TflInterp (tfl_interp v0.1.1) View Source
Tensorflow lite intepreter for Elixir. Deep Learning inference framework for embedded devices.
Installation
This module is designed for Poncho-style. Therefore, it cannot be installed by adding this module to your project's dependency list. Follow the steps below to install.
Download tfl_interp to a directory of your choice. I recommend that you put
it in the same hierarchy as your Deep Learning project directory.
$ cd parent-of-your-project
$ git clone https://github.com/shoz-f/tfl_interp.git
Then you need to download the file set of Google Tensorflow and build
tfl_intep executable (Port extended called by Elixir) into ./priv.
Don't worry, mix_cmake utility will help you.
$ cd tfl_interp
$ mix deps.get
$ mix cmake --config
;-) It takes a few minutes to download and build Tensorflow.
Now you are ready. The figure below shows the directory structure of tfl_interp.
+- your-project
|
+- tfl_interp
+- _build
| +- .cmake_build --- Tensorflow is downloaded here
+- deps
+- lib
+- priv
| +- tfl_interp --- Elixir Port extended
+- src/
+- test/
+- CMakeLists.txt --- Cmake configuration script
+- mix.exs --- includes parameter for mix-cmake task
+- msys2.patch --- Patch script for MSYS2/MinGW64Basic Usage
To use TflInterp in your project, you add the path to tfl_interp above to
the mix.exs:
def deps do
[
{:tfl_interp, path: "../tfl_interp"},
]
endThen you put the trained model of Tensolflow lite in ./priv.
$ cp your-trained-model.tflite ./priv
The remaining task is to create a module that will interface with your Deep Learning model. The module will probably have pre-processing and post-processing in addition to inference processing, as in the code example below. TflInterp provides only inference processing.
You put use TflInterp at the beginning of your module, specify the model path
in optional arguments. The inference section involves inputing data to the
model - TflInterp.set_input_tensor/3, executing it - TflInterp.invoke/1,
and extracting the results - TflInterp.get_output_tensor/2.
defmodule YourApp.YourModel do
use TflInterp, model: "priv/your-trained-model.tflite"
def predict(data) do
# preprocess
# to convert the data to be inferred to the input format of the model.
input_bin = convert-float32-binaries(data)
# inference
# typical I/O data for Tensorflow lite models is a serialized 32-bit float tensor.
output_bin =
__MODULE__
|> TflInterp.set_input_tensor(0, input_bin)
|> TflInterp.invoke()
|> TflInterp.get_output_tensor(0)
# postprocess
# add your post-processing here.
# you may need to reshape output_bin to tensor at first.
tensor = output_bin
|> Nx.from_binary({:f, 32})
|> Nx.reshape({size-x, size-y, :auto})
* your-postprocessing *
...
end
end
Link to this section Summary
Functions
Get the flat binary from the output tensor on the interpreter"
Get the propaty of the tflite model.
Invoke prediction.
Execute post processing: nms.
Put a flat binary to the input tensor on the interpreter.
Stop the tflite interpreter.
Link to this section Functions
Get the flat binary from the output tensor on the interpreter"
Parameters
- mod - modules' names
- index - index of output tensor in the model
Get the propaty of the tflite model.
Parameters
- mod - modules' names
Invoke prediction.
Parameters
- mod - modules' names
non_max_suppression_multi_class(mod, arg, boxes, scores, iou_threshold \\ 0.5, score_threshold \\ 0.25, sigma \\ 0.0)
View SourceExecute post processing: nms.
Parameters
- mod - modules' names
- num_boxes - number of candidate boxes
- num_class - number of category class
- boxes - binaries, serialized boxes tensor[
num_boxes][4]; dtype: float32 - scores - binaries, serialized score tensor[
num_boxes][num_class]; dtype: float32 - iou_threshold - IOU threshold
- score_threshold - score cutoff threshold
- sigma - soft IOU parameter
Put a flat binary to the input tensor on the interpreter.
Parameters
- mod - modules' names
- index - index of input tensor in the model
- bin - input data - flat binary, cf. serialized tensor
Stop the tflite interpreter.
Parameters
- mod - modules' names