

 tesla

 v1.16.0

 [image: Logo]

 Table of contents

 	Tesla

 	License

 	Explanations

 	Client

 	Testing

 	Middleware

 	Adapter

 	Cheatsheets

 	Basic Cheat Sheet

 	How-To's

 	Migrate from v0 to v1

 	Migrate away from v1 Macro

 	Test Using Mox

 	
 Modules

 	Tesla

 	Tesla.Client

 	Tesla.Env

 	Tesla.Mock

 	Tesla.Multipart

 	Tesla.Multipart.Part

 	Tesla.Test

 	Behaviours

 	Tesla.Adapter

 	Tesla.Middleware

 	Adapters

 	Tesla.Adapter.Finch

 	Tesla.Adapter.Gun

 	Tesla.Adapter.Hackney

 	Tesla.Adapter.Httpc

 	Tesla.Adapter.Ibrowse

 	Tesla.Adapter.Mint

 	Middlewares

 	Tesla.Middleware.BaseUrl

 	Tesla.Middleware.BasicAuth

 	Tesla.Middleware.BearerAuth

 	Tesla.Middleware.CompressRequest

 	Tesla.Middleware.Compression

 	Tesla.Middleware.DecodeFormUrlencoded

 	Tesla.Middleware.DecodeJson

 	Tesla.Middleware.DecodeMessagePack

 	Tesla.Middleware.DecodeRels

 	Tesla.Middleware.DecompressResponse

 	Tesla.Middleware.DigestAuth

 	Tesla.Middleware.EncodeFormUrlencoded

 	Tesla.Middleware.EncodeJson

 	Tesla.Middleware.EncodeMessagePack

 	Tesla.Middleware.FollowRedirects

 	Tesla.Middleware.FormUrlencoded

 	Tesla.Middleware.Fuse

 	Tesla.Middleware.Headers

 	Tesla.Middleware.JSON

 	Tesla.Middleware.KeepRequest

 	Tesla.Middleware.Logger

 	Tesla.Middleware.MessagePack

 	Tesla.Middleware.MethodOverride

 	Tesla.Middleware.Opts

 	Tesla.Middleware.PathParams

 	Tesla.Middleware.Query

 	Tesla.Middleware.Retry

 	Tesla.Middleware.SSE

 	Tesla.Middleware.Telemetry

 	Tesla.Middleware.Timeout

 	Exceptions

 	Tesla.Error

 	Tesla.Mock.Error

 Tesla

[image: Test]
[image: Hex.pm]
[image: Hexdocs.pm]
[image: Hex.pm]
[image: Hex.pm]
[image: codecov]
Tesla is an HTTP client that leverages middleware to streamline HTTP requests
and responses over a common interface for various adapters.
It simplifies HTTP communication by providing a flexible and composable
middleware stack. Developers can easily build custom API clients by stacking
middleware components that handle tasks like authentication, logging, and
retries. Tesla supports multiple HTTP adapters such as Mint, Finch,
Hackney, etc.
Tesla is ideal for developers who need a flexible and efficient HTTP client.
Its ability to swap out HTTP adapters and create custom middleware pipelines
empowers you to make different architectural decisions and build tools tailored
to your application's needs with minimal effort.
Inspired by Faraday from Ruby.
Getting started
Add :tesla as dependency in mix.exs:
defp deps do
 [
 # or latest version
 {:tesla, "~> 1.11"},
 # optional, required by JSON middleware
 {:jason, "~> 1.4"},
 # optional, required by Mint adapter, recommended
 {:mint, "~> 1.0"}
]
end
:httpc as default Adapter
The default adapter is erlang's built-in httpc, primarily to avoid
additional
dependencies when using Tesla in a new project. But it is not recommended to
use it in production environment as it does not validate SSL certificates
among other issues.
Instead, consider using Mint, Finch, or Hackney adapters.
We believe that such security issues should be addressed by :httpc itself
and we are not planning to fix them in Tesla due to backward compatibility.
Configure default adapter in config/config.exs.
config/config.exs

Make sure to install `mint` package as well, recommended
config :tesla, adapter: Tesla.Adapter.Mint
To make a simple GET request, run iex -S mix and execute:
iex> Tesla.get!("https://httpbin.org/get").status
=> 200
That will not include any middleware and will use the global default adapter.
Create a client to compose middleware and reuse it across requests.
iex> client = Tesla.client([
...> {Tesla.Middleware.BaseUrl, "https://httpbin.org/"},
...> Tesla.Middleware.JSON,
...>])

iex> Tesla.get!(client, "/json").body
=> %{"slideshow" => ...}
Lastly, you can enforce the adapter to be used by a specific client:
iex> client = Tesla.client([], {Tesla.Adapter.Hackney, pool: :my_pool})
Happy hacking!
What to do next?
Check out the following sections to learn more about Tesla:
Explanations
	Client
	Testing
	Middleware
	Adapter

Howtos
Migrations
	Migrating from v0 to v1.x

References
	General Cheatsheet
	Cookbook

Middleware
Tesla is built around the concept of composable middlewares.
	Tesla.Middleware.BaseUrl - set base URL.
	Tesla.Middleware.Headers - set request headers.
	Tesla.Middleware.Query - set query parameters.
	Tesla.Middleware.Opts - set request options.
	Tesla.Middleware.FollowRedirects - follow HTTP 3xx redirects.
	Tesla.Middleware.MethodOverride - set X-Http-Method-Override header.
	Tesla.Middleware.Logger - log requests (method, url, status, and time).
	Tesla.Middleware.KeepRequest - keep request body and headers.
	Tesla.Middleware.PathParams - use templated URLs.

Formats
	Tesla.Middleware.FormUrlencoded - URL encode POST body, useful for POSTing a
map/keyword list.
	Tesla.Middleware.JSON - encode/decode JSON request/response body.
	Tesla.Middleware.Compression - compress request/response body using
gzip and deflate.
	Tesla.Middleware.DecodeRels - decode Link header into opts[:rels] field
in response.

Auth
	Tesla.Middleware.BasicAuth - HTTP Basic Auth.
	Tesla.Middleware.BearerAuth - HTTP Bearer Auth.
	Tesla.Middleware.DigestAuth] - Digest access authentication.

Error handling
	Tesla.Middleware.Timeout - timeout request after X milliseconds despite of
server response.
	Tesla.Middleware.Retry - retry few times in case of connection refused.
	Tesla.Middleware.Fuse - fuse circuit breaker integration.

Adapters
Tesla supports multiple HTTP adapter that do the actual HTTP request processing.
	Tesla.Adapter.Httpc - the default, built-in Erlang httpc adapter.
	Tesla.Adapter.Hackney - hackney, simple HTTP client in Erlang.
	Tesla.Adapter.Ibrowse - ibrowse, Erlang HTTP client.
	Tesla.Adapter.Gun - gun, HTTP/1.1, HTTP/2 and Websocket client for
Erlang/OTP.
	Tesla.Adapter.Mint - mint, Functional HTTP client for Elixir with
support for HTTP/1 and HTTP/2.
	Tesla.Adapter.Finch - finch, An HTTP client with a focus on
performance, built on top of Mint and NimblePool.

Sponsors
	ubots - Ultimate Productivity Made Easy with Slack

 License

The MIT License (MIT)

Copyright (c) 2015-Present Tymon Tobolski

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

 Client

In Tesla, a client is an entity that combines middleware and an adapter,
created using Tesla.client/2. Middleware components modify or enhance requests
and responses—such as adding headers or handling authentication—while adapters
handle the underlying HTTP communication. For more details, see the sections on
middleware and adapters.
Creating a Client
A client is created using Tesla.client/2, which takes a list of middleware
and an adapter.
client = Tesla.client([Tesla.Middleware.PathParams, Tesla.Middleware.Logger])
You can then use the client to make requests:
Tesla.get(client, "/users/123")
Passing Options to Middleware
You can pass options to middleware by registering the middleware as a tuple
of two elements, where the first element is the middleware module and the
second is the options.
client = Tesla.client(
 [{Tesla.Middleware.BaseUrl, "https://api.example.com"}]
)
Passing Adapter
By default, the global adapter is used. You can override this by passing an
adapter to the client.
client = Tesla.client([], Tesla.Adapter.Mint)
You can also pass options to the adapter.
client = Tesla.client([], {Tesla.Adapter.Mint, pool: :my_pool})
Single-Client (Singleton) Pattern
A common approach in applications is to encapsulate client creation within a
module or function that sets up standard middleware and adapter configurations.
This results in a single, shared client instance used throughout the
application. For example:
defmodule MyApp.ServiceName do
 defp client do
 middleware = [
 {Tesla.Middleware.BaseUrl, "https://api.service.com"},
 {Tesla.Middleware.BearerAuth, token: bearer_token()},
 # Additional middleware...
]
 Tesla.client(middleware, adapter())
 end

 defp adapter do
 Keyword.get(config(), :adapter)
 end

 defp bearer_token do
 Keyword.fetch!(config(), :bearer_token)
 end

 defp config do
 Application.get_env(:my_app, __MODULE__, [])
 end
end
In this pattern, the client is constructed internally, and operations use this
singleton client:
defmodule MyApp.ServiceName do
 def operation_name(body) do
 url = "/endpoint"
 # The client() function is called internally
 response = Tesla.post!(client(), url, body)
 # Process the response...
 end

 defp client do
 # Client construction as shown earlier
 end
end
You can then use the module to make requests without managing the client externally:
{:ok, response} = MyApp.ServiceName.operation_name(%{key: "value"})
Multi-Client Pattern
In scenarios where different configurations are needed—such as multi-tenancy
applications or interacting with multiple services—you can modify the client
function to accept configuration parameters. This allows for the creation of
multiple clients with varying settings:
defmodule MyApp.ServiceName do
 def operation_name(client, body) do
 url = "/endpoint"
 # The client is passed as a parameter
 response = Tesla.post!(client, url, body)
 # Process the response...
 end

 def client(opts) do
 middleware = [
 {Tesla.Middleware.BaseUrl, opts[:base_url]},
 {Tesla.Middleware.BearerAuth, token: opts[:bearer_token]},
 # Additional middleware...
]
 Tesla.client(middleware, opts[:adapter])
 end
end
Now, you can create clients with different configurations:
client = MyApp.ServiceName.client(
 base_url: "https://api.service.com",
 bearer_token: "token_value",
 adapter: Tesla.Adapter.Hackney
 # Additional options...
)
{:ok, response} = MyApp.ServiceName.operation_name(client, %{key: "value"})
Comparing Single-Client and Multi-Client Patterns
The choice between using a single-client (singleton) or multi-client pattern
depends on your specific needs:
	Library Authors: It's generally advisable to avoid the singleton client
pattern. Hardcoding configurations can limit flexibility and hinder users in
multi-tenant environments. Providing the ability to create clients with custom
configurations makes your library more adaptable and user-friendly.

	Application Developers: For simpler applications, a singleton client might
suffice initially. However, adopting the multi-client approach from the outset
can prevent future refactoring if your application grows or needs change.

Understanding these patterns helps you design applications and libraries that
are flexible and maintainable, aligning with best practices in software
development.

 Testing

There are two primary ways to mock requests in Tesla:
	Using Mox
	Using Tesla.Mock (deprecated)

You can also create a custom mock adapter if needed. For more information about
adapters, refer to the Adapter Guide to create your own.
Should I Use Mox or Tesla.Mock?
We recommend using Mox for mocking requests in tests because it
is well-established in the Elixir community and provides robust features for
concurrent testing. While Tesla.Mock offers useful capabilities, it may be
removed in future releases. Consider using Mox to ensure long-term
compatibility.
For additional context, see GitHub Issue #241.
References
	How-To Test Using Mox

 Middleware

TL;DR: adapter(middleware3(middleware2(middleware1(env, next, options))))
Middleware in Tesla extends the request/response pipeline. Requests pass
through a stack of middleware before reaching the adapter, allowing
modifications to both requests and responses.
Middleware can be a module implementing Tesla.Middleware
behaviour or a function matching Tesla.Middleware.call/3. There is no
distinction between request and response middleware; it's about when you
execute Tesla.run/2.
The middleware stack is processed by calling Tesla.run/2 until it reaches
the adapter.
Writing Middleware
Example of a custom middleware module:
defmodule Tesla.Middleware.MyCustomMiddleware do
 @behaviour Tesla.Middleware

 @impl Tesla.Middleware
 def call(env, next, options) do
 # Actions before calling the next middleware
 # ...
 Tesla.run(env, next)
 # Actions after calling the next middleware
 # ...
 end
end
A request logger middleware example:
defmodule MyApp.Tesla.Middleware.Logger do
 require Logger

 @behaviour Tesla.Middleware

 def call(env, next, _) do
 Logger.info("Request: #{inspect(env)}")
 case Tesla.run(env, next) do
 {:ok, env} ->
 Logger.info("Response: #{inspect(env)}")
 {:ok, env}

 {:error, reason} ->
 Logger.error("Error: #{inspect(reason)}")
 {:error, reason}
 end
 end
end
Production-Ready Middleware Pipeline Example
In a production application, you might combine built-in and custom middleware.
Here's an example pipeline:
defmodule MyApp.ServiceName do
 defp middleware do
 base_url = "..."
 token = "..."

