

    

        Tokenizers

        v0.3.2



    



  

    Table of contents

    
      



            	LICENSE


            	Pretrained Tokenizers





  	Modules
    

    	Tokenizers


    	Tokenizers.Encoding


    	Tokenizers.HTTPClient


    	Tokenizers.Model


    	Tokenizers.Native


    	Tokenizers.Tokenizer


    

  



      

    


  

    
LICENSE
    


                                 Apache License
                           Version 2.0, January 2004
                        http://www.apache.org/licenses/

   TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

   1. Definitions.

      "License" shall mean the terms and conditions for use, reproduction,
      and distribution as defined by Sections 1 through 9 of this document.

      "Licensor" shall mean the copyright owner or entity authorized by
      the copyright owner that is granting the License.

      "Legal Entity" shall mean the union of the acting entity and all
      other entities that control, are controlled by, or are under common
      control with that entity. For the purposes of this definition,
      "control" means (i) the power, direct or indirect, to cause the
      direction or management of such entity, whether by contract or
      otherwise, or (ii) ownership of fifty percent (50%) or more of the
      outstanding shares, or (iii) beneficial ownership of such entity.

      "You" (or "Your") shall mean an individual or Legal Entity
      exercising permissions granted by this License.

      "Source" form shall mean the preferred form for making modifications,
      including but not limited to software source code, documentation
      source, and configuration files.

      "Object" form shall mean any form resulting from mechanical
      transformation or translation of a Source form, including but
      not limited to compiled object code, generated documentation,
      and conversions to other media types.

      "Work" shall mean the work of authorship, whether in Source or
      Object form, made available under the License, as indicated by a
      copyright notice that is included in or attached to the work
      (an example is provided in the Appendix below).

      "Derivative Works" shall mean any work, whether in Source or Object
      form, that is based on (or derived from) the Work and for which the
      editorial revisions, annotations, elaborations, or other modifications
      represent, as a whole, an original work of authorship. For the purposes
      of this License, Derivative Works shall not include works that remain
      separable from, or merely link (or bind by name) to the interfaces of,
      the Work and Derivative Works thereof.

      "Contribution" shall mean any work of authorship, including
      the original version of the Work and any modifications or additions
      to that Work or Derivative Works thereof, that is intentionally
      submitted to Licensor for inclusion in the Work by the copyright owner
      or by an individual or Legal Entity authorized to submit on behalf of
      the copyright owner. For the purposes of this definition, "submitted"
      means any form of electronic, verbal, or written communication sent
      to the Licensor or its representatives, including but not limited to
      communication on electronic mailing lists, source code control systems,
      and issue tracking systems that are managed by, or on behalf of, the
      Licensor for the purpose of discussing and improving the Work, but
      excluding communication that is conspicuously marked or otherwise
      designated in writing by the copyright owner as "Not a Contribution."

      "Contributor" shall mean Licensor and any individual or Legal Entity
      on behalf of whom a Contribution has been received by Licensor and
      subsequently incorporated within the Work.

   2. Grant of Copyright License. Subject to the terms and conditions of
      this License, each Contributor hereby grants to You a perpetual,
      worldwide, non-exclusive, no-charge, royalty-free, irrevocable
      copyright license to reproduce, prepare Derivative Works of,
      publicly display, publicly perform, sublicense, and distribute the
      Work and such Derivative Works in Source or Object form.

   3. Grant of Patent License. Subject to the terms and conditions of
      this License, each Contributor hereby grants to You a perpetual,
      worldwide, non-exclusive, no-charge, royalty-free, irrevocable
      (except as stated in this section) patent license to make, have made,
      use, offer to sell, sell, import, and otherwise transfer the Work,
      where such license applies only to those patent claims licensable
      by such Contributor that are necessarily infringed by their
      Contribution(s) alone or by combination of their Contribution(s)
      with the Work to which such Contribution(s) was submitted. If You
      institute patent litigation against any entity (including a
      cross-claim or counterclaim in a lawsuit) alleging that the Work
      or a Contribution incorporated within the Work constitutes direct
      or contributory patent infringement, then any patent licenses
      granted to You under this License for that Work shall terminate
      as of the date such litigation is filed.

