statistics.
Returns {total_bytes, flush_count}.

 to_iodata(sequence_buffer)

 @spec to_iodata(t()) :: iodata()

Returns the current buffer contents as iodata without flushing.

 TermUI.Runtime.NodeRenderer - TermUI v0.2.0

TermUI.Runtime.NodeRenderer

Converts render trees to buffer cells for terminal output.
This module bridges the gap between the component's render tree output
and the low-level buffer cell representation needed for terminal rendering.
Supports both tuple-based render nodes (from TermUI.Elm.Helpers) and
struct-based RenderNodes (from TermUI.Component.RenderNode).

 Summary

 Functions

 render_to_buffer(node, buffer_manager, start_row \\ 1, start_col \\ 1)

 Renders a node tree to the buffer starting at the given position.

 Functions

 render_to_buffer(node, buffer_manager, start_row \\ 1, start_col \\ 1)

 @spec render_to_buffer(
 term(),
 TermUI.Renderer.BufferManager.t() | pid(),
 pos_integer(),
 pos_integer()
) ::
 {non_neg_integer(), non_neg_integer()}

Renders a node tree to the buffer starting at the given position.
Returns the bounds of the rendered content as {width, height}.

 TermUI.Runtime.State - TermUI v0.2.0

TermUI.Runtime.State

State struct for the Runtime GenServer.
Contains all runtime state including:
	Root component module and state
	Component registry
	Message queue
	Render configuration
	Focus tracking
	Shutdown status

 Summary

 Types

 command_entry()

 component_entry()

 t()

 Types

 command_entry()

 @type command_entry() :: %{component_id: atom(), command: term()}

 component_entry()

 @type component_entry() :: %{module: module(), state: term()}

 t()

 @type t() :: %TermUI.Runtime.State{
 buffer_manager: pid() | nil,
 components: %{required(atom()) => component_entry()},
 dimensions: {pos_integer(), pos_integer()} | nil,
 dirty: boolean(),
 focused_component: atom(),
 input_reader: pid() | nil,
 message_queue: TermUI.MessageQueue.t(),
 pending_commands: %{required(reference()) => command_entry()},
 render_interval: pos_integer(),
 root_module: module(),
 root_state: term(),
 shutting_down: boolean(),
 terminal_started: boolean()
}

 TermUI.Shortcut - TermUI v0.2.0

TermUI.Shortcut

Keyboard shortcut registry and matching.
Provides a system for registering keyboard shortcuts with actions,
matching key events against registered shortcuts, and executing
the associated actions.
Usage
Create a registry
{:ok, registry} = Shortcut.start_link()

Register shortcuts
Shortcut.register(registry, %Shortcut{
 key: :q,
 modifiers: [:ctrl],
 action: {:message, :root, :quit},
 scope: :global,
 description: "Quit application"
})

Match key event
case Shortcut.match(registry, key_event, context) do
 {:ok, shortcut} -> Shortcut.execute(shortcut)
 :no_match -> :ignore
end

 Summary

 Types

 action()

 scope()

 t()

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 clear_sequence(registry)

 Clears the partial sequence state.

 execute(shortcut)

 Executes a shortcut's action.

 format(shortcut)

 Formats a shortcut for display.

 list(registry)

 Lists all registered shortcuts.

 list_for_scope(registry, scope)

 Lists shortcuts for a specific scope.

 match(registry, event, context \\ %{})

 Matches a key event against registered shortcuts.

 register(registry, shortcut)

 Registers a shortcut.

 start_link(opts \\ [])

 Starts the shortcut registry.

 unregister(registry, key, modifiers \\ [])

 Unregisters a shortcut by key and modifiers.

 Types

 action()

 @type action() ::
 {:function, (-> any())} | {:message, atom(), term()} | {:command, term()}

 scope()

 @type scope() :: :global | {:mode, atom()} | {:component, atom()}

 t()

 @type t() :: %TermUI.Shortcut{
 action: action(),
 description: String.t() | nil,
 key: atom() | String.t(),
 modifiers: [atom()],
 priority: integer(),
 scope: scope(),
 sequence: [atom() | String.t()] | nil
}

 Functions

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 clear_sequence(registry)

 @spec clear_sequence(GenServer.server()) :: :ok

Clears the partial sequence state.

 execute(shortcut)

 @spec execute(t()) :: term()

Executes a shortcut's action.
Returns the result of the action execution.

 format(shortcut)

 @spec format(t()) :: String.t()

Formats a shortcut for display.
Examples
iex> Shortcut.format(%Shortcut{key: :s, modifiers: [:ctrl]})
"Ctrl+S"

iex> Shortcut.format(%Shortcut{key: :q, modifiers: [:ctrl, :shift]})
"Ctrl+Shift+Q"

 list(registry)

 @spec list(GenServer.server()) :: [t()]

Lists all registered shortcuts.

 list_for_scope(registry, scope)

 @spec list_for_scope(GenServer.server(), scope()) :: [t()]

Lists shortcuts for a specific scope.

 match(registry, event, context \\ %{})

 @spec match(GenServer.server(), TermUI.Event.Key.t(), map()) :: {:ok, t()} | :no_match

Matches a key event against registered shortcuts.
Returns {:ok, shortcut} if a match is found, or :no_match.
The context determines which scopes are active.

 register(registry, shortcut)

 @spec register(GenServer.server(), t()) :: :ok

Registers a shortcut.

 start_link(opts \\ [])

 @spec start_link(keyword()) :: GenServer.on_start()

Starts the shortcut registry.

 unregister(registry, key, modifiers \\ [])

 @spec unregister(GenServer.server(), atom() | String.t(), [atom()]) :: :ok

Unregisters a shortcut by key and modifiers.

 TermUI.SpatialIndex - TermUI v0.2.0

TermUI.SpatialIndex

Spatial index for fast component lookup by screen position.
The spatial index enables efficient routing of mouse events to
the correct component based on cursor coordinates. It maintains
a mapping of screen regions to component references.
Usage
Register a component's bounds
SpatialIndex.update(:my_button, pid, %{x: 10, y: 5, width: 20, height: 3})

Find component at position
{:ok, {:my_button, pid}} = SpatialIndex.find_at(15, 6)

Remove when unmounted
SpatialIndex.remove(:my_button)
Z-Order
When components overlap, the one with the highest z-index receives
mouse events. Default z-index is 0. Modals typically use higher values.

 Summary

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 clear()

 Clears all entries from the index.

 count()

 Returns the number of indexed components.

 find_all_at(x, y)

 Finds all components at the given coordinates.

 find_at(x, y)

 Finds the component at the given coordinates.

 get_bounds(id)

 Gets the bounds for a component.

 remove(id)

 Removes a component from the index.

 start_link(opts \\ [])

 Starts the spatial index.

 update(id, pid, bounds, opts \\ [])

 Updates a component's bounds in the index.

 Functions

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 clear()

 @spec clear() :: :ok

Clears all entries from the index.

 count()

 @spec count() :: non_neg_integer()

Returns the number of indexed components.

 find_all_at(x, y)

 @spec find_all_at(integer(), integer()) :: [{term(), pid(), integer()}]

Finds all components at the given coordinates.
Returns all overlapping components sorted by z-index (highest first).

 find_at(x, y)

 @spec find_at(integer(), integer()) :: {:ok, {term(), pid()}} | {:error, :not_found}

Finds the component at the given coordinates.
Returns the topmost component (highest z-index) at the position.
Returns
	{:ok, {id, pid}} - Component found
	{:error, :not_found} - No component at position

 get_bounds(id)

 @spec get_bounds(term()) :: {:ok, map()} | {:error, :not_found}

Gets the bounds for a component.

 remove(id)

 @spec remove(term()) :: :ok

Removes a component from the index.

 start_link(opts \\ [])

 @spec start_link(keyword()) :: GenServer.on_start()

Starts the spatial index.

 update(id, pid, bounds, opts \\ [])

 @spec update(term(), pid(), map(), keyword()) :: :ok

Updates a component's bounds in the index.
Parameters
	id - Component identifier
	pid - Component process
	bounds - Map with x, y, width, height
	opts - Options including :z_index

Examples
SpatialIndex.update(:button, pid, %{x: 0, y: 0, width: 10, height: 1})
SpatialIndex.update(:modal, pid, bounds, z_index: 100)

 TermUI.StatefulComponent - TermUI v0.2.0

TermUI.StatefulComponent behaviour

Behaviour for stateful, interactive components.
StatefulComponent extends the base Component behaviour with state management
and event handling. Use this for components that need to maintain internal
state and respond to user input.
Basic Usage
defmodule MyApp.Counter do
 use TermUI.StatefulComponent

 @impl true
 def init(props) do
 {:ok, %{count: props[:initial] || 0}}
 end

 @impl true
 def handle_event(%KeyEvent{key: :up}, state) do
 {:ok, %{state | count: state.count + 1}}
 end

 def handle_event(%KeyEvent{key: :down}, state) do
 {:ok, %{state | count: state.count - 1}}
 end

 def handle_event(_event, state) do
 {:ok, state}
 end

 @impl true
 def render(state, _area) do
 text("Count: #{state.count}")
 end
end
Lifecycle
	init/1 - Initialize state from props
	handle_event/2 - Process input events
	render/2 - Render current state

Commands
Event handlers can return commands for side effects:
def handle_event(%KeyEvent{key: :enter}, state) do
 {:ok, state, [{:send, parent_pid, {:submitted, state.value}}]}
end
Optional Callbacks
	terminate/2 - Cleanup when component stops
	handle_info/2 - Handle non-event messages
	handle_call/3 - Handle synchronous calls

 Summary

 Types

 command()

 Commands for side effects

 event()

 Event types from user input

 event_result()

 Event handler return value

 props()

 Component props

 rect()

 Available rendering area

 render_tree()

 Render tree output

 state()

 Component state - any term

 Callbacks

 handle_call(request, from, state)

 Handles synchronous calls.

 handle_event(event, state)

 Handles input events and updates state.

 handle_info(message, state)

 Handles non-event messages.

 init(props)

 Initializes component state from props.

 mount(state)

 Called when the component is mounted to the active tree.

 render(state, rect)

 Renders the component's current state.

 terminate(reason, state)

 Handles component termination.

 unmount(state)

 Called when the component is unmounted from the tree.

 update(new_props, state)

 Called when the component's props change.

 Types

 command()

 @type command() ::
 {:send, pid(), term()}
 | {:timer, non_neg_integer(), term()}
 | {:focus, term()}
 | term()

Commands for side effects

 event()

 @type event() :: term()

Event types from user input

 event_result()

 @type event_result() ::
 {:ok, state()}
 | {:ok, state(), [command()]}
 | {:stop, reason :: term(), state()}

Event handler return value

 props()

 @type props() :: map()

Component props

 rect()

 @type rect() :: %{x: integer(), y: integer(), width: integer(), height: integer()}

Available rendering area

 render_tree()

 @type render_tree() :: TermUI.Component.RenderNode.t() | [render_tree()] | String.t()

Render tree output

 state()

 @type state() :: term()

Component state - any term

 Callbacks

 handle_call(request, from, state)

 (optional)

 @callback handle_call(request :: term(), from :: term(), state()) ::
 {:reply, term(), state()}
 | {:reply, term(), state(), [command()]}
 | {:noreply, state()}
 | {:noreply, state(), [command()]}

Handles synchronous calls.
For request-response patterns where the caller needs a reply.
Parameters
	request - The request term
	from - Caller identifier for reply
	state - Current component state

Returns
	{:reply, response, new_state} - Reply and update state
	{:reply, response, new_state, commands} - Reply with commands
	{:noreply, new_state} - Don't reply yet

 handle_event(event, state)

 @callback handle_event(event(), state()) :: event_result()

Handles input events and updates state.
Called when the component receives a keyboard, mouse, or focus event.
Returns updated state and optional commands.
Parameters
	event - The input event (KeyEvent, MouseEvent, FocusEvent)
	state - Current component state

Returns
	{:ok, new_state} - Updated state
	{:ok, new_state, commands} - Updated state with commands
	{:stop, reason, state} - Stop the component

Examples
@impl true
def handle_event(%KeyEvent{key: :enter}, state) do
 {:ok, state, [{:send, state.parent, {:submit, state.value}}]}
end

def handle_event(%KeyEvent{char: char}, state) when char != nil do
 {:ok, %{state | text: state.text <> char}}
end

def handle_event(_event, state) do
 {:ok, state}
end

 handle_info(message, state)

 (optional)

 @callback handle_info(message :: term(), state()) :: event_result()

Handles non-event messages.
Called for messages that aren't input events, like timer callbacks
or messages from other processes.
Parameters
	message - The received message
	state - Current component state

Returns
Same as handle_event/2.

 init(props)

 @callback init(props()) :: {:ok, state()} | {:ok, state(), [command()]} | {:stop, term()}

Initializes component state from props.
Called once when the component starts. Returns initial state.
Parameters
	props - Initial properties passed to the component

Returns
	{:ok, state} - Initial state
	{:ok, state, commands} - Initial state with startup commands
	{:stop, reason} - Fail to initialize

Examples
@impl true
def init(props) do
 {:ok, %{
 text: props[:text] || "",
 cursor: 0
 }}
end

 mount(state)

 (optional)

 @callback mount(state()) :: {:ok, state()} | {:ok, state(), [command()]} | {:stop, term()}

Called when the component is mounted to the active tree.
Mount is the appropriate place for setup requiring the component
to be "live": registering event handlers, starting timers, fetching data.
Parameters
	state - Current component state after init

Returns
	{:ok, new_state} - Mount successful
	{:ok, new_state, commands} - Mount with commands
	{:stop, reason} - Mount failed

 render(state, rect)

 @callback render(state(), rect()) :: render_tree()

Renders the component's current state.
Called after state changes to produce the visual output.
Unlike stateless components, receives state instead of props.
Parameters
	state - Current component state
	area - Available rendering area

Returns
A render tree (RenderNode, list, or string).
Examples
@impl true
def render(state, _area) do
 text(state.text)
end

 terminate(reason, state)

 (optional)

 @callback terminate(reason :: term(), state()) :: term()

Handles component termination.
Called when the component is stopping. Use for cleanup.
Parameters
	reason - Why the component is stopping
	state - Final component state

 unmount(state)

 (optional)

 @callback unmount(state()) :: :ok

Called when the component is unmounted from the tree.
This is the appropriate place for cleanup: canceling timers,
closing files, unregistering handlers.
Parameters
	state - Current component state

 update(new_props, state)

 (optional)

 @callback update(new_props :: props(), state()) ::
 {:ok, state()} | {:ok, state(), [command()]}

Called when the component's props change.
The parent passes new props, triggering this callback.
Update may modify state based on new props.
Parameters
	new_props - The new props from parent
	state - Current component state

Returns
	{:ok, new_state} - Update successful
	{:ok, new_state, commands} - Update with commands

 TermUI.Style - TermUI v0.2.0

TermUI.Style

Style system for consistent visual presentation.
Styles define colors, text attributes, and visual properties for components.
Styles are immutable—modifications return new styles.
Color Types
	Named colors: :black, :red, :green, :yellow, :blue, :magenta, :cyan, :white
	Bright variants: :bright_black, :bright_red, etc.
	Indexed (256): {:indexed, 0..255}
	RGB (true color): {:rgb, r, g, b}

Examples
Build a style
style = Style.new()
 |> Style.fg(:blue)
 |> Style.bg(:white)
 |> Style.bold()
 |> Style.underline()

Merge styles
merged = Style.merge(base, override)

Inherit from parent
effective = Style.inherit(child, parent)

Variants
variants = %{
 normal: Style.new() |> Style.fg(:white),
 focused: Style.new() |> Style.fg(:blue) |> Style.bold()
}
style = Style.get_variant(variants, :focused)

 Summary

 Types

 attr()

 color()

 indexed_color()

 named_color()

 rgb_color()

 t()

 Functions

 bg(style, color)

 Sets the background color.

 blink(style)

 Adds blink attribute.

 bold(style)

 Adds bold attribute.

 build_variants(variants)

 Builds a complete variant map from partial definitions.

 clear_attrs(style)

 Clears all attributes.

 convert_for_terminal(color, atom)

 Converts color for a specific terminal capability.

 create_variant(normal, variant)

 Creates a variant that inherits from the normal variant.

 dim(style)

 Adds dim attribute.

 fg(style, color)

 Sets the foreground color.

 from(opts)

 Creates a style from a keyword list or map.

 get_variant(variants, state)

 Gets a variant style from a variant map.

 has_attr?(style, attr)

 Checks if style has an attribute.

 hidden(style)

 Adds hidden attribute.

 inherit(child, parent)

 Inherits unset properties from parent style.

 italic(style)

 Adds italic attribute.

 merge(base, override)

 Merges two styles, with the second overriding the first.

 new()

 Creates a new style with default values.

 remove_attr(style, attr)

 Removes an attribute from the style.

 reset(style)

 Resets style to defaults, breaking inheritance.

 reverse(style)

 Adds reverse attribute.

 rgb_to_indexed(arg)

 Converts RGB to nearest 256-color palette index.

 semantic(arg1)

 Returns a semantic color.

 strikethrough(style)

 Adds strikethrough attribute.

 to_named(color)

 Converts any color to nearest 16-color.

 to_rgb(named)

 Converts any color to RGB tuple.

 underline(style)

 Adds underline attribute.

 Types

 attr()

 @type attr() ::
 :bold
 | :dim
 | :italic
 | :underline
 | :blink
 | :reverse
 | :hidden
 | :strikethrough

 color()

 @type color() :: named_color() | indexed_color() | rgb_color()

 indexed_color()

 @type indexed_color() :: {:indexed, 0..255}

 named_color()

 @type named_color() ::
 :black
 | :red
 | :green
 | :yellow
 | :blue
 | :magenta
 | :cyan
 | :white
 | :bright_black
 | :bright_red
 | :bright_green
 | :bright_yellow
 | :bright_blue
 | :bright_magenta
 | :bright_cyan
 | :bright_white
 | :default

 rgb_color()

 @type rgb_color() :: {:rgb, 0..255, 0..255, 0..255}

 t()

 @type t() :: %TermUI.Style{
 attrs: MapSet.t(attr()),
 bg: color() | nil,
 fg: color() | nil
}

 Functions

 bg(style, color)

 @spec bg(t(), color()) :: t()

Sets the background color.

 blink(style)

 @spec blink(t()) :: t()

Adds blink attribute.

 bold(style)

 @spec bold(t()) :: t()

Adds bold attribute.

 build_variants(variants)

 @spec build_variants(map()) :: map()

Builds a complete variant map from partial definitions.
Each variant inherits from :normal.

 clear_attrs(style)

 @spec clear_attrs(t()) :: t()

Clears all attributes.

 convert_for_terminal(color, atom)

 @spec convert_for_terminal(color(), :true_color | :color_256 | :color_16) :: color()

Converts color for a specific terminal capability.
	:true_color - returns as-is
	:color_256 - converts to indexed
	:color_16 - converts to named

 create_variant(normal, variant)

 @spec create_variant(t(), t()) :: t()

Creates a variant that inherits from the normal variant.
Only non-nil values in the variant override the normal style.

 dim(style)

 @spec dim(t()) :: t()

Adds dim attribute.

 fg(style, color)

 @spec fg(t(), color()) :: t()

Sets the foreground color.

 from(opts)

 @spec from(keyword() | map()) :: t()

Creates a style from a keyword list or map.
Examples
Style.from(fg: :blue, bg: :white, bold: true)

 get_variant(variants, state)

 @spec get_variant(map(), atom()) :: t()

Gets a variant style from a variant map.
Falls back to :normal if variant not found.

 has_attr?(style, attr)

 @spec has_attr?(t(), attr()) :: boolean()

Checks if style has an attribute.

 hidden(style)

 @spec hidden(t()) :: t()

Adds hidden attribute.

 inherit(child, parent)

 @spec inherit(t(), t()) :: t()

Inherits unset properties from parent style.
Unlike merge, this only fills in nil values from parent.

 italic(style)

 @spec italic(t()) :: t()

Adds italic attribute.

 merge(base, override)

 @spec merge(t(), t()) :: t()

Merges two styles, with the second overriding the first.
Only non-nil values from the override style replace base values.
Attributes are combined.

 new()

 @spec new() :: t()

Creates a new style with default values.

 remove_attr(style, attr)

 @spec remove_attr(t(), attr()) :: t()

Removes an attribute from the style.

 reset(style)

 @spec reset(t()) :: t()

Resets style to defaults, breaking inheritance.

 reverse(style)

 @spec reverse(t()) :: t()

Adds reverse attribute.

 rgb_to_indexed(arg)

 @spec rgb_to_indexed({integer(), integer(), integer()}) :: integer()

Converts RGB to nearest 256-color palette index.

 semantic(arg1)

 @spec semantic(atom()) :: color()

Returns a semantic color.
These can be overridden by themes.

 strikethrough(style)

 @spec strikethrough(t()) :: t()

Adds strikethrough attribute.

 to_named(color)

 @spec to_named(color()) :: named_color()

Converts any color to nearest 16-color.

 to_rgb(named)

 @spec to_rgb(color()) :: {integer(), integer(), integer()}

Converts any color to RGB tuple.

 underline(style)

 @spec underline(t()) :: t()

Adds underline attribute.

 TermUI.Terminal - TermUI v0.2.0

TermUI.Terminal

Main terminal management GenServer for TermUI.
Provides raw mode activation, alternate screen buffer management,
terminal restoration, and size detection using OTP 28's native
raw mode support.

 Summary

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 disable_mouse_tracking()

 Disables mouse tracking.

 disable_raw_mode()

 Disables raw mode and restores original terminal settings.

 enable_mouse_tracking(mode \\ :click)

 Enables mouse tracking with the specified mode.

 enable_raw_mode()

 Enables raw mode on the terminal.

 enter_alternate_screen()

 Enters the alternate screen buffer.

 get_state()

 Gets the current terminal state.

 get_terminal_size()

 Gets the current terminal size.

 hide_cursor()

 Hides the cursor.

 leave_alternate_screen()

 Leaves the alternate screen buffer and restores the original screen.

 raw_mode?()

 Checks if the terminal is currently in raw mode.

 register_resize_callback(pid \\ self())

 Registers a process to receive terminal resize notifications.

 restore()

 Performs complete terminal restoration.

 show_cursor()

 Shows the cursor.

 start_link(opts \\ [])

 Starts the Terminal GenServer.

 unregister_resize_callback(pid \\ self())

 Unregisters a process from resize notifications.

 Functions

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 disable_mouse_tracking()

 @spec disable_mouse_tracking() :: :ok

Disables mouse tracking.

 disable_raw_mode()

 @spec disable_raw_mode() :: :ok | {:error, term()}

Disables raw mode and restores original terminal settings.
Returns :ok on success or {:error, reason} on failure.

 enable_mouse_tracking(mode \\ :click)

 @spec enable_mouse_tracking(:click | :drag | :all) :: :ok

Enables mouse tracking with the specified mode.
Modes
	:click - Report button press and release only
	:drag - Also report mouse motion while button is pressed
	:all - Report all mouse motion (generates many events)

Also enables SGR extended mode for accurate coordinates.

 enable_raw_mode()

 @spec enable_raw_mode() :: {:ok, TermUI.Terminal.State.t()} | {:error, term()}

Enables raw mode on the terminal.
Calls OTP 28's shell.start_interactive({:noshell, :raw}) and configures
the terminal for TUI operation.
Returns {:ok, state} on success or {:error, reason} on failure.

 enter_alternate_screen()

 @spec enter_alternate_screen() :: :ok | {:error, term()}

Enters the alternate screen buffer.
The alternate screen preserves the user's shell history while the TUI runs.

 get_state()

 @spec get_state() :: TermUI.Terminal.State.t()

Gets the current terminal state.

 get_terminal_size()

 @spec get_terminal_size() :: {:ok, {pos_integer(), pos_integer()}} | {:error, term()}

Gets the current terminal size.
Returns {:ok, {rows, cols}} or {:error, reason}.

 hide_cursor()

 @spec hide_cursor() :: :ok

Hides the cursor.

 leave_alternate_screen()

 @spec leave_alternate_screen() :: :ok | {:error, term()}

Leaves the alternate screen buffer and restores the original screen.

 raw_mode?()

 @spec raw_mode?() :: boolean()

Checks if the terminal is currently in raw mode.

 register_resize_callback(pid \\ self())

 @spec register_resize_callback(pid()) :: :ok

Registers a process to receive terminal resize notifications.
The registered process will receive {:terminal_resize, {rows, cols}} messages.

 restore()

 @spec restore() :: :ok | {:error, term()}

Performs complete terminal restoration.
This restores all terminal modifications in the correct sequence:
	Show cursor
	Leave alternate screen
	Disable raw mode
	Restore original settings

 show_cursor()

 @spec show_cursor() :: :ok

Shows the cursor.

 start_link(opts \\ [])

 @spec start_link(keyword()) :: GenServer.on_start()

Starts the Terminal GenServer.

 unregister_resize_callback(pid \\ self())

 @spec unregister_resize_callback(pid()) :: :ok

Unregisters a process from resize notifications.

 TermUI.Test.Assertions - TermUI v0.2.0

TermUI.Test.Assertions

TUI-specific assertion helpers for testing.
Provides assertions for checking rendered content, styles, component state,
and focus. Assertions produce clear failure messages showing expected vs actual.
Usage
use TermUI.Test.Assertions

Content assertions
assert_text(renderer, 1, 1, "Hello")
assert_text_contains(renderer, 1, 1, 80, "Error")
refute_text(renderer, 1, 1, "Goodbye")

Style assertions
assert_style(renderer, 1, 1, fg: :red)
assert_attr(renderer, 1, 1, :bold)

State assertions
assert_state(state, [:counter, :value], 42)

 Summary

 Functions

 __using__(opts)

 Imports all assertion macros.

 assert_attr(renderer, row, col, attr)

 Asserts that a cell has a specific attribute.

 assert_empty(renderer)

 Asserts that buffer is empty (all spaces with default style).

 assert_row(renderer, row, expected)

 Asserts row matches expected text (trimming trailing spaces).

 assert_snapshot(renderer, snapshot)

 Asserts that a snapshot matches the current buffer.

 assert_state(state, path, expected)

 Asserts state at a path matches expected value.

 assert_state_exists(state, path)

 Asserts state at a path exists (is not nil).

 assert_style(renderer, row, col, expected)

 Asserts that a cell has the expected style.

 assert_text(renderer, row, col, expected)

 Asserts that text appears at the given position.

 assert_text_contains(renderer, row, col, width, expected)

 Asserts that a region contains the expected text.

 assert_text_exists(renderer, text)

 Asserts that text exists somewhere in the buffer.

 refute_attr(renderer, row, col, attr)

 Asserts that a cell does not have a specific attribute.

 refute_state(state, path, value)

 Asserts state at a path does not match value.

 refute_text(renderer, row, col, text)

 Asserts that text does not appear at the given position.

 refute_text_contains(renderer, row, col, width, text)

 Asserts that a region does not contain the text.

 refute_text_exists(renderer, text)

 Asserts that text does not exist anywhere in the buffer.