 [
 # Preserve the original request, should be the first middleware in the
 # pipeline to preserve the original request.
 Tesla.Middleware.KeepRequest,

 # Set the base URL
 {Tesla.Middleware.BaseUrl, base_url},

 # Add headers
 {Tesla.Middleware.Headers, [{"user-agent", "MyApp/1.0"}]},
 # Add authorization
 {Tesla.Middleware.BearerAuth, [token: token]},
 # Process the body (encoding, compression)
 # Use string keys for untrusted input
 Tesla.Middleware.JSON,
 # Compress the request and response
 # Tesla.Middleware.Compression,

 # Optional OpenTelemetry middleware. Be careful adding `Tesla.Middleware.PathParams`
 # before this middleware since you want to have low cardinality attribute
 # values, therefore, you want the URL template.
 # Tesla.Middleware.OpenTelemetry

 # Keep the telemetry and logging as close as possible to the actual request
 # being made.
 # Log requests and responses
 Tesla.Middleware.Logger,
 # Telemetry of the Request
 Tesla.Middleware.Telemetry,

 # Replaces the Path Params, you may want keep it at the end when telemetry
 # packages prefer to work with the URL template.
 Tesla.Middleware.PathParams,
]
 end
end
See built-in middlewares
for more examples.

 Adapter

An adapter in Tesla implements the Tesla.Adapter behaviour and handles the
actual HTTP communication. It's the final step in the middleware chain,
responsible for sending requests and receiving responses.
Writing an Adapter
You can create a custom adapter by implementing the Tesla.Adapter behaviour.
Here's an example:
defmodule Tesla.Adapter.Req do
 @behaviour Tesla.Adapter

 @impl Tesla.Adapter
 def call(env, _opts) do
 req = Req.new(
 url: Tesla.build_url(env),
 method: env.method,
 headers: env.headers,
 body: env.body
)

 case Req.request(req) do
 {:ok, %Req.Response{} = resp} ->
 {:ok, %Tesla.Env{env | status: resp.status, headers: resp.headers, body: resp.body}}

 {:error, reason} ->
 {:error, reason}
 end
 end
end
Setting the Adapter
If you don't specify an adapter when creating a client with Tesla.client/2,
Tesla uses the adapter configured in the :tesla application environment.
By default, Tesla uses Tesla.Adapter.Httpc, which relies on Erlang's built-in
httpc.
:httpc as default Adapter
The default httpc adapter is not recommended for production because it
doesn't validate SSL certificates and has other issues. Consider using Mint,
Finch, or Hackney adapters instead.
Adapter Options
You can pass options to adapters in several ways:
	In the application configuration:
config :tesla, adapter: {Tesla.Adapter.Hackney, [recv_timeout: 30_000]}

	When creating a client:
defmodule MyService do
 def client(...) do
 middleware = [...]
 adapter = {Tesla.Adapter.Hackney, [recv_timeout: 30_000]}
 Tesla.client(middleware, adapter)
 end
end

	Directly in request functions:
Tesla.get(client, "/", opts: [adapter: [recv_timeout: 30_000]])

About :httpc adapter and security issues
People have complained about :httpc adapter in Tesla due to
its security issues. The main problem is that :httpc does not validate SSL
certificates by default. Which, we believe, is a serious security issue and
should be addressed by :httpc itself.
As much as we would like to fix it, we can't, because we are unsure if it would
break existing code. We are not planning to fix it in Tesla due to backward
compatibility. We may reconsider this decision for a version 2.0.

 Basic Cheat Sheet

Making Requests 101
Creating a client
client = Tesla.client([{Tesla.Middleware.BaseUrl, "https://httpbin.org"}])
Tesla.get(client, "/path")
All Methods
Tesla.get("https://httpbin.org/get")

Tesla.head("https://httpbin.org/anything")
Tesla.options("https://httpbin.org/anything")
Tesla.trace("https://httpbin.org/anything")

Tesla.post("https://httpbin.org/post", "body")
Tesla.put("https://httpbin.org/put", "body")
Tesla.patch("https://httpbin.org/patch", "body")
Tesla.delete("https://httpbin.org/anything")
Query Params
GET /path?a=hi&b[]=1&b[]=2&b[]=3
Tesla.get("https://httpbin.org/anything", query: [a: "hi", b: [1, 2, 3]])
Request Headers
Tesla.get("https://httpbin.org/headers", headers: [{"x-api-key", "1"}])
Client Default Headers
client = Tesla.client([{Tesla.Middleware.Headers, [{"user-agent", "Tesla"}]}])
Multipart
You can pass a Tesla.Multipart struct as the body:
alias Tesla.Multipart

mp =
 Multipart.new()
 |> Multipart.add_content_type_param("charset=utf-8")
 |> Multipart.add_field("field1", "foo")
 |> Multipart.add_field("field2", "bar",
 headers: [{"content-id", "1"}, {"content-type", "text/plain"}]
)
 |> Multipart.add_file("test/tesla/multipart_test_file.sh")
 |> Multipart.add_file("test/tesla/multipart_test_file.sh", name: "foobar")
 |> Multipart.add_file_content("sample file content", "sample.txt")

{:ok, response} = Tesla.post("https://httpbin.org/post", mp)
Streaming
Streaming Request Body
If adapter supports it, you can pass a Stream
as request body, e.g.:
defmodule ElasticSearch do
 def index(records_stream) do
 stream = Stream.map(records_stream, fn record -> %{index: [some, data]} end)
 Tesla.post(client(), "/_bulk", stream)
 end

 defp client do
 Tesla.client([
 {Tesla.Middleware.BaseUrl, "http://localhost:9200"},
 Tesla.Middleware.JSON
], {Tesla.Adapter.Finch, name: MyFinch})
 end
end
Streaming Response Body
If adapter supports it, you can pass a response: :stream option to return
response body as a Stream
defmodule OpenAI do
 def client(token) do
 middleware = [
 {Tesla.Middleware.BaseUrl, "https://api.openai.com/v1"},
 {Tesla.Middleware.BearerAuth, token: token},
 {Tesla.Middleware.JSON, decode_content_types: ["text/event-stream"]},
 {Tesla.Middleware.SSE, only: :data}
]
 Tesla.client(middleware, {Tesla.Adapter.Finch, name: MyFinch})
 end

 def completion(client, prompt) do
 data = %{
 model: "gpt-3.5-turbo",
 messages: [%{role: "user", content: prompt}],
 stream: true
 }
 Tesla.post(client, "/chat/completions", data, opts: [adapter: [response: :stream]])
 end
end

client = OpenAI.new("<token>")
{:ok, env} = OpenAI.completion(client, "What is the meaning of life?")
env.body |> Stream.each(fn chunk -> IO.inspect(chunk) end)
Middleware
Custom middleware
defmodule Tesla.Middleware.MyCustomMiddleware do
 @moduledoc """
 Short description what it does

 Longer description, including e.g. additional dependencies.

 ### Options

 - `:list` - all possible options
 - `:with` - their default values

 ### Examples

 client = Tesla.client([{Tesla.Middleware.MyCustomMiddleware, with: value}])
 """

 @behaviour Tesla.Middleware

 @impl Tesla.Middleware
 def call(env, next, options) do
 with %Tesla.Env{} = env <- preprocess(env) do
 env
 |> Tesla.run(next)
 |> postprocess()
 end
 end

 defp preprocess(env) do
 env
 end

 defp postprocess({:ok, env}) do
 {:ok, env}
 end

 def postprocess({:error, reason}) do
 {:error, reason}
 end
end
Adapter
Custom adapter
defmodule Tesla.Adapter.MyCustomAdapter do
 @behaviour Tesla.Adapter

 @impl Tesla.Adapter
 def run(env, opts) do
 # do something
 end
end

 Migrate from v0 to v1

This is a list of all breaking changes.
Version 1.0 has been released, try it today!
 defp deps do
 [
 {:tesla, "1.0.0"}
]
 end
Any other breaking change not on this list is considered a bug - in you find one please create a new issue.
Returning Tuple Result from HTTP Functions
get(..), post(..), etc. now return {:ok, Tesla.Env} | {:error, reason} (#177)
In 0.x all http functions returned either Tesla.Env or raised an error.
In 1.0 these functions return ok/error tuples. The old behaviour can be achieved with the new ! (bang) functions: get!(...), post!(...), etc.
case MyApi.get("/") do
 {:ok, %Tesla.Env{status: 200}} -> # ok response
 {:ok, %Tesla.Env{status: 500}} -> # server error
 {:error, reason} -> # connection & other errors
end
Dropped aliases support (#159)
Use full module name for middleware and adapters.
middleware
- plug :json
+ plug Tesla.Middleware.JSON

adapter
- adapter :hackney
+ adapter Tesla.Adapter.Hackney

config
- config :tesla, adapter: :mock
+ config :tesla, adapter: Tesla.Mock
Dropped local middleware/adapter functions (#171)
Extract functionality into separate module.
 defmodule MyClient do
- plug :some_local_fun
-
- def some_local_fun(env, next) do
 # implementation
- end
 end

+defmodule ProperlyNamedMiddleware do
+ @behaviour Tesla.Middleware
+ def call(env, next, _opts) do
 # implementation
+ end
+end

 defmodule MyClient do
+ plug ProperlyNamedMiddleware
 end
Dropped client as function (#176)
This is very unlikely, but... if you hacked around with custom functions as client (the first argument) you need to stop.
See Tesla.client/2 instead.
Headers are now a list (#160)
In 0.x env.headers are a map(binary => binary).
In 1.x env.headers are a [{binary, binary}].
This change also applies to middleware headers.
Setting a header
- env
- |> Map.update!(&Map.put(&1.headers, "name", "value"))

+ env
+ |> Tesla.put_header("name", "value")
Getting a header
- env.headers["cookie"]
+ Tesla.get_header(env, "cookie") # => "secret"
+ Tesla.get_headers(env, "cookie") # => ["secret", "token", "and more"]

- case env.headers do
- %{"server" => server} -> ...
- _ -> ...
- end
+ case Tesla.get_header(env, "server") do
+ nil -> ...
+ server ->
+ end
There are five new functions to deal with headers:
	Tesla.get_header(env, name) :: binary | nil - Get first header with given name

	Tesla.get_headers(env, name) :: [binary] - Get all headers values with given name
	Tesla.put_header(env, name, value) - Set header with given name and value. Existing header with the same name will be overwritten.
	Tesla.put_headers(env, list) - Add headers to the end of env.headers. Does not make the headers unique.
	Tesla.delete_header(env, name) - Delete all headers with given name

Dropped support for Elixir 1.3 (#164)
Tesla 1.0 works only with Elixir 1.4 or newer
Adapter options need to be wrapped in :adapter key:
- MyClient.get("/", opts: [recv_timeout: 30_000])
+ MyClient.get("/", opts: [adapter: [recv_timeout: 30_000]])
DebugLogger merged into Logger (#150)
Debugging request and response details has been merged into a single Logger middleware. See Tesla.Middleware.Logger documentation for more information.
 defmodule MyClient do
 use Tesla

 plug Tesla.Middleware.Logger
- plug Tesla.Middleware.DebugLogger
 end
Jason is the new default JSON library (#175)
The Tesla.Middleware.JSON now requires jason by default. If you want to keep using poison you will have to set :engine option - see documentation for details.