   4. Redistribution. You may reproduce and distribute copies of the
      Work or Derivative Works thereof in any medium, with or without
      modifications, and in Source or Object form, provided that You
      meet the following conditions:

      (a) You must give any other recipients of the Work or
          Derivative Works a copy of this License; and

      (b) You must cause any modified files to carry prominent notices
          stating that You changed the files; and

      (c) You must retain, in the Source form of any Derivative Works
          that You distribute, all copyright, patent, trademark, and
          attribution notices from the Source form of the Work,
          excluding those notices that do not pertain to any part of
          the Derivative Works; and

      (d) If the Work includes a "NOTICE" text file as part of its
          distribution, then any Derivative Works that You distribute must
          include a readable copy of the attribution notices contained
          within such NOTICE file, excluding those notices that do not
          pertain to any part of the Derivative Works, in at least one
          of the following places: within a NOTICE text file distributed
          as part of the Derivative Works; within the Source form or
          documentation, if provided along with the Derivative Works; or,
          within a display generated by the Derivative Works, if and
          wherever such third-party notices normally appear. The contents
          of the NOTICE file are for informational purposes only and
          do not modify the License. You may add Your own attribution
          notices within Derivative Works that You distribute, alongside
          or as an addendum to the NOTICE text from the Work, provided
          that such additional attribution notices cannot be construed
          as modifying the License.

      You may add Your own copyright statement to Your modifications and
      may provide additional or different license terms and conditions
      for use, reproduction, or distribution of Your modifications, or
      for any such Derivative Works as a whole, provided Your use,
      reproduction, and distribution of the Work otherwise complies with
      the conditions stated in this License.

   5. Submission of Contributions. Unless You explicitly state otherwise,
      any Contribution intentionally submitted for inclusion in the Work
      by You to the Licensor shall be under the terms and conditions of
      this License, without any additional terms or conditions.
      Notwithstanding the above, nothing herein shall supersede or modify
      the terms of any separate license agreement you may have executed
      with Licensor regarding such Contributions.

   6. Trademarks. This License does not grant permission to use the trade
      names, trademarks, service marks, or product names of the Licensor,
      except as required for reasonable and customary use in describing the
      origin of the Work and reproducing the content of the NOTICE file.

   7. Disclaimer of Warranty. Unless required by applicable law or
      agreed to in writing, Licensor provides the Work (and each
      Contributor provides its Contributions) on an "AS IS" BASIS,
      WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
      implied, including, without limitation, any warranties or conditions
      of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
      PARTICULAR PURPOSE. You are solely responsible for determining the
      appropriateness of using or redistributing the Work and assume any
      risks associated with Your exercise of permissions under this License.

   8. Limitation of Liability. In no event and under no legal theory,
      whether in tort (including negligence), contract, or otherwise,
      unless required by applicable law (such as deliberate and grossly
      negligent acts) or agreed to in writing, shall any Contributor be
      liable to You for damages, including any direct, indirect, special,
      incidental, or consequential damages of any character arising as a
      result of this License or out of the use or inability to use the
      Work (including but not limited to damages for loss of goodwill,
      work stoppage, computer failure or malfunction, or any and all
      other commercial damages or losses), even if such Contributor
      has been advised of the possibility of such damages.

   9. Accepting Warranty or Additional Liability. While redistributing
      the Work or Derivative Works thereof, You may choose to offer,
      and charge a fee for, acceptance of support, warranty, indemnity,
      or other liability obligations and/or rights consistent with this
      License. However, in accepting such obligations, You may act only
      on Your own behalf and on Your sole responsibility, not on behalf
      of any other Contributor, and only if You agree to indemnify,
      defend, and hold each Contributor harmless for any liability
      incurred by, or claims asserted against, such Contributor by reason
      of your accepting any such warranty or additional liability.

   END OF TERMS AND CONDITIONS



  