 Functions

 __using__(opts)

 (macro)

Imports all assertion macros.
Example
defmodule MyTest do
 use ExUnit.Case
 use TermUI.Test.Assertions

 test "renders correctly" do
 {:ok, renderer} = TestRenderer.new(24, 80)
 assert_text(renderer, 1, 1, "Hello")
 end
end

 assert_attr(renderer, row, col, attr)

 (macro)

Asserts that a cell has a specific attribute.
Examples
assert_attr(renderer, 1, 1, :bold)

 assert_empty(renderer)

 (macro)

Asserts that buffer is empty (all spaces with default style).

 assert_row(renderer, row, expected)

 (macro)

Asserts row matches expected text (trimming trailing spaces).

 assert_snapshot(renderer, snapshot)

 (macro)

Asserts that a snapshot matches the current buffer.
Examples
snapshot = TestRenderer.snapshot(renderer)
... operations ...
assert_snapshot(renderer, snapshot)

 assert_state(state, path, expected)

 (macro)

Asserts state at a path matches expected value.
Examples
assert_state(%{counter: %{value: 42}}, [:counter, :value], 42)
assert_state(state, [:items], [1, 2, 3])

 assert_state_exists(state, path)

 (macro)

Asserts state at a path exists (is not nil).

 assert_style(renderer, row, col, expected)

 (macro)

Asserts that a cell has the expected style.
Options
	:fg - Expected foreground color
	:bg - Expected background color
	:attrs - Expected attributes (list or MapSet)

Examples
assert_style(renderer, 1, 1, fg: :red)
assert_style(renderer, 1, 1, fg: :red, bg: :white)
assert_style(renderer, 1, 1, attrs: [:bold, :underline])

 assert_text(renderer, row, col, expected)

 (macro)

Asserts that text appears at the given position.
Examples
assert_text(renderer, 1, 1, "Hello")

 assert_text_contains(renderer, row, col, width, expected)

 (macro)

Asserts that a region contains the expected text.
Examples
assert_text_contains(renderer, 1, 1, 80, "Error")

 assert_text_exists(renderer, text)

 (macro)

Asserts that text exists somewhere in the buffer.
Examples
assert_text_exists(renderer, "Error")

 refute_attr(renderer, row, col, attr)

 (macro)

Asserts that a cell does not have a specific attribute.

 refute_state(state, path, value)

 (macro)

Asserts state at a path does not match value.

 refute_text(renderer, row, col, text)

 (macro)

Asserts that text does not appear at the given position.

 refute_text_contains(renderer, row, col, width, text)

 (macro)

Asserts that a region does not contain the text.

 refute_text_exists(renderer, text)

 (macro)

Asserts that text does not exist anywhere in the buffer.

 TermUI.Test.ComponentHarness - TermUI v0.2.0

TermUI.Test.ComponentHarness

Test harness for isolated component testing.
Mounts a component in isolation with a test renderer, allowing
event simulation and state/render inspection.
Usage
Mount component
{:ok, harness} = ComponentHarness.mount_test(MyButton, label: "Click me")

Render
harness = ComponentHarness.render(harness)

Send events
harness = ComponentHarness.send_event(harness, Event.key(:enter))

Inspect state and render
state = ComponentHarness.get_state(harness)
renderer = ComponentHarness.get_renderer(harness)

Cleanup
ComponentHarness.unmount(harness)
Component Interface
Components must implement these callbacks:
	init/1 - Initialize state from props
	render/1 - Render component to nodes
	handle_event/2 (optional) - Handle events

Example Component
defmodule Counter do
 def init(props) do
 %{count: Keyword.get(props, :initial, 0)}
 end

 def render(state) do
 text("Count: #{state.count}")
 end

 def handle_event(%Event.Key{key: :up}, state) do
 {:noreply, %{state | count: state.count + 1}}
 end

 def handle_event(_event, state) do
 {:noreply, state}
 end
end

 Summary

 Types

 t()

 Functions

 event_cycle(harness, event)

 Simulates an event cycle: send event -> render -> check.

 get_area(component_harness)

 Gets the render area dimensions.

 get_events(component_harness)

 Gets all events sent (most recent first).

 get_render(component_harness)

 Gets the most recent render result.

 get_renderer(component_harness)

 Gets the test renderer for inspection.

 get_renders(component_harness)

 Gets all render results (most recent first).

 get_state(component_harness)

 Gets the current component state.

 get_state_at(component_harness, path)

 Gets state value at path.

 mount_test(module, opts \\ [])

 Mounts a component in isolation for testing.

 render(harness)

 Renders the component to the test renderer.

 render_cycle(harness)

 Simulates a render cycle: render -> wait -> check.

 reset(harness)

 Resets the harness to initial state.

 send_event(harness, event)

 Sends an event to the component.

 send_events(harness, events)

 Sends multiple events in sequence.

 set_state(harness, new_state)

 Sets component state directly.

 state_changed?(harness)

 Checks if state has changed since last render.

 unmount(component_harness)

 Unmounts the component and cleans up resources.

 update_state(harness, fun)

 Updates component state directly (for testing edge cases).

 Types

 t()

 @type t() :: %TermUI.Test.ComponentHarness{
 area: map(),
 events: [term()],
 module: module(),
 props: keyword(),
 renderer: TermUI.Test.TestRenderer.t(),
 renders: [term()],
 state: term()
}

 Functions

 event_cycle(harness, event)

 @spec event_cycle(t(), term()) :: t()

Simulates an event cycle: send event -> render -> check.

 get_area(component_harness)

 @spec get_area(t()) :: map()

Gets the render area dimensions.

 get_events(component_harness)

 @spec get_events(t()) :: [term()]

Gets all events sent (most recent first).

 get_render(component_harness)

 @spec get_render(t()) :: term() | nil

Gets the most recent render result.

 get_renderer(component_harness)

 @spec get_renderer(t()) :: TermUI.Test.TestRenderer.t()

Gets the test renderer for inspection.

 get_renders(component_harness)

 @spec get_renders(t()) :: [term()]

Gets all render results (most recent first).

 get_state(component_harness)

 @spec get_state(t()) :: term()

Gets the current component state.

 get_state_at(component_harness, path)

 @spec get_state_at(t(), [atom() | String.t()]) :: term()

Gets state value at path.

 mount_test(module, opts \\ [])

 @spec mount_test(
 module(),
 keyword()
) :: {:ok, t()} | {:error, term()}

Mounts a component in isolation for testing.
Options
	:width - Renderer width (default: 80)
	:height - Renderer height (default: 24)
	:props - Initial props to pass to component

Examples
{:ok, harness} = ComponentHarness.mount_test(MyButton, label: "Click")
{:ok, harness} = ComponentHarness.mount_test(MyWidget, width: 40, height: 10)

 render(harness)

 @spec render(t()) :: t()

Renders the component to the test renderer.
Returns the updated harness with render result stored.

 render_cycle(harness)

 @spec render_cycle(t()) :: t()

Simulates a render cycle: render -> wait -> check.
Renders the component and returns the harness for assertions.

 reset(harness)

 @spec reset(t()) :: {:ok, t()} | {:error, term()}

Resets the harness to initial state.

 send_event(harness, event)

 @spec send_event(t(), term()) :: t()

Sends an event to the component.
Returns the updated harness with new state.

 send_events(harness, events)

 @spec send_events(t(), [term()]) :: t()

Sends multiple events in sequence.

 set_state(harness, new_state)

 @spec set_state(t(), term()) :: t()

Sets component state directly.

 state_changed?(harness)

 @spec state_changed?(t()) :: boolean()

Checks if state has changed since last render.

 unmount(component_harness)

 @spec unmount(t()) :: :ok

Unmounts the component and cleans up resources.

 update_state(harness, fun)

 @spec update_state(t(), (term() -> term())) :: t()

Updates component state directly (for testing edge cases).
Use sparingly - prefer sending events for realistic testing.

 TermUI.Test.EventSimulator - TermUI v0.2.0

TermUI.Test.EventSimulator

Event simulation for testing TUI components.
Provides functions to create synthetic events for testing without
actual terminal input. Events can be injected into components or
test harnesses.
Usage
Simulate key press
event = EventSimulator.simulate_key(:enter)
event = EventSimulator.simulate_key(:a, char: "a")
event = EventSimulator.simulate_key(:c, modifiers: [:ctrl])

Simulate mouse click
event = EventSimulator.simulate_click(10, 20)
event = EventSimulator.simulate_click(10, 20, :right)

Simulate typing a string
events = EventSimulator.simulate_type("Hello")

Simulate sequence of keys
events = EventSimulator.simulate_sequence([:tab, :tab, :enter])

 Summary

 Functions

 simulate_click(x, y, button \\ :left, opts \\ [])

 Simulates a mouse click event.

 simulate_double_click(x, y, button \\ :left, opts \\ [])

 Simulates a mouse double-click event.

 simulate_drag(x, y, button \\ :left, opts \\ [])

 Simulates a mouse drag event.

 simulate_focus_gained(opts \\ [])

 Simulates a focus gained event.

 simulate_focus_lost(opts \\ [])

 Simulates a focus lost event.

 simulate_function_key(n)

 Simulates pressing a function key.

 simulate_key(key, opts \\ [])

 Simulates a key press event.

 simulate_move(x, y, opts \\ [])

 Simulates a mouse move event.

 simulate_navigation(direction, opts \\ [])

 Simulates navigation keys.

 simulate_paste(content, opts \\ [])

 Simulates a paste event.

 simulate_resize(width, height, opts \\ [])

 Simulates a terminal resize event.

 simulate_scroll_down(x, y, opts \\ [])

 Simulates a scroll down event.

 simulate_scroll_up(x, y, opts \\ [])

 Simulates a scroll up event.

 simulate_sequence(keys)

 Simulates a sequence of key presses.

 simulate_shortcut(atom)

 Simulates common keyboard shortcuts.

 simulate_type(string, opts \\ [])

 Simulates typing a string.

 Functions

 simulate_click(x, y, button \\ :left, opts \\ [])

 @spec simulate_click(integer(), integer(), TermUI.Event.Mouse.button(), keyword()) ::
 TermUI.Event.Mouse.t()

Simulates a mouse click event.
Examples
EventSimulator.simulate_click(10, 20)
EventSimulator.simulate_click(10, 20, :right)
EventSimulator.simulate_click(10, 20, :left, modifiers: [:ctrl])

 simulate_double_click(x, y, button \\ :left, opts \\ [])

 @spec simulate_double_click(
 integer(),
 integer(),
 TermUI.Event.Mouse.button(),
 keyword()
) ::
 TermUI.Event.Mouse.t()

Simulates a mouse double-click event.

 simulate_drag(x, y, button \\ :left, opts \\ [])

 @spec simulate_drag(integer(), integer(), TermUI.Event.Mouse.button(), keyword()) ::
 TermUI.Event.Mouse.t()

Simulates a mouse drag event.

 simulate_focus_gained(opts \\ [])

 @spec simulate_focus_gained(keyword()) :: TermUI.Event.Focus.t()

Simulates a focus gained event.

 simulate_focus_lost(opts \\ [])

 @spec simulate_focus_lost(keyword()) :: TermUI.Event.Focus.t()

Simulates a focus lost event.

 simulate_function_key(n)

 @spec simulate_function_key(1..12) :: TermUI.Event.Key.t()

Simulates pressing a function key.
Examples
EventSimulator.simulate_function_key(1) # F1
EventSimulator.simulate_function_key(12) # F12

 simulate_key(key, opts \\ [])

 @spec simulate_key(
 atom(),
 keyword()
) :: TermUI.Event.Key.t()

Simulates a key press event.
Options
	:char - Character produced by key (e.g., "a" for :a key)
	:modifiers - List of modifiers ([:ctrl], [:shift], [:alt], etc.)
	:timestamp - Event timestamp (defaults to current time)

Examples
EventSimulator.simulate_key(:enter)
EventSimulator.simulate_key(:a, char: "a")
EventSimulator.simulate_key(:c, modifiers: [:ctrl])

 simulate_move(x, y, opts \\ [])

 @spec simulate_move(integer(), integer(), keyword()) :: TermUI.Event.Mouse.t()

Simulates a mouse move event.
Examples
EventSimulator.simulate_move(15, 25)

 simulate_navigation(direction, opts \\ [])

 @spec simulate_navigation(
 atom(),
 keyword()
) :: TermUI.Event.Key.t()

Simulates navigation keys.
Examples
EventSimulator.simulate_navigation(:up)
EventSimulator.simulate_navigation(:page_down)
EventSimulator.simulate_navigation(:home)

 simulate_paste(content, opts \\ [])

 @spec simulate_paste(
 String.t(),
 keyword()
) :: TermUI.Event.Paste.t()

Simulates a paste event.

 simulate_resize(width, height, opts \\ [])

 @spec simulate_resize(pos_integer(), pos_integer(), keyword()) ::
 TermUI.Event.Resize.t()

Simulates a terminal resize event.

 simulate_scroll_down(x, y, opts \\ [])

 @spec simulate_scroll_down(integer(), integer(), keyword()) :: TermUI.Event.Mouse.t()

Simulates a scroll down event.

 simulate_scroll_up(x, y, opts \\ [])

 @spec simulate_scroll_up(integer(), integer(), keyword()) :: TermUI.Event.Mouse.t()

Simulates a scroll up event.

 simulate_sequence(keys)

 @spec simulate_sequence([atom() | {atom(), keyword()}]) :: [TermUI.Event.Key.t()]

Simulates a sequence of key presses.
Each element can be an atom (key name) or {key, opts} tuple.
Examples
events = EventSimulator.simulate_sequence([:tab, :tab, :enter])
events = EventSimulator.simulate_sequence([
 {:a, char: "a"},
 :tab,
 :enter
])

 simulate_shortcut(atom)

 @spec simulate_shortcut(atom()) :: TermUI.Event.Key.t()

Simulates common keyboard shortcuts.
Examples
EventSimulator.simulate_shortcut(:copy) # Ctrl+C
EventSimulator.simulate_shortcut(:paste) # Ctrl+V
EventSimulator.simulate_shortcut(:save) # Ctrl+S
EventSimulator.simulate_shortcut(:quit) # Ctrl+Q

 simulate_type(string, opts \\ [])

 @spec simulate_type(
 String.t(),
 keyword()
) :: [TermUI.Event.Key.t()]

Simulates typing a string.
Returns a list of key events, one for each character.
Examples
events = EventSimulator.simulate_type("Hello")
length(events)
=> 5

 TermUI.Test.TestRenderer - TermUI v0.2.0

TermUI.Test.TestRenderer

Test renderer that captures output to a buffer for inspection.
The test renderer implements a screen buffer interface without actual
terminal output. Tests can inspect rendered content, styles, and positions.
Usage
{:ok, renderer} = TestRenderer.new(24, 80)
TestRenderer.set_cell(renderer, 1, 1, Cell.new("X", fg: :red))

Inspect rendered content
text = TestRenderer.get_text_at(renderer, 1, 1, 5)
style = TestRenderer.get_style_at(renderer, 1, 1)

Snapshot comparison
snapshot = TestRenderer.snapshot(renderer)
assert TestRenderer.matches_snapshot?(renderer, snapshot)
Buffer Coordinates
Rows and columns are 1-indexed to match terminal conventions.

 Summary

 Types

 t()

 Functions

 clear(test_renderer)

 Clears the entire buffer.

 destroy(test_renderer)

 Destroys the test renderer and frees resources.

 diff_snapshot(renderer, snapshot)

 Compares current buffer with snapshot and returns differences.

 dimensions(test_renderer)

 Gets buffer dimensions.

 find_text(renderer, text)

 Searches for text in the entire buffer.

 get_cell(test_renderer, row, col)

 Gets the cell at the given position.

 get_row_text(renderer, row)

 Gets an entire row as text.

 get_style_at(test_renderer, row, col)

 Gets the style at a position.

 get_text_at(test_renderer, row, col, width)

 Gets text at a position with specified width.

 in_bounds?(test_renderer, row, col)

 Checks if position is within buffer bounds.

 matches_snapshot?(renderer, snapshot)

 Checks if current buffer matches a snapshot.

 new(rows, cols)

 Creates a new test renderer with given dimensions.

 set_cell(test_renderer, row, col, cell)

 Sets the cell at the given position.

 set_cells(test_renderer, cells)

 Sets multiple cells at once.

 snapshot(test_renderer)

 Creates a snapshot of the current buffer state.

 snapshot_to_string(snapshot)

 Converts snapshot to a printable string representation.

 text_at?(renderer, row, col, expected)

 Checks if text appears at a position.

 text_contains?(renderer, row, col, width, expected)

 Checks if text contains expected substring at a position.

 to_string(renderer)

 Converts current buffer to a printable string.

 write_string(test_renderer, row, col, string, opts \\ [])

 Writes a string starting at the given position.

 Types

 t()

 @type t() :: %TermUI.Test.TestRenderer{
 buffer: TermUI.Renderer.Buffer.t(),
 cols: pos_integer(),
 rows: pos_integer()
}

 Functions

 clear(test_renderer)

 @spec clear(t()) :: :ok

Clears the entire buffer.

 destroy(test_renderer)

 @spec destroy(t()) :: :ok

Destroys the test renderer and frees resources.

 diff_snapshot(renderer, snapshot)

 @spec diff_snapshot(t(), map()) :: [{pos_integer(), pos_integer(), map(), map()}]

Compares current buffer with snapshot and returns differences.
Returns list of {row, col, expected, actual} tuples for differing cells.

 dimensions(test_renderer)

 @spec dimensions(t()) :: {pos_integer(), pos_integer()}

Gets buffer dimensions.

 find_text(renderer, text)

 @spec find_text(t(), String.t()) :: [{pos_integer(), pos_integer()}]

Searches for text in the entire buffer.
Returns list of {row, col} positions where text was found.
Examples
positions = TestRenderer.find_text(renderer, "Error")
=> [{5, 10}, {12, 3}]

 get_cell(test_renderer, row, col)

 @spec get_cell(t(), pos_integer(), pos_integer()) :: TermUI.Renderer.Cell.t()

Gets the cell at the given position.

 get_row_text(renderer, row)

 @spec get_row_text(t(), pos_integer()) :: String.t()

Gets an entire row as text.
Examples
row_text = TestRenderer.get_row_text(renderer, 1)
=> "Hello, World! "

 get_style_at(test_renderer, row, col)

 @spec get_style_at(t(), pos_integer(), pos_integer()) :: map()

Gets the style at a position.
Returns a map with fg, bg, and attrs.
Examples
style = TestRenderer.get_style_at(renderer, 1, 1)
=> %{fg: :red, bg: :default, attrs: MapSet.new([:bold])}

 get_text_at(test_renderer, row, col, width)

 @spec get_text_at(t(), pos_integer(), pos_integer(), pos_integer()) :: String.t()

Gets text at a position with specified width.
Returns the characters in cells from (row, col) to (row, col + width - 1).
Examples
text = TestRenderer.get_text_at(renderer, 1, 1, 5)
=> "Hello"

 in_bounds?(test_renderer, row, col)

 @spec in_bounds?(t(), pos_integer(), pos_integer()) :: boolean()

Checks if position is within buffer bounds.

 matches_snapshot?(renderer, snapshot)

 @spec matches_snapshot?(t(), map()) :: boolean()

Checks if current buffer matches a snapshot.
Examples
snapshot = TestRenderer.snapshot(renderer)
... modify renderer ...
TestRenderer.matches_snapshot?(renderer, snapshot)
=> false

 new(rows, cols)

 @spec new(pos_integer(), pos_integer()) :: {:ok, t()} | {:error, term()}

Creates a new test renderer with given dimensions.
Examples
{:ok, renderer} = TestRenderer.new(24, 80)

 set_cell(test_renderer, row, col, cell)

 @spec set_cell(t(), pos_integer(), pos_integer(), TermUI.Renderer.Cell.t()) ::
 :ok | {:error, :out_of_bounds}

Sets the cell at the given position.

 set_cells(test_renderer, cells)

 @spec set_cells(t(), [{pos_integer(), pos_integer(), TermUI.Renderer.Cell.t()}]) ::
 :ok

Sets multiple cells at once.

 snapshot(test_renderer)

 @spec snapshot(t()) :: map()

Creates a snapshot of the current buffer state.
Snapshots can be compared for equality or saved for regression testing.
Examples
snapshot = TestRenderer.snapshot(renderer)

 snapshot_to_string(snapshot)

 @spec snapshot_to_string(map()) :: String.t()

Converts snapshot to a printable string representation.
Useful for test failure output.

 text_at?(renderer, row, col, expected)

 @spec text_at?(t(), pos_integer(), pos_integer(), String.t()) :: boolean()

Checks if text appears at a position.
Examples
TestRenderer.text_at?(renderer, 1, 1, "Hello")
=> true

 text_contains?(renderer, row, col, width, expected)

 @spec text_contains?(t(), pos_integer(), pos_integer(), pos_integer(), String.t()) ::
 boolean()

Checks if text contains expected substring at a position.

 to_string(renderer)

 @spec to_string(t()) :: String.t()

Converts current buffer to a printable string.

 write_string(test_renderer, row, col, string, opts \\ [])

 @spec write_string(t(), pos_integer(), pos_integer(), String.t(), keyword()) ::
 non_neg_integer()

Writes a string starting at the given position.
Returns the number of columns written.

 TermUI.Theme - TermUI v0.2.0

TermUI.Theme

Theme system for application-wide visual consistency.
Themes define colors, semantic meanings, and component style defaults.
The theme system supports runtime switching and notifies subscribers of changes.
Theme Structure
A theme contains:
	:name - Theme identifier (e.g., :dark, :light)
	:colors - Base colors (background, foreground, primary, etc.)
	:semantic - Semantic colors (success, warning, error, etc.)
	:components - Per-component style defaults

Built-in Themes
	:dark - Dark background with light text (default)
	:light - Light background with dark text
	:high_contrast - High contrast for accessibility

Examples
Start theme server
Theme.start_link(theme: :dark)

Get current theme
theme = Theme.get_theme()

Switch themes at runtime
Theme.set_theme(:light)

Subscribe to theme changes
Theme.subscribe()
receive do
 {:theme_changed, new_theme} -> handle_change(new_theme)
end

Get colors
bg = Theme.get_color(:background)
error = Theme.get_semantic(:error)

Get component style
style = Theme.get_component_style(:button, :focused)

 Summary

 Types

 color()

 colors()

 component_styles()

 semantic()

 t()

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 from(opts)

 Creates a theme from a keyword list or map, merging with a base theme.

 get_builtin(name)

 Gets a built-in theme by name.

 get_color(name, server \\ __MODULE__)

 Gets a base color from the current theme.

 get_component_style(component, variant, server \\ __MODULE__)

 Gets a component style from the current theme.

 get_semantic(name, server \\ __MODULE__)

 Gets a semantic color from the current theme.

 get_theme(server \\ __MODULE__)

 Gets the current theme.

 list_builtin()

 Lists all available built-in themes.

 set_theme(theme, server \\ __MODULE__)

 Sets the current theme.

 start_link(opts \\ [])

 Starts the theme server.

 style_from_theme(component, variant, overrides \\ [], server \\ __MODULE__)

 Creates a style from theme values with optional overrides.

 subscribe(server \\ __MODULE__)

 Subscribes the calling process to theme change notifications.

 unsubscribe(server \\ __MODULE__)

 Unsubscribes the calling process from theme change notifications.

 validate(theme)

 Validates a theme struct.

 Types

 color()

 @type color() :: TermUI.Style.color()

 colors()

 @type colors() :: %{
 background: color(),
 foreground: color(),
 primary: color(),
 secondary: color(),
 accent: color()
}

 component_styles()

 @type component_styles() :: %{
 required(atom()) => %{required(atom()) => TermUI.Style.t()}
}

 semantic()

 @type semantic() :: %{
 success: color(),
 warning: color(),
 error: color(),
 info: color(),
 muted: color()
}

 t()

 @type t() :: %TermUI.Theme{
 colors: colors(),
 components: component_styles(),
 name: atom(),
 semantic: semantic()
}

 Functions

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 from(opts)

 @spec from(keyword() | map()) :: {:ok, t()} | {:error, term()}

Creates a theme from a keyword list or map, merging with a base theme.
Options
	:base - Base theme to merge with (default :dark)
	:name - Theme name
	:colors - Color overrides
	:semantic - Semantic color overrides
	:components - Component style overrides

Examples
Create custom theme based on dark
{:ok, theme} = Theme.from(
 base: :dark,
 name: :my_theme,
 colors: %{primary: :magenta}
)

 get_builtin(name)

 @spec get_builtin(atom()) :: {:ok, t()} | {:error, :not_found}

Gets a built-in theme by name.

 get_color(name, server \\ __MODULE__)

 @spec get_color(atom(), GenServer.server()) :: color() | nil

Gets a base color from the current theme.
Examples
Theme.get_color(:background) # => :black
Theme.get_color(:primary) # => :blue

 get_component_style(component, variant, server \\ __MODULE__)

 @spec get_component_style(atom(), atom(), GenServer.server()) ::
 TermUI.Style.t() | nil

Gets a component style from the current theme.
Examples
Theme.get_component_style(:button, :focused)
Theme.get_component_style(:text_input, :normal)

 get_semantic(name, server \\ __MODULE__)

 @spec get_semantic(atom(), GenServer.server()) :: color() | nil

Gets a semantic color from the current theme.
Examples
Theme.get_semantic(:error) # => :red
Theme.get_semantic(:success) # => :green

 get_theme(server \\ __MODULE__)

 @spec get_theme(GenServer.server()) :: t()

Gets the current theme.

 list_builtin()

 @spec list_builtin() :: [atom()]

Lists all available built-in themes.

 set_theme(theme, server \\ __MODULE__)

 @spec set_theme(atom() | t(), GenServer.server()) :: :ok | {:error, term()}

Sets the current theme.
Accepts a theme name atom (for built-in themes) or a Theme struct.
Notifies all subscribers of the change.
Examples
Theme.set_theme(:light)
Theme.set_theme(%Theme{name: :custom, ...})

 start_link(opts \\ [])

 @spec start_link(keyword()) :: GenServer.on_start()

Starts the theme server.
Options
	:theme - Initial theme (atom name or Theme struct, default :dark)
	:name - GenServer name (default Elixir.TermUI.Theme)

Examples
Theme.start_link(theme: :dark)
Theme.start_link(theme: :light, name: MyApp.Theme)

 style_from_theme(component, variant, overrides \\ [], server \\ __MODULE__)

 @spec style_from_theme(atom(), atom(), keyword(), GenServer.server()) ::
 TermUI.Style.t()

Creates a style from theme values with optional overrides.
Useful for components that want to use theme defaults but allow customization.
Examples
Use theme button style as base, override foreground
style = Theme.style_from_theme(:button, :normal, fg: :red)

 subscribe(server \\ __MODULE__)

 @spec subscribe(GenServer.server()) :: :ok

Subscribes the calling process to theme change notifications.
Subscribers receive {:theme_changed, theme} messages when the theme changes.

 unsubscribe(server \\ __MODULE__)

 @spec unsubscribe(GenServer.server()) :: :ok

Unsubscribes the calling process from theme change notifications.

 validate(theme)

 @spec validate(t()) :: :ok | {:error, [String.t()]}

Validates a theme struct.
Returns :ok if valid, {:error, reasons} if invalid.

 TermUI.ViewCache - TermUI v0.2.0

TermUI.ViewCache

View memoization cache for skipping renders when state is unchanged.
The view cache stores the last state hash and render tree for a component.
When a component's state hasn't changed, we return the cached render tree
instead of re-calling the view function.
Usage
cache = ViewCache.new()

Check if view needs recalculating
case ViewCache.get(cache, state) do
 {:hit, render_tree} ->
 # Use cached result
 {render_tree, cache}

 :miss ->
 # Calculate and cache
 render_tree = Component.view(state)
 cache = ViewCache.put(cache, state, render_tree)
 {render_tree, cache}
end
Performance Considerations
State hashing uses :erlang.phash2/1 which is fast but may have collisions.
For most UI state this is acceptable—the worst case is a redundant render.

 Summary

 Types

 render_tree()

 state()

 state_hash()

 t()

 Functions

 check_performance(arg1)

 Checks if the last render was slow and returns a warning if so.

 get(view_cache, state)

 Looks up a cached render tree for the given state.

 invalidate(cache)

 Invalidates the cache, forcing next view to recalculate.

 memoize(cache, state, view_fun)

 Memoizes a view function call.

 new()

 Creates a new view cache.

 put(cache, state, render_tree)

 Stores a render tree for the given state.

 record_hit(cache)

 Records a cache hit and returns updated cache.

 record_miss(cache, render_time_us)

 Records a cache miss and render time.

 stats(view_cache)

 Returns cache statistics.

 Types

 render_tree()

 @type render_tree() :: term()

 state()

 @type state() :: term()

 state_hash()

 @type state_hash() :: integer()

 t()

 @type t() :: %TermUI.ViewCache{
 hits: non_neg_integer(),
 last_render_time_us: non_neg_integer(),
 misses: non_neg_integer(),
 render_tree: render_tree() | nil,
 state_hash: state_hash() | nil
}

 Functions

 check_performance(arg1)

 @spec check_performance(t()) :: :ok | {:slow_view, non_neg_integer()}

Checks if the last render was slow and returns a warning if so.

 get(view_cache, state)

 @spec get(t(), state()) :: {:hit, render_tree()} | :miss

Looks up a cached render tree for the given state.
Returns {:hit, render_tree} if state matches cache,
or :miss if view needs recalculating.

 invalidate(cache)

 @spec invalidate(t()) :: t()

Invalidates the cache, forcing next view to recalculate.

 memoize(cache, state, view_fun)

 @spec memoize(t(), state(), (state() -> render_tree())) :: {render_tree(), t()}

Memoizes a view function call.
Calls the view function only if state has changed, otherwise returns cached result.
Also records timing and warns about slow views.

 new()

 @spec new() :: t()

Creates a new view cache.

 put(cache, state, render_tree)

 @spec put(t(), state(), render_tree()) :: t()

Stores a render tree for the given state.

 record_hit(cache)

 @spec record_hit(t()) :: t()

Records a cache hit and returns updated cache.

 record_miss(cache, render_time_us)

 @spec record_miss(t(), non_neg_integer()) :: t()

Records a cache miss and render time.

 stats(view_cache)

 @spec stats(t()) :: %{
 hits: non_neg_integer(),
 misses: non_neg_integer(),
 hit_rate: float()
}

Returns cache statistics.