 Migrate away from v1 Macro

We encourage users to contribute to this guide to help others migrate away from
the v1 macro syntax. Every case is different, so we can't provide a
one-size-fits-all solution, but we can provide a guide to help you migrate your
codebase.
Please share your learnings and suggestions in the Migrating away from v1 Macro GitHub Discussion.
	Find all the modules that use use Tesla
defmodule MyApp.MyTeslaClient do
 use Tesla # <- this line
end

	Remove use Tesla
 - defmodule MyApp.MyTeslaClient do
 - use Tesla
 - end
 + defmodule MyApp.MyTeslaClient do
 + end

	Find all the plug macro calls:
defmodule MyApp.MyTeslaClient do
 plug Tesla.Middleware.KeepRequest # <- this line
 plug Tesla.Middleware.PathParams # <- this line
 plug Tesla.Middleware.JSON # <- this line
end

	Move all the plug macro calls to a function that returns the middleware.
defmodule MyApp.MyTeslaClient do
- plug Tesla.Middleware.KeepRequest
- plug Tesla.Middleware.PathParams
- plug Tesla.Middleware.JSON
+
+ def middleware do
+ [Tesla.Middleware.KeepRequest, Tesla.Middleware.PathParams, Tesla.Middleware.JSON]
+ end
end

	Find all the adapter macro calls:
defmodule MyApp.MyTeslaClient do
 adapter Tesla.Adapter.Hackney # <- this line
 adapter fn env -> # <- or this line
 end
end

	Create a adapter/0 function that returns the adapter to use for that given
module, or however you prefer to configure the adapter used. Please refer to
the Adapter Explanation documentation for more
information.
Context Matters
This step is probably the most important one. The context in which the
adapter is used matters a lot. Please be careful with this step, and test
your changes thoroughly.
defmodule MyApp.MyTeslaClient do
- adapter Tesla.Adapter.Hackney
+ defp adapter do
+ # if the value is `nil`, the default global Tesla adapter will be used
+ # which is the existing behavior.
+ :my_app
+ |> Application.get_env(__MODULE__, [])
+ |> Keyword.get(:adapter)
+ end
end

	Create a client/0 function that returns a Tesla.Client struct with the
middleware and adapter. Please refer to the Client Explanation
documentation for more information.
defmodule MyApp.MyTeslaClient do
 def client do
 Tesla.client(middleware(), adapter())
 end

 defp middleware do
 [Tesla.Middleware.KeepRequest, Tesla.Middleware.PathParams, Tesla.Middleware.JSON]
 end

 defp adapter do
 :my_app
 |> Application.get_env(__MODULE__, [])
 |> Keyword.get(:adapter)
 end
end

	Replace all the Tesla.get/2, Tesla.post/2, etc. to receive the client
as an argument.
defmodule MyApp.MyTeslaClient do
 def do_something do
- get("/endpoint")
+ Tesla.get!(client(), "/endpoint")
 end
end

 Test Using Mox

To mock HTTP requests in your tests using Mox with the Tesla HTTP client,
follow these steps:
1. Define a Mock Adapter
First, define a mock adapter that implements the Tesla.Adapter behaviour. This
adapter will intercept HTTP requests during testing.
Create a file at test/support/mocks.ex:
test/support/mocks.ex
Mox.defmock(MyApp.MockAdapter, for: Tesla.Adapter)
2. Configure the Mock Adapter for Tests
In your config/test.exs file, configure Tesla to use the mock adapter you
just defined:
config/test.exs
config :tesla, adapter: MyApp.MockAdapter
If you are not using the global adapter configuration, ensure that your Tesla
client modules are configured to use MyApp.MockAdapter during tests.
3. Set Up Mocking in Your Tests
Create a test module, for example test/demo_test.exs, and set up Mox to
define expectations and verify them:
defmodule MyApp.FeatureTest do
 use ExUnit.Case, async: true

 import Mox
 import Tesla.Test

 setup :set_mox_from_context
 setup :verify_on_exit!

 test "example test" do
 #--------- Given - Stubs and Preconditions
 # Expect a single HTTP request to be made and return a JSON response
 expect_tesla_call(
 times: 1,
 returns: json(%Tesla.Env{status: 200}, %{id: 1})
)

 #--------- When - Run the code under test
 # Make the HTTP request using Tesla
 # Mimic a use case where we create a user
 assert :ok = create_user!(%{username: "johndoe"})

 #--------- Then - Assert postconditions
 # Verify that the HTTP request was made and matches the expected parameters
 assert_received_tesla_call(env, [])
 assert env.status == 200
 assert env.method == :post
 assert env.url == "https://acme.com/users"
 # ...

 # Or you can verify the entire `t:Tesla.Env.t/0` using something like this:
 assert_tesla_env(env, %Tesla.Env{
 method: :post,
 url: "https://acme.com/users",
 body: %{username: "johndoe"},
 status: 200,
 })

 # Verify that the mailbox is empty, indicating no additional requests were
 # made and all messages have been processed
 assert_tesla_empty_mailbox()
 end

 defp create_user!(body) do
 # ...
 Tesla.post!("https://acme.com/users", body)
 # ...
 :ok
 end
end
4. Run Your Tests
When you run your tests with mix test, all HTTP requests made by Tesla will
be intercepted by MyApp.MockAdapter, and responses will be provided based
on your Mox expectations.

Tesla

A HTTP toolkit for building API clients using middlewares.
Building API client
Use Tesla.client/2 to build a client with the given middleware and adapter.
Examples
defmodule ExampleApi do
 def client do
 Tesla.client([
 {Tesla.Middleware.BaseUrl, "http://api.example.com"},
 Tesla.Middleware.JSON
])
 end

 def fetch_data(client) do
 Tesla.get(client, "/data")
 end
end
Now you can use ExampleApi.client/0 to make requests to the API.
client = ExampleApi.client()
ExampleApi.fetch_data(client)
Direct usage
It is also possible to do request directly with Tesla module.
Tesla.get("https://example.com")
Default adapter
By default Tesla is using Tesla.Adapter.Httpc, because :httpc is
included in Erlang/OTP and does not require installation of any additional
dependency. It can be changed globally with config:
config :tesla, :adapter, Tesla.Adapter.Mint

 Summary

 Types

 encoding_strategy()

 option()

 Options that may be passed to a request function. See request/2 for detailed descriptions.

 Functions

 build_adapter(fun)

 deprecated

 build_client(pre, post \\ [])

 deprecated

 build_url(env)

 Builds a URL from the given Tesla.Env.t/0 struct.

 build_url(url, query, encoding \\ :www_form)

 Builds URL with the given URL and query params.

 client(middleware, adapter \\ nil)

 Dynamically build client from list of middlewares and/or adapter.

 delete(client, url, opts)

 Perform a DELETE request.

 delete!(client, url, opts)

 Perform a DELETE request.

 delete_header(env, key)

 encode_query(query, encoding \\ :www_form)

 get(client, url, opts)

 Perform a GET request.

 get!(client, url, opts)

 Perform a GET request.

 get_header(env, key)

 Returns value of header specified by key from :headers field in Tesla.Env.

 get_headers(env, key)

 head(client, url, opts)

 Perform a HEAD request.

 head!(client, url, opts)

 Perform a HEAD request.

 options(client, url, opts)

 Perform a OPTIONS request.

 options!(client, url, opts)

 Perform a OPTIONS request.

 patch(client, url, body, opts)

 Perform a PATCH request.

 patch!(client, url, body, opts)

 Perform a PATCH request.

 post(client, url, body, opts)

 Perform a POST request.

 post!(client, url, body, opts)

 Perform a POST request.

 put(client, url, body, opts)

 Perform a PUT request.

 put!(client, url, body, opts)

 Perform a PUT request.

 put_body(env, body)

 put_header(env, key, value)

 put_headers(env, list)

 put_opt(env, key, value)

 Adds given key/value pair to :opts field in Tesla.Env.

 request(client \\ %Tesla.Client{}, options)

 Perform a request.

 request!(client \\ %Tesla.Client{}, options)

 Perform request and raise in case of error.

 run(env, list)

 run_default_adapter(env, opts \\ [])

 trace(client, url, opts)

 Perform a TRACE request.

 trace!(client, url, opts)

 Perform a TRACE request.

 Types

 encoding_strategy()

 @type encoding_strategy() :: :rfc3986 | :www_form

 option()

 @type option() ::
 {:method, Tesla.Env.method()}
 | {:url, Tesla.Env.url()}
 | {:query, Tesla.Env.query()}
 | {:headers, Tesla.Env.headers()}
 | {:body, Tesla.Env.body()}
 | {:opts, Tesla.Env.opts()}

Options that may be passed to a request function. See request/2 for detailed descriptions.

 Functions

 build_adapter(fun)

 This function is deprecated. Use client/1 or client/2 instead.

 build_client(pre, post \\ [])

 This function is deprecated. Use client/1 or client/2 instead.

 build_url(env)

 @spec build_url(Tesla.Env.t()) :: String.t()

Builds a URL from the given Tesla.Env.t/0 struct.
Combines the url and query fields, and allows specifying the encoding
strategy before calling build_url/3.

 build_url(url, query, encoding \\ :www_form)

 @spec build_url(Tesla.Env.url(), Tesla.Env.query(), encoding_strategy()) :: binary()

Builds URL with the given URL and query params.
Useful when you need to create a URL with dynamic query params from a Keyword
list
Allows to specify the encoding strategy to be one either :www_form or
:rfc3986. Read more about encoding at URI.encode_query/2.
	url - the base URL to which the query params will be appended.
	query - a list of key-value pairs to be encoded as query params.
	encoding - the encoding strategy to use. Defaults to :www_form

Examples
iex> Tesla.build_url("https://api.example.com", [user: 3, page: 2])
"https://api.example.com?user=3&page=2"
URL that already contains query params:
iex> url = "https://api.example.com?user=3"
iex> Tesla.build_url(url, [page: 2, status: true])
"https://api.example.com?user=3&page=2&status=true"
Default encoding :www_form:
iex> Tesla.build_url("https://api.example.com", [user_name: "John Smith"])
"https://api.example.com?user_name=John+Smith"
Specified encoding strategy :rfc3986:
iex> Tesla.build_url("https://api.example.com", [user_name: "John Smith"], :rfc3986)
"https://api.example.com?user_name=John%20Smith"

 client(middleware, adapter \\ nil)

 (since 1.2.0)

 @spec client([Tesla.Client.middleware()], Tesla.Client.adapter()) :: Tesla.Client.t()

Dynamically build client from list of middlewares and/or adapter.
add dynamic middleware
client = Tesla.client([{Tesla.Middleware.Headers, [{"authorization", token}]}])
Tesla.get(client, "/path")

configure adapter in runtime
client = Tesla.client([], Tesla.Adapter.Hackney)
client = Tesla.client([], {Tesla.Adapter.Hackney, pool: :my_pool})
Tesla.get(client, "/path")

complete module example
defmodule MyApi do
 @middleware [
 {Tesla.Middleware.BaseUrl, "https://example.com"},
 Tesla.Middleware.JSON,
 Tesla.Middleware.Logger
]

 @adapter Tesla.Adapter.Hackney

 def new(opts) do
 # do any middleware manipulation you need
 middleware = [
 {Tesla.Middleware.BasicAuth, username: opts[:username], password: opts[:password]}
] ++ @middleware

 # allow configuring adapter in runtime
 adapter = opts[:adapter] || @adapter

 # use Tesla.client/2 to put it all together
 Tesla.client(middleware, adapter)
 end

 def get_something(client, id) do
 # pass client directly to Tesla.get/2
 Tesla.get(client, "/something/#{id}")
 # ...
 end
end

client = MyApi.new(username: "admin", password: "secret")
MyApi.get_something(client, 42)

 delete(client, url, opts)

 @spec delete(Tesla.Env.client(), Tesla.Env.url(), [option()]) :: Tesla.Env.result()

Perform a DELETE request.
See request/1 or request/2 for options definition.
delete("/users")
delete("/users", query: [scope: "admin"])
delete(client, "/users")
delete(client, "/users", query: [scope: "admin"])
delete(client, "/users", body: %{name: "Jon"})

 delete!(client, url, opts)

 @spec delete!(Tesla.Env.client(), Tesla.Env.url(), [option()]) ::
 Tesla.Env.t() | no_return()

Perform a DELETE request.
See request!/1 or request!/2 for options definition.
delete!("/users")
delete!("/users", query: [scope: "admin"])
delete!(client, "/users")
delete!(client, "/users", query: [scope: "admin"])
delete!(client, "/users", body: %{name: "Jon"})

 delete_header(env, key)

 @spec delete_header(Tesla.Env.t(), binary()) :: Tesla.Env.t()

 encode_query(query, encoding \\ :www_form)

 get(client, url, opts)

 @spec get(Tesla.Env.client(), Tesla.Env.url(), [option()]) :: Tesla.Env.result()

Perform a GET request.
See request/1 or request/2 for options definition.
get("/users")
get("/users", query: [scope: "admin"])
get(client, "/users")
get(client, "/users", query: [scope: "admin"])
get(client, "/users", body: %{name: "Jon"})

 get!(client, url, opts)

 @spec get!(Tesla.Env.client(), Tesla.Env.url(), [option()]) ::
 Tesla.Env.t() | no_return()

Perform a GET request.
See request!/1 or request!/2 for options definition.
get!("/users")
get!("/users", query: [scope: "admin"])
get!(client, "/users")
get!(client, "/users", query: [scope: "admin"])
get!(client, "/users", body: %{name: "Jon"})

 get_header(env, key)

