

 Tidewave

 v0.1.0

 [image: Logo]

 Table of contents

 	Installation

 	Editors & Assistants

 	MCP

 	Claude

 	Cursor

 	VS Code

 	Windsurf

 	Zed

 	Guides

 	MCP Proxy

 	Security

 	Tips and tricks

Installation

Tidewave speeds up development with an AI assistant that understands your web application,
how it runs, and what it delivers. Our current release includes open source tools that
connect your editor's assistant to your web framework runtime via MCP.
Tidewave is available for the following frameworks:
	Tidewave for Phoenix - Installation
	Tidewave for Rails - Installation

Once you add Tidewave to your web application, you can connect to it from your editor and AI assistants, see the docs.

MCP

You can integrate Tidewave into any editor or AI assistant that supports the Model Context Protocol (MCP). We have tailored instructions for some of them:
	Claude Code and Claude Desktop
	Cursor
	VS Code
	Windsurf
	Zed

 General instructions

For any other editor/assistant, you need to include Tidewave as MCP of type "sse", pointing to the /tidewave/mcp path of port your web application is running on. For example, http://localhost:4000/tidewave/mcp.
In case your tool of choice does not support "sse" servers, only "io" ones, you can use one of the many available MCP proxies.

 Available tools

Here is a baseline comparison of the tools supported by different frameworks/languages. Frameworks may support additional features.

 Runtime intelligence

	Features	Tidewave for Phoenix	Tidewave for Rails
	project_eval	✅	✅
	package_search	✅	✅
	package_docs_search	✅	
	get_docs	✅	
	get_source_location	✅	✅
	get_logs	✅	✅
	get_models / get_schemas	✅	✅
	execute_sql_query	✅	✅

 Filesystem tools

Our MCP servers may also accept /tidewave/mcp?include_fs_tools=true option,
which enables your assistant to run shell commands as well as list, read, write,
edit, and search files. This is useful for assistants like Claude Desktop:
	Features	Tidewave for Phoenix	Tidewave for Rails
	shell_eval	✅	✅
	list_project_files	✅	✅
	read_project_file	✅	✅
	edit_project_file	✅	✅
	write_project_file	✅	✅
	glob_project_files	✅	✅
	grep_project_files	✅	✅
	Syntax validation	✅	✅
	Automatic formatting	✅	

Tidewave stores the timestamps files have been read and written to, to avoid accidentally
overriding previous work. Writing and editing files may also perform syntax validation and
automatic formatting.

Claude

You can use Tidewave with Claude Desktop and Claude Code.

 Claude Desktop

To use Tidewave with Claude Desktop, you must first install
a mcp-proxy.
Then open up Claude Desktop, go to "Settings" and, under the
"Developer" tab, click on "Edit Config". It will point to a file
you can open in your favorite editor. Which you must edit to
include the following settings, depending on the proxy:

 Python Proxy

On macos/Linux:
{
 "mcpServers": {
 "tidewave": {
 "command": "/path/to/mcp-proxy",
 "args": ["http://localhost:$PORT/tidewave/mcp?include_fs_tools=true"]
 }
 }
}
On Windows:
{
 "mcpServers": {
 "tidewave": {
 "command": "/path/to/mcp-proxy.exe",
 "args": ["http://localhost:$PORT/tidewave/mcp?include_fs_tools=true"]
 }
 }
}
Where $PORT is the port your web application is running on.

 Elixir Proxy

On macos/Linux:
{
 "mcpServers": {
 "tidewave": {
 "command": "/path/to/escript",
 "args": [
 "/$HOME/.mix/escripts/mcp-proxy",
 "http://localhost:$PORT/tidewave/mcp?include_fs_tools=true"
]
 }
 }
}
On Windows:
{
 "mcpServers": {
 "tidewave": {
 "command": "escript.exe",
 "args": [
 "/$HOME/.mix/escripts/mcp-proxy",
 "http://localhost:$PORT/tidewave/mcp?include_fs_tools=true"
]
 }
 }
}
Where you replace $HOME by your home folder (shown during installation)
and $PORT by the port your web application is running on.
And you are good to go! Note we enabled filesystem tools by default,
as Claude Desktop does not support any filesystem operation out of the box.
If your application uses a SQL database, you can verify it all works
by asking it to run SELECT 1 as database query.