 TermUI.Widget.Block - TermUI v0.2.0

TermUI.Widget.Block

A container widget that draws a border around its content.
Block is the fundamental layout container. It renders a border,
optional title, and manages the layout of children within
its bordered area.
Usage
Block.render(%{
 border: :single,
 title: "Panel"
}, state, area)
Props
	:border - Border style: :none, :single, :double, :rounded, :thick
	:title - Optional title text
	:title_align - Title alignment: :left, :center, :right
	:padding - Padding inside border (integer or map with :top, :right, :bottom, :left)
	:style - Border style options

 Summary

 Functions

 child_id(arg)

 Gets the ID from a child spec.

 child_module(arg)

 Gets the module from a child spec.

 child_props(arg)

 Gets the props from a child spec.

 children(state)

 Returns children to render.

 handle_event(event, state)

 Handles events for the block.

 init(props)

 Initializes the block state.

 inner_area(props, area)

 Calculates the inner area after border and padding.

 layout(children, area, area)

 Calculates layout for children within the block.

 normalize_child_spec(arg)

 Normalizes a child spec to always have an ID.

 render(state, area)

 Renders the block border and content area.

 Functions

 child_id(arg)

Gets the ID from a child spec.

 child_module(arg)

Gets the module from a child spec.

 child_props(arg)

Gets the props from a child spec.

 children(state)

Returns children to render.

 handle_event(event, state)

Handles events for the block.

 init(props)

Initializes the block state.

 inner_area(props, area)

Calculates the inner area after border and padding.

 layout(children, area, area)

Calculates layout for children within the block.

 normalize_child_spec(arg)

Normalizes a child spec to always have an ID.

 render(state, area)

Renders the block border and content area.

 TermUI.Widget.Button - TermUI v0.2.0

TermUI.Widget.Button

An interactive button widget.
Button responds to Enter/Space keys when focused and mouse clicks.
It displays visual feedback for different states.
Usage
Button.render(%{
 label: "Submit",
 on_click: fn -> send(self(), :submitted) end
}, state, area)
Props
	:label - Button text (required)
	:on_click - Callback function invoked on activation
	:disabled - Whether button is disabled (default: false)
	:style - Style options
	:focused_style - Style when focused
	:pressed_style - Style when pressed

 Summary

 Functions

 handle_event(arg1, state)

 Handles events for the button.

 handle_info(arg1, state)

 Handles messages to the button.

 init(props)

 Initializes the button state.

 render(state, area)

 Renders the button.

 Functions

 handle_event(arg1, state)

Handles events for the button.

 handle_info(arg1, state)

Handles messages to the button.

 init(props)

Initializes the button state.

 render(state, area)

Renders the button.

 TermUI.Widget.Label - TermUI v0.2.0

TermUI.Widget.Label

A stateless widget for displaying text.
Label is the simplest widget - it renders text with optional styling,
alignment, wrapping, and truncation.
Usage
Label.render(%{text: "Hello, World!"}, area)

Label.render(%{
 text: "Centered text",
 align: :center,
 style: %{fg: :blue, bold: true}
}, area)
Props
	:text - The text to display (required)
	:align - Text alignment: :left, :center, :right (default: :left)
	:wrap - Whether to wrap text (default: false)
	:truncate - Whether to truncate with ellipsis (default: true)
	:style - Style options (fg, bg, bold, etc.)

 Summary

 Functions

 describe()

 Returns a description of this component.

 render(props, area)

 Renders the label text within the given area.

 Functions

 describe()

Returns a description of this component.

 render(props, area)

Renders the label text within the given area.

 TermUI.Widget.List - TermUI v0.2.0

TermUI.Widget.List

A scrollable list widget with selection support.
List displays items and allows navigation with arrow keys.
Supports single and multi-select modes.
Usage
List.render(%{
 items: ["Apple", "Banana", "Cherry"],
 on_select: fn item -> IO.puts("Selected: #{item}") end
}, state, area)
Props
	:items - List of items to display (required)
	:on_select - Callback when selection changes
	:multi_select - Enable multi-select mode (default: false)
	:highlight_style - Style for selected items
	:style - Default item style

 Summary

 Functions

 handle_event(arg1, state)

 Handles events for the list.

 handle_info(arg1, state)

 Handles messages to the list.

 init(props)

 Initializes the list state.

 render(state, area)

 Renders the list.

 Functions

 handle_event(arg1, state)

Handles events for the list.

 handle_info(arg1, state)

Handles messages to the list.

 init(props)

Initializes the list state.

 render(state, area)

Renders the list.

 TermUI.Widget.PickList - TermUI v0.2.0

TermUI.Widget.PickList

A modal pick-list widget for selecting from a list of items.
PickList displays a centered modal overlay with a scrollable list,
keyboard navigation, and type-ahead filtering. Used for provider
and model selection dialogs.
Usage
PickList.render(%{
 items: ["Apple", "Banana", "Cherry"],
 title: "Select Fruit",
 on_select: fn item -> IO.puts("Selected: #{item}") end,
 on_cancel: fn -> IO.puts("Cancelled") end
}, state, area)
Props
	:items - List of items to display (required)
	:title - Modal title (optional)
	:on_select - Callback when item selected fn item -> ... end
	:on_cancel - Callback when cancelled fn -> ... end
	:width - Modal width (default: 40)
	:height - Modal height (default: 10)
	:style - Border/text style options
	:highlight_style - Style for selected item (default: inverted colors)

Keyboard Controls
	Up/Down - Navigate items
	Page Up/Down - Jump 10 items
	Home/End - Jump to first/last item
	Enter - Confirm selection
	Escape - Cancel
	Typing - Filter items (type-ahead search)
	Backspace - Remove filter character

 Summary

 Functions

 handle_event(arg1, state)

 Handles keyboard events for the pick-list.

 handle_info(arg1, state)

 Handles messages to the pick-list.

 init(props)

 Initializes the pick-list state.

 render(state, area)

 Renders the pick-list modal.

 Functions

 handle_event(arg1, state)

Handles keyboard events for the pick-list.

 handle_info(arg1, state)

Handles messages to the pick-list.

 init(props)

Initializes the pick-list state.

 render(state, area)

Renders the pick-list modal.

 TermUI.Widget.Progress - TermUI v0.2.0

TermUI.Widget.Progress

A widget for displaying progress bars and spinners.
Progress supports two modes:
	Bar mode: Shows a filled bar proportional to progress value
	Spinner mode: Shows an animated indicator for indeterminate progress

Usage
Bar mode
Progress.render(%{value: 0.5}, state, area)

With percentage
Progress.render(%{value: 0.75, show_percentage: true}, state, area)

Spinner mode
Progress.render(%{mode: :spinner}, state, area)
Props
	:value - Progress value 0.0 to 1.0 (default: 0.0)
	:mode - :bar or :spinner (default: :bar)
	:show_percentage - Show percentage text (default: false)
	:filled_char - Character for filled portion (default: "█")
	:empty_char - Character for empty portion (default: "░")
	:style - Style options for the bar

 Summary

 Functions

 handle_event(arg1, state)

 Handles events for the progress widget.

 init(props)

 Initializes the progress widget state.

 render(state, area)

 Renders the progress indicator.

 Functions

 handle_event(arg1, state)

Handles events for the progress widget.

 init(props)

Initializes the progress widget state.

 render(state, area)

Renders the progress indicator.

 TermUI.Widget.TextInput - TermUI v0.2.0

TermUI.Widget.TextInput

A single-line text input widget.
TextInput allows users to type text, navigate with arrow keys,
and delete with backspace/delete.
Usage
TextInput.render(%{
 placeholder: "Enter name...",
 on_change: fn value -> IO.puts("Value: #{value}") end,
 on_submit: fn value -> IO.puts("Submitted: #{value}") end
}, state, area)
Props
	:value - Initial value (default: "")
	:placeholder - Placeholder text when empty
	:on_change - Callback when value changes
	:on_submit - Callback when Enter pressed
	:max_length - Maximum input length
	:style - Input style
	:cursor_style - Cursor character style

 Summary

 Functions

 handle_event(arg1, state)

 Handles events for the text input.

 handle_info(arg1, state)

 Handles messages to the text input.

 init(props)

 Initializes the text input state.

 render(state, area)

 Renders the text input.

 Functions

 handle_event(arg1, state)

Handles events for the text input.

 handle_info(arg1, state)

Handles messages to the text input.

 init(props)

Initializes the text input state.

 render(state, area)

Renders the text input.

 TermUI - TermUI v0.2.0

TermUI

TermUI - A direct-mode Terminal UI framework for Elixir/BEAM.
This module provides the main entry point for terminal operations.

 Summary

 Functions

 init()

 Enables raw mode and sets up the terminal for TUI operation.

 shutdown()

 Restores the terminal to its original state.

 size()

 Gets the current terminal size.

 Functions

 init()

 @spec init() :: {:ok, TermUI.Terminal.State.t()} | {:error, term()}

Enables raw mode and sets up the terminal for TUI operation.
This is a convenience function that:
	Starts the Terminal GenServer if needed
	Enables raw mode
	Enters the alternate screen
	Hides the cursor

Returns {:ok, state} on success or {:error, reason} on failure.

 shutdown()

 @spec shutdown() :: :ok

Restores the terminal to its original state.
This is a convenience function that performs complete terminal restoration.

 size()

 @spec size() :: {:ok, {pos_integer(), pos_integer()}} | {:error, term()}

Gets the current terminal size.
Returns {:ok, {rows, cols}} or {:error, reason}.

 TermUI.Component - TermUI v0.2.0

TermUI.Component behaviour

Base behaviour for all TermUI components.
Components are the building blocks of TermUI applications. This behaviour
defines the minimal interface that all components must implement.
Basic Usage
The simplest component only needs to implement render/2:
defmodule MyApp.Label do
 use TermUI.Component

 @impl true
 def render(props, _area) do
 text(props[:text] || "")
 end
end
Optional Callbacks
Components can also implement:
	describe/0 - Returns metadata about the component
	default_props/0 - Returns default prop values

Render Tree
The render/2 callback returns a render tree, which can be:
	A RenderNode struct
	A list of render nodes
	A plain string (converted to text node)

Props
Props are passed as a map to the render/2 callback. Use default_props/0
to define defaults that are merged with passed props.
Area
The area parameter defines the available space for rendering:
%{x: integer(), y: integer(), width: integer(), height: integer()}
Components should respect these bounds when producing render output.

 Summary

 Types

 component_info()

 Component metadata

 props()

 Component props passed to render

 rect()

 Available rendering area

 render_tree()

 Render tree output - can be a node, list of nodes, or string

 Callbacks

 default_props()

 Returns default prop values for the component.

 describe()

 Returns metadata about the component.

 render(props, rect)

 Renders the component given props and available area.

 Types

 component_info()

 @type component_info() :: %{
 name: String.t(),
 description: String.t() | nil,
 version: String.t() | nil
}

Component metadata

 props()

 @type props() :: map()

Component props passed to render

 rect()

 @type rect() :: %{x: integer(), y: integer(), width: integer(), height: integer()}

Available rendering area

 render_tree()

 @type render_tree() :: TermUI.Component.RenderNode.t() | [render_tree()] | String.t()

Render tree output - can be a node, list of nodes, or string

 Callbacks

 default_props()

 (optional)

 @callback default_props() :: props()

Returns default prop values for the component.
These defaults are merged with props passed to render/2,
with passed props taking precedence.
Examples
@impl true
def default_props do
 %{
 text: "",
 style: nil,
 align: :left
 }
end

 describe()

 (optional)

 @callback describe() :: component_info()

Returns metadata about the component.
Useful for introspection, debugging, and documentation generation.
Examples
@impl true
def describe do
 %{
 name: "Label",
 description: "A simple text display component",
 version: "1.0.0"
 }
end

 render(props, rect)

 @callback render(props(), rect()) :: render_tree()

Renders the component given props and available area.
This is the only required callback. It receives the component's props
and the available rendering area, and must return a render tree.
Parameters
	props - Map of properties passed to the component
	area - Available rendering area with x, y, width, height

Returns
A render tree (RenderNode, list, or string).
Examples
@impl true
def render(props, area) do
 text = props[:text] || ""
 style = props[:style]

 if style do
 styled_text(text, style)
 else
 text(text)
 end
end

 TermUI.Elm - TermUI v0.2.0

TermUI.Elm behaviour

The Elm Architecture implementation for TermUI components.
This module provides the core callbacks for implementing components
using The Elm Architecture pattern: update/2 for state changes and
view/1 for rendering.
The Pattern
	Events arrive from terminal input
	event_to_msg/2 converts events to component-specific messages
	update/2 transforms state based on messages, returns new state + commands
	view/1 renders current state to a render tree
	Commands execute asynchronously, sending result messages back

Usage
defmodule Counter do
 use TermUI.Elm

 def init(_opts), do: %{count: 0}

 def event_to_msg(%Event.Key{key: :up}, _state), do: {:msg, :increment}
 def event_to_msg(%Event.Key{key: :down}, _state), do: {:msg, :decrement}
 def event_to_msg(_, _), do: :ignore

 def update(:increment, state), do: {%{state | count: state.count + 1}, []}
 def update(:decrement, state), do: {%{state | count: state.count - 1}, []}

 def view(state) do
 text("Count: #{state.count}")
 end
end

 Summary

 Types

 command()

 event_to_msg_result()

 msg()

 render_tree()

 state()

 update_result()

 Callbacks

 event_to_msg(t, state)

 Converts an event to a component-specific message.

 init(opts)

 Initializes component state from options.

 update(msg, state)

 Updates component state based on a message.

 view(state)

 Renders the current state to a render tree.

 Functions

 normalize_update_result(arg1, old_state)

 Normalizes update result to standard form.

 validate_update_purity(module)

 Validates that an update function is pure (best effort).

 Types

 command()

 @type command() :: term()

 event_to_msg_result()

 @type event_to_msg_result() :: {:msg, msg()} | :ignore | :propagate

 msg()

 @type msg() :: TermUI.Message.t()

 render_tree()

 @type render_tree() :: term()

 state()

 @type state() :: term()

 update_result()

 @type update_result() :: {state(), [command()]} | {state()} | :noreply

 Callbacks

 event_to_msg(t, state)

 @callback event_to_msg(TermUI.Event.t(), state()) :: event_to_msg_result()

Converts an event to a component-specific message.
This callback transforms raw terminal events into domain-specific messages
that have semantic meaning for the component.
Parameters
	event - The terminal event (Key, Mouse, Resize, etc.)
	state - Current component state

Returns
	{:msg, message} - Event converted to a message for update
	:ignore - Event not handled by this component
	:propagate - Pass event to parent component

 init(opts)

 (optional)

 @callback init(opts :: keyword()) :: state()

Initializes component state from options.
Called once when the component is created.
Parameters
	opts - Options passed to the component

Returns
Initial state for the component.

 update(msg, state)

 @callback update(msg(), state()) :: update_result()

Updates component state based on a message.
This is the core logic of the component. It receives the current state
and a message, and returns the new state plus any commands to execute.
Update functions must be pure—no side effects, no external calls.
Side effects are performed through commands returned in the result.
Parameters
	msg - The message to handle
	state - Current component state

Returns
	{new_state, commands} - New state and commands to execute
	{new_state} - Shorthand for {new_state, []}
	:noreply - Keep state unchanged, no commands

Examples
def update(:increment, state) do
 {%{state | count: state.count + 1}, []}
end

def update({:fetch_data, url}, state) do
 cmd = Command.http_get(url, {:data_loaded, :response})
 {%{state | loading: true}, [cmd]}
end

def update(:noop, _state), do: :noreply

 view(state)

 @callback view(state()) :: render_tree()

Renders the current state to a render tree.
View functions must be pure—given the same state, they always produce
the same output. View functions should be fast since they run every frame.
Parameters
	state - Current component state

Returns
A render tree structure that will be processed into terminal output.
Examples
def view(state) do
 box(border: true) do
 text("Count: #{state.count}")
 end
end

 Functions

 normalize_update_result(arg1, old_state)

 @spec normalize_update_result(update_result(), state()) :: {state(), [command()]}

Normalizes update result to standard form.
Converts shorthand forms to the full {state, commands} tuple.

 validate_update_purity(module)

 @spec validate_update_purity(module()) :: :ok | {:warnings, [String.t()]}

Validates that an update function is pure (best effort).
Returns warnings if the update function appears to have side effects.
This is a heuristic check, not a guarantee.

 TermUI.Event - TermUI v0.2.0

TermUI.Event

Event type definitions for TermUI.
Events represent user input from the terminal: keyboard presses,
mouse actions, and focus changes. Events are routed to components
by the EventRouter based on focus state and position.
Event Types
	Key - Keyboard input (key press, char input)
	Mouse - Mouse actions (click, move, scroll)
	Focus - Focus changes (gained, lost)
	Custom - Application-defined events

Examples
Key event
event = Event.key(:enter)
event = Event.key(:a, char: "a")
event = Event.key(:c, modifiers: [:ctrl])

Mouse event
event = Event.mouse(:click, :left, 10, 20)
event = Event.mouse(:move, nil, 15, 25)

Focus event
event = Event.focus(:gained)
event = Event.focus(:lost)

 Summary

 Types

 t()

 Union type for all event types

 Functions

 custom(name, payload \\ nil, opts \\ [])

 Creates a custom event.

 custom?(arg1)

 Returns true if event is a custom event

 focus(action, opts \\ [])

 Creates a focus event.

 focus?(arg1)

 Returns true if event is a focus event

 has_modifier?(map, modifier)

 Checks if a modifier is present in the event.

 key(key, opts \\ [])

 Creates a key event.

 key?(arg1)

 Returns true if event is a key event

 mouse(action, button, x, y, opts \\ [])

 Creates a mouse event.

 mouse?(arg1)

 Returns true if event is a mouse event

 paste(content, opts \\ [])

 Creates a paste event.

 paste?(arg1)

 Returns true if event is a paste event

 resize(width, height, opts \\ [])

 Creates a resize event.

 resize?(arg1)

 Returns true if event is a resize event

 tick(interval, opts \\ [])

 Creates a tick event.

 tick?(arg1)

 Returns true if event is a tick event

 type(arg1)

 Returns the event type as an atom.

 Types

 t()

 @type t() ::
 Key.t()
 | Mouse.t()
 | Focus.t()
 | Custom.t()
 | Resize.t()
 | Paste.t()
 | Tick.t()

Union type for all event types

 Functions

 custom(name, payload \\ nil, opts \\ [])

 @spec custom(atom(), term(), keyword()) :: TermUI.Event.Custom.t()

Creates a custom event.
Examples
Event.custom(:submit, %{value: "hello"})

 custom?(arg1)

 @spec custom?(term()) :: boolean()

Returns true if event is a custom event

 focus(action, opts \\ [])

 @spec focus(
 TermUI.Event.Focus.action(),
 keyword()
) :: TermUI.Event.Focus.t()

Creates a focus event.
Examples
Event.focus(:gained)
Event.focus(:lost)

 focus?(arg1)

 @spec focus?(term()) :: boolean()

Returns true if event is a focus event

 has_modifier?(map, modifier)

 @spec has_modifier?(TermUI.Event.Key.t() | TermUI.Event.Mouse.t(), atom()) ::
 boolean()

Checks if a modifier is present in the event.

 key(key, opts \\ [])

 @spec key(
 atom(),
 keyword()
) :: TermUI.Event.Key.t()

Creates a key event.
Examples
Event.key(:enter)
Event.key(:a, char: "a")
Event.key(:c, modifiers: [:ctrl])

 key?(arg1)

 @spec key?(term()) :: boolean()

Returns true if event is a key event

 mouse(action, button, x, y, opts \\ [])

 @spec mouse(
 TermUI.Event.Mouse.action(),
 TermUI.Event.Mouse.button(),
 integer(),
 integer(),
 keyword()
) ::
 TermUI.Event.Mouse.t()

Creates a mouse event.
Examples
Event.mouse(:click, :left, 10, 20)
Event.mouse(:move, nil, x, y)

 mouse?(arg1)

 @spec mouse?(term()) :: boolean()

Returns true if event is a mouse event

 paste(content, opts \\ [])

 @spec paste(
 String.t(),
 keyword()
) :: TermUI.Event.Paste.t()

Creates a paste event.
Examples
Event.paste("Hello, World!")

 paste?(arg1)

 @spec paste?(term()) :: boolean()

Returns true if event is a paste event

 resize(width, height, opts \\ [])

 @spec resize(pos_integer(), pos_integer(), keyword()) :: TermUI.Event.Resize.t()

Creates a resize event.
Examples
Event.resize(120, 40)

 resize?(arg1)

 @spec resize?(term()) :: boolean()

Returns true if event is a resize event

 tick(interval, opts \\ [])

 @spec tick(
 pos_integer(),
 keyword()
) :: TermUI.Event.Tick.t()

Creates a tick event.
Examples
Event.tick(16) # ~60 FPS
Event.tick(1000) # 1 second

 tick?(arg1)

 @spec tick?(term()) :: boolean()

Returns true if event is a tick event

 type(arg1)

 @spec type(
 TermUI.Event.Key.t()
 | TermUI.Event.Mouse.t()
 | TermUI.Event.Focus.t()
 | TermUI.Event.Custom.t()
 | TermUI.Event.Resize.t()
 | TermUI.Event.Paste.t()
 | TermUI.Event.Tick.t()
) :: :key | :mouse | :focus | :custom | :resize | :paste | :tick

Returns the event type as an atom.

 TermUI.Runtime - TermUI v0.2.0

TermUI.Runtime

The central runtime orchestrator for TermUI applications.
The runtime implements The Elm Architecture dispatch loop:
	Receive event from terminal
	Route to appropriate component
	Call component's event_to_msg
	Call component's update with message
	Collect commands from update
	Mark component dirty
	On render timer, call view and render

Usage
Start with a root component
{:ok, runtime} = Runtime.start_link(root: MyApp.Root)

Send events (usually from terminal input)
Runtime.send_event(runtime, Event.key(:enter))

Shutdown gracefully
Runtime.shutdown(runtime)

 Summary

 Types

 option()

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 command_result(runtime, component_id, command_id, result)

 Delivers a command result back to the runtime.

 force_render(runtime)

 Forces an immediate render (bypassing framerate limiter).

 get_state(runtime)

 Gets the current runtime state (for testing/debugging).

 run(opts)

 Starts the runtime and blocks until it shuts down.

 send_event(runtime, event)

 Sends an event to the runtime for processing.

 send_message(runtime, component_id, message)

 Sends a message directly to a component.

 shutdown(runtime)

 Initiates graceful shutdown of the runtime.

 start_link(opts)

 Starts the runtime with the given options.

 sync(runtime, timeout \\ 5000)

 Synchronously waits for all pending events and messages to be processed.

 Types

 option()

 @type option() ::
 {:root, module()}
 | {:name, GenServer.name()}
 | {:render_interval, pos_integer()}

 Functions

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 command_result(runtime, component_id, command_id, result)

 @spec command_result(GenServer.server(), term(), term(), term()) :: :ok

Delivers a command result back to the runtime.

 force_render(runtime)

 @spec force_render(GenServer.server()) :: :ok

Forces an immediate render (bypassing framerate limiter).

 get_state(runtime)

 @spec get_state(GenServer.server()) :: TermUI.Runtime.State.t()

Gets the current runtime state (for testing/debugging).

 run(opts)

 @spec run([option()]) :: :ok | {:error, term()}

Starts the runtime and blocks until it shuts down.
This is the main entry point for running a TUI application. It starts the
runtime, takes over the terminal, and blocks the calling process until
the application exits (e.g., user presses quit key).
Options
Same as start_link/1.
Example
In your application entry point:
TermUI.Runtime.run(root: MyApp.Root)
This blocks until the app exits

 send_event(runtime, event)

 @spec send_event(GenServer.server(), TermUI.Event.t()) :: :ok

Sends an event to the runtime for processing.

 send_message(runtime, component_id, message)

 @spec send_message(GenServer.server(), term(), term()) :: :ok

Sends a message directly to a component.

 shutdown(runtime)

 @spec shutdown(GenServer.server()) :: :ok

Initiates graceful shutdown of the runtime.

 start_link(opts)

 @spec start_link([option()]) :: GenServer.on_start()

Starts the runtime with the given options.
Options
	:root - The root component module (required)
	:name - GenServer name (optional)
	:render_interval - Milliseconds between renders (default: 16)

 sync(runtime, timeout \\ 5000)

 @spec sync(GenServer.server(), timeout()) :: :ok

Synchronously waits for all pending events and messages to be processed.
This is primarily useful for testing to avoid race conditions from
Process.sleep. It processes all queued messages and returns when complete.
Example
Runtime.send_event(runtime, Event.key(:up))
Runtime.send_event(runtime, Event.key(:up))
Runtime.sync(runtime) # Wait for both events to be processed
state = Runtime.get_state(runtime)
assert state.root_state.count == 2

 TermUI.Widgets.AlertDialog - TermUI v0.2.0

TermUI.Widgets.AlertDialog

Alert dialog widget for standardized messages and confirmations.
Alert dialog is a specialized dialog with predefined button configurations
and visual icons for different message types.
Usage
AlertDialog.new(
 type: :confirm,
 title: "Delete File",
 message: "Are you sure you want to delete this file?",
 on_result: fn result -> handle_result(result) end
)
Alert Types
	:info - Information message (i icon, OK button)
	:success - Success message (✓ icon, OK button)
	:warning - Warning message (⚠ icon, OK button)
	:error - Error message (✗ icon, OK button)
	:confirm - Confirmation dialog (? icon, Yes/No buttons)
	:ok_cancel - OK/Cancel dialog (OK/Cancel buttons)

Keyboard Navigation
	Tab/Shift+Tab: Move between buttons
	Enter/Space: Activate focused button
	Escape: Close (same as Cancel/No)
	Y: Yes (in confirm dialogs)
	N: No (in confirm dialogs)

 Summary

 Functions

 get_focused_button(state)

 Gets the currently focused button.

 get_type(state)

 Gets the alert type.

 hide(state)

 Hides the alert.

 new(opts)

 Creates new AlertDialog widget props.

 set_message(state, message)

 Updates the message.

 show(state)

 Shows the alert.

 visible?(state)

 Gets whether the alert is visible.

 Functions

 get_focused_button(state)

 @spec get_focused_button(map()) :: term()

Gets the currently focused button.

 get_type(state)

 @spec get_type(map()) :: atom()

Gets the alert type.

 hide(state)

 @spec hide(map()) :: map()

Hides the alert.

 new(opts)

 @spec new(keyword()) :: map()

Creates new AlertDialog widget props.
Options
	:type - Alert type (required): :info, :success, :warning, :error, :confirm, :ok_cancel
	:title - Dialog title (required)
	:message - Message to display (required)
	:on_result - Callback with result (:ok, :cancel, :yes, :no)
	:width - Dialog width (default: 50)
	:icon_style - Style for the icon
	:message_style - Style for the message
	:button_style - Style for buttons
	:focused_button_style - Style for focused button

 set_message(state, message)

 @spec set_message(map(), String.t()) :: map()

Updates the message.

 show(state)

 @spec show(map()) :: map()

Shows the alert.

 visible?(state)

 @spec visible?(map()) :: boolean()

Gets whether the alert is visible.