 @spec get_header(Tesla.Env.t(), binary()) :: binary() | nil

Returns value of header specified by key from :headers field in Tesla.Env.
Examples
non existing header
iex> env = %Tesla.Env{headers: [{"server", "Cowboy"}]}
iex> Tesla.get_header(env, "some-key")
nil

existing header
iex> env = %Tesla.Env{headers: [{"server", "Cowboy"}]}
iex> Tesla.get_header(env, "server")
"Cowboy"

first of multiple headers with the same name
iex> env = %Tesla.Env{headers: [{"cookie", "chocolate"}, {"cookie", "biscuits"}]}
iex> Tesla.get_header(env, "cookie")
"chocolate"

 get_headers(env, key)

 @spec get_headers(Tesla.Env.t(), binary()) :: [binary()]

 head(client, url, opts)

 @spec head(Tesla.Env.client(), Tesla.Env.url(), [option()]) :: Tesla.Env.result()

Perform a HEAD request.
See request/1 or request/2 for options definition.
head("/users")
head("/users", query: [scope: "admin"])
head(client, "/users")
head(client, "/users", query: [scope: "admin"])
head(client, "/users", body: %{name: "Jon"})

 head!(client, url, opts)

 @spec head!(Tesla.Env.client(), Tesla.Env.url(), [option()]) ::
 Tesla.Env.t() | no_return()

Perform a HEAD request.
See request!/1 or request!/2 for options definition.
head!("/users")
head!("/users", query: [scope: "admin"])
head!(client, "/users")
head!(client, "/users", query: [scope: "admin"])
head!(client, "/users", body: %{name: "Jon"})

 options(client, url, opts)

 @spec options(Tesla.Env.client(), Tesla.Env.url(), [option()]) :: Tesla.Env.result()

Perform a OPTIONS request.
See request/1 or request/2 for options definition.
options("/users")
options("/users", query: [scope: "admin"])
options(client, "/users")
options(client, "/users", query: [scope: "admin"])
options(client, "/users", body: %{name: "Jon"})

 options!(client, url, opts)

 @spec options!(Tesla.Env.client(), Tesla.Env.url(), [option()]) ::
 Tesla.Env.t() | no_return()

Perform a OPTIONS request.
See request!/1 or request!/2 for options definition.
options!("/users")
options!("/users", query: [scope: "admin"])
options!(client, "/users")
options!(client, "/users", query: [scope: "admin"])
options!(client, "/users", body: %{name: "Jon"})

 patch(client, url, body, opts)

 @spec patch(Tesla.Env.client(), Tesla.Env.url(), Tesla.Env.body(), [option()]) ::
 Tesla.Env.result()

Perform a PATCH request.
See request/1 or request/2 for options definition.
patch("/users", %{name: "Jon"})
patch("/users", %{name: "Jon"}, query: [scope: "admin"])
patch(client, "/users", %{name: "Jon"})
patch(client, "/users", %{name: "Jon"}, query: [scope: "admin"])

 patch!(client, url, body, opts)

 @spec patch!(Tesla.Env.client(), Tesla.Env.url(), Tesla.Env.body(), [option()]) ::
 Tesla.Env.t() | no_return()

Perform a PATCH request.
See request!/1 or request!/2 for options definition.
patch!("/users", %{name: "Jon"})
patch!("/users", %{name: "Jon"}, query: [scope: "admin"])
patch!(client, "/users", %{name: "Jon"})
patch!(client, "/users", %{name: "Jon"}, query: [scope: "admin"])

 post(client, url, body, opts)

 @spec post(Tesla.Env.client(), Tesla.Env.url(), Tesla.Env.body(), [option()]) ::
 Tesla.Env.result()

Perform a POST request.
See request/1 or request/2 for options definition.
post("/users", %{name: "Jon"})
post("/users", %{name: "Jon"}, query: [scope: "admin"])
post(client, "/users", %{name: "Jon"})
post(client, "/users", %{name: "Jon"}, query: [scope: "admin"])

 post!(client, url, body, opts)

 @spec post!(Tesla.Env.client(), Tesla.Env.url(), Tesla.Env.body(), [option()]) ::
 Tesla.Env.t() | no_return()

Perform a POST request.
See request!/1 or request!/2 for options definition.
post!("/users", %{name: "Jon"})
post!("/users", %{name: "Jon"}, query: [scope: "admin"])
post!(client, "/users", %{name: "Jon"})
post!(client, "/users", %{name: "Jon"}, query: [scope: "admin"])

 put(client, url, body, opts)

 @spec put(Tesla.Env.client(), Tesla.Env.url(), Tesla.Env.body(), [option()]) ::
 Tesla.Env.result()

Perform a PUT request.
See request/1 or request/2 for options definition.
put("/users", %{name: "Jon"})
put("/users", %{name: "Jon"}, query: [scope: "admin"])
put(client, "/users", %{name: "Jon"})
put(client, "/users", %{name: "Jon"}, query: [scope: "admin"])

 put!(client, url, body, opts)

 @spec put!(Tesla.Env.client(), Tesla.Env.url(), Tesla.Env.body(), [option()]) ::
 Tesla.Env.t() | no_return()

Perform a PUT request.
See request!/1 or request!/2 for options definition.
put!("/users", %{name: "Jon"})
put!("/users", %{name: "Jon"}, query: [scope: "admin"])
put!(client, "/users", %{name: "Jon"})
put!(client, "/users", %{name: "Jon"}, query: [scope: "admin"])

 put_body(env, body)

 @spec put_body(Tesla.Env.t(), Tesla.Env.body()) :: Tesla.Env.t()

 put_header(env, key, value)

 @spec put_header(Tesla.Env.t(), binary(), binary()) :: Tesla.Env.t()

 put_headers(env, list)

 @spec put_headers(Tesla.Env.t(), [{binary(), binary()}]) :: Tesla.Env.t()

 put_opt(env, key, value)

 @spec put_opt(Tesla.Env.t(), atom(), any()) :: Tesla.Env.t()

Adds given key/value pair to :opts field in Tesla.Env.
Useful when there's a need to store additional middleware data in Tesla.Env
Examples
iex> %Tesla.Env{opts: []} |> Tesla.put_opt(:option, "value")
%Tesla.Env{opts: [option: "value"]}

 request(client \\ %Tesla.Client{}, options)

 @spec request(Tesla.Env.client(), [option()]) :: Tesla.Env.result()

Perform a request.
Options
	:method - the request method, one of [:head, :get, :delete, :trace, :options, :post, :put, :patch]
	:url - either full url e.g. "http://example.com/some/path" or just "/some/path" if using Tesla.Middleware.BaseUrl
	:query - a keyword list of query params, e.g. [page: 1, per_page: 100]
	:headers - a keyword list of headers, e.g. [{"content-type", "text/plain"}]
	:body - depends on used middleware:	by default it can be a binary
	if using e.g. JSON encoding middleware it can be a nested map
	if adapter supports it it can be a Stream with any of the above

	:opts - custom, per-request middleware or adapter options

Examples
ExampleApi.request(method: :get, url: "/users/path")

use shortcut methods
ExampleApi.get("/users/1")
ExampleApi.post(client, "/users", %{name: "Jon"})

 request!(client \\ %Tesla.Client{}, options)

 @spec request!(Tesla.Env.client(), [option()]) :: Tesla.Env.t() | no_return()

Perform request and raise in case of error.
This is similar to request/2 behaviour from Tesla 0.x
See request/2 for list of available options.

 run(env, list)

 @spec run(Tesla.Env.t(), Tesla.Env.stack()) :: Tesla.Env.result()

 run_default_adapter(env, opts \\ [])

 trace(client, url, opts)

 @spec trace(Tesla.Env.client(), Tesla.Env.url(), [option()]) :: Tesla.Env.result()

Perform a TRACE request.
See request/1 or request/2 for options definition.
trace("/users")
trace("/users", query: [scope: "admin"])
trace(client, "/users")
trace(client, "/users", query: [scope: "admin"])
trace(client, "/users", body: %{name: "Jon"})

 trace!(client, url, opts)

 @spec trace!(Tesla.Env.client(), Tesla.Env.url(), [option()]) ::
 Tesla.Env.t() | no_return()

Perform a TRACE request.
See request!/1 or request!/2 for options definition.
trace!("/users")
trace!("/users", query: [scope: "admin"])
trace!(client, "/users")
trace!(client, "/users", query: [scope: "admin"])
trace!(client, "/users", body: %{name: "Jon"})

Tesla.Client

 Summary

 Types

 adapter()

 middleware()

 t()

 Functions

 adapter(client)

 Returns the client's adapter in the same form it was provided.
This can be used to copy an adapter from one client to another.

 middleware(client)

 Returns the client's middleware in the same form it was provided.
This can be used to copy middleware from one client to another.

 Types

 adapter()

 @type adapter() ::
 module() | {module(), any()} | (Tesla.Env.t() -> Tesla.Env.result())

 middleware()

 @type middleware() :: module() | {module(), any()}

 t()

 @type t() :: %Tesla.Client{
 adapter: Tesla.Env.runtime() | nil,
 fun: term(),
 post: Tesla.Env.stack(),
 pre: Tesla.Env.stack()
}

 Functions

 adapter(client)

 @spec adapter(t()) :: adapter()

Returns the client's adapter in the same form it was provided.
This can be used to copy an adapter from one client to another.
Examples
iex> client = Tesla.client([], {Tesla.Adapter.Hackney, [recv_timeout: 30_000]})
iex> Tesla.Client.adapter(client)
{Tesla.Adapter.Hackney, [recv_timeout: 30_000]}

 middleware(client)

 @spec middleware(t()) :: [middleware()]

Returns the client's middleware in the same form it was provided.
This can be used to copy middleware from one client to another.
Examples
iex> middleware = [Tesla.Middleware.JSON, {Tesla.Middleware.BaseUrl, "https://api.github.com"}]
iex> client = Tesla.client(middleware)
iex> Tesla.Client.middleware(client)
[Tesla.Middleware.JSON, {Tesla.Middleware.BaseUrl, "https://api.github.com"}]

Tesla.Env

This module defines a Tesla.Env.t/0 struct that stores all data related to request/response.
Fields
	:method - method of request. Example: :get
	:url - request url. Example: "https://www.google.com"
	:query - list of query params.
Example: [{"param", "value"}] will be translated to ?params=value.
Note: query params passed in url (e.g. "/get?param=value") are not parsed to query field.
	:headers - list of request/response headers.
Example: [{"content-type", "application/json"}].
Note: request headers are overridden by response headers when adapter is called.
	:body - request/response body.
Note: request body is overridden by response body when adapter is called.
	:status - response status. Example: 200
	:opts - list of options. Example: [adapter: [recv_timeout: 30_000]]

 Summary

 Types

 body()

 client()

 headers()

 method()

 opts()

 param()

 query()

 result()

 runtime()

 stack()

 status()

 t()

 url()

 Types

 body()

 @type body() :: any()

 client()

 @type client() :: Tesla.Client.t()

 headers()

 @type headers() :: [{binary(), binary()}]

 method()

 @type method() :: :head | :get | :delete | :trace | :options | :post | :put | :patch

 opts()

 @type opts() :: keyword()

 param()

 @type param() :: binary() | [{binary() | atom(), param()}]

 query()

 @type query() :: [{binary() | atom(), param()}]

 result()

 @type result() :: {:ok, t()} | {:error, any()}

 runtime()

 @type runtime() ::
 {atom(), atom(), any()}
 | {atom(), atom()}
 | {:fn, (t() -> t())}
 | {:fn, (t(), stack() -> t())}

 stack()

 @type stack() :: [runtime()]

 status()

 @type status() :: integer() | nil

 t()

 @type t() :: %Tesla.Env{
 __client__: client(),
 __module__: atom(),
 body: body(),
 headers: headers(),
 method: method(),
 opts: opts(),
 query: query(),
 status: status(),
 url: url()
}

 url()

 @type url() :: binary()

Tesla.Mock

Mock adapter for better testing.
Setup
config/test.exs
config :tesla, adapter: Tesla.Mock

in case MyClient defines specific adapter with `adapter SpecificAdapter`
config :tesla, MyClient, adapter: Tesla.Mock
Examples
defmodule MyAppTest do
 use ExUnit.Case

 setup do
 Tesla.Mock.mock(fn
 %{method: :get} ->
 %Tesla.Env{status: 200, body: "hello"}
 end)

 :ok
 end

 test "list things" do
 assert {:ok, env} = MyApp.get("...")
 assert env.status == 200
 assert env.body == "hello"
 end
end
Setting up mocks
Match on method & url and return whole Tesla.Env
Tesla.Mock.mock(fn
 %{method: :get, url: "http://example.com/list"} ->
 %Tesla.Env{status: 200, body: "hello"}
end)

You can use any logic required
Tesla.Mock.mock(fn env ->
 case env.url do
 "http://example.com/list" ->
 %Tesla.Env{status: 200, body: "ok!"}

 _ ->
 %Tesla.Env{status: 404, body: "NotFound"}
 end
end)

mock will also accept short version of response
in the form of {status, headers, body}
Tesla.Mock.mock(fn
 %{method: :post} -> {201, %{}, %{id: 42}}
end)

mock will also accept error tuples in the form
of {:error, reason}
Tesla.Mock.mock(fn
 %{method: :post} -> {:error, :timeout}
end)
Global mocks
By default, mocks are bound to the current process,
i.e. the process running a single test case.
This design allows proper isolation between test cases
and make testing in parallel (async: true) possible.
While this style is recommended, there is one drawback:
if Tesla client is called from different process
it will not use the setup mock.
To solve this issue it is possible to setup a global mock
using mock_global/1 function.
defmodule MyTest do
 use ExUnit.Case, async: false # must be false!

 setup_all do
 Tesla.Mock.mock_global fn
 env -> # ...
 end

 :ok
 end

 # ...
end
WARNING: Using global mocks may affect tests with local mock
(because of fallback to global mock in case local one is not found)

 Summary

 Types

 response_opt()

 response_opts()

 Functions

 call(env, opts)

 json(body, opts \\ [])

 Return JSON response.

 mock(fun)

 Setup mocks for current test.

 mock_global(fun)

 Setup global mocks.

 text(body, opts \\ [])

 Return text response.