 Claude Code

Adding Tidewave to Claude Code
is straight-forward, just run:
$ claude mcp add --transport sse tidewave http://localhost:$PORT/tidewave/mcp

Where $PORT is the port your web application is running on. And you are good to go!

Cursor

You can use Tidewave with Cursor.
Cursor allows you to place a file at .cursor/mcp.json, for configuration
which is specific to your project. Given Tidewave is explicitly tied to your
web application, that's our preferred approach. Create a file at
.cursor/mcp.json and add the following contents.
{
 "mcpServers": {
 "tidewave": {
 "url": "http://localhost:$PORT/tidewave/mcp"
 }
 }
}
Where $PORT is the port your web application is running on.
If you prefer, you can also add Tidewave globally to your editor
by adding the same contents as above to the ~/.cursor/mcp.json
file. If you have trouble locating such file, open up Cursor's
assistant tab and click on the ⋯ icon on the top right and
choose "Chat Settings". In the new window that opens, you can
click "MCP" on the sidebar and follow the steps there.
If your application uses a SQL database, you can verify it all works
by asking it to run SELECT 1 as database query.
If you have any questions, check out Cursor official docs.

VS Code

You can use Tidewave with Visual Studio Code through the GitHub Copilot extension.
At the time of writing, MCP support in GitHub Copilot is in public preview and only
available in "Agent" mode. Therefore the instructions below may be out of date.
In any case, let's do this.
Open up your AI assistant and then click on the red arrow in your editor (shown below)
to enable "Agent" mode and then the Wrench icon (pointed by the green arrow) to
configure it.
[image: VSCode AI panel]
And then at the center top:
	Choose "+ Add MCP Server..."

	Choose "HTTP (Server sent events)..."

	Add the URL your web application is running on with /tidewave/mcp at the end, such as localhost:$PORT/tidewave/mcp, where $PORT is the port it is running on

	Add a name of your choice

And you are good to go! Now the Copilot extension will list all tools from
Tidewave available. If your application uses a SQL database, you can verify
it all works by asking it to run SELECT 1 as database query.

Windsurf

You can use Tidewave with Windsurf. First, you must
install a mcp-proxy.
Once you are done, open up your "Windsurf Settings", find the "Cascade" section,
click "Add Server" and then "Add custom server". A file will open up and you can
manually add Tidewave, according to your proxy of choice:

 Python Proxy

On macos/Linux:
{
 "mcpServers": {
 "tidewave": {
 "command": "/path/to/mcp-proxy",
 "args": ["http://localhost:$PORT/tidewave/mcp"]
 }
 }
}
On Windows:
{
 "mcpServers": {
 "tidewave": {
 "command": "/path/to/mcp-proxy.exe",
 "args": ["http://localhost:$PORT/tidewave/mcp"]
 }
 }
}
Where $PORT is the port your web application is running on.

 Elixir Proxy

On macos/Linux:
{
 "mcpServers": {
 "tidewave": {
 "command": "/path/to/escript",
 "args": [
 "/$HOME/.mix/escripts/mcp-proxy",
 "http://localhost:$PORT/tidewave/mcp"
]
 }
 }
}
On Windows:
{
 "mcpServers": {
 "tidewave": {
 "command": "escript.exe",
 "args": [
 "/$HOME/.mix/escripts/mcp-proxy",
 "http://localhost:$PORT/tidewave/mcp"
]
 }
 }
}
Where you replace $HOME by your home folder (shown during installation)
and $PORT by the port your web application is running on.
And you are good to go! Now Windsurf will list all tools from Tidewave
available. If your application uses a SQL database, you can verify it
all works by asking it to run SELECT 1 as database query.
If you have any questions, check out Windsurf official docs.