 TermUI.Widgets.BarChart - TermUI v0.2.0

TermUI.Widgets.BarChart

Bar chart widget for displaying comparative values.
Renders horizontal or vertical bars proportional to data values.
Supports multiple series, labels, and color coding.
Usage
BarChart.render(
 data: [
 %{label: "Sales", value: 150},
 %{label: "Revenue", value: 200},
 %{label: "Profit", value: 75}
],
 direction: :horizontal,
 width: 40,
 show_values: true
)
Options
	:data - List of data points with label and value
	:direction - :horizontal or :vertical (default: :horizontal)
	:width - Chart width in characters (max: 1000)
	:height - Chart height for vertical charts (max: 500)
	:show_values - Display value labels (default: true)
	:show_labels - Display bar labels (default: true)
	:bar_char - Character for bars (default: "█")
	:empty_char - Character for empty space (default: " ")
	:colors - List of colors for series

 Summary

 Functions

 bar(opts)

 Creates a simple horizontal bar for a single value.

 render(opts)

 Renders a bar chart.

 Functions

 bar(opts)

 @spec bar(keyword()) :: TermUI.Component.RenderNode.t()

Creates a simple horizontal bar for a single value.
Options
	:value - Current value (required)
	:max - Maximum value (required)
	:width - Bar width (default: 20, max: 1000)
	:bar_char - Bar character (default: "█")
	:empty_char - Empty character (default: "░")

 render(opts)

 @spec render(keyword()) :: TermUI.Component.RenderNode.t()

Renders a bar chart.
Options
	:data - List of %{label: String.t(), value: number()} (required)
	:direction - :horizontal or :vertical (default: :horizontal)
	:width - Chart width (default: 40, max: 1000)
	:height - Chart height for vertical (default: 10, max: 500)
	:show_values - Show value labels (default: true)
	:show_labels - Show bar labels (default: true)
	:bar_char - Bar character (default: "█")
	:colors - List of colors for bars
	:style - Style for the chart

 TermUI.Widgets.Canvas - TermUI v0.2.0

TermUI.Widgets.Canvas

Canvas widget for custom drawing with direct buffer access.
Canvas provides a drawing surface with primitives for lines, rectangles,
text, and Braille graphics. Useful for custom visualizations, charts,
diagrams, and other graphics that don't fit standard widget patterns.
Usage
Canvas.new(
 width: 40,
 height: 20,
 on_draw: fn canvas ->
 canvas
 |> Canvas.draw_rect(0, 0, 10, 5, "─", "│", "┌", "┐", "└", "┘")
 |> Canvas.draw_text(2, 2, "Hello")
 end
)
Features
	Direct character buffer access
	Drawing primitives: line, rect, text
	Braille graphics for sub-character resolution
	Clear and fill operations
	Custom render callback

Braille Graphics
Each character cell contains a 2x4 Braille dot matrix, providing
higher resolution for plotting and charts.

 Summary

 Functions

 braille_resolution(state)

 Gets the Braille resolution (dots) for the canvas.

 clear(state)

 Clears the canvas with the default character.

 clear_braille(state)

 Clears all Braille dots.

 clear_dot(state, x, y)

 Clears a Braille dot at sub-character position.

 dots_to_braille(dots)

 Converts dots to a Braille character.

 draw(width, height, draw_fn)

 Creates a canvas and draws on it with a function.

 draw_braille_line(state, x1, y1, x2, y2)

 Draws a Braille line between two points.

 draw_hline(state, x, y, length, char \\ "─")

 Draws a horizontal line.

 draw_line(state, x1, y1, x2, y2, char \\ "•")

 Draws a line between two points using Bresenham's algorithm.

 draw_rect(state, x, y, width, height, border \\ %{})

 Draws a rectangle outline.

 draw_text(state, x, y, text)

 Draws text at a position.

 draw_vline(state, x, y, length, char \\ "│")

 Draws a vertical line.

 empty_braille()

 Returns empty Braille character.

 fill(state, char)

 Fills the canvas with a character.

 fill_rect(state, x, y, width, height, char)

 Fills a rectangle with a character.

 full_braille()

 Returns full Braille character (all dots set).

 get_char(state, x, y)

 Gets a character at a position.

 new(opts)

 Creates new Canvas widget props.

 resize(state, width, height)

 Updates the canvas dimensions.

 set_char(state, x, y, char)

 Sets a character at a position.

 set_dot(state, x, y)

 Sets a Braille dot at sub-character position.

 to_strings(state)

 Renders the canvas state to a list of strings.

 Functions

 braille_resolution(state)

 @spec braille_resolution(map()) :: {integer(), integer()}

Gets the Braille resolution (dots) for the canvas.

 clear(state)

 @spec clear(map()) :: map()

Clears the canvas with the default character.

 clear_braille(state)

 @spec clear_braille(map()) :: map()

Clears all Braille dots.

 clear_dot(state, x, y)

 @spec clear_dot(map(), integer(), integer()) :: map()

Clears a Braille dot at sub-character position.

 dots_to_braille(dots)

 @spec dots_to_braille([{integer(), integer()}]) :: String.t()

Converts dots to a Braille character.
Takes a list of {x, y} coordinates within a 2x4 cell.

 draw(width, height, draw_fn)

 @spec draw(integer(), integer(), (map() -> map())) :: map()

Creates a canvas and draws on it with a function.

 draw_braille_line(state, x1, y1, x2, y2)

 @spec draw_braille_line(map(), integer(), integer(), integer(), integer()) :: map()

Draws a Braille line between two points.
Coordinates are in sub-character (dot) space:
	X resolution: width * 2
	Y resolution: height * 4

 draw_hline(state, x, y, length, char \\ "─")

 @spec draw_hline(map(), integer(), integer(), integer(), String.t()) :: map()

Draws a horizontal line.

 draw_line(state, x1, y1, x2, y2, char \\ "•")

 @spec draw_line(map(), integer(), integer(), integer(), integer(), String.t()) ::
 map()

Draws a line between two points using Bresenham's algorithm.

 draw_rect(state, x, y, width, height, border \\ %{})

 @spec draw_rect(map(), integer(), integer(), integer(), integer(), map()) :: map()

Draws a rectangle outline.
Border Options
The border map can contain:
	:h - Horizontal character (default: "─")
	:v - Vertical character (default: "│")
	:tl - Top-left corner (default: "┌")
	:tr - Top-right corner (default: "┐")
	:bl - Bottom-left corner (default: "└")
	:br - Bottom-right corner (default: "┘")

 draw_text(state, x, y, text)

 @spec draw_text(map(), integer(), integer(), String.t()) :: map()

Draws text at a position.

 draw_vline(state, x, y, length, char \\ "│")

 @spec draw_vline(map(), integer(), integer(), integer(), String.t()) :: map()

Draws a vertical line.

 empty_braille()

 @spec empty_braille() :: String.t()

Returns empty Braille character.

 fill(state, char)

 @spec fill(map(), String.t()) :: map()

Fills the canvas with a character.

 fill_rect(state, x, y, width, height, char)

 @spec fill_rect(map(), integer(), integer(), integer(), integer(), String.t()) ::
 map()

Fills a rectangle with a character.

 full_braille()

 @spec full_braille() :: String.t()

Returns full Braille character (all dots set).

 get_char(state, x, y)

 @spec get_char(map(), integer(), integer()) :: String.t() | nil

Gets a character at a position.

 new(opts)

 @spec new(keyword()) :: map()

Creates new Canvas widget props.
Options
	:width - Canvas width in characters (default: 40)
	:height - Canvas height in characters (default: 20)
	:default_char - Character to fill canvas (default: " ")
	:on_draw - Callback function to draw on canvas

 resize(state, width, height)

 @spec resize(map(), integer(), integer()) :: map()

Updates the canvas dimensions.

 set_char(state, x, y, char)

 @spec set_char(map(), integer(), integer(), String.t()) :: map()

Sets a character at a position.

 set_dot(state, x, y)

 @spec set_dot(map(), integer(), integer()) :: map()

Sets a Braille dot at sub-character position.
Each character cell is 2 dots wide and 4 dots high.

 to_strings(state)

 @spec to_strings(map()) :: [String.t()]

Renders the canvas state to a list of strings.

 TermUI.Widgets.ClusterDashboard - TermUI v0.2.0

TermUI.Widgets.ClusterDashboard

ClusterDashboard widget for visualizing distributed Erlang clusters.
ClusterDashboard displays cluster connectivity, node health metrics,
cross-node process registries, and connection events. It provides
tools for monitoring and debugging distributed BEAM applications.
Usage
ClusterDashboard.new(
 update_interval: 2000,
 show_health_metrics: true,
 show_pg_groups: true
)
Features
	Connected nodes list with status indicators
	Node health metrics (CPU, memory, scheduler utilization)
	Cross-node process registry (:global names)
	PG group membership visualization
	Network partition detection and alerts
	Node connection/disconnection event log
	RPC interface for remote node inspection

Keyboard Controls
	Up/Down: Navigate node/item list
	PageUp/PageDown: Scroll by page
	Enter: Toggle details panel
	r: Refresh now
	g: Show :global names view
	p: Show :pg groups view
	n: Show nodes view
	e: Show events view
	i: Inspect selected node (RPC details)
	Escape: Close details

 Summary

 Types

 node_event()

 node_info()

 node_status()

 view_mode()

 Functions

 distributed?(state)

 Check if cluster is distributed.

 get_selected_node(state)

 Get currently selected node.

 new(opts \\ [])

 Creates new ClusterDashboard widget props.

 node_count(state)

 Get node count.

 refresh(state)

 Force refresh the cluster data.

 rpc_call(node, module, function, args)

 Perform RPC call to a node with timeout.

 set_interval(state, interval)

 Set the update interval.

 Types

 node_event()

 @type node_event() :: %{
 node: node(),
 event: :nodeup | :nodedown,
 timestamp: DateTime.t()
}

 node_info()

 @type node_info() :: %{
 node: node(),
 status: node_status(),
 connected_at: DateTime.t() | nil,
 metrics: map() | nil
}

 node_status()

 @type node_status() :: :connected | :disconnected | :local

 view_mode()

 @type view_mode() :: :nodes | :globals | :pg_groups | :events

 Functions

 distributed?(state)

 @spec distributed?(map()) :: boolean()

Check if cluster is distributed.

 get_selected_node(state)

 @spec get_selected_node(map()) :: node_info() | nil

Get currently selected node.

 new(opts \\ [])

 @spec new(keyword()) :: map()

Creates new ClusterDashboard widget props.
Options
	:update_interval - Refresh interval in ms (default: 2000)
	:show_health_metrics - Fetch and show CPU/memory/load (default: true)
	:show_pg_groups - Show :pg process groups (default: true)
	:show_global_names - Show :global registered names (default: true)
	:on_node_select - Callback when node is selected

 node_count(state)

 @spec node_count(map()) :: non_neg_integer()

Get node count.

 refresh(state)

 @spec refresh(map()) :: {:ok, map()}

Force refresh the cluster data.

 rpc_call(node, module, function, args)

 @spec rpc_call(node(), module(), atom(), list()) :: term() | {:error, term()}

Perform RPC call to a node with timeout.

 set_interval(state, interval)

 @spec set_interval(map(), non_neg_integer()) :: {:ok, map()}

Set the update interval.

 TermUI.Widgets.CommandPalette - TermUI v0.2.0

TermUI.Widgets.CommandPalette

Simple command dropdown for filtering and selecting commands.
Shows a list of commands filtered by prefix as the user types.
Similar to typing / in Claude Code to see available slash commands.
Usage
Define commands
commands = [
 %{id: :help, label: "/help", action: fn -> :ok end},
 %{id: :save, label: "/save", action: fn -> :ok end},
 %{id: :quit, label: "/quit", action: fn -> :ok end}
]

Create and show palette
props = CommandPalette.new(commands: commands)
{:ok, palette} = CommandPalette.init(props)

Render dropdown when visible
if CommandPalette.visible?(palette) do
 CommandPalette.render(palette, area)
end
Keyboard Navigation
	Type to filter by prefix
	Up/Down: Navigate through results
	Enter: Execute selected command
	Escape: Close dropdown
	Backspace: Delete character

 Summary

 Functions

 get_query(state)

 Gets the current query.

 get_selected(state)

 Gets the currently selected command.

 hide(state)

 Hides the command palette.

 new(opts)

 Creates new CommandPalette widget props.

 show(state)

 Shows the command palette.

 toggle(state)

 Toggles the command palette visibility.

 visible?(state)

 Checks if the palette is visible.

 Functions

 get_query(state)

 @spec get_query(map()) :: String.t()

Gets the current query.

 get_selected(state)

 @spec get_selected(map()) :: map() | nil

Gets the currently selected command.

 hide(state)

 @spec hide(map()) :: map()

Hides the command palette.

 new(opts)

 @spec new(keyword()) :: map()

Creates new CommandPalette widget props.
Options
	:commands - List of command maps (required). Each command has:	:id - Unique identifier (atom)
	:label - Display text (string)
	:action - Function to execute (fn -> ... end)

	:max_visible - Maximum visible results (default: 8)

 show(state)

 @spec show(map()) :: map()

Shows the command palette.

 toggle(state)

 @spec toggle(map()) :: map()

Toggles the command palette visibility.

 visible?(state)

 @spec visible?(map()) :: boolean()

Checks if the palette is visible.

 TermUI.Widgets.ContextMenu - TermUI v0.2.0

TermUI.Widgets.ContextMenu

Context menu widget for displaying floating menus at cursor position.
Context menu appears at a specific position (usually on right-click) and
displays a list of actions. It automatically closes on selection, escape,
or clicking outside.
Usage
ContextMenu.new(
 items: [
 ContextMenu.action(:cut, "Cut", shortcut: "Ctrl+X"),
 ContextMenu.action(:copy, "Copy", shortcut: "Ctrl+C"),
 ContextMenu.action(:paste, "Paste", shortcut: "Ctrl+V"),
 ContextMenu.separator(),
 ContextMenu.action(:select_all, "Select All", shortcut: "Ctrl+A")
],
 position: {x, y},
 on_select: fn id -> handle_action(id) end,
 on_close: fn -> handle_close() end
)
Features
	Floating overlay at specified position
	Keyboard navigation (Up/Down/Enter/Escape)
	Closes on selection or escape
	Closes on click outside menu bounds
	Z-order above other content

 Summary

 Functions

 action(id, label, opts \\ [])

 Creates an action menu item.

 get_cursor(state)

 Gets the currently focused item ID.

 hide(state)

 Hides the context menu.

 new(opts)

 Creates new ContextMenu widget props.

 separator()

 Creates a separator.

 set_position(state, position)

 Updates the position of the context menu.

 show(state)

 Shows the context menu.

 visible?(state)

 Gets whether the context menu is visible.

 Functions

 action(id, label, opts \\ [])

 @spec action(term(), String.t(), keyword()) :: map()

Creates an action menu item.

 get_cursor(state)

 @spec get_cursor(map()) :: term()

Gets the currently focused item ID.

 hide(state)

 @spec hide(map()) :: map()

Hides the context menu.

 new(opts)

 @spec new(keyword()) :: map()

Creates new ContextMenu widget props.
Options
	:items - List of menu items (required)
	:position - {x, y} tuple for menu position (required)
	:on_select - Callback when item is selected
	:on_close - Callback when menu is closed
	:item_style - Style for normal items
	:selected_style - Style for focused item
	:disabled_style - Style for disabled items

 separator()

 @spec separator() :: map()

Creates a separator.

 set_position(state, position)

 @spec set_position(
 map(),
 {non_neg_integer(), non_neg_integer()}
) :: map()

Updates the position of the context menu.

 show(state)

 @spec show(map()) :: map()

Shows the context menu.

 visible?(state)

 @spec visible?(map()) :: boolean()

Gets whether the context menu is visible.

 TermUI.Widgets.Dialog - TermUI v0.2.0

TermUI.Widgets.Dialog

Dialog widget for modal overlays.
Dialog appears centered over the application with a backdrop, traps focus,
and handles Escape for cancellation. Use for confirmations, forms, and
important messages.
Usage
Dialog.new(
 title: "Confirm Delete",
 content: delete_confirmation_content(),
 buttons: [
 %{id: :cancel, label: "Cancel"},
 %{id: :confirm, label: "Delete", style: :danger}
],
 on_close: fn -> dismiss_dialog() end,
 on_confirm: fn button_id -> handle_action(button_id) end
)
Features
	Centered display with customizable width/height
	Semi-transparent backdrop
	Focus trapping (Tab cycles within dialog)
	Escape to close
	Button navigation and selection

Keyboard Navigation
	Tab/Shift+Tab: Move between buttons
	Enter/Space: Activate focused button
	Escape: Close dialog

 Summary

 Functions

 focus_button(state, button_id)

 Sets focus to a specific button.

 get_focused_button(state)

 Gets the currently focused button ID.

 hide(state)

 Hides the dialog.

 new(opts)

 Creates new Dialog widget props.

 set_content(state, content)

 Updates the dialog content.

 set_title(state, title)

 Updates the dialog title.

 show(state)

 Shows the dialog.

 visible?(state)

 Gets whether the dialog is visible.

 Functions

 focus_button(state, button_id)

 @spec focus_button(map(), term()) :: map()

Sets focus to a specific button.

 get_focused_button(state)

 @spec get_focused_button(map()) :: term()

Gets the currently focused button ID.

 hide(state)

 @spec hide(map()) :: map()

Hides the dialog.

 new(opts)

 @spec new(keyword()) :: map()

Creates new Dialog widget props.
Options
	:title - Dialog title (required)
	:content - Dialog body content (render node)
	:buttons - List of button definitions
	:width - Dialog width (default: 40)
	:on_close - Callback when dialog is closed
	:on_confirm - Callback when button is activated
	:closeable - Whether Escape closes dialog (default: true)
	:title_style - Style for title bar
	:content_style - Style for content area
	:button_style - Style for buttons
	:focused_button_style - Style for focused button

 set_content(state, content)

 @spec set_content(map(), term()) :: map()

Updates the dialog content.

 set_title(state, title)

 @spec set_title(map(), String.t()) :: map()

Updates the dialog title.

 show(state)

 @spec show(map()) :: map()

Shows the dialog.

 visible?(state)

 @spec visible?(map()) :: boolean()

Gets whether the dialog is visible.

 TermUI.Widgets.FormBuilder - TermUI v0.2.0

TermUI.Widgets.FormBuilder

FormBuilder widget for structured forms with multiple field types.
Provides comprehensive form handling with validation, navigation,
conditional fields, and field grouping.
Usage
FormBuilder.new(
 fields: [
 %{id: :username, type: :text, label: "Username", required: true},
 %{id: :password, type: :password, label: "Password", required: true},
 %{id: :remember, type: :checkbox, label: "Remember me"},
 %{id: :role, type: :select, label: "Role",
 options: [{"admin", "Admin"}, {"user", "User"}]}
],
 on_submit: fn values -> handle_submit(values) end,
 on_change: fn field_id, value -> handle_change(field_id, value) end
)
Field Types
	:text - Single line text input
	:password - Masked text input
	:checkbox - Boolean toggle
	:radio - Single selection from options
	:select - Dropdown single selection
	:multi_select - Multiple selection from options

Keyboard Navigation
	Tab/Shift+Tab: Move between fields
	Up/Down: Navigate options (radio/select/multi_select)
	Space: Toggle checkbox, select option
	Enter: Submit form (when on submit button)
	Escape: Cancel editing

 Summary

 Types

 field_def()

 field_type()

 group_def()

 Functions

 focus_field(state, field_id)

 Focuses a specific field.

 get_errors(state)

 Gets all validation errors.

 get_focused_field(state)

 Gets the currently focused field.

 get_value(state, field_id)

 Gets the value of a specific field.

 get_values(state)

 Gets the current form values.

 new(opts)

 Creates new FormBuilder widget props.

 reset(state)

 Resets the form to initial values.

 set_value(state, field_id, value)

 Sets the value of a specific field.

 set_values(state, values)

 Sets multiple field values at once.

 toggle_group(state, group_id)

 Toggles a group's collapsed state.

 valid?(state)

 Checks if the form has any validation errors.

 validate(state)

 Validates all fields and returns updated state.

 Types

 field_def()

 @type field_def() :: %{
 id: atom(),
 type: field_type(),
 label: String.t(),
 options: [{term(), String.t()}] | nil,
 required: boolean(),
 validators: [(term() -> :ok | {:error, String.t()})],
 visible_when: (map() -> boolean()) | nil,
 group: atom() | nil,
 placeholder: String.t() | nil,
 default: term() | nil
}

 field_type()

 @type field_type() :: :text | :password | :checkbox | :radio | :select | :multi_select

 group_def()

 @type group_def() :: %{id: atom(), label: String.t(), collapsible: boolean()}

 Functions

 focus_field(state, field_id)

 @spec focus_field(map(), atom()) :: map()

Focuses a specific field.

 get_errors(state)

 @spec get_errors(map()) :: map()

Gets all validation errors.

 get_focused_field(state)

 @spec get_focused_field(map()) :: atom() | nil

Gets the currently focused field.

 get_value(state, field_id)

 @spec get_value(map(), atom()) :: term()

Gets the value of a specific field.

 get_values(state)

 @spec get_values(map()) :: map()

Gets the current form values.

 new(opts)

 @spec new(keyword()) :: map()

Creates new FormBuilder widget props.
Options
	:fields - List of field definitions (required)
	:groups - List of group definitions for organizing fields
	:on_submit - Callback when form is submitted
	:on_change - Callback when any field value changes
	:values - Initial field values
	:show_submit_button - Whether to show submit button (default: true)
	:submit_label - Label for submit button (default: "Submit")
	:validate_on_blur - Validate when field loses focus (default: true)

 reset(state)

 @spec reset(map()) :: map()

Resets the form to initial values.

 set_value(state, field_id, value)

 @spec set_value(map(), atom(), term()) :: map()

Sets the value of a specific field.

 set_values(state, values)

 @spec set_values(map(), map()) :: map()

Sets multiple field values at once.

 toggle_group(state, group_id)

 @spec toggle_group(map(), atom()) :: map()

Toggles a group's collapsed state.

 valid?(state)

 @spec valid?(map()) :: boolean()

Checks if the form has any validation errors.

 validate(state)

 @spec validate(map()) :: map()

Validates all fields and returns updated state.

 TermUI.Widgets.Gauge - TermUI v0.2.0

TermUI.Widgets.Gauge

Gauge widget for displaying a single value within a range.
Shows value as a bar or arc with min/max labels and optional
color zones for visual feedback.
Usage
Gauge.render(
 value: 75,
 min: 0,
 max: 100,
 width: 30,
 zones: [
 {0, :green},
 {60, :yellow},
 {80, :red}
]
)
Display Types
	:bar - Horizontal bar (default)
	:arc - Semi-circular arc using block characters

 Summary

 Functions

 percentage(value, opts \\ [])

 Creates a simple percentage gauge.

 render(opts)

 Renders a gauge.

 traffic_light(opts)

 Creates a gauge with traffic light colors (green/yellow/red).

 Functions

 percentage(value, opts \\ [])

 @spec percentage(
 number(),
 keyword()
) :: TermUI.Component.RenderNode.t()

Creates a simple percentage gauge.
Examples
Gauge.percentage(75, width: 20)

 render(opts)

 @spec render(keyword()) :: TermUI.Component.RenderNode.t()

Renders a gauge.
Options
	:value - Current value (required)
	:min - Minimum value (default: 0)
	:max - Maximum value (default: 100)
	:width - Gauge width (default: 40, max: 1000)
	:type - :bar or :arc (default: :bar)
	:show_value - Show numeric value (default: true)
	:show_range - Show min/max labels (default: true)
	:zones - List of {threshold, style} for color zones
	:label - Label for the gauge
	:bar_char - Character for filled portion
	:empty_char - Character for empty portion

 traffic_light(opts)

 @spec traffic_light(keyword()) :: TermUI.Component.RenderNode.t()

Creates a gauge with traffic light colors (green/yellow/red).
Options
	:value - Current value (required)
	:warning - Yellow zone threshold (default: 60)
	:danger - Red zone threshold (default: 80)

Note: You need to provide actual Style structs for the zones to be visible.

 TermUI.Widgets.LineChart - TermUI v0.2.0

TermUI.Widgets.LineChart

Line chart widget using Braille patterns for sub-character resolution.
Each Braille character cell is 2 dots wide and 4 dots tall, enabling
smooth line rendering in text mode. Perfect for time series visualization.
Usage
LineChart.render(
 series: [
 %{data: [1, 3, 5, 2, 8], color: :blue},
 %{data: [2, 4, 3, 6, 4], color: :red}
],
 width: 40,
 height: 10
)
Braille Patterns
Braille patterns use Unicode range U+2800 to U+28FF.
Each cell has 8 dots arranged as:
1 4
2 5
3 6
7 8

 Summary

 Functions

 dots_to_braille(dots)

 Converts coordinates to a single Braille character.

 empty_braille()

 Returns an empty Braille character.

 full_braille()

 Returns a full Braille character (all dots).

 render(opts)

 Renders a line chart using Braille patterns.

 Functions

 dots_to_braille(dots)

 @spec dots_to_braille([{0 | 1, 0..3}]) :: String.t()

Converts coordinates to a single Braille character.
Useful for drawing individual points.

 empty_braille()

 @spec empty_braille() :: String.t()

Returns an empty Braille character.

 full_braille()

 @spec full_braille() :: String.t()

Returns a full Braille character (all dots).

 render(opts)

 @spec render(keyword()) :: TermUI.Component.RenderNode.t()

Renders a line chart using Braille patterns.
Options
	:series - List of series with data and optional color
	:data - Single series data (alternative to :series)
	:width - Chart width in characters (default: 40, max: 1000)
	:height - Chart height in characters (default: 10, max: 500)
	:min - Minimum Y value (default: auto)
	:max - Maximum Y value (default: auto)
	:show_axis - Show axis lines (default: false)
	:style - Style for the chart

 TermUI.Widgets.LogViewer - TermUI v0.2.0

TermUI.Widgets.LogViewer

LogViewer widget for displaying real-time logs with virtual scrolling.
LogViewer efficiently displays large log files (millions of lines) using
virtual scrolling, with support for search, filtering, syntax highlighting,
and bookmarking.
Usage
LogViewer.new(
 lines: log_lines,
 tail_mode: true,
 highlight_levels: true
)
Features
	Virtual scrolling for efficient rendering of large datasets
	Tail mode for live log monitoring
	Search with regex support and match highlighting
	Syntax highlighting for log levels and timestamps
	Filtering by level, source, or pattern
	Line bookmarking
	Selection and copy functionality
	Wrap/truncate toggle for long lines

Keyboard Controls
	Up/Down: Move cursor
	PageUp/PageDown: Scroll by page
	Home/End: Jump to first/last line
	/: Start search
	n/N: Next/previous search match
	f: Toggle filter mode
	b: Toggle bookmark on current line
	B: Jump to next bookmark
	t: Toggle tail mode
	w: Toggle wrap mode
	Space: Start/extend selection
	Escape: Clear search/filter/selection

 Summary

 Types

 filter_spec()

 log_entry()

 log_level()

 search_state()

 Functions

 add_line(state, line)

 Adds a single log line to the viewer.

 add_lines(state, new_lines)

 Adds multiple log lines to the viewer.

 clear(state)

 Clears all log lines.

 clear_filter(state)

 Clears the current filter.

 get_bookmarks(state)

 Gets the list of bookmarked line indices.

 get_search_matches(state)

 Gets the current search matches.

 get_selected_text(state)

 Gets the currently selected text.

 goto_line(state, line_num)

 Jumps to a specific line number.

 line_count(state)

 Gets the total number of lines.

 new(opts)

 Creates new LogViewer widget props.

 search(state, pattern)

 Starts a search with the given pattern.

 set_filter(state, filter)

 Sets a filter on the log viewer.

 tail_mode?(state)

 Checks if tail mode is enabled.

 visible_line_count(state)

 Gets the number of visible lines (after filtering).