 Types

 response_opt()

 @type response_opt() :: :headers | :status

 response_opts()

 @type response_opts() :: [{response_opt(), any()}]

 Functions

 call(env, opts)

 json(body, opts \\ [])

 @spec json(body :: term(), opts :: response_opts()) :: Tesla.Env.t()

Return JSON response.
Example
import Tesla.Mock

mock fn
 %{url: "/ok"} -> json(%{"some" => "data"})
 %{url: "/404"} -> json(%{"some" => "data"}, status: 404)
end

 mock(fun)

 @spec mock((Tesla.Env.t() -> Tesla.Env.t() | {integer(), map(), any()})) :: :ok

Setup mocks for current test.
This mock will only be available to the current process.

 mock_global(fun)

 @spec mock_global((Tesla.Env.t() -> Tesla.Env.t() | {integer(), map(), any()})) :: :ok

Setup global mocks.
WARNING: This mock will be available to ALL processes.
It might cause conflicts when running tests in parallel!

 text(body, opts \\ [])

 @spec text(body :: term(), opts :: response_opts()) :: Tesla.Env.t()

Return text response.
Example
import Tesla.Mock

mock fn
 %{url: "/ok"} -> text("200 ok")
 %{url: "/404"} -> text("404 not found", status: 404)
end

Tesla.Multipart

Multipart functionality.
Examples
mp =
 Multipart.new()
 |> Multipart.add_content_type_param("charset=utf-8")
 |> Multipart.add_field("field1", "foo")
 |> Multipart.add_field("field2", "bar",
 headers: [{"content-id", "1"}, {"content-type", "text/plain"}]
)
 |> Multipart.add_file("test/tesla/multipart_test_file.sh")
 |> Multipart.add_file("test/tesla/multipart_test_file.sh", name: "foobar")
 |> Multipart.add_file_content("sample file content", "sample.txt")

response = client.post(url, mp)

 Summary

 Types

 part_stream()

 part_value()

 t()

 Functions

 add_content_type_param(mp, param)

 Add a parameter to the multipart content-type.

 add_field(mp, name, value, opts \\ [])

 Add a field part.

 add_file(mp, path, opts \\ [])

 Add a file part. The file will be streamed.

 add_file_content(mp, data, filename, opts \\ [])

 Add a file part with value.

 new()

 Create a new Multipart struct to be used for a request body.

 Types

 part_stream()

 @type part_stream() :: Enum.t()

 part_value()

 @type part_value() :: iodata() | part_stream() | function()

 t()

 @type t() :: %Tesla.Multipart{
 boundary: String.t(),
 content_type_params: [String.t()],
 parts: [Tesla.Multipart.Part.t()]
}

 Functions

 add_content_type_param(mp, param)

 @spec add_content_type_param(t(), String.t()) :: t()

Add a parameter to the multipart content-type.

 add_field(mp, name, value, opts \\ [])

 @spec add_field(t(), String.t(), part_value(), Keyword.t()) :: t() | no_return()

Add a field part.

 add_file(mp, path, opts \\ [])

 @spec add_file(t(), String.t(), Keyword.t()) :: t()

Add a file part. The file will be streamed.
Options
	:name - name of form param
	:filename - filename (defaults to path basename)
	:headers - additional headers
	:detect_content_type - auto-detect file content-type (defaults to false)

 add_file_content(mp, data, filename, opts \\ [])

 @spec add_file_content(t(), part_value(), String.t(), Keyword.t()) :: t()

Add a file part with value.
Same as add_file/3 but the file content is read from data input argument.
Options
	:name - name of form param
	:headers - additional headers

 new()

 @spec new() :: t()

Create a new Multipart struct to be used for a request body.

Tesla.Multipart.Part

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Tesla.Multipart.Part{
 body: String.t(),
 dispositions: Keyword.t(),
 headers: Tesla.Env.headers()
}

Tesla.Test

Provides utilities for testing Tesla-based HTTP clients.

 Summary

 Functions

 assert_received_tesla_call(expected_env, expected_opts \\ [], opts \\ [])

 Asserts that the current process's mailbox contains a TeslaMox message.
It uses assert_received/1 under the hood.

 assert_tesla_empty_mailbox()

 Asserts that the current process's mailbox does not contain any Tesla.Test
messages.

 assert_tesla_env(given_env, expected_env, opts \\ [])

 Asserts that two Tesla.Env.t/0 structs match.

 expect_tesla_call(opts)

 Expects a call on the given adapter using Mox.expect/4. Only available when
Mox is loaded.

 html(env, body)

 Puts an HTML response.

 json(env, body)

 Puts a JSON response.

 text(env, body)

 Puts a text response.

 Functions

 assert_received_tesla_call(expected_env, expected_opts \\ [], opts \\ [])

 (macro)

Asserts that the current process's mailbox contains a TeslaMox message.
It uses assert_received/1 under the hood.
Parameters
	expected_env - The expected Tesla.Env.t/0 passed to the adapter.
	expected_opts - The expected Tesla.Adapter.options/0 passed to the
adapter.
	opts - Extra configuration options.	:adapter - Optional. The adapter to expect the call on. Falls back to
the :tesla application configuration.

Examples
Asserting that the adapter received a Tesla.Env.t/0 struct with a 200
status:
defmodule MyTest do
 use ExUnit.Case, async: true

 require Tesla.Test

 test "returns a 200 status" do
 # given - preconditions
 Tesla.Test.expect_tesla_call(
 times: 2,
 returns: %Tesla.Env{status: 200, body: "OK"}
)

 # when - run unit of work
 # ... do some work ...
 Tesla.post!("https://acme.com/users")
 # ...

 # then - assertions
 Tesla.Test.assert_received_tesla_call(expected_env, expected_opts)
 Tesla.Test.assert_tesla_env(expected_env, %Tesla.Env{
 url: "https://acme.com/users",
 status: 200,
 body: "OK"
 })
 assert expected_opts == []
 Tesla.Test.assert_tesla_empty_mailbox()
 end
end

 assert_tesla_empty_mailbox()

 (macro)

Asserts that the current process's mailbox does not contain any Tesla.Test
messages.
This function is designed to be used in conjunction with
Tesla.Test.assert_received_tesla_call/1 for comprehensive request
testing.

 assert_tesla_env(given_env, expected_env, opts \\ [])

Asserts that two Tesla.Env.t/0 structs match.
Parameters
	given_env - The actual Tesla.Env.t/0 struct received from the request.
	expected_env - The expected Tesla.Env.t/0 struct to compare against.
	opts - Additional options for fine-tuning the assertion (optional).	:exclude_headers - A list of header keys to exclude from the assertion.

For the body, the function attempts to parse JSON and URL-encoded content
when appropriate.
This function is designed to be used in conjunction with
Tesla.Test.assert_received_tesla_call/1 for comprehensive request
testing.
Examples
defmodule MyTest do
 use ExUnit.Case, async: true

 require Tesla.Test

 test "returns a 200 status" do
 given_env = %Tesla.Env{
 method: :post,
 url: "https://acme.com/users",
 }

 Tesla.Test.assert_tesla_env(given_env, %Tesla.Env{
 method: :post,
 url: "https://acme.com/users",
 })
 end
end

 expect_tesla_call(opts)

Expects a call on the given adapter using Mox.expect/4. Only available when
Mox is loaded.
Options
	:times - Required. The number of times to expect the call.
	:returns - Required. The value to return from the adapter.
	:send_to - Optional. The process to send the message to. Defaults to
the current process.
	:adapter - Optional. The adapter to expect the call on. Falls back to
the :tesla application configuration.

Examples
Returning a Tesla.Env.t/0 struct with a 200 status:
Tesla.Test.expect_tesla_call(
 times: 2,
 returns: %Tesla.Env{status: 200}
)
Changing the Mox mocked adapter:
Tesla.Test.expect_tesla_call(
 times: 2,
 returns: %Tesla.Env{status: 200},
 adapter: MyApp.MockAdapter
)

 html(env, body)

 @spec html(
 %Tesla.Env{
 __client__: term(),
 __module__: term(),
 body: term(),
 headers: term(),
 method: term(),
 opts: term(),
 query: term(),
 status: term(),
 url: term()
 },
 binary()
) :: %Tesla.Env{
 __client__: term(),
 __module__: term(),
 body: term(),
 headers: term(),
 method: term(),
 opts: term(),
 query: term(),
 status: term(),
 url: term()
}

Puts an HTML response.
iex> Tesla.Test.html(%Tesla.Env{}, "<html><body>Hello, world!</body></html>")
%Tesla.Env{
 body: "<html><body>Hello, world!</body></html>",
 headers: [{"content-type", "text/html; charset=utf-8"}],
 ...
}

 json(env, body)

 @spec json(
 %Tesla.Env{
 __client__: term(),
 __module__: term(),
 body: term(),
 headers: term(),
 method: term(),
 opts: term(),
 query: term(),
 status: term(),
 url: term()
 },
 term()
) :: %Tesla.Env{
 __client__: term(),
 __module__: term(),
 body: term(),
 headers: term(),
 method: term(),
 opts: term(),
 query: term(),
 status: term(),
 url: term()
}

Puts a JSON response.
iex> Tesla.Test.json(%Tesla.Env{}, %{"some" => "data"})
%Tesla.Env{
 body: ~s({"some":"data"}),
 headers: [{"content-type", "application/json; charset=utf-8"}],
 ...
}
If the body is binary, it will be returned as is and it will not try to encode
it to JSON.

 text(env, body)

 @spec text(
 %Tesla.Env{
 __client__: term(),
 __module__: term(),
 body: term(),
 headers: term(),
 method: term(),
 opts: term(),
 query: term(),
 status: term(),
 url: term()
 },
 binary()
) :: %Tesla.Env{
 __client__: term(),
 __module__: term(),
 body: term(),
 headers: term(),
 method: term(),
 opts: term(),
 query: term(),
 status: term(),
 url: term()
}

Puts a text response.
iex> Tesla.Test.text(%Tesla.Env{}, "Hello, world!")
%Tesla.Env{
 body: "Hello, world!",
 headers: [{"content-type", "text/plain; charset=utf-8"}],
 ...
}

Tesla.Adapter behaviour

The adapter specification.
Adapter is a module that denormalize request data stored in Tesla.Env in order to make
request with lower level http client (e.g. :httpc or :hackney) and normalize response data
in order to store it back to Tesla.Env. It has to implement Tesla.Adapter.call/2.
Writing custom adapter
Create a module implementing Tesla.Adapter.call/2.
See Tesla.Adapter.call/2 for details.
Examples
defmodule MyProject.CustomAdapter do
 alias Tesla.Multipart

 @behaviour Tesla.Adapter

 @override_defaults [follow_redirect: false]

 @impl Tesla.Adapter
 def call(env, opts) do
 opts = Tesla.Adapter.opts(@override_defaults, env, opts)

 with {:ok, {status, headers, body}} <- request(env.method, env.body, env.headers, opts) do
 {:ok, normalize_response(env, status, headers, body)}
 end
 end

 defp request(_method, %Stream{}, _headers, _opts) do
 {:error, "stream not supported by adapter"}
 end

 defp request(_method, %Multipart{}, _headers, _opts) do
 {:error, "multipart not supported by adapter"}
 end

 defp request(method, body, headers, opts) do
 :lower_level_http.request(method, body, denormalize_headers(headers), opts)
 end

 defp denormalize_headers(headers), do: ...
 defp normalize_response(env, status, headers, body), do: %Tesla.Env{env | ...}
end

 Summary

 Types

 options()

 Unstructured data passed to the adapter using opts[:adapter].