Zed

You can use Tidewave with Zed. At the time of writing,
Zed agents/assistants are in closed beta. If you have access, you can follow
the steps below, although they may not reflect the latest behaviour.
Zed currently only supports MCP through the IO protocol.
So the first step is to install a mcp-proxy.
Once that's done, open up the Assistant tab and click on the ⋯ icon at the
top right (see image below):
[image: Zed AI panel]
In the new pane, select "+ Add MCPs Directly", to open a new dialog. Fill in
the name of your choice and the command will vary depending to your proxy
of choice:

 Python Proxy

On macos/Linux:
/path/to/mcp-proxy http://localhost:$PORT/tidewave/mcp
On Windows:
/path/to/mcp-proxy.exe http://localhost:$PORT/tidewave/mcp
Where $PORT is the port your web application is running on.

 Elixir Proxy

On macos/Linux:
/path/to/escript /$HOME/.mix/escripts/mcp-proxy http://localhost:$PORT/tidewave/mcp
On Windows:
escript.exe /$HOME/.mix/escripts/mcp-proxy http://localhost:$PORT/tidewave/mcp
Where you replace $HOME by your home folder (shown during installation)
and $PORT by the port your web application is running on.
And you are good to go! Now Zed will list all tools from Tidewave available.
If your application uses a SQL database, you can verify it all works by asking
it to run SELECT 1 as database query.

MCP Proxy

Tidewave implements the SSE version of MCP protocol. Some tools may only support the IO
protocol but proxies are available in different languages. Pick whatever language is more
suitable to you.

 Python-based proxy

Requires either uv, npm, or pip installed. See the
installation instructions on GitHub.
Once installation concludes, take note of the full path
the mcp-proxy was installed at. It will be necessary
in most scenarios in order to use Tidewave. Note on Windows
the executable will also have the .exe extension.

 Elixir-based proxy

Requires Elixir installed on your machine. Then simply run:
$ mix escript.install hex mcp_proxy

The proxy will be installed at ~/.mix/escripts/mcp-proxy.
In order to use it with Tidewave, you will need to run this
command on Windows:
$ escript.exe c:\$HOME\.mix\escripts\mcp-proxy http://localhost:$PORT/tidewave/mcp

And on Unix, you will need to know the path to the escript
executable by running which escript. Then you run it as:
$ /path/to/escript /$HOME/.mix/escripts/mcp-proxy http://localhost:$PORT/tidewave/mcp

Where you replace $HOME by your home folder (shown during installation)
and $PORT by the port your web application is running on.

Security

Tidewave is a development tool and it must not be enabled in production.
In a nutshell, you must treat it as any other developer tool, such as web
console, REPLs, and similar that you may enable during development.
The installation steps for each framework will guide you towards the best
security practices. This guide covers the overall security checks performed
by Tidewave and risks you must consider when using it through an editor/AI
assistant.

 Server exposure

The Tidewave runs over the same host and port as your web application,
such as http://localhost:4000/tidewave/mcp. Theoretically, someone in
the same network as you would be able to access Tidewave and its abilities
to evaluate code. Luckily, there are best practices put in place to prevent
that:
	Localhost binding - most web frameworks restrict your web application
in development to only be accessible from your own machine, to restrict
unwanted access to your application and development tools like Tidewave.

	Remote IP checks - Tidewave verifies that requests coming to the
MCP belongs to the current machine by verifying the connection's remote IP.

	Origin checks - For browser requests, Tidewave also verifies that
the request's "origin" header matches your development URL.