 Types

 filter_spec()

 @type filter_spec() :: %{
 levels: [log_level()] | nil,
 source: String.t() | nil,
 pattern: Regex.t() | String.t() | nil,
 bookmarks_only: boolean()
}

 log_entry()

 @type log_entry() :: %{
 id: non_neg_integer(),
 timestamp: DateTime.t() | nil,
 level: log_level() | nil,
 source: String.t() | nil,
 message: String.t(),
 raw: String.t()
}

 log_level()

 @type log_level() ::
 :debug | :info | :notice | :warning | :error | :critical | :alert | :emergency

 search_state()

 @type search_state() :: %{
 pattern: Regex.t() | String.t(),
 matches: [non_neg_integer()],
 current_match: non_neg_integer(),
 highlight: boolean()
}

 Functions

 add_line(state, line)

 @spec add_line(map(), String.t() | log_entry()) :: map()

Adds a single log line to the viewer.

 add_lines(state, new_lines)

 @spec add_lines(map(), [String.t() | log_entry()]) :: map()

Adds multiple log lines to the viewer.

 clear(state)

 @spec clear(map()) :: map()

Clears all log lines.

 clear_filter(state)

 @spec clear_filter(map()) :: map()

Clears the current filter.

 get_bookmarks(state)

 @spec get_bookmarks(map()) :: [non_neg_integer()]

Gets the list of bookmarked line indices.

 get_search_matches(state)

 @spec get_search_matches(map()) :: [non_neg_integer()]

Gets the current search matches.

 get_selected_text(state)

 @spec get_selected_text(map()) :: String.t()

Gets the currently selected text.

 goto_line(state, line_num)

 @spec goto_line(map(), non_neg_integer()) :: {:ok, map()}

Jumps to a specific line number.

 line_count(state)

 @spec line_count(map()) :: non_neg_integer()

Gets the total number of lines.

 new(opts)

 @spec new(keyword()) :: map()

Creates new LogViewer widget props.
Options
	:lines - Initial log lines (strings or log entries)
	:max_lines - Maximum lines to keep in buffer (default: 100_000)
	:tail_mode - Auto-scroll to new lines (default: true)
	:wrap_lines - Wrap long lines (default: false)
	:show_line_numbers - Display line numbers (default: true)
	:show_timestamps - Display timestamps column (default: false)
	:show_levels - Display level column (default: true)
	:highlight_levels - Color-code by level (default: true)
	:on_select - Callback when lines are selected
	:on_copy - Callback when copy is requested
	:parser - Custom log parser function

 search(state, pattern)

 @spec search(map(), String.t()) :: map()

Starts a search with the given pattern.

 set_filter(state, filter)

 @spec set_filter(map(), filter_spec()) :: map()

Sets a filter on the log viewer.

 tail_mode?(state)

 @spec tail_mode?(map()) :: boolean()

Checks if tail mode is enabled.

 visible_line_count(state)

 @spec visible_line_count(map()) :: non_neg_integer()

Gets the number of visible lines (after filtering).

 TermUI.Widgets.Menu - TermUI v0.2.0

TermUI.Widgets.Menu

Menu widget for displaying hierarchical actions.
Menu displays a list of items that can be actions, submenus, separators,
or checkboxes. Supports keyboard navigation and shortcut display.
Usage
Menu.new(
 items: [
 Menu.action(:new, "New File", shortcut: "Ctrl+N"),
 Menu.action(:open, "Open...", shortcut: "Ctrl+O"),
 Menu.separator(),
 Menu.submenu(:recent, "Recent Files", [
 Menu.action(:file1, "document.txt"),
 Menu.action(:file2, "notes.md")
]),
 Menu.separator(),
 Menu.checkbox(:autosave, "Auto Save", checked: true),
 Menu.action(:exit, "Exit", shortcut: "Ctrl+Q")
],
 on_select: fn id -> handle_menu_action(id) end
)
Item Types
	:action - Selectable menu item
	:submenu - Item with nested menu items
	:separator - Visual divider
	:checkbox - Toggleable item with check state

Keyboard Navigation
	Up/Down: Move between items
	Enter/Space: Select item or expand submenu
	Left: Collapse submenu
	Right: Expand submenu
	Escape: Close menu

 Summary

 Types

 item_type()

 Functions

 action(id, label, opts \\ [])

 Creates an action menu item.

 checkbox(id, label, opts \\ [])

 Creates a checkbox item.

 checked?(state, item_id)

 Gets checkbox state.

 collapse(state, submenu_id)

 Collapses a submenu by ID.

 expand(state, submenu_id)

 Expands a submenu by ID.

 expanded?(state, submenu_id)

 Checks if a submenu is expanded.

 get_cursor(state)

 Gets the currently focused item ID.

 new(opts)

 Creates new Menu widget props.

 separator()

 Creates a separator.

 submenu(id, label, children)

 Creates a submenu item.

 Types

 item_type()

 @type item_type() :: :action | :submenu | :separator | :checkbox

 Functions

 action(id, label, opts \\ [])

 @spec action(term(), String.t(), keyword()) :: map()

Creates an action menu item.

 checkbox(id, label, opts \\ [])

 @spec checkbox(term(), String.t(), keyword()) :: map()

Creates a checkbox item.

 checked?(state, item_id)

 @spec checked?(map(), term()) :: boolean()

Gets checkbox state.

 collapse(state, submenu_id)

 @spec collapse(map(), term()) :: map()

Collapses a submenu by ID.

 expand(state, submenu_id)

 @spec expand(map(), term()) :: map()

Expands a submenu by ID.

 expanded?(state, submenu_id)

 @spec expanded?(map(), term()) :: boolean()

Checks if a submenu is expanded.

 get_cursor(state)

 @spec get_cursor(map()) :: term()

Gets the currently focused item ID.

 new(opts)

 @spec new(keyword()) :: map()

Creates new Menu widget props.
Options
	:items - List of menu items (required)
	:on_select - Callback when item is selected
	:on_toggle - Callback when checkbox is toggled
	:width - Menu width (default: auto)
	:item_style - Style for normal items
	:selected_style - Style for focused item
	:disabled_style - Style for disabled items

 separator()

 @spec separator() :: map()

Creates a separator.

 submenu(id, label, children)

 @spec submenu(term(), String.t(), [map()]) :: map()

Creates a submenu item.

 TermUI.Widgets.ProcessMonitor - TermUI v0.2.0

TermUI.Widgets.ProcessMonitor

ProcessMonitor widget for live BEAM process inspection.
ProcessMonitor displays live process information including PID, name,
reductions, memory, and message queue depth. It provides controls for
process management and debugging.
Usage
ProcessMonitor.new(
 update_interval: 1000,
 show_system_processes: false
)
Features
	Live process list with PID, name, reductions, memory
	Configurable update interval
	Message queue depth display with warnings
	Process links/monitors visualization
	Stack trace display
	Process actions (kill, suspend, resume)
	Sorting by any field
	Filtering by name/module

Keyboard Controls
	Up/Down: Move selection
	PageUp/PageDown: Scroll by page
	Enter: Toggle details panel
	r: Refresh now
	s: Cycle sort field
	S: Toggle sort direction
	/: Start filter input
	k: Kill selected process (with confirmation)
	p: Pause/resume selected process
	l: Show links/monitors
	t: Show stack trace
	Escape: Clear filter/close details

 Summary

 Types

 process_info()

 sort_direction()

 sort_field()

 thresholds()

 Functions

 get_selected(state)

 Get currently selected process.

 get_stack_trace(pid)

 Get stack trace for a process.

 new(opts)

 Creates new ProcessMonitor widget props.

 process_count(state)

 Get process count.

 refresh(state)

 Force refresh the process list.

 set_filter(state, filter)

 Set filter pattern.

 set_interval(state, interval)

 Set the update interval.

 set_sort(state, field, direction)

 Set sorting options.

 Types

 process_info()

 @type process_info() :: %{
 pid: pid(),
 registered_name: atom() | nil,
 initial_call: {module(), atom(), arity()} | nil,
 current_function: {module(), atom(), arity()} | nil,
 reductions: non_neg_integer(),
 memory: non_neg_integer(),
 message_queue_len: non_neg_integer(),
 status: atom(),
 links: [pid()],
 monitors: [term()],
 monitored_by: [pid()],
 stack_trace: [term()] | nil
}

 sort_direction()

 @type sort_direction() :: :asc | :desc

 sort_field()

 @type sort_field() :: :pid | :name | :reductions | :memory | :queue | :status

 thresholds()

 @type thresholds() :: %{
 queue_warning: non_neg_integer(),
 queue_critical: non_neg_integer(),
 memory_warning: non_neg_integer(),
 memory_critical: non_neg_integer()
}

 Functions

 get_selected(state)

 @spec get_selected(map()) :: process_info() | nil

Get currently selected process.

 get_stack_trace(pid)

 @spec get_stack_trace(pid()) :: [term()] | nil

Get stack trace for a process.

 new(opts)

 @spec new(keyword()) :: map()

Creates new ProcessMonitor widget props.
Options
	:update_interval - Refresh interval in ms (default: 1000)
	:show_system_processes - Include system processes (default: false)
	:thresholds - Warning thresholds map
	:on_select - Callback when process is selected
	:on_action - Callback when action is performed

 process_count(state)

 @spec process_count(map()) :: non_neg_integer()

Get process count.

 refresh(state)

 @spec refresh(map()) :: {:ok, map()}

Force refresh the process list.

 set_filter(state, filter)

 @spec set_filter(map(), String.t() | nil) :: {:ok, map()}

Set filter pattern.

 set_interval(state, interval)

 @spec set_interval(map(), non_neg_integer()) :: {:ok, map()}

Set the update interval.

 set_sort(state, field, direction)

 @spec set_sort(map(), sort_field(), sort_direction()) :: {:ok, map()}

Set sorting options.

 TermUI.Widgets.ScrollBar - TermUI v0.2.0

TermUI.Widgets.ScrollBar

Standalone scroll bar widget.
ScrollBar provides a visual indicator and interactive control for scrolling.
Can be used independently or integrated with other scrollable widgets.
Usage
ScrollBar.new(
 orientation: :vertical,
 total: 100,
 visible: 20,
 position: 0,
 length: 20,
 on_scroll: fn pos -> handle_scroll(pos) end
)
Features
	Vertical and horizontal orientations
	Proportional thumb size based on visible/total ratio
	Track click for page scrolling
	Drag scrolling for smooth navigation
	Customizable appearance

Mouse Interaction
	Click on thumb: Start dragging
	Click on track: Page scroll toward click
	Drag thumb: Smooth scrolling

 Summary

 Functions

 can_scroll?(state)

 Returns true if scrolling is possible (content exceeds visible).

 get_fraction(state)

 Gets the scroll fraction (0.0 - 1.0).

 get_position(state)

 Gets the current scroll position.

 horizontal(opts)

 Creates a simple horizontal scroll bar.

 new(opts)

 Creates new ScrollBar widget props.

 set_dimensions(state, total, visible)

 Updates the content dimensions.

 set_fraction(state, fraction)

 Sets scroll by fraction (0.0 - 1.0).

 set_position(state, position)

 Sets the scroll position.

 vertical(opts)

 Creates a simple vertical scroll bar.

 visible_fraction(state)

 Returns the visible fraction (thumb size ratio).

 Functions

 can_scroll?(state)

 @spec can_scroll?(map()) :: boolean()

Returns true if scrolling is possible (content exceeds visible).

 get_fraction(state)

 @spec get_fraction(map()) :: float()

Gets the scroll fraction (0.0 - 1.0).

 get_position(state)

 @spec get_position(map()) :: integer()

Gets the current scroll position.

 horizontal(opts)

 @spec horizontal(keyword()) :: map()

Creates a simple horizontal scroll bar.

 new(opts)

 @spec new(keyword()) :: map()

Creates new ScrollBar widget props.
Options
	:orientation - :vertical or :horizontal (default: :vertical)
	:total - Total content size (default: 100)
	:visible - Visible content size (default: 20)
	:position - Current scroll position (default: 0)
	:length - Bar length in characters (default: 20)
	:on_scroll - Callback when position changes
	:track_char - Character for track (default: "░")
	:thumb_char - Character for thumb (default: "█")
	:min_thumb_size - Minimum thumb size (default: 1)

 set_dimensions(state, total, visible)

 @spec set_dimensions(map(), integer(), integer()) :: map()

Updates the content dimensions.

 set_fraction(state, fraction)

 @spec set_fraction(map(), float()) :: map()

Sets scroll by fraction (0.0 - 1.0).

 set_position(state, position)

 @spec set_position(map(), integer()) :: map()

Sets the scroll position.

 vertical(opts)

 @spec vertical(keyword()) :: map()

Creates a simple vertical scroll bar.

 visible_fraction(state)

 @spec visible_fraction(map()) :: float()

Returns the visible fraction (thumb size ratio).

 TermUI.Widgets.Sparkline - TermUI v0.2.0

TermUI.Widgets.Sparkline

Sparkline widget for compact inline trend visualization.
Uses vertical bar characters (▁▂▃▄▅▆▇█) to display values in minimal space.
Perfect for inline data display within text.
Usage
Sparkline.render(
 values: [1, 3, 5, 2, 8, 4, 6],
 min: 0,
 max: 10
)
Bar Characters
The sparkline uses 8 levels of vertical bar characters:
▁ (1/8), ▂ (2/8), ▃ (3/8), ▄ (4/8), ▅ (5/8), ▆ (6/8), ▇ (7/8), █ (8/8)

 Summary

 Functions

 bar_characters()

 Returns the list of bar characters used by sparklines.

 render(opts)

 Renders a sparkline from values.

 render_labeled(opts)

 Renders a labeled sparkline with min/max indicators.

 to_sparkline(values, opts \\ [])

 Creates a sparkline string from values (returns string, not render node).

 value_to_bar(value, min, max)

 Converts a single value to its sparkline bar character.

 Functions

 bar_characters()

 @spec bar_characters() :: [String.t()]

Returns the list of bar characters used by sparklines.

 render(opts)

 @spec render(keyword()) :: TermUI.Component.RenderNode.t()

Renders a sparkline from values.
Options
	:values - List of numeric values (required)
	:min - Minimum value for scaling (default: auto)
	:max - Maximum value for scaling (default: auto)
	:style - Style for the sparkline
	:color_ranges - List of {threshold, color} for value-based coloring

 render_labeled(opts)

 @spec render_labeled(keyword()) :: TermUI.Component.RenderNode.t()

Renders a labeled sparkline with min/max indicators.
Options
	:values - List of numeric values (required)
	:label - Label for the sparkline
	:show_range - Show min/max values (default: true)

 to_sparkline(values, opts \\ [])

 @spec to_sparkline(
 [number()],
 keyword()
) :: String.t()

Creates a sparkline string from values (returns string, not render node).
Options
	:min - Minimum value (default: auto)
	:max - Maximum value (default: auto)

 value_to_bar(value, min, max)

 @spec value_to_bar(number(), number(), number()) :: String.t()

Converts a single value to its sparkline bar character.
Examples
iex> Sparkline.value_to_bar(5, 0, 10)
"▄"

iex> Sparkline.value_to_bar(10, 0, 10)
"█"

iex> Sparkline.value_to_bar(0, 0, 10)
"▁"

 TermUI.Widgets.SplitPane - TermUI v0.2.0

TermUI.Widgets.SplitPane

SplitPane widget for resizable multi-pane layouts.
SplitPane divides space between two or more panes with draggable dividers,
enabling complex layouts like IDE editors with sidebars and bottom panels.
Usage
SplitPane.new(
 orientation: :horizontal,
 panes: [
 %{id: :left, content: sidebar(), size: 0.25, min_size: 10},
 %{id: :right, content: main_content(), size: 0.75}
]
)
Features
	Horizontal and vertical split orientations
	Draggable dividers (keyboard and mouse)
	Min/max size constraints per pane
	Collapsible panes
	Nested splits for complex layouts
	Layout state persistence

Keyboard Controls
	Tab: Move focus between dividers
	Left/Up: Move divider left/up (decrease pane before)
	Right/Down: Move divider right/down (increase pane before)
	Shift+Left/Up: Move divider by larger step
	Shift+Right/Down: Move divider by larger step
	Enter: Toggle collapse of pane after divider
	Home: Move divider to minimum position
	End: Move divider to maximum position

 Summary

 Types

 orientation()

 pane()

 pane_spec()

 Functions

 collapse(state, pane_id)

 Collapses a pane by ID.

 expand(state, pane_id)

 Expands a collapsed pane by ID.

 get_focused_divider(state)

 Gets the focused divider index (0-indexed), or nil if none focused.

 get_layout(state)

 Gets the current layout state for persistence.

 get_pane_ids(state)

 Gets a list of pane IDs.

 new(opts)

 Creates new SplitPane widget props.

 pane(id, content, opts \\ [])

 Creates a pane specification.

 set_content(state, pane_id, content)

 Updates content of a pane by ID.

 set_layout(state, layout)

 Restores layout from a saved state.

 set_pane_size(state, pane_id, size)

 Sets the size of a pane by ID.

 toggle(state, pane_id)

 Toggles collapse state of a pane by ID.

 Types

 orientation()

 @type orientation() :: :horizontal | :vertical

 pane()

 @type pane() :: %{
 id: term(),
 content: term(),
 size: number(),
 min_size: non_neg_integer() | nil,
 max_size: non_neg_integer() | nil,
 collapsed: boolean(),
 computed_size: non_neg_integer()
}

 pane_spec()

 @type pane_spec() :: %{
 id: term(),
 content: term(),
 size: number(),
 min_size: non_neg_integer() | nil,
 max_size: non_neg_integer() | nil,
 collapsed: boolean()
}

 Functions

 collapse(state, pane_id)

 @spec collapse(map(), term()) :: map()

Collapses a pane by ID.

 expand(state, pane_id)

 @spec expand(map(), term()) :: map()

Expands a collapsed pane by ID.

 get_focused_divider(state)

 @spec get_focused_divider(map()) :: non_neg_integer() | nil

Gets the focused divider index (0-indexed), or nil if none focused.

 get_layout(state)

 @spec get_layout(map()) :: map()

Gets the current layout state for persistence.
Returns a map of pane IDs to their sizes and collapsed states.

 get_pane_ids(state)

 @spec get_pane_ids(map()) :: [term()]

Gets a list of pane IDs.

 new(opts)

 @spec new(keyword()) :: map()

Creates new SplitPane widget props.
Options
	:orientation - :horizontal (side by side) or :vertical (stacked) (default: :horizontal)
	:panes - List of pane specifications (required)
	:divider_size - Divider thickness in characters (default: 1)
	:divider_style - Style for dividers
	:focused_divider_style - Style for focused divider
	:resizable - Whether dividers can be dragged (default: true)
	:on_resize - Callback when panes are resized: fn panes -> ... end
	:on_collapse - Callback when pane is collapsed/expanded: fn {id, collapsed} -> ... end
	:persist_key - Key for layout persistence (optional)

 pane(id, content, opts \\ [])

 @spec pane(term(), term(), keyword()) :: pane_spec()

Creates a pane specification.
Options
	:size - Size as float (0.0-1.0 proportion) or integer (fixed chars/lines)
	:min_size - Minimum size in characters/lines
	:max_size - Maximum size in characters/lines
	:collapsed - Whether pane starts collapsed (default: false)

 set_content(state, pane_id, content)

 @spec set_content(map(), term(), term()) :: map()

Updates content of a pane by ID.

 set_layout(state, layout)

 @spec set_layout(map(), map()) :: map()

Restores layout from a saved state.

 set_pane_size(state, pane_id, size)

 @spec set_pane_size(map(), term(), number()) :: map()

Sets the size of a pane by ID.

 toggle(state, pane_id)

 @spec toggle(map(), term()) :: map()

Toggles collapse state of a pane by ID.

 TermUI.Widgets.StreamWidget - TermUI v0.2.0

TermUI.Widgets.StreamWidget

StreamWidget for displaying backpressure-aware streaming data.
StreamWidget can integrate with GenStage for demand-based data streaming,
providing controls for stream management and real-time statistics.
Usage
StreamWidget.new(
 buffer_size: 1000,
 overflow_strategy: :drop_oldest
)
Features
	Backpressure-aware data streaming via GenStage integration
	Demand-based flow control
	Buffer management with configurable overflow strategies
	Pause/resume stream controls
	Rate limiting for rendering
	Real-time stream statistics (items/sec)

Keyboard Controls
	Space: Toggle pause/resume
	c: Clear buffer
	s: Toggle stats display
	Up/Down: Scroll through buffer
	PageUp/PageDown: Scroll by page
	Home/End: Jump to first/last item

GenStage Integration
The widget provides a companion consumer module that can be started
separately and sends items to the widget:
{:ok, consumer} = StreamWidget.Consumer.start_link(widget_pid)
GenStage.sync_subscribe(consumer, to: producer)

 Summary

 Types

 overflow_strategy()

 stats()

 stream_item()

 stream_state()

 Functions

 add_item(state, item)

 Add a single item directly.

 add_items(state, items)

 Add items directly (for non-GenStage sources).

 buffer_count(state)

 Get current buffer count.

 clear(state)

 Clear the buffer.

 get_items(state)

 Get buffer items as a list.

 get_stats(state)

 Get current statistics.

 new(opts)

 Creates new StreamWidget props.

 pause(state)

 Pause receiving items.

 paused?(state)

 Check if stream is paused.

 resume(state)

 Resume receiving items.

 set_buffer_size(state, new_size)

 Set buffer size. Will drop oldest items if new size is smaller.

 set_overflow_strategy(state, strategy)

 Set overflow strategy.

 stream_state(state)

 Get stream state.

 Types

 overflow_strategy()

 @type overflow_strategy() :: :drop_oldest | :drop_newest | :block | :sliding

 stats()

 @type stats() :: %{
 items_received: non_neg_integer(),
 items_dropped: non_neg_integer(),
 items_per_second: float(),
 buffer_size: non_neg_integer(),
 buffer_capacity: non_neg_integer(),
 last_update: DateTime.t() | nil
}

 stream_item()

 @type stream_item() :: %{
 id: non_neg_integer(),
 timestamp: DateTime.t(),
 data: any(),
 metadata: map()
}

 stream_state()

 @type stream_state() :: :idle | :running | :paused | :error

 Functions

 add_item(state, item)

 @spec add_item(map(), any()) :: {:ok, map()}

Add a single item directly.

 add_items(state, items)

 @spec add_items(map(), [any()]) :: {:ok, map()}

Add items directly (for non-GenStage sources).

 buffer_count(state)

 @spec buffer_count(map()) :: non_neg_integer()

Get current buffer count.

 clear(state)

 @spec clear(map()) :: {:ok, map()}

Clear the buffer.

 get_items(state)

 @spec get_items(map()) :: [stream_item()]

Get buffer items as a list.

 get_stats(state)

 @spec get_stats(map()) :: stats()

Get current statistics.

 new(opts)

 @spec new(keyword()) :: map()

Creates new StreamWidget props.
Options
	:buffer_size - Maximum items in buffer (default: 1000)
	:overflow_strategy - What to do when buffer is full (default: :drop_oldest)
	:demand - How many items to request at a time (default: 10)
	:show_stats - Display statistics bar (default: true)
	:render_rate_ms - Minimum time between renders (default: 100)
	:item_renderer - Function to render each item (fn item -> String.t)
	:on_item - Callback when item is received
	:on_error - Callback when error occurs

 pause(state)

 @spec pause(map()) :: {:ok, map()}

Pause receiving items.

 paused?(state)

 @spec paused?(map()) :: boolean()

Check if stream is paused.

 resume(state)

 @spec resume(map()) :: {:ok, map()}

Resume receiving items.

 set_buffer_size(state, new_size)

 @spec set_buffer_size(map(), non_neg_integer()) :: {:ok, map()}

Set buffer size. Will drop oldest items if new size is smaller.

 set_overflow_strategy(state, strategy)

 @spec set_overflow_strategy(map(), overflow_strategy()) :: {:ok, map()}

Set overflow strategy.

 stream_state(state)

 @spec stream_state(map()) :: stream_state()

Get stream state.

 TermUI.Widgets.StreamWidget.Consumer - TermUI v0.2.0

TermUI.Widgets.StreamWidget.Consumer

GenStage consumer for StreamWidget.
This module provides a GenStage consumer that forwards events to a StreamWidget.
It handles backpressure by managing demand based on the widget's buffer state.
Usage
Start the consumer linked to a widget process
{:ok, consumer} = StreamWidget.Consumer.start_link(widget_pid)

Subscribe to a producer
GenStage.sync_subscribe(consumer, to: producer)

Or subscribe with options
GenStage.sync_subscribe(consumer, to: producer, max_demand: 100, min_demand: 50)

 Summary

 Functions

 start_link(widget_pid, opts \\ [])

 Starts a consumer linked to a widget process.

 subscribe(consumer, producer, opts \\ [])

 Subscribe to a producer.

 Functions

 start_link(widget_pid, opts \\ [])

 @spec start_link(
 pid(),
 keyword()
) :: GenServer.on_start()

Starts a consumer linked to a widget process.
Options
	:demand - How many items to request at a time (default: 10)

 subscribe(consumer, producer, opts \\ [])

 @spec subscribe(GenServer.server(), GenStage.stage(), keyword()) ::
 {:ok, reference()} | {:error, term()}

Subscribe to a producer.

 TermUI.Widgets.SupervisionTreeViewer - TermUI v0.2.0

TermUI.Widgets.SupervisionTreeViewer

SupervisionTreeViewer widget for OTP supervision hierarchy visualization.
SupervisionTreeViewer displays the supervision tree with live status indicators,
restart counts, and provides controls for process management and inspection.
Usage
SupervisionTreeViewer.new(
 root: MyApp.Supervisor,
 update_interval: 2000,
 on_select: fn node -> handle_select(node) end
)
Features
	Tree view of supervision hierarchy
	Live status indicators (running, restarting, terminated)
	Restart count and history display
	Supervisor strategy display
	Process state inspection
	Restart/terminate controls with confirmation
	Auto-refresh on supervision tree changes

Keyboard Controls
	Up/Down: Move selection
	Left: Collapse node or move to parent
	Right: Expand node or move to first child
	Enter: Toggle expand/collapse
	i: Show process info panel
	r: Restart selected process (with confirmation)
	k: Terminate selected process (with confirmation)
	R: Refresh tree
	/: Filter by name
	Escape: Clear filter/close panel

 Summary

 Types

 node_status()

 node_type()

 sup_node()

 Functions

 collapse_all(state)

 Collapses all nodes.

 expand_all(state)

 Expands all supervisor nodes.

 get_process_state(state)

 Gets the process state for the selected node.

 get_selected(state)

 Gets the currently selected node.

 init(props)

 Initializes the SupervisionTreeViewer state.

 new(opts)

 Creates new SupervisionTreeViewer widget props.

 refresh(state)

 Forces a refresh of the supervision tree.

 set_root(state, root)

 Sets the root supervisor.

 Types

 node_status()

 @type node_status() :: :running | :restarting | :terminated | :undefined

 node_type()

 @type node_type() :: :supervisor | :worker

 sup_node()

 @type sup_node() :: %{
 id: term(),
 pid: pid() | :restarting | :undefined,
 name: atom() | nil,
 type: node_type(),
 status: node_status(),
 child_spec: map() | nil,
 strategy: atom() | nil,
 restart_count: non_neg_integer(),
 max_restarts: non_neg_integer() | nil,
 max_seconds: non_neg_integer() | nil,
 children: [sup_node()] | nil,
 memory: non_neg_integer(),
 reductions: non_neg_integer(),
 message_queue_len: non_neg_integer(),
 depth: non_neg_integer(),
 parent_pid: pid() | nil
}

 Functions

 collapse_all(state)

 @spec collapse_all(map()) :: {:ok, map()}

Collapses all nodes.

 expand_all(state)

 @spec expand_all(map()) :: {:ok, map()}

Expands all supervisor nodes.

 get_process_state(state)

 @spec get_process_state(map()) :: {:ok, term()} | {:error, term()}

Gets the process state for the selected node.

 get_selected(state)

 @spec get_selected(map()) :: sup_node() | nil

Gets the currently selected node.

 init(props)

Initializes the SupervisionTreeViewer state.

 new(opts)

 @spec new(keyword()) :: map()

Creates new SupervisionTreeViewer widget props.
Options
	:root - Root supervisor (pid, registered name, or module) - required
	:update_interval - Refresh interval in ms (default: 2000)
	:on_select - Callback when node is selected: fn node -> ... end
	:on_action - Callback when action is performed: fn {:restarted | :terminated, pid} -> ... end

	:show_workers - Show worker processes (default: true)
	:auto_expand - Expand all nodes initially (default: true)

 refresh(state)

 @spec refresh(map()) :: {:ok, map()}

Forces a refresh of the supervision tree.

 set_root(state, root)

 @spec set_root(map(), term()) :: {:ok, map()}

Sets the root supervisor.