 Callbacks

 call(env, options)

 Invoked when a request runs.

 Functions

 opts(defaults \\ [], env, opts)

 Helper function that merges all adapter options.

 Types

 options()

 @type options() :: any()

Unstructured data passed to the adapter using opts[:adapter].

 Callbacks

 call(env, options)

 @callback call(env :: Tesla.Env.t(), options :: options()) :: Tesla.Env.result()

Invoked when a request runs.
Arguments
	env - Tesla.Env.t/0 struct that stores request/response data.
	options - middleware options provided by user.

 Functions

 opts(defaults \\ [], env, opts)

 @spec opts(Keyword.t(), Tesla.Env.t(), Keyword.t()) :: Keyword.t()

Helper function that merges all adapter options.
Arguments
	defaults (optional) - useful to override lower level http client default
configuration.
	env - t:Tesla.Env.t()
	opts - options provided to the adapter from Tesla.client/2.

Precedence rules
The options are merged in the following order of precedence (highest to lowest):
	Options from env.opts[:adapter] (highest precedence).
	Options provided to the adapter from Tesla.client/2.
	Default options (lowest precedence).

This means that options specified in env.opts[:adapter] will override any
conflicting options from the other sources, allowing for fine-grained control
on a per-request basis.

Tesla.Middleware behaviour

The middleware specification.
Middleware is an extension of basic Tesla functionality. It is a module that must
implement Tesla.Middleware.call/3.
Middleware options
Options can be passed to middleware inside tuple in case of dynamic middleware
(Tesla.client/1):
Tesla.client([{Tesla.Middleware.BaseUrl, "https://example.com"}])
Ordering
The order in which middleware is defined matters. Note that the order when sending the request
matches the order the middleware was defined in, but the order when receiving the response
is reversed.
For example, Tesla.Middleware.DecompressResponse must come after Tesla.Middleware.JSON,
otherwise the response isn't decompressed before it reaches the JSON parser.
Writing custom middleware
Writing custom middleware is as simple as creating a module implementing Tesla.Middleware.call/3.
See Tesla.Middleware.call/3 for details.
Examples
defmodule MyProject.InspectHeadersMiddleware do
 @behaviour Tesla.Middleware

 @impl true
 def call(env, next, _options) do
 IO.inspect(env.headers)

 with {:ok, env} <- Tesla.run(env, next) do
 IO.inspect(env.headers)
 {:ok, env}
 end
 end
end

 Summary

 Callbacks

 call(env, next, options)

 Invoked when a request runs.

 Callbacks

 call(env, next, options)

 @callback call(env :: Tesla.Env.t(), next :: Tesla.Env.stack(), options :: any()) ::
 Tesla.Env.result()

Invoked when a request runs.
	(optionally) read and/or writes request data
	calls Tesla.run/2
	(optionally) read and/or writes response data

Arguments
	env - Tesla.Env struct that stores request/response data
	next - middlewares that should be called after current one
	options - middleware options provided by user

Tesla.Adapter.Finch

Adapter for finch.
Remember to add {:finch, "~> 0.14.0"} to dependencies. Also, you need to
recompile tesla after adding the :finch dependency:
mix deps.clean tesla
mix compile

Examples
In order to use Finch, you must start it and provide a :name. For example,
in your supervision tree:
children = [
 {Finch, name: MyFinch}
]
You must provide the same name to this adapter:
set globally in config/config.exs
config :tesla, :adapter, {Tesla.Adapter.Finch, name: MyFinch}

set per module
defmodule MyClient do
 def client do
 Tesla.client([], {Tesla.Adapter.Finch, name: MyFinch})
 end
end
Adapter specific options
	:name - The :name provided to Finch (required).
	:response - Expected response type. Defines the Finch request type
to use. Supported values:	:stream - Streams the response using Finch.stream/5 for the
request.
	nil or not specified - Responds without streaming using
Finch.request/3.

Finch options
	:pool_timeout - This timeout is applied when a connection is checked
out from the pool. Default value is 5_000.

	:receive_timeout - The maximum time to wait for a response before
returning an error. Default value is 15_000.

Tesla.Adapter.Gun

Adapter for gun.
Remember to add {:gun, "~> 1.3"}, {:idna, "~> 6.0"} and {:castore, "~> 0.1"} to dependencies.
In version 1.3 gun sends host header with port. Fixed in master branch.
Also, you need to recompile tesla after adding :gun dependency:
mix deps.clean tesla
mix deps.compile tesla

Examples
set globally in config/config.exs
config :tesla, :adapter, Tesla.Adapter.Gun

set per module
defmodule MyClient do
 def client do
 Tesla.client([], Tesla.Adapter.Gun)
 end
end
Adapter specific options
	:timeout - Time, while process, will wait for gun messages.

	:body_as - What will be returned in %Tesla.Env{} body key. Possible values:
	:plain - as binary (default).
	:stream - as stream.
 If you don't want to close connection (because you want to reuse it later)
 pass close_conn: false in adapter opts.
	:chunks - as chunks.
 You can get response body in chunks using Tesla.Adapter.Gun.read_chunk/3 function.

 Processing of the chunks and checking body size must be done by yourself.
 Example of processing function is in test/tesla/adapter/gun_test.exs - Tesla.Adapter.GunTest.read_body/4.
 If you don't need connection later don't forget to close it with Tesla.Adapter.Gun.close/1.

	:max_body - Max response body size in bytes.
 Works only with body_as: :plain, with other settings you need to check response body size by yourself.

	:conn - Opened connection pid with gun. Is used for reusing gun connections.

	:close_conn - Close connection or not after receiving full response body.
 Is used for reusing gun connections. Defaults to true.

	:certificates_verification - Add SSL certificates verification.
 erlang-certifi
 ssl_verify_fun.erl

	:proxy - Proxy for requests.
 Socks proxy are supported from gun >= 2.0.
 Examples: {'localhost', 1234}, {{127, 0, 0, 1}, 1234}, {:socks5, 'localhost', 1234}.
NOTE: By default GUN uses TLS as transport if the specified port is 443,
 if TLS is required for proxy connection on another port please specify transport
 using the Gun options below otherwise tcp will be used.

	:proxy_auth - Auth to be passed along with the proxy opt.
 Supports Basic auth for regular and Socks proxy.
 Format: {proxy_username, proxy_password}.

Gun options
	:connect_timeout - Connection timeout.

	:http_opts - Options specific to the HTTP protocol.

	:http2_opts - Options specific to the HTTP/2 protocol.

	:protocols - Ordered list of preferred protocols.
 Defaults: [:http2, :http]- for :tls, [:http] - for :tcp.

	:trace - Whether to enable dbg tracing of the connection process.
 Should only be used during debugging. Default: false.

	:transport - Whether to use TLS or plain TCP.
 The default varies depending on the port used.
 Port 443 defaults to tls. All other ports default to tcp.

	:transport_opts - Transport options.
 They are TCP options or TLS options depending on the selected transport.
 Default: []. Gun version: 1.3.

	:tls_opts - TLS transport options.
 Default: []. Gun from master branch.

	:tcp_opts - TCP transport options.
 Default: []. Gun from master branch.

	:socks_opts - Options for socks.
 Default: []. Gun from master branch.

	:ws_opts - Options specific to the Websocket protocol. Default: %{}.
	:compress - Whether to enable permessage-deflate compression.
 This does not guarantee that compression will be used as it is the server
 that ultimately decides. Defaults to false.

	:protocols - A non-empty list enables Websocket protocol negotiation.
 The list of protocols will be sent in the sec-websocket-protocol request header.
 The handler module interface is currently undocumented and must be set to gun_ws_h.

 Summary

 Functions

 close(pid)

 Brutally close the gun connection.

 read_chunk(pid, stream, opts)

 Reads chunk of the response body.

 Functions

 close(pid)

 @spec close(pid()) :: :ok

Brutally close the gun connection.

 read_chunk(pid, stream, opts)

 @spec read_chunk(pid(), reference(), keyword() | map()) ::
 {:fin, binary()} | {:nofin, binary()} | {:error, atom()}

Reads chunk of the response body.
Returns {:fin, binary()} if all body received, otherwise returns {:nofin, binary()}.

Tesla.Adapter.Hackney

Adapter for hackney.
Remember to add {:hackney, "~> 1.13"} to dependencies (and :hackney to applications in mix.exs)
Also, you need to recompile tesla after adding :hackney dependency:
mix deps.clean tesla
mix deps.compile tesla

Examples
set globally in config/config.exs
config :tesla, :adapter, Tesla.Adapter.Hackney

set per module
defmodule MyClient do
 def client do
 Tesla.client([], Tesla.Adapter.Hackney)
 end
end
Adapter specific options
	:max_body - Max response body size in bytes. Actual response may be bigger because hackney stops after the last chunk that surpasses :max_body.

Tesla.Adapter.Httpc

Adapter for httpc.
This is the default adapter.
NOTE Tesla overrides default autoredirect value with false to ensure
consistency between adapters

Tesla.Adapter.Ibrowse

Adapter for ibrowse.
Remember to add {:ibrowse, "~> 4.2"} to dependencies (and :ibrowse to applications in mix.exs)
Also, you need to recompile tesla after adding :ibrowse dependency:
mix deps.clean tesla
mix deps.compile tesla
Examples
set globally in config/config.exs
config :tesla, :adapter, Tesla.Adapter.Ibrowse

set per module
defmodule MyClient do
 def client do
 Tesla.client([], Tesla.Adapter.Ibrowse)
 end
end

Tesla.Adapter.Mint

Adapter for mint.
NOTE: The minimum supported Elixir version for mint is 1.5.0
Remember to add {:mint, "~> 1.0"} and {:castore, "~> 0.1"} to dependencies.
Also, you need to recompile tesla after adding :mint dependency:
mix deps.clean tesla
mix deps.compile tesla

Examples
set globally in config/config.exs
config :tesla, :adapter, Tesla.Adapter.Mint
set per module
defmodule MyClient do
 def client do
 Tesla.client([], Tesla.Adapter.Mint)
 end
end

set global custom cacertfile
config :tesla, adapter: {Tesla.Adapter.Mint, cacert: ["path_to_cacert"]}
Adapter specific options:
	:timeout - Time in milliseconds, while process, will wait for mint messages. Defaults to 2_000.
	:body_as - What will be returned in %Tesla.Env{} body key. Possible values - :plain, :stream, :chunks. Defaults to :plain.	:plain - as binary.
	:stream - as stream. If you don't want to close connection (because you want to reuse it later) pass close_conn: false in adapter opts.
	:chunks - as chunks. You can get response body in chunks using Tesla.Adapter.Mint.read_chunk/3 function.
Processing of the chunks and checking body size must be done by yourself. Example of processing function is in test/tesla/adapter/mint_test.exs - Tesla.Adapter.MintTest.read_body/4. If you don't need connection later don't forget to close it with Tesla.Adapter.Mint.close/1.

	:max_body - Max response body size in bytes. Works only with body_as: :plain, with other settings you need to check response body size by yourself.
	:conn - Opened connection with mint. Is used for reusing mint connections.
	:original - Original host with port, for which reused connection was open. Needed for Tesla.Middleware.FollowRedirects. Otherwise adapter will use connection for another open host.
	:close_conn - Close connection or not after receiving full response body. Is used for reusing mint connections. Defaults to true.
	:proxy - Proxy settings. E.g.: {:http, "localhost", 8888, []}, {:http, "127.0.0.1", 8888, []}
	:transport_opts - Keyword list of HTTP or HTTPS options passed into :gen_tcp or :ssl respectively by mint. See mint's docs on transport_opts.

 Summary

 Functions

 close(conn)

 Closes mint connection.

 read_chunk(conn, ref, opts)

 Reads chunk of the response body.
Returns {:fin, HTTP.t(), binary()} if all body received, otherwise returns {:nofin, HTTP.t(), binary()}.

 Functions

 close(conn)

 @spec close(Mint.HTTP.t()) :: {:ok, Mint.HTTP.t()}

Closes mint connection.

 read_chunk(conn, ref, opts)

 @spec read_chunk(Mint.HTTP.t(), reference(), keyword()) ::
 {:fin, Mint.HTTP.t(), binary()} | {:nofin, Mint.HTTP.t(), binary()}

Reads chunk of the response body.
Returns {:fin, HTTP.t(), binary()} if all body received, otherwise returns {:nofin, HTTP.t(), binary()}.

Tesla.Middleware.BaseUrl

Set base URL for all requests.
By default, the base URL will be prepended to request path/URL only
if it does not include http(s). Use the policy: :strict option to
enforce base URL prepending regardless of scheme presence.
Options
The options can be passed as a keyword list or a string representing the base URL.
	:base_url - The base URL to use for all requests.
	:policy - Can be set to :strict to enforce base URL prepending even when
the request URL already includes a scheme. Useful for security when the URL is
controlled by user input. Defaults to :insecure.