Here is a summary of how these measures are enabled across different Tidewave
implementations. The values below represent the default settings used by Tidewave
and the underlying frameworks:
	Security measure	Tidewave for Phoenix	Tidewave for Rails
	Localhost binding	✅	✅
	Remote IP checks	✅	✅
	Origin checks	✅	✅

 MCP tool execution

The goal of Tidewave is to allow editors and AI assistants to perform the same
project tasks as you, such as reading, writing, and executing code. Most editors
and AI assistants require you to explicitly allow a tool to run before they do
anything (unless you enable features such as "YOLO mode"). Commands that execute
code may perform any action on your machine and therefore must be assessed with care.
Here are some best practices put in place by Tidewave which you could also employ:
	Tidewave MCP is open source, which means you can navigate its source
code and verify its tools and prompts, avoiding attacks such as prompt injection

	If the file system tools are enabled, they are restricted to your application's
root directory

	Because Tidewave runs within your web application, you may also run your web
application with Docker, guaranteeing all tools execute within the Docker container
rather than your system

Tips and tricks

Some tips and tricks to use Tidewave and AI assistants and agents effectively.

 Configure your prompts

Most editors and AI assistants allow you to write down a file that
is given as context to models. Such files are excellent places to
document your project's best practices, workflows, and pitfalls.
Keep this file short and to the point. For example, a Phoenix
application may write:
This is a Phoenix application, which uses Tailwind and daisyUI.
Prefer using LiveView instead of regular Controllers.
Once you are done with changes, run `mix compile` and fix any issues.
Write tests for your changes and run `mix test` afterwards.

 Use eval: AI's swiss army knife

AI assistants excel at coding. Since Tidewave can evaluate code within your
project, as well as execute commands in the terminal, you can ask the AI
to execute complex tasks through Tidewave's eval without a need for additional
tooling. With Tidewave, you can:
	evaluate code within the project context
	execute commands in the terminal
	run SQL queries directly on your development database

This direct integration streamlines your workflow and keeps everything within
your existing development environment. For example, you no longer need to use
a separate tool to connect to your database, you can either execute SQL queries
directly or ask the agent to use your models and data schemas to load the data
in a more structured format.
Similarly, any API that your application talks to is automatically available
to agents, which can leverage your established authentication methods and
access patterns without requiring you to set up and maintain additional
development keys.
Furthermore, if you find yourself needing to automate workflows, you can
implement those as regular functions in your codebase and ask the agent to use
them, either explicitly or as part of your prompt. This keeps your tooling
consolidated and makes extending functionality a natural part of your development
process, like any other code you write.
In our experience, AI models become less effective when there are too many tools,
and work best with a few powerful ones. With Tidewave's eval, we make the power
of full programming languages within the context of your project available to
AI assistants.

 Plan and think ahead

Different AI assistants will require different techniques to produce the
best results but the majority of them will output better code if you ask
them to plan ahead.
AI assistants and editors may also provide a "think" tool, which often
improves the quality too. For example, Claude says:
We recommend using the word "think" to trigger extended thinking mode,
which gives Claude additional computation time to evaluate alternatives
more thoroughly. These specific phrases are mapped directly to increasing
levels of thinking budget in the system: "think" < "think hard" <
"think harder" < "ultrathink." Each level allocates progressively more
thinking budget for Claude to use.

	https://www.anthropic.com/engineering/claude-code-best-practices

 OEBPS/dist/epub-4WIP524F.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);function r(e){document.readyState!=="loading"?e():document.addEventListener("DOMContentLoaded",e)}var l="hll";window.addEventListener("exdoc:loaded",t);function t(){o("[data-group-id]").forEach(e=>{e.addEventListener("mouseenter",i),e.addEventListener("mouseleave",i)})}function i(e){let n=e.currentTarget,a=e.type==="mouseenter",c=n.getAttribute("data-group-id");n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach(u=>{u.classList.toggle(l,a)})}r(()=>{t()});})();

OEBPS/assets/vscode.png
% [l]J Add Context...
Edit in your workspace in agent mode /

g Agentv GPT-dov >

OEBPS/assets/zed.png
New Thread + O -

Welcome to the Agent Panel
Ask and build anything.

+ Start New Thread 3N
[® Add Context 34 A
& Switch Model &8 /
3 View Settings 38 C

+ 6 endpoint.ex ActiveTab + 2

Ask anything, @ to mention, t to select

2 Write v [Z Claude 3.5 Sonnet (Fast Edit) v B