 TermUI.Widgets.Table - TermUI v0.2.0

TermUI.Widgets.Table

Table widget for displaying tabular data.
Table provides efficient display of large datasets with virtual scrolling,
column sorting, row selection, and flexible column layout.
Usage
Table.new(
 columns: [
 Column.new(:name, "Name"),
 Column.new(:age, "Age", width: Constraint.length(10), align: :right)
],
 data: [
 %{name: "Alice", age: 30},
 %{name: "Bob", age: 25}
],
 on_select: fn selected -> IO.inspect(selected) end
)
Features
	Virtual Scrolling: Efficiently handles 10,000+ rows
	Column Layout: Fixed, proportional, and percentage widths
	Selection: Single or multi-selection with keyboard/mouse
	Sorting: Click headers to sort ascending/descending
	Custom Rendering: Format cells with render functions

Selection Modes
	:none - No selection allowed
	:single - One row at a time
	:multi - Multiple rows with Ctrl/Shift+click

Keyboard Navigation
	Arrow keys: Move selection
	Page Up/Down: Scroll by page
	Home/End: Jump to first/last row
	Enter: Confirm selection
	Space: Toggle selection (multi mode)

 Summary

 Types

 selection_mode()

 sort_direction()

 Functions

 clear_selection(state)

 Clears the current selection.

 get_selection(state)

 Gets the current selection.

 new(opts)

 Creates a new Table widget.

 scroll_to(state, index)

 Scrolls to a specific row index.

 set_selection(state, indices)

 Sets the selection programmatically.

 sort_by(state, column_key, direction)

 Sorts table by a column.

 toggle_sort(state, column_key)

 Toggles sort on a column.

 total_count(state)

 Gets the total row count.

 visible_count(state)

 Gets the visible row count.

 Types

 selection_mode()

 @type selection_mode() :: :none | :single | :multi

 sort_direction()

 @type sort_direction() :: :asc | :desc | nil

 Functions

 clear_selection(state)

 @spec clear_selection(map()) :: map()

Clears the current selection.

 get_selection(state)

 @spec get_selection(map()) :: [map()]

Gets the current selection.
Returns
List of selected row data.

 new(opts)

 @spec new(keyword()) :: map()

Creates a new Table widget.
Options
	:columns - List of Column specs (required)
	:data - List of row maps (required)
	:selection_mode - :none, :single, or :multi (default: :single)
	:sortable - Enable sorting (default: true)
	:on_select - Callback when selection changes
	:on_sort - Callback when sort changes
	:header_style - Style for header row
	:row_style - Style for data rows
	:selected_style - Style for selected rows
	:alternating - Alternating row backgrounds (default: false)

 scroll_to(state, index)

 @spec scroll_to(map(), non_neg_integer()) :: map()

Scrolls to a specific row index.

 set_selection(state, indices)

 @spec set_selection(map(), [non_neg_integer()]) :: map()

Sets the selection programmatically.
Parameters
	state - Current table state
	indices - List of row indices to select

Returns
Updated state with new selection.

 sort_by(state, column_key, direction)

 @spec sort_by(map(), atom(), sort_direction()) :: map()

Sorts table by a column.
Parameters
	state - Current table state
	column_key - Column key to sort by
	direction - :asc, :desc, or nil to clear

Returns
Updated state with sorted data.

 toggle_sort(state, column_key)

 @spec toggle_sort(map(), atom()) :: map()

Toggles sort on a column.
Cycles through: nil -> :asc -> :desc -> nil

 total_count(state)

 @spec total_count(map()) :: non_neg_integer()

Gets the total row count.

 visible_count(state)

 @spec visible_count(map()) :: non_neg_integer()

Gets the visible row count.

 TermUI.Widgets.Table.Column - TermUI v0.2.0

TermUI.Widgets.Table.Column

Column specification for Table widget.
Defines how a column is displayed and how data is extracted from rows.
Usage
Column.new(:name, "Name")
Column.new(:age, "Age", width: Constraint.length(10))
Column.new(:status, "Status", render: &format_status/1)
Width Constraints
Columns support the full constraint system:
	Constraint.length(20) - Fixed 20 cells
	Constraint.ratio(2) - Proportional share
	Constraint.percentage(50) - 50% of available
	Constraint.fill() - Take remaining space

Custom Renderers
The render function transforms the cell value to a string:
Column.new(:date, "Date", render: fn date ->
 Calendar.strftime(date, "%Y-%m-%d")
end)

 Summary

 Types

 t()

 Functions

 align_text(text, width, align)

 Aligns text within a given width.

 new(key, header, opts \\ [])

 Creates a new column specification.

 render_cell(column, row)

 Extracts and renders the cell value from a row.

 Types

 t()

 @type t() :: %TermUI.Widgets.Table.Column{
 align: :left | :center | :right,
 header: String.t(),
 key: atom(),
 render: (term() -> String.t()) | nil,
 sortable: boolean(),
 width: TermUI.Layout.Constraint.t()
}

 Functions

 align_text(text, width, align)

 @spec align_text(String.t(), non_neg_integer(), :left | :center | :right) ::
 String.t()

Aligns text within a given width.
Parameters
	text - The text to align
	width - The available width
	align - Alignment (:left, :center, :right)

Returns
The aligned text, padded to width.

 new(key, header, opts \\ [])

 @spec new(atom(), String.t(), keyword()) :: t()

Creates a new column specification.
Parameters
	key - The map key to extract from row data
	header - The header text to display
	opts - Additional options

Options
	:width - Width constraint (default: Constraint.fill())
	:render - Custom render function (default: to_string/1)
	:sortable - Whether column can be sorted (default: true)
	:align - Text alignment :left, :center, :right (default: :left)

Examples
Column.new(:name, "Name")
Column.new(:age, "Age", width: Constraint.length(10), align: :right)

 render_cell(column, row)

 @spec render_cell(t(), map()) :: String.t()

Extracts and renders the cell value from a row.
Parameters
	column - The column specification
	row - The row data (map or struct)

Returns
The rendered string value for the cell.
Examples
column = Column.new(:name, "Name")
Column.render_cell(column, %{name: "Alice"})
=> "Alice"

 TermUI.Widgets.Tabs - TermUI v0.2.0

TermUI.Widgets.Tabs

Tabs widget for organizing content into switchable panels.
Tabs display a tab bar with labels and switch between content panels
when tabs are selected.
Usage
Tabs.new(
 tabs: [
 %{id: :home, label: "Home", content: home_content()},
 %{id: :settings, label: "Settings", content: settings_content()},
 %{id: :about, label: "About", content: about_content(), disabled: true}
],
 on_change: fn tab_id -> IO.puts("Selected: #{tab_id}") end
)
Tab Options
	:id - Unique identifier for the tab (required)
	:label - Display text in tab bar (required)
	:content - Content to display when selected (render node)
	:disabled - Whether tab can be selected (default: false)
	:closeable - Whether tab shows close button (default: false)

Keyboard Navigation
	Left/Right: Move between tabs
	Enter/Space: Select focused tab
	Home/End: Jump to first/last tab

 Summary

 Functions

 add_tab(state, tab)

 Adds a new tab.

 get_selected(state)

 Gets the currently selected tab ID.

 new(opts)

 Creates new Tabs widget props.

 remove_tab(state, tab_id)

 Removes a tab by ID.

 select(state, tab_id)

 Selects a tab by ID.

 tab_count(state)

 Returns the number of tabs.

 Functions

 add_tab(state, tab)

 @spec add_tab(map(), map()) :: map()

Adds a new tab.

 get_selected(state)

 @spec get_selected(map()) :: term()

Gets the currently selected tab ID.

 new(opts)

 @spec new(keyword()) :: map()

Creates new Tabs widget props.
Options
	:tabs - List of tab definitions (required)
	:selected - Initially selected tab ID
	:on_change - Callback when selection changes
	:on_close - Callback when tab is closed
	:tab_style - Style for inactive tabs
	:selected_style - Style for selected tab
	:disabled_style - Style for disabled tabs

 remove_tab(state, tab_id)

 @spec remove_tab(map(), term()) :: map()

Removes a tab by ID.

 select(state, tab_id)

 @spec select(map(), term()) :: map()

Selects a tab by ID.

 tab_count(state)

 @spec tab_count(map()) :: non_neg_integer()

Returns the number of tabs.

 TermUI.Widgets.TextInput - TermUI v0.2.0

TermUI.Widgets.TextInput

TextInput widget for single-line and multi-line text input.
Provides text editing with cursor movement, auto-growing height,
and scrolling for content that exceeds the visible area.
Usage
TextInput.new(
 value: "",
 placeholder: "Enter text...",
 width: 40,
 multiline: true,
 max_visible_lines: 5
)
Features
	Single-line and multi-line modes
	Ctrl+Enter for newline insertion (multiline)
	Auto-growing height up to max_visible_lines
	Scrollable area when content exceeds visible lines
	Cursor movement and text editing
	Placeholder text support
	Focus state handling

Keyboard Controls
	Left/Right: Move cursor horizontally
	Up/Down: Move cursor between lines (multiline)
	Home/End: Move to start/end of line
	Ctrl+Home/End: Move to start/end of text
	Backspace: Delete character before cursor
	Delete: Delete character at cursor
	Ctrl+Enter: Insert newline (multiline mode)
	Enter: Submit (single-line) or insert newline if configured
	Escape: Blur input

 Summary

 Functions

 clear(state)

 Clear the text input.

 get_cursor(state)

 Get the cursor position as {row, col}.

 get_line_count(state)

 Get the number of lines.

 get_value(state)

 Get the current text value.

 new(opts \\ [])

 Creates new TextInput widget props.

 set_focused(state, focused)

 Set focus state.

 set_value(state, value)

 Set the text value programmatically.

 Functions

 clear(state)

 @spec clear(map()) :: map()

Clear the text input.

 get_cursor(state)

 @spec get_cursor(map()) :: {non_neg_integer(), non_neg_integer()}

Get the cursor position as {row, col}.

 get_line_count(state)

 @spec get_line_count(map()) :: non_neg_integer()

Get the number of lines.

 get_value(state)

 @spec get_value(map()) :: String.t()

Get the current text value.

 new(opts \\ [])

 @spec new(keyword()) :: map()

Creates new TextInput widget props.
Options
	:value - Initial text value (default: "")
	:placeholder - Placeholder text when empty (default: "")
	:width - Widget width in characters (default: 40)
	:multiline - Enable multi-line mode (default: false)
	:max_lines - Maximum number of lines allowed, nil for unlimited (default: nil)
	:max_visible_lines - Lines visible before scrolling (default: 5)
	:on_change - Callback when value changes: fn(value) -> any
	:on_submit - Callback when submitted: fn(value) -> any
	:enter_submits - Enter key submits instead of newline in multiline (default: false)
	:disabled - Disable input (default: false)
	:style - Text style
	:focused_style - Style when focused
	:placeholder_style - Placeholder text style

 set_focused(state, focused)

 @spec set_focused(map(), boolean()) :: map()

Set focus state.

 set_value(state, value)

 @spec set_value(map(), String.t()) :: map()

Set the text value programmatically.

 TermUI.Widgets.Toast - TermUI v0.2.0

TermUI.Widgets.Toast

Toast notification widget for brief, auto-dismissing messages.
Toasts appear at the screen edge and automatically dismiss after a duration.
Multiple toasts stack vertically. Toasts don't capture focus or block
interaction.
Usage
Toast.new(
 message: "File saved successfully",
 type: :success,
 duration: 3000,
 position: :bottom_right
)
Toast Types
	:info - Information (blue)
	:success - Success (green)
	:warning - Warning (yellow)
	:error - Error (red)

Positions
	:top_left, :top_center, :top_right
	:bottom_left, :bottom_center, :bottom_right

 Summary

 Functions

 dismiss_toast(state)

 Dismisses the toast.

 elapsed_time(state)

 Gets the elapsed time since toast was created.

 get_position(state)

 Gets the toast position.

 get_type(state)

 Gets the toast type.

 new(opts)

 Creates new Toast widget props.

 should_dismiss?(state)

 Checks if toast should auto-dismiss based on elapsed time.

 visible?(state)

 Gets whether the toast is visible.

 Functions

 dismiss_toast(state)

 @spec dismiss_toast(map()) :: map()

Dismisses the toast.

 elapsed_time(state)

 @spec elapsed_time(map()) :: non_neg_integer()

Gets the elapsed time since toast was created.

 get_position(state)

 @spec get_position(map()) :: atom()

Gets the toast position.

 get_type(state)

 @spec get_type(map()) :: atom()

Gets the toast type.

 new(opts)

 @spec new(keyword()) :: map()

Creates new Toast widget props.
Options
	:message - Toast message (required)
	:type - Toast type: :info, :success, :warning, :error (default: :info)
	:duration - Auto-dismiss duration in ms (default: 3000, nil for no auto-dismiss)
	:position - Screen position (default: :bottom_right)
	:width - Toast width (default: 40)
	:on_dismiss - Callback when toast is dismissed
	:style - Style for toast background
	:icon_style - Style for icon
	:message_style - Style for message text

 should_dismiss?(state)

 @spec should_dismiss?(map()) :: boolean()

Checks if toast should auto-dismiss based on elapsed time.

 visible?(state)

 @spec visible?(map()) :: boolean()

Gets whether the toast is visible.

 TermUI.Widgets.ToastManager - TermUI v0.2.0

TermUI.Widgets.ToastManager

Manages multiple toast notifications with stacking.
ToastManager handles the lifecycle of multiple toasts, including
stacking, auto-dismiss, and position management.
Usage
Create manager
{:ok, manager} = ToastManager.init(%{position: :bottom_right})

Add toasts
manager = ToastManager.add_toast(manager, "File saved", :success)
manager = ToastManager.add_toast(manager, "Warning: Low disk space", :warning)

Update (check auto-dismiss)
manager = ToastManager.tick(manager)

 Summary

 Functions

 add_toast(manager, message, type \\ :info, opts \\ [])

 Adds a new toast to the manager.

 clear_all(manager)

 Clears all toasts.

 get_toasts(manager)

 Gets all visible toasts.

 new(opts \\ [])

 Creates a new ToastManager.

 render(manager, area)

 Renders all toasts with stacking.

 tick(manager)

 Updates the manager, removing dismissed toasts.

 toast_count(manager)

 Gets the count of visible toasts.

 Functions

 add_toast(manager, message, type \\ :info, opts \\ [])

 @spec add_toast(map(), String.t(), atom(), keyword()) :: map()

Adds a new toast to the manager.

 clear_all(manager)

 @spec clear_all(map()) :: map()

Clears all toasts.

 get_toasts(manager)

 @spec get_toasts(map()) :: [map()]

Gets all visible toasts.

 new(opts \\ [])

 @spec new(keyword()) :: map()

Creates a new ToastManager.

 render(manager, area)

 @spec render(map(), map()) :: term()

Renders all toasts with stacking.
Returns a list of overlay nodes that should be rendered.
Each toast is an overlay with absolute positioning.

 tick(manager)

 @spec tick(map()) :: map()

Updates the manager, removing dismissed toasts.

 toast_count(manager)

 @spec toast_count(map()) :: non_neg_integer()

Gets the count of visible toasts.

 TermUI.Widgets.TreeView - TermUI v0.2.0

TermUI.Widgets.TreeView

TreeView widget for displaying hierarchical data with expand/collapse.
TreeView renders a tree structure with indentation, supporting lazy loading
for large trees, keyboard navigation, single/multi-selection, and search filtering.
Usage
TreeView.new(
 nodes: [
 TreeView.node(:root, "Root", children: [
 TreeView.node(:child1, "Child 1"),
 TreeView.node(:child2, "Child 2", children: [
 TreeView.node(:grandchild, "Grandchild")
])
])
],
 on_select: fn node -> handle_select(node) end,
 on_expand: fn node -> load_children(node) end
)
Node Structure
Nodes are maps with:
	:id - Unique identifier (required)
	:label - Display text (required)
	:icon - Optional icon string
	:children - List of child nodes, :lazy for on-demand loading, or nil for leaf
	:disabled - Whether node is disabled
	:metadata - User-defined data

Keyboard Navigation
	Up/Down: Move cursor between visible nodes
	Left: Collapse node or move to parent
	Right: Expand node or move to first child
	Enter/Space: Toggle expand or select
	Home/End: Jump to first/last visible node
	PageUp/PageDown: Jump by page
	Ctrl+A: Select all (multi-select mode)
	Shift+Up/Down: Extend selection (multi-select mode)
	/: Start search filter
	Escape: Clear filter or deselect

 Summary

 Types

 node_id()

 tree_node()

 Functions

 branch(id, label, children, opts \\ [])

 Creates a branch node with children.

 clear_filter(state)

 Clears the filter.

 clear_selection(state)

 Clears the selection.

 collapse(state, node_id)

 Collapses a node by ID.

 collapse_all(state)

 Collapses all nodes.

 expand(state, node_id)

 Expands a node by ID.

 expand_all(state)

 Expands all nodes.

 finish_loading(state, node_id)

 Marks a node as finished loading (clears loading state).

 get_expanded(state)

 Gets the expanded node IDs.

 get_focused(state)

 Gets the currently focused node.

 get_selected(state)

 Gets the currently selected node IDs.

 lazy(id, label, opts \\ [])

 Creates a lazy-loading node.

 leaf(id, label, opts \\ [])

 Creates a leaf node (no children).

 new(opts)

 Creates new TreeView widget props.

 node(id, label, opts \\ [])

 Creates a tree node.

 set_children(state, node_id, children)

 Updates the children of a node (for lazy loading).

 set_filter(state, filter)

 Sets the filter programmatically.

 set_selected(state, node_ids)

 Sets the selection programmatically.

 Types

 node_id()

 @type node_id() :: term()

 tree_node()

 @type tree_node() :: %{
 id: node_id(),
 label: String.t(),
 icon: String.t() | nil,
 children: [tree_node()] | :lazy | nil,
 disabled: boolean(),
 metadata: map()
}

 Functions

 branch(id, label, children, opts \\ [])

 @spec branch(node_id(), String.t(), [tree_node()], keyword()) :: tree_node()

Creates a branch node with children.

 clear_filter(state)

 @spec clear_filter(map()) :: map()

Clears the filter.

 clear_selection(state)

 @spec clear_selection(map()) :: map()

Clears the selection.

 collapse(state, node_id)

 @spec collapse(map(), node_id()) :: map()

Collapses a node by ID.

 collapse_all(state)

 @spec collapse_all(map()) :: map()

Collapses all nodes.

 expand(state, node_id)

 @spec expand(map(), node_id()) :: map()

Expands a node by ID.

 expand_all(state)

 @spec expand_all(map()) :: map()

Expands all nodes.

 finish_loading(state, node_id)

 @spec finish_loading(map(), node_id()) :: map()

Marks a node as finished loading (clears loading state).

 get_expanded(state)

 @spec get_expanded(map()) :: MapSet.t(node_id())

Gets the expanded node IDs.

 get_focused(state)

 @spec get_focused(map()) :: tree_node() | nil

Gets the currently focused node.

 get_selected(state)

 @spec get_selected(map()) :: MapSet.t(node_id())

Gets the currently selected node IDs.

 lazy(id, label, opts \\ [])

 @spec lazy(node_id(), String.t(), keyword()) :: tree_node()

Creates a lazy-loading node.

 leaf(id, label, opts \\ [])

 @spec leaf(node_id(), String.t(), keyword()) :: tree_node()

Creates a leaf node (no children).

 new(opts)

 @spec new(keyword()) :: map()

Creates new TreeView widget props.
Options
	:nodes - List of root nodes (required)
	:on_select - Callback when node is selected: fn node -> ... end
	:on_expand - Callback when node is expanded: fn node -> children | :loading end

	:on_collapse - Callback when node is collapsed: fn node -> ... end
	:selection_mode - :single, :multi, or :none (default: :single)
	:show_root - Show root nodes (default: true)
	:indent_size - Characters per indent level (default: 2)
	:icons - Icon configuration map
	:initially_expanded - List of node IDs to expand initially
	:initially_selected - List of node IDs to select initially

 node(id, label, opts \\ [])

 @spec node(node_id(), String.t(), keyword()) :: tree_node()

Creates a tree node.
Options
	:children - Child nodes, :lazy for on-demand loading, or omit for leaf
	:icon - Custom icon string
	:disabled - Whether node is disabled (default: false)
	:metadata - User-defined data map

 set_children(state, node_id, children)

 @spec set_children(map(), node_id(), [tree_node()]) :: map()

Updates the children of a node (for lazy loading).

 set_filter(state, filter)

 @spec set_filter(map(), String.t() | nil) :: map()

Sets the filter programmatically.

 set_selected(state, node_ids)

 @spec set_selected(map(), [node_id()]) :: map()

Sets the selection programmatically.

 TermUI.Widgets.Viewport - TermUI v0.2.0

TermUI.Widgets.Viewport

Viewport widget for scrollable content.
Viewport displays a scrollable view of content larger than the viewport area.
It tracks scroll position, clips content to bounds, and optionally shows
scroll bars for visual feedback and interaction.
Usage
Viewport.new(
 content: large_content_tree(),
 width: 40,
 height: 20,
 scroll_bars: :both
)
Features
	Scrollable view of larger content
	Automatic content clipping to viewport bounds
	Optional vertical and horizontal scroll bars
	Keyboard navigation (arrow keys, Page Up/Down, Home/End)
	Mouse wheel scrolling
	Scroll bar drag interaction

Keyboard Navigation
	Arrow keys: Scroll by one line/column
	Page Up/Down: Scroll by viewport height
	Home/End: Scroll to top/bottom
	Ctrl+Home/End: Scroll to start/end horizontally

 Summary

 Functions

 can_scroll_horizontal?(state)

 Checks if content is scrollable horizontally.

 can_scroll_vertical?(state)

 Checks if content is scrollable vertically.

 get_scroll(state)

 Gets the current scroll position.

 new(opts)

 Creates new Viewport widget props.

 scroll_into_view(state, x, y)

 Scrolls to make a position visible.

 set_content(state, content)

 Updates the content.

 set_content_size(state, width, height)

 Updates the content dimensions.

 set_scroll(state, x, y)

 Sets the scroll position.

 visible_fraction_horizontal(state)

 Gets the visible fraction (0.0 - 1.0) for horizontal scrolling.

 visible_fraction_vertical(state)

 Gets the visible fraction (0.0 - 1.0) for vertical scrolling.

 Functions

 can_scroll_horizontal?(state)

 @spec can_scroll_horizontal?(map()) :: boolean()

Checks if content is scrollable horizontally.

 can_scroll_vertical?(state)

 @spec can_scroll_vertical?(map()) :: boolean()

Checks if content is scrollable vertically.

 get_scroll(state)

 @spec get_scroll(map()) :: {integer(), integer()}

Gets the current scroll position.

 new(opts)

 @spec new(keyword()) :: map()

Creates new Viewport widget props.
Options
	:content - Content to display (render node)
	:content_width - Width of content (for horizontal scrolling)
	:content_height - Height of content (for vertical scrolling)
	:width - Viewport width (default: 40)
	:height - Viewport height (default: 20)
	:scroll_x - Initial horizontal scroll position (default: 0)
	:scroll_y - Initial vertical scroll position (default: 0)
	:scroll_bars - Scroll bar display: :none, :vertical, :horizontal, :both (default: :both)
	:on_scroll - Callback when scroll position changes
	:scroll_step - Lines to scroll per step (default: 1)
	:page_step - Lines to scroll per page (default: viewport height)

 scroll_into_view(state, x, y)

 @spec scroll_into_view(map(), integer(), integer()) :: map()

Scrolls to make a position visible.

 set_content(state, content)

 @spec set_content(map(), term()) :: map()

Updates the content.

 set_content_size(state, width, height)

 @spec set_content_size(map(), integer(), integer()) :: map()

Updates the content dimensions.

 set_scroll(state, x, y)

 @spec set_scroll(map(), integer(), integer()) :: map()

Sets the scroll position.

 visible_fraction_horizontal(state)

 @spec visible_fraction_horizontal(map()) :: float()

Gets the visible fraction (0.0 - 1.0) for horizontal scrolling.

 visible_fraction_vertical(state)

 @spec visible_fraction_vertical(map()) :: float()

Gets the visible fraction (0.0 - 1.0) for vertical scrolling.

 TermUI.Widgets.VisualizationHelper - TermUI v0.2.0

TermUI.Widgets.VisualizationHelper

Shared utilities for visualization widgets (charts, gauges, sparklines).
Provides common functions for:
	Value normalization and scaling
	Number formatting
	Color/zone threshold mapping
	Min/max range calculation
	Input validation
	Style application

Usage
alias TermUI.Widgets.VisualizationHelper, as: VizHelper

Normalize a value to 0-1 range
VizHelper.normalize(75, 0, 100)
#=> 0.75

Format numbers for display
VizHelper.format_number(3.14159)
#=> "3.1"

Find style based on threshold zones
zones = [{0, :green}, {60, :yellow}, {80, :red}]
VizHelper.find_zone(85, zones)
#=> :red

 Summary

 Functions

 calculate_range(values, opts \\ [])

 Calculates min/max range from data, with optional overrides.

 clamp_height(height)

 Clamps height to safe bounds.

 clamp_width(width)

 Clamps width to safe bounds.

 cycle_color(colors, index)

 Gets a color from a list by cycling through indices.

 find_zone(value, zones)

 Finds the appropriate style/color for a value based on threshold zones.

 format_number(value)

 Formats a numeric value for display.

 max_height()

 Returns the maximum allowed height for visualization widgets.

 max_width()

 Returns the maximum allowed width for visualization widgets.

 maybe_style(node, style)

 Applies style conditionally to a render node.

 normalize(value, min, max)

 Normalizes a value to 0-1 range based on min/max bounds.
Clamps result to [0, 1].

 normalize_and_scale(value, min, max, target_size)

 Normalizes and scales a value in one step.

 safe_duplicate(string, count)

 Safely duplicates a string with bounds checking.

 scale(normalized, target_size)

 Scales a normalized value (0-1) to a target size.

 validate_bar_data(data)

 Validates bar chart data structure.

 validate_char(char)

 Validates that a character is a single printable character.

 validate_number(value)

 Validates that a value is a number.

 validate_number_list(values)

 Validates that all values in a list are numbers.

 validate_series_data(series)

 Validates line chart series data structure.

 Functions

 calculate_range(values, opts \\ [])

 @spec calculate_range(
 [number()],
 keyword()
) :: {number(), number()}

Calculates min/max range from data, with optional overrides.
Examples
iex> VisualizationHelper.calculate_range([1, 5, 3, 9, 2])
{1, 9}

iex> VisualizationHelper.calculate_range([1, 5, 3], min: 0)
{0, 5}

iex> VisualizationHelper.calculate_range([1, 5, 3], min: 0, max: 10)
{0, 10}

iex> VisualizationHelper.calculate_range([])
{0, 1}

 clamp_height(height)

 @spec clamp_height(integer()) :: pos_integer()

Clamps height to safe bounds.
Examples
iex> VisualizationHelper.clamp_height(20)
20

iex> VisualizationHelper.clamp_height(1000)
500

iex> VisualizationHelper.clamp_height(-5)
1

 clamp_width(width)

 @spec clamp_width(integer()) :: pos_integer()

Clamps width to safe bounds.
Examples
iex> VisualizationHelper.clamp_width(50)
50

iex> VisualizationHelper.clamp_width(2000)
1000

iex> VisualizationHelper.clamp_width(-5)
1

 cycle_color(colors, index)

 @spec cycle_color([any()], non_neg_integer()) :: any() | nil

Gets a color from a list by cycling through indices.
Examples
iex> colors = [:red, :blue, :green]
iex> VisualizationHelper.cycle_color(colors, 0)
:red

iex> colors = [:red, :blue, :green]
iex> VisualizationHelper.cycle_color(colors, 4)
:blue

iex> VisualizationHelper.cycle_color([], 0)
nil

 find_zone(value, zones)

 @spec find_zone(number(), [{number(), any()}]) :: any() | nil

Finds the appropriate style/color for a value based on threshold zones.
Zones should be a list of {threshold, style} tuples. The function returns
the style associated with the highest threshold that is <= the value.
Examples
iex> zones = [{0, :green}, {60, :yellow}, {80, :red}]
iex> VisualizationHelper.find_zone(50, zones)
:green

iex> zones = [{0, :green}, {60, :yellow}, {80, :red}]
iex> VisualizationHelper.find_zone(75, zones)
:yellow

iex> zones = [{0, :green}, {60, :yellow}, {80, :red}]
iex> VisualizationHelper.find_zone(90, zones)
:red

iex> VisualizationHelper.find_zone(50, [])
nil

 format_number(value)

 @spec format_number(any()) :: String.t()

Formats a numeric value for display.
	Floats are formatted to 1 decimal place
	Integers are converted to string
	Other values return "???"