Security Considerations
When URLs are controlled by user input, always use policy: :strict to prevent
URL redirection attacks. The default :insecure policy allows users to bypass
the base URL by providing fully qualified URLs.
Examples
defmodule MyClient do
 def client do
 Tesla.client([
 # Using keyword format (recommended)
 {Tesla.Middleware.BaseUrl, base_url: "https://example.com/foo"}
 # or alternatively, using string
 # {Tesla.Middleware.BaseUrl, "https://example.com/foo"}
])
 end
end

client = MyClient.client()

Tesla.get(client, "/path")
equals to GET https://example.com/foo/path

Tesla.get(client, "path")
equals to GET https://example.com/foo/path

Tesla.get(client, "")
equals to GET https://example.com/foo

Tesla.get(client, "http://example.com/bar")
equals to GET http://example.com/bar (scheme detected, base URL not prepended)

Using strict policy for user-controlled URLs (security)
defmodule MySecureClient do
 def client do
 Tesla.client([
 {Tesla.Middleware.BaseUrl, base_url: "https://example.com/foo", policy: :strict}
])
 end
end

secure_client = MySecureClient.client()

Tesla.get(secure_client, "http://example.com/bar")
equals to GET https://example.com/foo/http://example.com/bar (base URL always prepended)

Tesla.get(secure_client, "/safe/path")
equals to GET https://example.com/foo/safe/path

 Summary

 Types

 opts()

 policy()

 Types

 opts()

 @type opts() :: [base_url: String.t(), policy: policy()] | String.t()

 policy()

 @type policy() :: :strict | :insecure

Tesla.Middleware.BasicAuth

Basic authentication middleware.
Wiki on the topic
Examples
defmodule MyClient do
 def client(username, password, opts \ %{}) do
 Tesla.client([
 {Tesla.Middleware.BasicAuth,
 Map.merge(%{username: username, password: password}, opts)}
])
 end
end
Options
	:username - username (defaults to "")
	:password - password (defaults to "")

Tesla.Middleware.BearerAuth

Bearer authentication middleware.
Adds a {"authorization", "Bearer <token>"} header.
Examples
defmodule MyClient do
 def new(token) do
 Tesla.client([
 {Tesla.Middleware.BearerAuth, token: token}
])
 end
end
Options
	:token - token (defaults to "")

Tesla.Middleware.CompressRequest

Only compress request.
See Tesla.Middleware.Compression for options.

Tesla.Middleware.Compression

Compress requests and decompress responses.
Supports "gzip" and "deflate" encodings using Erlang's built-in :zlib module.
Examples
defmodule MyClient do
 def client do
 Tesla.client([
 {Tesla.Middleware.Compression, format: "gzip"}
])
 end
end
Options
	:format - request compression format, "gzip" (default) or "deflate"

 Summary

 Functions

 compress(env, opts)

 Compress request.

 decompress(env)

 Decompress response.

 Functions

 compress(env, opts)

Compress request.
It is used by Tesla.Middleware.CompressRequest.

 decompress(env)

Decompress response.
It is used by Tesla.Middleware.DecompressResponse.

Tesla.Middleware.DecodeFormUrlencoded

Tesla.Middleware.DecodeJson

Decodes response body as JSON.
Only decodes the body if the Content-Type header suggests
that the body is JSON.

Tesla.Middleware.DecodeMessagePack

 Summary

 Functions

 call(env, next, opts)

 Functions

 call(env, next, opts)

Tesla.Middleware.DecodeRels

Decode Link Hypermedia HTTP header into opts[:rels] field in response.
Examples
defmodule MyClient do
 def client do
 Tesla.client([Tesla.Middleware.DecodeRels])
 end
end

client = MyClient.client()

env = Tesla.get(client, "/...")

env.opts[:rels]
=> %{"Next" => "http://...", "Prev" => "..."}

Tesla.Middleware.DecompressResponse

Only decompress response.
See Tesla.Middleware.Compression for options.

Tesla.Middleware.DigestAuth

Digest access authentication middleware.
Wiki on the topic
NOTE: Currently the implementation is incomplete and works only for MD5 algorithm
and auth "quality of protection" (qop).
Examples
defmodule MyClient do
 def client(username, password, opts \ %{}) do
 Tesla.client([
 {Tesla.Middleware.DigestAuth, Map.merge(%{username: username, password: password}, opts)}
])
 end
end
Options
	:username - username (defaults to "")
	:password - password (defaults to "")
	:cnonce_fn - custom function generating client nonce (defaults to &Tesla.Middleware.DigestAuth.cnonce/0)
	:nc - nonce counter (defaults to "00000000")

Tesla.Middleware.EncodeFormUrlencoded

Tesla.Middleware.EncodeJson

Encodes request body as JSON.

Tesla.Middleware.EncodeMessagePack

 Summary

 Functions

 call(env, next, opts)

 Functions

 call(env, next, opts)

Tesla.Middleware.FollowRedirects

Follow HTTP 3xx redirects.
Examples
defmodule MyClient do
 def client do
 # defaults to 5
 Tesla.client([
 {Tesla.Middleware.FollowRedirects, max_redirects: 3}
])
 end
end
Options
	:max_redirects - limit number of redirects (default: 5)

Tesla.Middleware.FormUrlencoded

Send request body as application/x-www-form-urlencoded.
Performs encoding of body from a Map such as %{"foo" => "bar"} into
URL-encoded data.
Performs decoding of the response into a map when urlencoded and content-type
is application/x-www-form-urlencoded, so "foo=bar" becomes
%{"foo" => "bar"}.
Examples
defmodule Myclient do
 def client do
 Tesla.client([
 {Tesla.Middleware.FormUrlencoded,
 encode: &Plug.Conn.Query.encode/1,
 decode: &Plug.Conn.Query.decode/1}
])
 end
end

client = Myclient.client()
Myclient.post(client, "/url", %{key: :value})
Options
	:decode - decoding function, defaults to URI.decode_query/1
	:encode - encoding function, defaults to URI.encode_query/1

Nested Maps
Natively, nested maps are not supported in the body, so
%{"foo" => %{"bar" => "baz"}} won't be encoded and raise an error.
Support for this specific case is obtained by configuring the middleware to
encode (and decode) with Plug.Conn.Query
defmodule Myclient do
 def client do
 Tesla.client([
 {Tesla.Middleware.FormUrlencoded,
 encode: &Plug.Conn.Query.encode/1,
 decode: &Plug.Conn.Query.decode/1}
])
 end
end

client = Myclient.client()
Myclient.post(client, "/url", %{key: %{nested: "value"}})

 Summary

 Functions

 decode(env, opts)

 Decode response body as querystring.

 encode(env, opts)

 Encode response body as querystring.

 Functions

 decode(env, opts)

Decode response body as querystring.
It is used by Tesla.Middleware.DecodeFormUrlencoded.

 encode(env, opts)

Encode response body as querystring.
It is used by Tesla.Middleware.EncodeFormUrlencoded.

Tesla.Middleware.Fuse

Circuit Breaker middleware using fuse.
Remember to add {:fuse, "~> 2.4"} to dependencies (and :fuse to applications in mix.exs)
Also, you need to recompile tesla after adding :fuse dependency:
mix deps.clean tesla
mix deps.compile tesla
Examples
defmodule MyClient do
 def client do
 Tesla.client([
 {Tesla.Middleware.Fuse,
 opts: {{:standard, 2, 10_000}, {:reset, 60_000}},
 keep_original_error: true,
 should_melt: fn
 {:ok, %{status: status}} when status in [428, 500, 504] -> true
 {:ok, _} -> false
 {:error, _} -> true
 end,
 mode: :sync}
])
 end
end
Options
	:name - fuse name (defaults to module name)
	:opts - fuse options (see fuse docs for reference)
	:keep_original_error - boolean to indicate if, in case of melting (based on should_melt), it should return the upstream's error or the fixed one {:error, unavailable}.
It's false by default, but it will be true in 2.0.0 version
	:should_melt - function to determine if response should melt the fuse
	:mode - how to query the fuse, which has two values:	:sync - queries are serialized through the :fuse_server process (the default)
	:async_dirty - queries check the fuse state directly, but may not account for recent melts or resets

SASL logger
fuse library uses SASL (System Architecture Support Libraries).
You can disable its logger output using:
config :sasl, sasl_error_logger: :false
Read more at jlouis/fuse#32 and jlouis/fuse#19.

Tesla.Middleware.Headers

Set default headers for all requests
Examples
defmodule Myclient do
 def client do
 Tesla.client([
 {Tesla.Middleware.Headers, [{"user-agent", "Tesla"}]}
])
 end
end

Tesla.Middleware.JSON

Encode requests and decode responses as JSON.
This middleware requires Jason (or other engine) as dependency.
Remember to add {:jason, ">= 1.0"} to dependencies.
Also, you need to recompile Tesla after adding :jason dependency:
mix deps.clean tesla
mix deps.compile tesla
Using built-in JSON from Elixir 1.18
This middleware supports the built-in JSON module introduced in ELixir 1.18, but for historical
reasons is it not the default. To use it, set it as the :engine:
{Tesla.Middleware.JSON, engine: JSON}
For more advanced usage using custom encoders/decodes, provide the :encode and :decode anonymous functions instead.
If you only need to encode the request body or decode the response body,
you can use Tesla.Middleware.EncodeJson or Tesla.Middleware.DecodeJson directly instead.
Examples
defmodule MyClient do
 def client do
 Tesla.client([
 # use jason engine
 Tesla.Middleware.JSON,
 # or
 {Tesla.Middleware.JSON, engine: JSON}
 # or
 {Tesla.Middleware.JSON, engine: JSX, engine_opts: [strict: [:comments]]},
 # or
 {Tesla.Middleware.JSON, engine: Poison, engine_opts: [keys: :atoms]},
 # or
 {Tesla.Middleware.JSON, decode: &JSX.decode/1, encode: &JSX.encode/1}
])
 end
end
Options
	:decode - decoding function
	:encode - encoding function
	:encode_content_type - content-type to be used in request header
	:engine - encode/decode engine, e.g JSON, Jason, Poison or JSX (defaults to Jason)
	:engine_opts - optional engine options
	:decode_content_types - list of additional decodable content-types

 Summary

 Functions

 decode(env, opts)

 Decode response body as JSON.

 encode(env, opts)

 Encode request body as JSON.

 Functions

 decode(env, opts)

 @spec decode(
 Tesla.Env.t(),
 keyword()
) :: Tesla.Env.result()

Decode response body as JSON.
It is used by Tesla.Middleware.DecodeJson.

 encode(env, opts)

 @spec encode(
 Tesla.Env.t(),
 keyword()
) :: Tesla.Env.result()

Encode request body as JSON.
It is used by Tesla.Middleware.EncodeJson.

Tesla.Middleware.KeepRequest

Store request URL, body, and headers into :opts.
Examples
defmodule MyClient do
 def client do
 Tesla.client([
 Tesla.Middleware.KeepRequest,
 Tesla.Middleware.PathParams
])
 end
end

client = MyClient.client()
{:ok, env} = Tesla.post(client, "/users/:user_id", "request-data", opts: [path_params: [user_id: "1234"]])

env.body
=> "response-data"

env.opts[:req_body]
=> "request-data"

env.opts[:req_headers]
=> [{"request-headers", "are-safe"}, ...]

env.opts[:req_url]
=> "http://localhost:8000/users/:user_id
Observability
In practice, you would combine Tesla.Middleware.KeepRequest, Tesla.Middleware.PathParams, and
Tesla.Middleware.Telemetry to observe the request and response data.
Keep in mind that the request order matters. Make sure to put Tesla.Middleware.KeepRequest before
Tesla.Middleware.PathParams to make sure that the request data is stored before the path parameters are replaced.
While keeping in mind that this is an application-specific concern, this is the overall recommendation.

Tesla.Middleware.Logger

Log requests using Elixir's Logger.
With the default settings it logs request method, URL, response status, and
time taken in milliseconds.
Examples
defmodule MyClient do
 def client do
 Tesla.client([Tesla.Middleware.Logger])
 end
end
Options
	:level - custom function for calculating log level or atom for fixed level (see below)
	:log_level - (deprecated) custom function for calculating log level (see below)
	:filter_headers - sanitizes sensitive headers before logging in debug mode (see below)
	:debug - use Logger.debug/2 to log request/response details
	:format - custom string template or function for log message (see below)

Custom log format
The default log format is "$method $url -> $status ($time ms)"
which shows in logs like:
2018-03-25 18:32:40.397 [info] GET https://bitebot.io -> 200 (88.074 ms)
It can be changed globally with config:
config :tesla, Tesla.Middleware.Logger, format: "$method $url ====> $status / time=$time"
Or you can customize this setting by providing your own format function:
defmodule MyClient do
 def client do
 Tesla.client([
 {Tesla.Middleware.Logger, format: &my_format/3}
])
 end

 def my_format(request, response, time) do
 "request=#{inspect(request)} response=#{inspect(response)} time=#{time}\n"
 end
end
Custom log levels
By default, the following log levels will be used:
	:error - for errors, 5xx and 4xx responses
	:warn or :warning - for 3xx responses
	:info - for 2xx responses

You can customize this setting by providing your own level function that accepts
both success and error cases:
defmodule MyClient do
 def client do
 Tesla.client([
 {Tesla.Middleware.Logger, level: &my_level/1}
])
 end

 def my_level({:ok, env}) do
 case env.status do
 404 -> :info
 _ -> :default
 end
 end

 def my_level({:error, _reason}) do
 :error
 end
end
Or provide a fixed log level:
defmodule MyClient do
 def client do
 Tesla.client([
 {Tesla.Middleware.Logger, level: :debug}
])
 end
end
You can also use the deprecated log_level option (will show a deprecation warning):
defmodule MyClient do
 def client do
 Tesla.client([
 {Tesla.Middleware.Logger, log_level: &my_log_level/1}
])
 end

 def my_log_level(env) do
 case env.status do
 404 -> :info
 _ -> :default
 end
 end
end
To disable the deprecation warning for :log_level, add this to your config:
config/config.exs
config :tesla, disable_log_level_warning: true
Logger Debug output
Tesla will use Logger.debug/2 to log request & response details using
the :debug option. It will require to set the Logger log level to :debug
in your configuration, example:
config/dev.exs
config :logger, level: :debug
If you want to disable detailed request/response logging but keep the
:debug log level (i.e. in development) you can set debug: false in your
config:
config/dev.local.exs
config :tesla, Tesla.Middleware.Logger, debug: false
Note that the logging configuration is evaluated at compile time,
so Tesla must be recompiled for the configuration to take effect:
mix deps.clean --build tesla
mix deps.compile tesla

In order to be able to set :debug at runtime we can
pass it as a option to the middleware at runtime.
def client do
 middleware = [
 # ...
 {Tesla.Middleware.Logger, debug: false}
]

 Tesla.client(middleware)
end
Filter headers
To sanitize sensitive headers such as authorization in
debug logs, add them to the :filter_headers option.
:filter_headers expects a list of header names as strings.
config/dev.local.exs
config :tesla, Tesla.Middleware.Logger,
 filter_headers: ["authorization"]

 Summary

 Types

 log_level()

 Functions

 default_log_level(env)

 Types

 log_level()

 @type log_level() :: :info | :warn | :warning | :error

 Functions

 default_log_level(env)

 @spec default_log_level(Tesla.Env.t()) :: log_level()

Tesla.Middleware.MessagePack

Encode requests and decode responses as MessagePack.
This middleware requires Msgpax as dependency.
Remember to add {:msgpax, ">= 2.3.0"} to dependencies.
Also, you need to recompile Tesla after adding :msgpax dependency:
mix deps.clean tesla
mix deps.compile tesla

Examples
defmodule MyClient do
 def client do
 Tesla.client([
 Tesla.Middleware.MessagePack,
 # or
 {Tesla.Middleware.MessagePack, engine_opts: [binary: true]},
 # or
 {Tesla.Middleware.MessagePack, decode: &Custom.decode/1, encode: &Custom.encode/1}
])
 end
end
Options
	:decode - decoding function
	:encode - encoding function
	:encode_content_type - content-type to be used in request header
	:decode_content_types - list of additional decodable content-types
	:engine_opts - optional engine options

 Summary

 Functions

 decode(env, opts)

 Decode response body as MessagePack.

 encode(env, opts)

 Encode request body as MessagePack.

 Functions

 decode(env, opts)

Decode response body as MessagePack.
It is used by Tesla.Middleware.DecodeMessagePack.

 encode(env, opts)

Encode request body as MessagePack.
It is used by Tesla.Middleware.EncodeMessagePack.

Tesla.Middleware.MethodOverride

Middleware that adds X-HTTP-Method-Override header with original request
method and sends the request as post.
Useful when there's an issue with sending non-POST request.
Examples
defmodule MyClient do
 def client do
 Tesla.client([Tesla.Middleware.MethodOverride])
 end
end
Options
	:override - list of HTTP methods that should be overridden, everything except :get and :post if not specified

Tesla.Middleware.Opts

Set default opts for all requests.
Examples
defmodule MyClient do
 def client do
 Tesla.client([
 {Tesla.Middleware.Opts, [some: "option"]}
])
 end
end

Tesla.Middleware.PathParams

Use templated URLs with provided parameters in either Phoenix style (:id)
or OpenAPI style ({id}).
Useful when logging or reporting metrics per URL.
Parameter Values
Parameter values may be struct/0 or must implement the Enumerable
protocol and produce {key, value} tuples when enumerated.
Parameter Name Restrictions
Phoenix style parameters may contain letters, numbers, or underscores,
matching this regular expression:
 :[a-zA-Z][_a-zA-Z0-9]

 Tesla.Middleware.Query - tesla v1.16.0

Tesla.Middleware.Query

Set default query params for all requests
Examples
defmodule MyClient do
 def client do
 Tesla.client([
 {Tesla.Middleware.Query, [token: "some-token"]}
])
 end
end

 Tesla.Middleware.Retry - tesla v1.16.0

Tesla.Middleware.Retry

Retry using exponential backoff and full jitter.
By defaults, this middleware only retries in the case of connection errors (nxdomain, connrefused, etc).
Application error checking for retry can be customized through :should_retry option.
Backoff algorithm
The backoff algorithm optimizes for tight bounds on completing a request successfully.
It does this by first calculating an exponential backoff factor based on the
number of retries that have been performed. It then multiplies this factor against
the base delay. The total maximum delay is found by taking the minimum of either
the calculated delay or the maximum delay specified. This creates an upper bound
on the maximum delay we can see.
In order to find the actual delay value we apply additive noise which is proportional
to the current desired delay. This ensures that the actual delay is kept within
the expected order of magnitude, while still having some randomness, which ensures
that our retried requests don't "harmonize" making it harder for the downstream service to heal.
Examples
defmodule MyClient do
 def client do
 Tesla.client([
 {Tesla.Middleware.Retry,
 delay: 500,
 max_retries: 10,
 max_delay: 4_000,
 should_retry: fn
 {:ok, %{status: status}}, _env, _context when status in [400, 500] -> true
 {:ok, _reason}, _env, _context -> false
 {:error, _reason}, %Tesla.Env{method: :post}, _context -> false
 {:error, _reason}, %Tesla.Env{method: :put}, %{retries: 2} -> false
 {:error, _reason}, _env, _context -> true
 end
 }
])
 end
end
Options
	:delay - The base delay in milliseconds (positive integer, defaults to 50)
	:max_retries - maximum number of retries (non-negative integer, defaults to 5)
	:max_delay - maximum delay in milliseconds (positive integer, defaults to 5000)
	:should_retry - function with an arity of 1 or 3 used to determine if the request should
 be retried the first argument is the result, the second is the env and the third is
 the context: options + :retries (defaults to a match on {:error, _reason})
	:jitter_factor - additive noise proportionality constant
 (float between 0 and 1, defaults to 0.2)
	:use_retry_after_header - whether to use the Retry-After header to determine the minimum
 delay before the next retry. If the delay from the header exceeds max_delay, no further
 retries are attempted. Invalid Retry-After headers are ignored.
 (boolean, defaults to false)

 Summary

 Functions

 retry_after_with_jitter(cap, retry_after, jitter_factor)

 Functions

 retry_after_with_jitter(cap, retry_after, jitter_factor)

 @spec retry_after_with_jitter(any(), integer(), number()) :: :ok

 Tesla.Middleware.SSE - tesla v1.16.0

Tesla.Middleware.SSE

Decode Server Sent Events.
This middleware is mostly useful when streaming response body.
Examples
defmodule MyClient do
 def client do
 Tesla.client([Tesla.Middleware.SSE, only: :data])
 end
end
Options
	:only - keep only specified keys in event (necessary for using with JSON middleware)
	:decode_content_types - list of additional decodable content-types

 Summary

 Functions

 decode(env, opts)

 Functions

 decode(env, opts)

 Tesla.Middleware.Telemetry - tesla v1.16.0

Tesla.Middleware.Telemetry

Emits events using the :telemetry library to expose instrumentation.
Examples
defmodule MyClient do
 def client do
 Tesla.client([Tesla.Middleware.Telemetry])
 end
end

:telemetry.attach(
 "my-tesla-telemetry",
 [:tesla, :request, :stop],
 fn event, measurements, meta, config ->
 # Do something with the event
 end,
 nil
)
Options
	:metadata - additional metadata passed to telemetry events

Telemetry Events
	[:tesla, :request, :start] - emitted at the beginning of the request.
	Measurement: %{system_time: System.system_time()}
	Metadata: %{env: Tesla.Env.t()}

	[:tesla, :request, :stop] - emitted at the end of the request.
	Measurement: %{duration: native_time}
	Metadata: %{env: Tesla.Env.t()} | %{env: Tesla.Env.t(), error: term()}

	[:tesla, :request, :exception] - emitted when an exception has been raised.
	Measurement: %{duration: native_time}
	Metadata: %{env: Tesla.Env.t(), kind: Exception.kind(), reason: term(), stacktrace: Exception.stacktrace()}

Legacy Telemetry Events
	[:tesla, :request] - This event is emitted for backwards compatibility only and should be considered deprecated.
 This event can be disabled by setting config :tesla, Tesla.Middleware.Telemetry, disable_legacy_event: true in your config.
 Be sure to run mix deps.compile --force tesla after changing this setting to ensure the change is picked up.

Please check the telemetry for further usage.
URL event scoping with Tesla.Middleware.PathParams and Tesla.Middleware.KeepRequest
Sometimes, it is useful to have access to a template URL (i.e. "/users/:user_id") for grouping
Telemetry events. For such cases, a combination of the Tesla.Middleware.PathParams,
Tesla.Middleware.Telemetry and Tesla.Middleware.KeepRequest may be used.
defmodule MyClient do
 def client do
 Tesla.client([
 # The KeepRequest middleware sets the template URL as a Tesla.Env.opts entry
 # Said entry must be used because on happy-path scenarios,
 # the Telemetry middleware will receive the Tesla.Env.url resolved by PathParams.
 Tesla.Middleware.KeepRequest,
 Tesla.Middleware.PathParams,
 Tesla.Middleware.Telemetry
])
 end
end

:telemetry.attach(
 "my-tesla-telemetry",
 [:tesla, :request, :stop],
 fn event, measurements, meta, config ->
 path_params_template_url = meta.env.opts[:req_url]
 # The meta.env.url key will only present the resolved URL on happy-path scenarios.
 # Error cases will still return the original template URL.
 path_params_resolved_url = meta.env.url
 end,
 nil
)
Order Matters
Place the Tesla.Middleware.Telemetry middleware as close as possible to
the end of the middleware stack to ensure that you are measuring the
actual request itself and do not lose any information about the
Tesla.Env.t/0 due to some transformation that happens in the
middleware stack before reaching the Tesla.Middleware.Telemetry
middleware.

 Tesla.Middleware.Timeout - tesla v1.16.0

Tesla.Middleware.Timeout

Timeout HTTP request after X milliseconds.
Examples
defmodule MyClient do
 def client do
 Tesla.client([
 {Tesla.Middleware.Timeout, timeout: 2_000}
])
 end
end
If you are using OpenTelemetry in your project, you may be interested in
using OpentelemetryProcessPropagator.Task to have a better integration using
the task_module option.
defmodule MyClient do
 def client do
 Tesla.client([
 {Tesla.Middleware.Timeout, [
 timeout: 2_000,
 task_module: OpentelemetryProcessPropagator.Task
 }
])
 end
end
Options
	:timeout - number of milliseconds a request is allowed to take (defaults to 1000)
	:task_module - the Task module used to spawn tasks. Useful when you want
to use alternatives such as OpentelemetryProcessPropagator.Task from the OTEL
project.

 Tesla.Error - tesla v1.16.0

Tesla.Error exception

 Summary

 Functions

 message(error)

 Callback implementation for Exception.message/1.

 Functions

 message(error)

Callback implementation for Exception.message/1.

 Tesla.Mock.Error - tesla v1.16.0

Tesla.Mock.Error exception

 Summary

 Functions

 message(error)

 Callback implementation for Exception.message/1.

 Functions

 message(error)

Callback implementation for Exception.message/1.

OEBPS/dist/epub-4WIP524F.js