Examples
iex> VisualizationHelper.format_number(42)
"42"

iex> VisualizationHelper.format_number(3.14159)
"3.1"

iex> VisualizationHelper.format_number(:not_a_number)
"???"

 max_height()

 @spec max_height() :: pos_integer()

Returns the maximum allowed height for visualization widgets.

 max_width()

 @spec max_width() :: pos_integer()

Returns the maximum allowed width for visualization widgets.

 maybe_style(node, style)

 @spec maybe_style(any(), any()) :: any()

Applies style conditionally to a render node.
Returns the node unchanged if style is nil.
Examples
iex> node = %{type: :text, content: "hello"}
iex> VisualizationHelper.maybe_style(node, nil)
%{type: :text, content: "hello"}

 normalize(value, min, max)

 @spec normalize(number(), number(), number()) :: float()

Normalizes a value to 0-1 range based on min/max bounds.
Clamps result to [0, 1].
Returns 0.5 when min equals max to avoid division by zero.
Examples
iex> VisualizationHelper.normalize(50, 0, 100)
0.5

iex> VisualizationHelper.normalize(75, 0, 100)
0.75

iex> VisualizationHelper.normalize(150, 0, 100)
1.0

iex> VisualizationHelper.normalize(-10, 0, 100)
0.0

iex> VisualizationHelper.normalize(50, 50, 50)
0.5

 normalize_and_scale(value, min, max, target_size)

 @spec normalize_and_scale(number(), number(), number(), number()) :: integer()

Normalizes and scales a value in one step.
Examples
iex> VisualizationHelper.normalize_and_scale(50, 0, 100, 20)
10

iex> VisualizationHelper.normalize_and_scale(75, 0, 100, 40)
30

 safe_duplicate(string, count)

 @spec safe_duplicate(String.t(), integer()) :: String.t()

Safely duplicates a string with bounds checking.
Prevents memory exhaustion by clamping count to reasonable bounds.
Examples
iex> VisualizationHelper.safe_duplicate("█", 5)
"█████"

iex> VisualizationHelper.safe_duplicate("█", -5)
""

iex> VisualizationHelper.safe_duplicate("█", 10000)
Returns string with max_width characters

 scale(normalized, target_size)

 @spec scale(float(), number()) :: integer()

Scales a normalized value (0-1) to a target size.
Examples
iex> VisualizationHelper.scale(0.5, 100)
50

iex> VisualizationHelper.scale(0.75, 20)
15

 validate_bar_data(data)

 @spec validate_bar_data(any()) :: :ok | {:error, String.t()}

Validates bar chart data structure.
Each item must be a map with :label (string) and :value (number) keys.
Examples
iex> data = [%{label: "A", value: 10}, %{label: "B", value: 20}]
iex> VisualizationHelper.validate_bar_data(data)
:ok

iex> VisualizationHelper.validate_bar_data([%{label: "A"}])
{:error, "bar data item at index 0 missing :value key"}

iex> VisualizationHelper.validate_bar_data("not a list")
{:error, "expected a list of bar data items"}

 validate_char(char)

 @spec validate_char(any()) :: :ok | {:error, String.t()}

Validates that a character is a single printable character.
Examples
iex> VisualizationHelper.validate_char("█")
:ok

iex> VisualizationHelper.validate_char("ab")
{:error, "expected a single character, got 2 characters"}

iex> VisualizationHelper.validate_char("")
{:error, "expected a single character, got empty string"}

 validate_number(value)

 @spec validate_number(any()) :: :ok | {:error, String.t()}

Validates that a value is a number.
Examples
iex> VisualizationHelper.validate_number(42)
:ok

iex> VisualizationHelper.validate_number(3.14)
:ok

iex> VisualizationHelper.validate_number("not a number")
{:error, "expected a number, got: \"not a number\""}

 validate_number_list(values)

 @spec validate_number_list(any()) :: :ok | {:error, String.t()}

Validates that all values in a list are numbers.
Examples
iex> VisualizationHelper.validate_number_list([1, 2, 3])
:ok

iex> VisualizationHelper.validate_number_list([1, "two", 3])
{:error, "all values must be numbers, found non-number at index 1"}

iex> VisualizationHelper.validate_number_list("not a list")
{:error, "expected a list of numbers"}

 validate_series_data(series)

 @spec validate_series_data(any()) :: :ok | {:error, String.t()}

Validates line chart series data structure.
Each series must be a map with :data (list of numbers) and optional :color keys.
Examples
iex> series = [%{data: [1, 2, 3]}, %{data: [4, 5, 6], color: :red}]
iex> VisualizationHelper.validate_series_data(series)
:ok

iex> VisualizationHelper.validate_series_data([%{data: "not a list"}])
{:error, "series at index 0 :data must be a list of numbers"}

 TermUI.Widgets.WidgetHelpers - TermUI v0.2.0

TermUI.Widgets.WidgetHelpers

Shared utilities for interactive widgets (forms, palettes, menus).
Provides common functions for:
	Text padding and truncation
	Focus/selection styling
	Common render patterns

Usage
alias TermUI.Widgets.WidgetHelpers, as: Helpers

Pad and truncate text to fit a width
Helpers.pad_and_truncate("Hello", 10)
#=> "Hello "

Style an element based on focus state
Helpers.render_focused(text("Item"), true, Style.new(attrs: [:reverse]))
#=> styled render node with reverse attribute

 Summary

 Functions

 focus_indicator(focused, indicator \\ "> ", blank \\ " ")

 Builds a focus indicator string based on focus state.

 pad_and_truncate(string, width)

 Pads a string to a specified width, then truncates if it exceeds that width.

 render_focused(node, focused, focus_style \\ nil)

 Renders an element with focused styling applied conditionally.

 text_focused(content, focused, focus_style \\ nil)

 Creates a text render node with conditional focus styling.

 truncate(string, max_length)

 Truncates a string to the specified maximum length.

 Functions

 focus_indicator(focused, indicator \\ "> ", blank \\ " ")

 @spec focus_indicator(boolean(), String.t(), String.t()) :: String.t()

Builds a focus indicator string based on focus state.
Returns a prefix indicator typically used in list displays.
Examples
iex> WidgetHelpers.focus_indicator(true)
"> "

iex> WidgetHelpers.focus_indicator(false)
" "

iex> WidgetHelpers.focus_indicator(true, "→ ", " ")
"→ "

 pad_and_truncate(string, width)

 @spec pad_and_truncate(String.t(), non_neg_integer()) :: String.t()

Pads a string to a specified width, then truncates if it exceeds that width.
This ensures the resulting string is exactly width characters long,
first padding with spaces if too short, then slicing if too long.
Examples
iex> WidgetHelpers.pad_and_truncate("Hello", 10)
"Hello "

iex> WidgetHelpers.pad_and_truncate("Hello World", 5)
"Hello"

iex> WidgetHelpers.pad_and_truncate("Test", 4)
"Test"

iex> WidgetHelpers.pad_and_truncate("", 5)
" "

 render_focused(node, focused, focus_style \\ nil)

 @spec render_focused(any(), boolean(), TermUI.Renderer.Style.t() | nil) :: any()

Renders an element with focused styling applied conditionally.
When focused is true, wraps the render node with the provided focus style.
When false, returns the node unchanged.
This is commonly used for list items, form fields, and menu options.
Examples
With focus
Helpers.render_focused(text("Option 1"), true)
#=> styled node with reverse attribute

Without focus
Helpers.render_focused(text("Option 2"), false)
#=> plain text node

Custom focus style
Helpers.render_focused(text("Active"), true, Style.new(fg: :cyan, attrs: [:bold]))
#=> styled node with cyan foreground and bold

 text_focused(content, focused, focus_style \\ nil)

 @spec text_focused(String.t(), boolean(), TermUI.Renderer.Style.t() | nil) :: any()

Creates a text render node with conditional focus styling.
Convenience function that combines text/1 and render_focused/3.
Examples
Helpers.text_focused("Item 1", true)
#=> styled text node with reverse attribute

Helpers.text_focused("Item 2", false)
#=> plain text node

 truncate(string, max_length)

 @spec truncate(String.t(), non_neg_integer()) :: String.t()

Truncates a string to the specified maximum length.
Unlike pad_and_truncate/2, this does not add padding.
Returns the original string if it's already within the limit.
Examples
iex> WidgetHelpers.truncate("Hello World", 5)
"Hello"

iex> WidgetHelpers.truncate("Hi", 10)
"Hi"

 TermUI.Component.RenderNode - TermUI v0.2.0

TermUI.Component.RenderNode

Represents a node in the render tree.
RenderNodes are the output of component rendering. They form a tree structure
that the renderer converts to terminal buffer cells. Each node has content,
styling, and optional children.
Node Types
	Text nodes: Simple text content with optional styling
	Box nodes: Rectangular regions that can contain children
	Stack nodes: Vertical or horizontal arrangements of children

Examples
Simple text node
RenderNode.text("Hello, World!")

Styled text
style = Style.new() |> Style.fg(:red) |> Style.bold()
RenderNode.text("Error!", style)

Box with children
RenderNode.box([
 RenderNode.text("Header"),
 RenderNode.text("Content")
])

Horizontal stack
RenderNode.stack(:horizontal, [
 RenderNode.text("Left"),
 RenderNode.text("Right")
])

 Summary

 Types

 direction()

 node_type()

 positioned_cell()

 A cell with position information for the :cells node type

 t()

 Functions

 box(children, opts \\ [])

 Creates a box node that can contain children.

 cells(cells, opts \\ [])

 Creates a cells node with pre-rendered cells.

 child_count(render_node)

 Returns the number of direct children of a node.

 empty()

 Creates an empty render node.

 empty?(render_node)

 Checks if a node is empty.

 height(node, h)

 Sets the height of a node.

 stack(direction, children, opts \\ [])

 Creates a stack node that arranges children in a direction.

 styled(node, style)

 Creates a styled wrapper around a node.

 text(content, style \\ nil)

 Creates a text node with optional styling.

 width(node, w)

 Sets the width of a node.

 Types

 direction()

 @type direction() :: :vertical | :horizontal

 node_type()

 @type node_type() :: :text | :box | :stack | :empty | :cells

 positioned_cell()

 @type positioned_cell() :: %{
 x: non_neg_integer(),
 y: non_neg_integer(),
 cell: TermUI.Renderer.Cell.t()
}

A cell with position information for the :cells node type

 t()

 @type t() :: %TermUI.Component.RenderNode{
 cells: [positioned_cell()] | nil,
 children: [t()],
 content: String.t() | nil,
 direction: direction() | nil,
 height: non_neg_integer() | :auto | nil,
 style: TermUI.Renderer.Style.t() | nil,
 type: node_type(),
 width: non_neg_integer() | :auto | nil
}

 Functions

 box(children, opts \\ [])

 @spec box(
 [t()],
 keyword()
) :: t()

Creates a box node that can contain children.
Options
	:style - Style to apply to the box background
	:width - Fixed width or :auto
	:height - Fixed height or :auto

Examples
iex> RenderNode.box([RenderNode.text("Content")])
%RenderNode{type: :box, children: [%RenderNode{type: :text, content: "Content"}]}

iex> RenderNode.box([RenderNode.text("Styled")], style: Style.new() |> Style.bg(:blue))
%RenderNode{type: :box, style: %Style{bg: :blue}}

 cells(cells, opts \\ [])

 @spec cells(
 [positioned_cell()],
 keyword()
) :: t()

Creates a cells node with pre-rendered cells.
This is used by widgets that need fine-grained control over cell positioning.
The cells list should contain Cell structs with absolute positions.
Examples
iex> cells = [%{x: 0, y: 0, cell: Cell.new("H")}, %{x: 1, y: 0, cell: Cell.new("i")}]
iex> RenderNode.cells(cells)
%RenderNode{type: :cells, cells: [...]}

 child_count(render_node)

 @spec child_count(t()) :: non_neg_integer()

Returns the number of direct children of a node.
Examples
iex> RenderNode.child_count(RenderNode.text("Hello"))
0

iex> RenderNode.child_count(RenderNode.box([RenderNode.text("A"), RenderNode.text("B")]))
2

 empty()

 @spec empty() :: t()

Creates an empty render node.
Examples
iex> RenderNode.empty()
%RenderNode{type: :empty}

 empty?(render_node)

 @spec empty?(t()) :: boolean()

Checks if a node is empty.
Examples
iex> RenderNode.empty?(RenderNode.empty())
true

iex> RenderNode.empty?(RenderNode.text("Hello"))
false

 height(node, h)

 @spec height(t(), non_neg_integer() | :auto) :: t()

Sets the height of a node.
Examples
iex> RenderNode.box([]) |> RenderNode.height(10)
%RenderNode{type: :box, height: 10}

 stack(direction, children, opts \\ [])

 @spec stack(direction(), [t()], keyword()) :: t()

Creates a stack node that arranges children in a direction.
Examples
iex> RenderNode.stack(:vertical, [RenderNode.text("Top"), RenderNode.text("Bottom")])
%RenderNode{type: :stack, direction: :vertical, children: [...]}

iex> RenderNode.stack(:horizontal, [RenderNode.text("Left"), RenderNode.text("Right")])
%RenderNode{type: :stack, direction: :horizontal, children: [...]}

 styled(node, style)

 @spec styled(t(), TermUI.Renderer.Style.t()) :: t()

Creates a styled wrapper around a node.
Applies additional styling to an existing node without changing its structure.
Examples
iex> node = RenderNode.text("Hello")
iex> styled = RenderNode.styled(node, Style.new() |> Style.fg(:red))
iex> styled.children
[%RenderNode{type: :text, content: "Hello"}]

 text(content, style \\ nil)

 @spec text(String.t(), TermUI.Renderer.Style.t() | nil) :: t()

Creates a text node with optional styling.
Examples
iex> RenderNode.text("Hello")
%RenderNode{type: :text, content: "Hello"}

iex> style = Style.new() |> Style.fg(:red)
iex> node = RenderNode.text("Error", style)
iex> node.style.fg
:red

 width(node, w)

 @spec width(t(), non_neg_integer() | :auto) :: t()

Sets the width of a node.
Examples
iex> RenderNode.box([]) |> RenderNode.width(20)
%RenderNode{type: :box, width: 20}

 TermUI.Renderer.Buffer - TermUI v0.2.0

TermUI.Renderer.Buffer

ETS-based screen buffer for storing cells.
The buffer uses an ETS :ordered_set table keyed by {row, col} tuples
for O(log n) access and efficient row-major iteration. This enables fast
cell lookup and sequential rendering.
Usage
{:ok, buffer} = Buffer.new(24, 80)
Buffer.set_cell(buffer, 1, 1, Cell.new("A", fg: :red))
cell = Buffer.get_cell(buffer, 1, 1)
Buffer.destroy(buffer)
Coordinates
Rows and columns are 1-indexed to match terminal conventions.

 Summary

 Types

 t()

 Functions

 clear(buffer)

 Clears the entire buffer.

 clear_col(buffer, col)

 Clears a single column.

 clear_region(buffer, start_row, start_col, width, height)

 Clears a rectangular region, filling it with empty cells.

 clear_row(buffer, row)

 Clears a single row.

 destroy(buffer)

 Destroys the buffer and frees ETS table.

 dimensions(buffer)

 Returns buffer dimensions as {rows, cols}.

 each(buffer, fun)

 Iterates over all cells in row-major order.

 get_cell(buffer, row, col)

 Gets the cell at the given position.

 get_row(buffer, row)

 Gets a row as a list of cells.

 in_bounds?(buffer, row, col)

 Checks if a position is within buffer bounds.

 max_cols()

 Returns the maximum allowed columns.

 max_rows()

 Returns the maximum allowed rows.

 new(rows, cols)

 Creates a new buffer with the given dimensions.

 resize(buffer, new_rows, new_cols)

 Resizes the buffer, preserving content where possible.

 set_cell(buffer, row, col, cell)

 Sets the cell at the given position.

 set_cells(buffer, cells)

 Sets multiple cells at once for efficiency.

 to_list(buffer)

 Gets all cells as a list of {row, col, cell} tuples in row-major order.

 write_string(buffer, row, col, string, opts \\ [])

 Writes a string starting at the given position.

 Types

 t()

 @type t() :: %TermUI.Renderer.Buffer{
 cols: pos_integer(),
 rows: pos_integer(),
 table: :ets.tid()
}

 Functions

 clear(buffer)

 @spec clear(t()) :: :ok

Clears the entire buffer.
Examples
iex> {:ok, buffer} = Buffer.new(10, 10)
iex> Buffer.clear(buffer)
:ok

 clear_col(buffer, col)

 @spec clear_col(t(), pos_integer()) :: :ok

Clears a single column.
Examples
iex> {:ok, buffer} = Buffer.new(10, 10)
iex> Buffer.clear_col(buffer, 1)
:ok

 clear_region(buffer, start_row, start_col, width, height)

 @spec clear_region(t(), pos_integer(), pos_integer(), pos_integer(), pos_integer()) ::
 :ok

Clears a rectangular region, filling it with empty cells.
Examples
iex> {:ok, buffer} = Buffer.new(10, 10)
iex> Buffer.clear_region(buffer, 1, 1, 5, 5)
:ok

 clear_row(buffer, row)

 @spec clear_row(t(), pos_integer()) :: :ok

Clears a single row.
Examples
iex> {:ok, buffer} = Buffer.new(10, 10)
iex> Buffer.clear_row(buffer, 1)
:ok

 destroy(buffer)

 @spec destroy(t()) :: :ok

Destroys the buffer and frees ETS table.
Examples
iex> {:ok, buffer} = Buffer.new(10, 10)
iex> Buffer.destroy(buffer)
:ok

 dimensions(buffer)

 @spec dimensions(t()) :: {pos_integer(), pos_integer()}

Returns buffer dimensions as {rows, cols}.

 each(buffer, fun)

 @spec each(t(), ({pos_integer(), pos_integer(), TermUI.Renderer.Cell.t()} -> any())) ::
 :ok

Iterates over all cells in row-major order.
Calls the function with {row, col, cell} for each cell.
Examples
iex> {:ok, buffer} = Buffer.new(2, 2)
iex> Buffer.each(buffer, fn {row, col, cell} -> IO.inspect({row, col}) end)
:ok

 get_cell(buffer, row, col)

 @spec get_cell(t(), pos_integer(), pos_integer()) :: TermUI.Renderer.Cell.t()

Gets the cell at the given position.
Returns empty cell if position is out of bounds.
Examples
iex> {:ok, buffer} = Buffer.new(10, 10)
iex> cell = Buffer.get_cell(buffer, 1, 1)
iex> cell.char
" "

 get_row(buffer, row)

 @spec get_row(t(), pos_integer()) :: [TermUI.Renderer.Cell.t()]

Gets a row as a list of cells.
Uses a single ETS match operation for efficiency instead of
individual cell lookups.

 in_bounds?(buffer, row, col)

 @spec in_bounds?(t(), pos_integer(), pos_integer()) :: boolean()

Checks if a position is within buffer bounds.

 max_cols()

 @spec max_cols() :: pos_integer()

Returns the maximum allowed columns.

 max_rows()

 @spec max_rows() :: pos_integer()

Returns the maximum allowed rows.

 new(rows, cols)

 @spec new(pos_integer(), pos_integer()) :: {:ok, t()} | {:error, term()}

Creates a new buffer with the given dimensions.
Initializes all cells to empty (space with default colors).
Maximum dimensions are 500 rows x 1000 cols to prevent
resource exhaustion.
Examples
iex> {:ok, buffer} = Buffer.new(24, 80)
iex> buffer.rows
24
iex> buffer.cols
80

 resize(buffer, new_rows, new_cols)

 @spec resize(t(), pos_integer(), pos_integer()) :: {:ok, t()} | {:error, term()}

Resizes the buffer, preserving content where possible.
Content that fits in the new dimensions is preserved.
New areas are filled with empty cells.
Examples
iex> {:ok, buffer} = Buffer.new(10, 10)
iex> {:ok, new_buffer} = Buffer.resize(buffer, 20, 20)
iex> new_buffer.rows
20

 set_cell(buffer, row, col, cell)

 @spec set_cell(t(), pos_integer(), pos_integer(), TermUI.Renderer.Cell.t()) ::
 :ok | {:error, :out_of_bounds}

Sets the cell at the given position.
Returns :ok if successful, {:error, :out_of_bounds} if position is invalid.
Examples
iex> {:ok, buffer} = Buffer.new(10, 10)
iex> Buffer.set_cell(buffer, 1, 1, Cell.new("X"))
:ok
iex> Buffer.get_cell(buffer, 1, 1).char
"X"

 set_cells(buffer, cells)

 @spec set_cells(t(), [{pos_integer(), pos_integer(), TermUI.Renderer.Cell.t()}]) ::
 :ok

Sets multiple cells at once for efficiency.
Cells is a list of {row, col, cell} tuples.
Examples
iex> {:ok, buffer} = Buffer.new(10, 10)
iex> cells = [{1, 1, Cell.new("A")}, {1, 2, Cell.new("B")}]
iex> Buffer.set_cells(buffer, cells)
:ok

 to_list(buffer)

 @spec to_list(t()) :: [{pos_integer(), pos_integer(), TermUI.Renderer.Cell.t()}]

Gets all cells as a list of {row, col, cell} tuples in row-major order.

 write_string(buffer, row, col, string, opts \\ [])

 @spec write_string(t(), pos_integer(), pos_integer(), String.t(), keyword()) ::
 non_neg_integer()

Writes a string starting at the given position.
Returns the number of columns written.
Examples
iex> {:ok, buffer} = Buffer.new(10, 80)
iex> Buffer.write_string(buffer, 1, 1, "Hello")
5

 TermUI.Renderer.Cell - TermUI v0.2.0

TermUI.Renderer.Cell

Represents a single cell in the terminal screen buffer.
A cell contains a character (grapheme cluster), foreground and background
colors, and style attributes. Cells are immutable - updates create new
cells, enabling efficient diffing by reference comparison.
Color Types
Colors can be specified as:
	:default - Terminal default color
	Atom - Named color (:red, :green, :blue, etc.)
	Integer 0-255 - 256-color palette index
	{r, g, b} tuple - True color RGB values (0-255 each)

Attributes
Supported style attributes:
	:bold - Bold/bright text
	:dim - Dimmed text
	:italic - Italic text
	:underline - Underlined text
	:blink - Blinking text
	:reverse - Reversed colors
	:hidden - Hidden text
	:strikethrough - Strikethrough text

 Summary

 Types

 attribute()

 color()

 t()

 Functions

 add_attr(cell, attr)

 Adds an attribute to the cell.

 empty()

 Returns an empty cell with default styling.

 empty?(cell)

 Checks if a cell is empty (space with default styling).

 equal?(a, b)

 Compares two cells for equality.

 has_attr?(cell, attr)

 Checks if the cell has a specific attribute.

 named_colors()

 Returns list of valid color names.

 new(char, opts \\ [])

 Creates a new cell with the given character and optional styling.

 put_bg(cell, color)

 Returns a cell with updated background color.

 put_char(cell, char)

 Returns a cell with updated character.

 put_fg(cell, color)

 Returns a cell with updated foreground color.

 remove_attr(cell, attr)

 Removes an attribute from the cell.

 valid_attributes()

 Returns list of valid attributes.

 wide?(cell)

 Returns true if this cell is a wide (double-width) character.

 wide_placeholder(primary)

 Creates a placeholder cell for the second column of a wide character.

 wide_placeholder?(cell)

 Returns true if this cell is a wide character placeholder.

 width(cell)

 Returns the display width of a cell (1 or 2).

 Types

 attribute()

 @type attribute() ::
 :bold
 | :dim
 | :italic
 | :underline
 | :blink
 | :reverse
 | :hidden
 | :strikethrough

 color()

 @type color() :: :default | atom() | 0..255 | {0..255, 0..255, 0..255}

 t()

 @type t() :: %TermUI.Renderer.Cell{
 attrs: MapSet.t(attribute()),
 bg: color(),
 char: String.t(),
 fg: color(),
 wide_placeholder: boolean(),
 width: 1 | 2
}

 Functions

 add_attr(cell, attr)

 @spec add_attr(t(), attribute()) :: t()

Adds an attribute to the cell.

 empty()

 @spec empty() :: t()

Returns an empty cell with default styling.
An empty cell contains a space character with default colors and no attributes.
Examples
iex> Cell.empty()
%Cell{char: " ", fg: :default, bg: :default, attrs: MapSet.new()}

 empty?(cell)

 @spec empty?(t()) :: boolean()

Checks if a cell is empty (space with default styling).
Examples
iex> Cell.empty?(Cell.empty())
true

iex> Cell.empty?(Cell.new("A"))
false

 equal?(a, b)

 @spec equal?(t(), t()) :: boolean()

Compares two cells for equality.
Returns true if both cells have the same character, colors, and attributes.
Used by the diff algorithm to identify changed cells.
Examples
iex> Cell.equal?(Cell.empty(), Cell.empty())
true

iex> Cell.equal?(Cell.new("A"), Cell.new("B"))
false

 has_attr?(cell, attr)

 @spec has_attr?(t(), attribute()) :: boolean()

Checks if the cell has a specific attribute.

 named_colors()

 @spec named_colors() :: [atom()]

Returns list of valid color names.

 new(char, opts \\ [])

 @spec new(
 String.t(),
 keyword()
) :: t()

Creates a new cell with the given character and optional styling.
Examples
iex> Cell.new("A")
%Cell{char: "A", fg: :default, bg: :default, attrs: MapSet.new()}

iex> Cell.new("X", fg: :red, attrs: [:bold])
%Cell{char: "X", fg: :red, bg: :default, attrs: MapSet.new([:bold])}

 put_bg(cell, color)

 @spec put_bg(t(), color()) :: t()

Returns a cell with updated background color.

 put_char(cell, char)

 @spec put_char(t(), String.t()) :: t()

Returns a cell with updated character.
Examples
iex> cell = Cell.new("A", fg: :red)
iex> Cell.put_char(cell, "B")
%Cell{char: "B", fg: :red, bg: :default, attrs: MapSet.new()}

 put_fg(cell, color)

 @spec put_fg(t(), color()) :: t()

Returns a cell with updated foreground color.

 remove_attr(cell, attr)

 @spec remove_attr(t(), attribute()) :: t()

Removes an attribute from the cell.

 valid_attributes()

 @spec valid_attributes() :: [attribute()]

Returns list of valid attributes.

 wide?(cell)

 @spec wide?(t()) :: boolean()

Returns true if this cell is a wide (double-width) character.

 wide_placeholder(primary)

 @spec wide_placeholder(t()) :: t()

Creates a placeholder cell for the second column of a wide character.
This cell inherits the styling from the primary cell but renders as empty.

 wide_placeholder?(cell)

 @spec wide_placeholder?(t()) :: boolean()

Returns true if this cell is a wide character placeholder.

 width(cell)

 @spec width(t()) :: non_neg_integer()

Returns the display width of a cell (1 or 2).

 TermUI.Renderer.Style - TermUI v0.2.0

TermUI.Renderer.Style

Represents visual styling for text and cells.
Styles encapsulate colors and text attributes, providing a fluent builder
API and support for style merging (cascading). Styles can be converted to
cells for rendering.
Fluent Builder API
Style.new()
|> Style.fg(:red)
|> Style.bg(:black)
|> Style.bold()
|> Style.underline()
Style Merging
Styles can be merged with later styles overriding earlier values:
base = Style.new() |> Style.fg(:white)
override = Style.new() |> Style.fg(:red) |> Style.bold()
merged = Style.merge(base, override)
fg: :red, attrs: [:bold]

 Summary

 Types

 attribute()

 color()

 t()

 Functions

 add_attr(style, attr)

 Adds an attribute to the style.

 apply_to_cell(style, cell)

 Applies a style to an existing cell, returning a new cell.

 bg(style, color)

 Sets the background color.

 blink(style)

 Adds the blink attribute.

 bold(style)

 Adds the bold attribute.

 dim(style)

 Adds the dim attribute.

 empty?(style)

 Checks if the style has any properties set.

 equal?(a, b)

 Checks if two styles are visually equal.

 fg(style, color)

 Sets the foreground color.

 hidden(style)

 Adds the hidden attribute.

 italic(style)

 Adds the italic attribute.

 merge(base, override)

 Merges two styles, with the second style overriding the first.

 new()

 Creates a new empty style.

 new(opts)

 Creates a style with initial values.

 remove_attr(style, attr)

 Removes an attribute from the style.

 reset(style)

 Resets style to default (empty).

 reverse(style)

 Adds the reverse attribute.

 strikethrough(style)

 Adds the strikethrough attribute.

 to_cell(style, char)

 Converts a style to a cell with the given character.

 underline(style)

 Adds the underline attribute.

 Types

 attribute()

 @type attribute() :: TermUI.Renderer.Cell.attribute()

 color()

 @type color() :: TermUI.Renderer.Cell.color()

 t()

 @type t() :: %TermUI.Renderer.Style{
 attrs: MapSet.t(attribute()),
 bg: color() | nil,
 fg: color() | nil
}

 Functions

 add_attr(style, attr)

 @spec add_attr(t(), attribute()) :: t()

Adds an attribute to the style.

 apply_to_cell(style, cell)

 @spec apply_to_cell(t(), TermUI.Renderer.Cell.t()) :: TermUI.Renderer.Cell.t()

Applies a style to an existing cell, returning a new cell.
The style's values override the cell's values where set.
Examples
iex> cell = Cell.new("A", fg: :white)
iex> style = Style.new() |> Style.fg(:red)
iex> new_cell = Style.apply_to_cell(style, cell)
iex> new_cell.fg
:red

 bg(style, color)

 @spec bg(t(), color()) :: t()

Sets the background color.
Examples
iex> Style.new() |> Style.bg(:blue)
%Style{fg: nil, bg: :blue, attrs: MapSet.new()}

 blink(style)

 @spec blink(t()) :: t()

Adds the blink attribute.

 bold(style)

 @spec bold(t()) :: t()

Adds the bold attribute.

 dim(style)

 @spec dim(t()) :: t()

Adds the dim attribute.

 empty?(style)

 @spec empty?(t()) :: boolean()

Checks if the style has any properties set.

 equal?(a, b)

 @spec equal?(t(), t()) :: boolean()

Checks if two styles are visually equal.
Compares foreground color, background color, and all attributes.
Examples
iex> s1 = Style.new(fg: :red, attrs: [:bold])
iex> s2 = Style.new(fg: :red, attrs: [:bold])
iex> Style.equal?(s1, s2)
true

 fg(style, color)

 @spec fg(t(), color()) :: t()

Sets the foreground color.
Examples
iex> Style.new() |> Style.fg(:red)
%Style{fg: :red, bg: nil, attrs: MapSet.new()}

 hidden(style)

 @spec hidden(t()) :: t()

Adds the hidden attribute.

 italic(style)

 @spec italic(t()) :: t()

Adds the italic attribute.

 merge(base, override)

 @spec merge(t(), t()) :: t()

Merges two styles, with the second style overriding the first.
Only non-nil values from the override style replace values in the base.
Attributes are combined (union of both sets).
Examples
iex> base = Style.new(fg: :white, bg: :black)
iex> override = Style.new(fg: :red, attrs: [:bold])
iex> merged = Style.merge(base, override)
iex> merged.fg
:red
iex> merged.bg
:black
iex> :bold in merged.attrs
true

 new()

 @spec new() :: t()

Creates a new empty style.
Examples
iex> Style.new()
%Style{fg: nil, bg: nil, attrs: MapSet.new()}

 new(opts)

 @spec new(keyword()) :: t()

Creates a style with initial values.
Examples
iex> Style.new(fg: :red, attrs: [:bold])
%Style{fg: :red, bg: nil, attrs: MapSet.new([:bold])}

 remove_attr(style, attr)

 @spec remove_attr(t(), attribute()) :: t()

Removes an attribute from the style.

 reset(style)

 @spec reset(t()) :: t()

Resets style to default (empty).

 reverse(style)

 @spec reverse(t()) :: t()

Adds the reverse attribute.

 strikethrough(style)

 @spec strikethrough(t()) :: t()

Adds the strikethrough attribute.

 to_cell(style, char)

 @spec to_cell(t(), String.t()) :: TermUI.Renderer.Cell.t()

Converts a style to a cell with the given character.
Applies the style's colors and attributes to create a new cell.
Uses :default for any unset colors.
Examples
iex> style = Style.new() |> Style.fg(:red) |> Style.bold()
iex> cell = Style.to_cell(style, "X")
iex> cell.char
"X"
iex> cell.fg
:red
iex> cell.bg
:default

 underline(style)

 @spec underline(t()) :: t()

Adds the underline attribute.

 TermUI.Layout.Alignment - TermUI v0.2.0

TermUI.Layout.Alignment

Flexbox-inspired alignment for positioning components within allocated space.
Alignment Model
	Main axis: Direction of layout (X for horizontal, Y for vertical)
	Cross axis: Perpendicular to main axis

Justify Content (Main Axis)
	:start - Pack at beginning
	:center - Center in space
	:end - Pack at end
	:space_between - Equal space between components
	:space_around - Equal space around each component

Align Items (Cross Axis)
	:start - Position at cross-axis start
	:center - Center on cross-axis
	:end - Position at cross-axis end
	:stretch - Expand to fill cross-axis

Examples
Apply alignment to solved rects
rects = Solver.solve_to_rects(constraints, area)
aligned = Alignment.apply(rects, area,
 direction: :horizontal,
 justify: :space_between,
 align: :center
)

With margins
aligned = Alignment.apply_with_spacing(rects, area,
 direction: :horizontal,
 margin: %{top: 5, right: 5, bottom: 5, left: 5}
)

 Summary

 Types

 align()

 direction()

 justify()

 opts()

 rect()

 spacing()

 Functions

 apply(rects, area, opts \\ [])

 Applies alignment to a list of rectangles within a container area.

 apply_margins(rects, margins)

 Applies margin to rectangles, shrinking them.

 apply_padding(rect, padding)

 Applies padding to a rectangle, shrinking the content area.

 parse_spacing(value)

 Parses spacing shorthand into a spacing map.

 Types

 align()

 @type align() :: :start | :center | :end | :stretch

 direction()

 @type direction() :: :horizontal | :vertical

 justify()

 @type justify() :: :start | :center | :end | :space_between | :space_around

 opts()

 @type opts() :: [
 direction: direction(),
 justify: justify(),
 align: align(),
 align_self: [align() | nil]
]

 rect()

 @type rect() :: %{x: integer(), y: integer(), width: integer(), height: integer()}

 spacing()

 @type spacing() :: %{
 top: integer(),
 right: integer(),
 bottom: integer(),
 left: integer()
}

 Functions

 apply(rects, area, opts \\ [])

 @spec apply([rect()], rect(), opts()) :: [rect()]

Applies alignment to a list of rectangles within a container area.
Parameters
	rects - list of rectangles from solver
	area - container bounding rectangle
	opts - alignment options	:direction - :horizontal (default) or :vertical
	:justify - main axis alignment (default :start)
	:align - cross axis alignment (default :start)
	:align_self - per-component cross axis overrides

Returns
List of aligned rectangles.

 apply_margins(rects, margins)

 @spec apply_margins([rect()], [spacing()] | spacing()) :: [rect()]

Applies margin to rectangles, shrinking them.
Parameters
	rects - list of rectangles
	margins - list of margin maps (one per rect) or single margin for all

Returns
List of rectangles with margins applied.

 apply_padding(rect, padding)

 @spec apply_padding(rect(), spacing()) :: rect()

Applies padding to a rectangle, shrinking the content area.
Parameters
	rect - rectangle to pad
	padding - padding map

Returns
Rectangle with padding applied (position adjusted, size reduced).

 parse_spacing(value)

 @spec parse_spacing(
 integer()
 | {integer(), integer()}
 | {integer(), integer(), integer(), integer()}
) ::
 spacing()

Parses spacing shorthand into a spacing map.
Examples
iex> Alignment.parse_spacing(10)
%{top: 10, right: 10, bottom: 10, left: 10}

iex> Alignment.parse_spacing({5, 10})
%{top: 5, right: 10, bottom: 5, left: 10}

iex> Alignment.parse_spacing({1, 2, 3, 4})
%{top: 1, right: 2, bottom: 3, left: 4}

 TermUI.Layout.Cache - TermUI v0.2.0

TermUI.Layout.Cache

Layout cache with LRU eviction for caching constraint solver results.
The cache stores solved layouts keyed by constraint hash and dimensions,
providing O(1) lookup for unchanged layouts. LRU eviction keeps memory
bounded while maintaining frequently-used layouts.
Usage
Start cache (typically in supervision tree)
Cache.start_link(max_size: 1000)

Cached solve
rects = Cache.solve(constraints, area)

Statistics
stats = Cache.stats()
=> %{size: 150, hits: 1234, misses: 56, hit_rate: 0.956}

Clear on resize
Cache.clear()
Configuration
	:max_size - Maximum entries before eviction (default 500)
	:eviction_count - Entries to remove per eviction (default 50)

 Summary

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 clear()

 Clears all cache entries.

 evict_now(name \\ __MODULE__)

 Forces eviction synchronously. Useful for testing.

 insert(key, result)

 Inserts a result into the cache.

 invalidate(key)

 Invalidates a specific cache entry.

 invalidate_constraints(constraints)

 Invalidates cache entries matching constraints.

 lookup(key)

 Looks up a cached result by key.

 reset_stats()

 Resets cache statistics.

 size()

 Returns the current cache size.

 solve(constraints, area, opts \\ [])

 Solves constraints with automatic caching.

 solve_uncached(constraints, area, opts \\ [])

 Solves constraints without caching.

 start_link(opts \\ [])

 Starts the layout cache.

 stats()

 Returns cache statistics.

 warm(layouts)

 Warms the cache with common layouts.

 Functions

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 clear()

Clears all cache entries.
Call this on terminal resize.

 evict_now(name \\ __MODULE__)

Forces eviction synchronously. Useful for testing.

 insert(key, result)

Inserts a result into the cache.
Triggers eviction if cache exceeds max size.

 invalidate(key)

Invalidates a specific cache entry.

 invalidate_constraints(constraints)

Invalidates cache entries matching constraints.
Useful when a component's constraints change.

 lookup(key)

Looks up a cached result by key.
Returns {:ok, result} if found, :miss otherwise.

 reset_stats()

Resets cache statistics.

 size()

Returns the current cache size.

 solve(constraints, area, opts \\ [])

Solves constraints with automatic caching.
Checks cache first, falls back to solver on miss.
Parameters
	constraints - list of constraints
	area - bounding rectangle
	opts - solver options (direction, gap, etc.)

Returns
List of positioned rectangles.

 solve_uncached(constraints, area, opts \\ [])

Solves constraints without caching.
Use for testing or when caching is not desired.

 start_link(opts \\ [])

Starts the layout cache.
Options
	:max_size - Maximum cache entries (default 500)
	:eviction_count - Entries to remove per eviction (default 50)
	:name - GenServer name (default MODULE)

 stats()

Returns cache statistics.
Returns
Map with:
	:size - current entry count
	:hits - total cache hits
	:misses - total cache misses
	:hit_rate - hits / (hits + misses)

 warm(layouts)

Warms the cache with common layouts.
Parameters
	layouts - list of {constraints, area, opts} tuples

 TermUI.Layout.Constraint - TermUI v0.2.0

TermUI.Layout.Constraint

Constraint types for the layout system.
Constraints express how components request space from their parent container.
They are declarative—describing desired outcome, not how to achieve it.
Constraint Types
	length/1 - Exact size in terminal cells
	percentage/1 - Fraction of parent size (0-100)
	ratio/1 - Proportional share of remaining space
	min/1, max/1 - Bounds on size
	fill/0 - Take all remaining space

Examples
Fixed 20 cells
Constraint.length(20)

50% of parent
Constraint.percentage(50)

50% but at least 10 cells
Constraint.percentage(50) |> Constraint.with_min(10)

Fill remaining space
Constraint.fill()

2:1 ratio distribution
[Constraint.ratio(2), Constraint.ratio(1)]
Composition
Constraints can be composed with bounds using with_min/2 and with_max/2:
Constraint.percentage(50) |> Constraint.with_min(10) |> Constraint.with_max(100)
This creates a constraint that requests 50% of parent, but at least 10 and at most 100 cells.

 Summary

 Types

 t()

 Functions

 fill()

 Creates a fill constraint that takes all remaining space.

 fixed?(arg1)

 Checks if a constraint is fixed (length or bounded length).

 flexible?(arg1)

 Checks if a constraint uses remaining space (ratio or fill).

 get_max(arg1)

 Gets the maximum value from a constraint, if bounded.

 get_min(arg1)

 Gets the minimum value from a constraint, if bounded.

 length(n)

 Creates a length constraint for exactly n cells.

 max(n)

 Creates a maximum size constraint.

 min(n)

 Creates a minimum size constraint.

 min_max(min_val, max_val)

 Creates combined min/max bounds.

 percentage(p)

 Creates a percentage constraint for p% of parent size.

 ratio(r)

 Creates a ratio constraint for proportional space distribution.

 resolve(constraint, available, opts \\ [])

 Resolves a constraint to a concrete size given available space.

 type(arg1)

 Returns the constraint type as an atom.

 unwrap(constraint)

 Gets the inner constraint, unwrapping bounds.

 with_max(constraint, max_val)

 Adds a maximum bound to a constraint.

 with_min(constraint, min_val)

 Adds a minimum bound to a constraint.

 Types

 t()

 @type t() ::
 TermUI.Layout.Constraint.Length.t()
 | TermUI.Layout.Constraint.Percentage.t()
 | TermUI.Layout.Constraint.Ratio.t()
 | TermUI.Layout.Constraint.Min.t()
 | TermUI.Layout.Constraint.Max.t()
 | TermUI.Layout.Constraint.Fill.t()

 Functions

 fill()

 @spec fill() :: TermUI.Layout.Constraint.Fill.t()

Creates a fill constraint that takes all remaining space.
Fill is equivalent to ratio(1) in calculation but semantically distinct—
it means "take whatever is left" rather than "share proportionally".
Returns
A fill constraint struct.
Examples
Main content area fills remaining space
Constraint.fill()
Multiple fills distribute space equally among them.

 fixed?(arg1)

 @spec fixed?(t()) :: boolean()

Checks if a constraint is fixed (length or bounded length).
Fixed constraints are allocated first during solving.

 flexible?(arg1)

 @spec flexible?(t()) :: boolean()

Checks if a constraint uses remaining space (ratio or fill).

 get_max(arg1)

 @spec get_max(t()) :: non_neg_integer() | nil

Gets the maximum value from a constraint, if bounded.

 get_min(arg1)

 @spec get_min(t()) :: non_neg_integer() | nil

Gets the minimum value from a constraint, if bounded.

 length(n)

 @spec length(non_neg_integer()) :: TermUI.Layout.Constraint.Length.t()

Creates a length constraint for exactly n cells.
Parameters
	n - Number of cells (non-negative integer)

Returns
A length constraint struct.
Examples
iex> Constraint.length(20)
%TermUI.Layout.Constraint.Length{value: 20}

iex> Constraint.length(0)
%TermUI.Layout.Constraint.Length{value: 0}
Errors
Raises ArgumentError if n is negative or not an integer.

 max(n)

 @spec max(non_neg_integer()) :: TermUI.Layout.Constraint.Max.t()

Creates a maximum size constraint.
When used alone, acts as a maximum size requirement with fill behavior.
When composed with another constraint, acts as an upper bound.
Parameters
	n - Maximum size in cells (non-negative integer)

Returns
A max constraint struct with a fill constraint as default inner constraint.
Examples
At most 100 cells
Constraint.max(100)
Errors
Raises ArgumentError if n is negative or not an integer.

 min(n)

 @spec min(non_neg_integer()) :: TermUI.Layout.Constraint.Min.t()

Creates a minimum size constraint.
When used alone, acts as a minimum size requirement.
When composed with another constraint, acts as a lower bound.
Parameters
	n - Minimum size in cells (non-negative integer)

Returns
A min constraint struct with a fill constraint as default inner constraint.
Examples
At least 10 cells
Constraint.min(10)
Errors
Raises ArgumentError if n is negative or not an integer.

 min_max(min_val, max_val)

 @spec min_max(non_neg_integer(), non_neg_integer()) ::
 TermUI.Layout.Constraint.Min.t()

Creates combined min/max bounds.
Parameters
	min_val - Minimum size in cells
	max_val - Maximum size in cells

Returns
A min constraint wrapping a max constraint with fill behavior.
Examples
Between 10 and 100 cells
Constraint.min_max(10, 100)
Errors
Raises ArgumentError if min > max or values are invalid.

 percentage(p)

 @spec percentage(number()) :: TermUI.Layout.Constraint.Percentage.t()

Creates a percentage constraint for p% of parent size.
Parameters
	p - Percentage value (0 to 100, can be float)

Returns
A percentage constraint struct.
Examples
iex> Constraint.percentage(50)
%TermUI.Layout.Constraint.Percentage{value: 50}

iex> Constraint.percentage(33.33)
%TermUI.Layout.Constraint.Percentage{value: 33.33}
Errors
Raises ArgumentError if p is outside 0-100 range.

 ratio(r)

 @spec ratio(number()) :: TermUI.Layout.Constraint.Ratio.t()

Creates a ratio constraint for proportional space distribution.
Ratio constraints share remaining space (after fixed and percentage allocations)
proportionally among siblings with ratio constraints.
Parameters
	r - Ratio value (positive number)

Returns
A ratio constraint struct.
Examples
Two siblings with 2:1 ratio (first gets 2/3, second gets 1/3)
[Constraint.ratio(2), Constraint.ratio(1)]

Three equal siblings
[Constraint.ratio(1), Constraint.ratio(1), Constraint.ratio(1)]
Errors
Raises ArgumentError if r is not positive.

 resolve(constraint, available, opts \\ [])

 @spec resolve(t(), non_neg_integer(), keyword()) :: non_neg_integer()

Resolves a constraint to a concrete size given available space.
This is used by the constraint solver to calculate final sizes.
Parameters
	constraint - The constraint to resolve
	available - Available space in cells
	opts - Options including :remaining for ratio calculations

Returns
The resolved size in cells (non-negative integer).
Examples
iex> Constraint.resolve(Constraint.length(20), 100)
20

iex> Constraint.resolve(Constraint.percentage(50), 100)
50

iex> Constraint.resolve(Constraint.fill(), 100, remaining: 30)
30

 type(arg1)

 @spec type(t()) :: atom()

Returns the constraint type as an atom.
Useful for categorizing constraints during solving.
Examples
iex> Constraint.type(Constraint.length(20))
:length

iex> Constraint.type(Constraint.percentage(50))
:percentage

 unwrap(constraint)

 @spec unwrap(t()) :: t()

Gets the inner constraint, unwrapping bounds.

 with_max(constraint, max_val)

 @spec with_max(t(), non_neg_integer()) :: TermUI.Layout.Constraint.Max.t()

Adds a maximum bound to a constraint.
Parameters
	constraint - The constraint to bound
	max_val - Maximum size in cells

Returns
The constraint wrapped in a max bound.
Examples
50% but at most 100 cells
Constraint.percentage(50) |> Constraint.with_max(100)

 with_min(constraint, min_val)

 @spec with_min(t(), non_neg_integer()) :: TermUI.Layout.Constraint.Min.t()

Adds a minimum bound to a constraint.
Parameters
	constraint - The constraint to bound
	min_val - Minimum size in cells

Returns
The constraint wrapped in a min bound.
Examples
50% but at least 10 cells
Constraint.percentage(50) |> Constraint.with_min(10)

 TermUI.Layout.Constraint.Fill - TermUI v0.2.0

TermUI.Layout.Constraint.Fill

Fill remaining space constraint.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %TermUI.Layout.Constraint.Fill{}

 TermUI.Layout.Constraint.Length - TermUI v0.2.0

TermUI.Layout.Constraint.Length

Fixed size constraint in terminal cells.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %TermUI.Layout.Constraint.Length{value: non_neg_integer()}

 TermUI.Layout.Constraint.Max - TermUI v0.2.0

TermUI.Layout.Constraint.Max

Maximum size bound on another constraint.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %TermUI.Layout.Constraint.Max{
 constraint: TermUI.Layout.Constraint.t(),
 value: non_neg_integer()
}

 TermUI.Layout.Constraint.Min - TermUI v0.2.0

TermUI.Layout.Constraint.Min

Minimum size bound on another constraint.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %TermUI.Layout.Constraint.Min{
 constraint: TermUI.Layout.Constraint.t(),
 value: non_neg_integer()
}

 TermUI.Layout.Constraint.Percentage - TermUI v0.2.0

TermUI.Layout.Constraint.Percentage

Percentage of parent size constraint.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %TermUI.Layout.Constraint.Percentage{value: number()}

 TermUI.Layout.Constraint.Ratio - TermUI v0.2.0

TermUI.Layout.Constraint.Ratio

Proportional share of remaining space constraint.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %TermUI.Layout.Constraint.Ratio{value: number()}

 TermUI.Layout.Solver - TermUI v0.2.0

TermUI.Layout.Solver

Constraint solver for the layout system.
Translates constraints into concrete cell positions and sizes using a
Cassowary-inspired greedy multi-pass algorithm.
Algorithm
The solver processes constraints in priority order:
	Fixed pass - allocate length constraints exactly
	Percentage pass - calculate from total available space
	Ratio/Fill pass - distribute remaining space proportionally

Examples
Three-pane layout
constraints = [
 Constraint.length(20),
 Constraint.ratio(1),
 Constraint.ratio(2)
]

sizes = Solver.solve(constraints, 100)
=> [20, 27, 53]

Get positioned rectangles
rects = Solver.solve_to_rects(constraints, %{x: 0, y: 0, width: 100, height: 10})
=> [
%{x: 0, y: 0, width: 20, height: 10},
%{x: 20, y: 0, width: 27, height: 10},
%{x: 47, y: 0, width: 53, height: 10}
]

 Summary

 Types

 direction()

 rect()

 solve_opts()

 Functions

 solve(constraints, available)

 Solves constraints and returns a list of sizes.

 solve_horizontal(constraints, area, opts \\ [])

 Solves horizontal layout (widths) with explicit cross-axis height.

 solve_to_rects(constraints, area, opts \\ [])

 Solves constraints and returns positioned rectangles.

 solve_vertical(constraints, area, opts \\ [])

 Solves vertical layout (heights) with explicit cross-axis width.

 Types

 direction()

 @type direction() :: :horizontal | :vertical

 rect()

 @type rect() :: %{x: integer(), y: integer(), width: integer(), height: integer()}

 solve_opts()

 @type solve_opts() :: [
 direction: direction(),
 gap: non_neg_integer(),
 cross_axis: non_neg_integer() | nil
]

 Functions

 solve(constraints, available)

 @spec solve([TermUI.Layout.Constraint.t()], non_neg_integer()) :: [non_neg_integer()]

Solves constraints and returns a list of sizes.
Parameters
	constraints - list of constraints to solve
	available - total available space in cells

Returns
List of solved sizes (non-negative integers) in same order as constraints.
Examples
iex> Solver.solve([Constraint.length(20), Constraint.fill()], 100)
[20, 80]

iex> Solver.solve([Constraint.percentage(50), Constraint.percentage(50)], 100)
[50, 50]

iex> Solver.solve([Constraint.ratio(1), Constraint.ratio(2)], 90)
[30, 60]

 solve_horizontal(constraints, area, opts \\ [])

 @spec solve_horizontal([TermUI.Layout.Constraint.t()], rect(), keyword()) :: [rect()]

Solves horizontal layout (widths) with explicit cross-axis height.
Parameters
	constraints - width constraints
	area - bounding rectangle
	opts - options including :gap

Returns
List of rectangles positioned horizontally.

 solve_to_rects(constraints, area, opts \\ [])

 @spec solve_to_rects([TermUI.Layout.Constraint.t()], rect(), solve_opts()) :: [rect()]

Solves constraints and returns positioned rectangles.
Parameters
	constraints - list of constraints to solve
	area - bounding rectangle with x, y, width, height
	opts - solving options	:direction - :horizontal (default) or :vertical
	:gap - spacing between elements (default 0)
	:cross_axis - size on cross axis (default uses area dimension)

Returns
List of rectangles with x, y, width, height.
Examples
iex> Solver.solve_to_rects(
...> [Constraint.length(20), Constraint.fill()],
...> %{x: 0, y: 0, width: 100, height: 10}
...>)
[
 %{x: 0, y: 0, width: 20, height: 10},
 %{x: 20, y: 0, width: 80, height: 10}
]

 solve_vertical(constraints, area, opts \\ [])

 @spec solve_vertical([TermUI.Layout.Constraint.t()], rect(), keyword()) :: [rect()]

Solves vertical layout (heights) with explicit cross-axis width.
Parameters
	constraints - height constraints
	area - bounding rectangle
	opts - options including :gap

Returns
List of rectangles positioned vertically.

 TermUI.Terminal.EscapeParser - TermUI v0.2.0

TermUI.Terminal.EscapeParser

Parses terminal escape sequences into Event structs.
Handles CSI sequences (ESC[...), SS3 sequences (ESCO...), and control
characters. Returns parsed events and any remaining unparsed bytes.
Supported Sequences
	Arrow keys: ESC[A/B/C/D
	Function keys: F1-F12 (both SS3 and CSI variants)
	Home/End/Insert/Delete/PageUp/PageDown
	Ctrl+key: 0x01-0x1A
	Alt+key: ESC followed by key
	Regular printable characters

 Summary

 Functions

 parse(input)

 Parses input bytes into a list of events and remaining bytes.

 partial_sequence?(arg1)

 Checks if the given bytes might be a partial escape sequence.

 Functions

 parse(input)

 @spec parse(binary()) :: {[TermUI.Event.Key.t()], binary()}

Parses input bytes into a list of events and remaining bytes.
Returns {events, remaining} where events is a list of Event.Key structs
and remaining is bytes that couldn't be parsed yet (partial sequences).

 partial_sequence?(arg1)

 @spec partial_sequence?(binary()) :: boolean()

Checks if the given bytes might be a partial escape sequence.
Used to determine if we should wait for more input or emit a lone ESC.

 TermUI.Terminal.InputReader - TermUI v0.2.0

TermUI.Terminal.InputReader

GenServer that reads keyboard input from stdin and sends events to a target process.
Uses a port to read from stdin in a non-blocking way. Parses escape sequences
and emits Event.Key structs to the configured target process.
Usage
{:ok, reader} = InputReader.start_link(target: self())
Events will be sent as {:input, %Event.Key{}}
Escape Sequence Handling
Some sequences are ambiguous (ESC alone vs ESC followed by another key).
The reader uses a timeout (default 50ms) to disambiguate - if no more bytes
arrive within the timeout, a lone ESC is emitted.

 Summary

 Types

 t()

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 start_link(opts)

 Starts the InputReader.

 stop(server)

 Stops the InputReader.

 Types

 t()

 @type t() :: %TermUI.Terminal.InputReader{
 buffer: binary(),
 port: port() | nil,
 target: pid(),
 timer_ref: reference() | nil
}

 Functions

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 start_link(opts)

 @spec start_link(keyword()) :: GenServer.on_start()

Starts the InputReader.
Options
	:target - PID to receive events (required)
	:name - GenServer name (optional)

 stop(server)

 @spec stop(GenServer.server()) :: :ok

Stops the InputReader.

 TermUI.Terminal.State - TermUI v0.2.0

TermUI.Terminal.State

Terminal state structure tracking raw mode status, original settings,
and active features (mouse tracking, bracketed paste, alternate screen).

 Summary

 Types

 t()

 Functions

 new()

 Creates a new terminal state with default values.

 new(rows, cols)

 Creates a new terminal state with the given size.

 Types

 t()

 @type t() :: %TermUI.Terminal.State{
 alternate_screen_active: boolean(),
 bracketed_paste: boolean(),
 cursor_visible: boolean(),
 focus_events: boolean(),
 mouse_tracking: :off | :x10 | :normal | :button | :all,
 original_settings: term() | nil,
 raw_mode_active: boolean(),
 resize_callbacks: [pid()],
 size: {rows :: pos_integer(), cols :: pos_integer()} | nil
}

 Functions

 new()

 @spec new() :: t()

Creates a new terminal state with default values.

 new(rows, cols)

 @spec new(pos_integer(), pos_integer()) :: t()

Creates a new terminal state with the given size.

OEBPS/dist/epub-4WIP524F.js