    
Pretrained Tokenizers
    

Setup
This Livebook will demonstrate how to use Tokenizers with pretrained tokenizers available on the Hugging Face Hub.
We'll install Kino for user input and SciData for real data to tokenize.
Mix.install(
  [
    {:kino, "~> 0.5.2"},
    {:scidata, "~> 0.1.5"},
    {:tokenizers, "~> 0.2.0"},
    {:nx, "~> 0.3"}
  ],
  force: true
)
We'll alias modules in Tokenizers for readability. For now, the two main entry points into Tokenizers are the Tokenizer and Encoding modules.
alias Tokenizers.Tokenizer
alias Tokenizers.Encoding
Get a tokenizer
The first thing to do is get a tokenizer from the hub. I've chosen bert-base-cased here as it's commonly used in Hugging Face examples. This call will download the tokenizer from the hub and load it into memory.
{:ok, tokenizer} = Tokenizer.from_pretrained("bert-base-cased")
Save and load
You can save and load models. That means you can load in tokenizers you may have trained locally!
You can choose the path with the Kino input below.
input = Kino.Input.text("Path")
path = Kino.Input.read(input)
Tokenizer.save(tokenizer, path)
{:ok, tokenizer} = Tokenizer.from_file(path)
Check the tokenizer
Let's see what we can do with the tokenizer. First, let's have a look at the vocab. It's represented as a map of tokens to ids.
vocab = Tokenizer.get_vocab(tokenizer)
We can access an id using the vocab, but we don't need to extract the vocab. Tokenizer.token_to_id/2 does the job for us.
vocab["Jaguar"]
Tokenizer.token_to_id(tokenizer, "Jaguar")
And if we want to go back the other way...
Tokenizer.id_to_token(tokenizer, 21694)
We can also see the vocab size.
Tokenizer.get_vocab_size(tokenizer)
Encode and decode
When you tokenize some text you get an encoding. This is represented as Tokenizers.Encoding.t(). Because Tokenizers relies on Rust bindings, the encoding itself appears opaque.
{:ok, encoding} = Tokenizer.encode(tokenizer, "Hello there!")
However, we can get the ids for the encoding as an Elixir list.
ids = Encoding.get_ids(encoding)
And we can decode those back into tokens.
Tokenizer.decode(tokenizer, ids)
Passing a batch of text as a list of strings returns a batch of encodings.
{:ok, encodings} = Tokenizer.encode(tokenizer, ["Hello there!", "This is a test."])
And we can see the list of ids and decode them again.
list_of_ids = Enum.map(encodings, &Encoding.get_ids/1)
Tokenizer.decode(tokenizer, list_of_ids)
Get a tensor
Typically the reason we're tokenizing text is to use it as an input in a machine learning model. For that, we'll need tensors.
In order to get a tensor, we need sequences that are all of the same length. We'll get some data from Scidata and use Tokenizers.Encoding.pad/3 and Tokenizers.Encoding.truncate/3 to yield a tensor.
%{review: reviews} = Scidata.YelpPolarityReviews.download_test()
tensor =
  reviews
  |> Enum.take(10)
  |> Enum.map(fn review ->
    {:ok, tokenized} = Tokenizer.encode(tokenizer, review)
    padded = Encoding.pad(tokenized, 200)
    truncated = Encoding.truncate(padded, 200)
    Encoding.get_ids(truncated)
  end)
  |> Nx.tensor()
And we can reverse the operation to see our data. Note the [PAD] tokens.
tensor
|> Nx.to_batched_list(1)
|> Enum.map(fn tensor_review ->
  {:ok, decoded} =
    tensor_review
    |> Nx.to_flat_list()
    |> then(&Tokenizer.decode(tokenizer, &1))

  decoded
end)



  

    
Tokenizers 
    



      
Elixir bindings to Hugging Face Tokenizers.
Hugging Face describes the Tokenizers library as:
Fast State-of-the-art tokenizers, optimized for both research and production
🤗 Tokenizers provides an implementation of today’s most used tokenizers, with a focus on performance and versatility. These tokenizers are also used in 🤗 Transformers.

This library has bindings to use pretrained tokenizers. Support for building and training
a tokenizer from scratch is forthcoming.
A tokenizer is effectively a pipeline of transforms to take some input text and return a
Tokenizers.Encoding.t(). The main entrypoint to this library is the Tokenizers.Tokenizer
module, which holds the Tokenizers.Tokenizer.t() struct, a container holding the constituent
parts of the pipeline. Most functionality is there.

      





  

    
Tokenizers.Encoding 
    



      
The struct and associated functions for an encoding, the output of a tokenizer.
Use these functions to retrieve the inputs needed for a natural language processing machine learning model.

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    Types
  


    
      
        t()

      


    





  
    Functions
  


    
      
        get_attention_mask(encoding)

      


        Get the attention mask from an encoding.



    


    
      
        get_ids(encoding)

      


        Get the ids from an encoding.



    


    
      
        get_offsets(encoding)

      


        Get offsets from an encoding.



    


    
      
        get_special_tokens_mask(encoding)

      


        Get special tokens mask from an encoding.



    


    
      
        get_tokens(encoding)

      


        Get the tokens from an encoding.



    


    
      
        get_type_ids(encoding)

      


        Get token type ids from an encoding.



    


    
      
        get_u32_attention_mask(encoding)

      


        Same as get_attention_mask/1, but returns binary with u32 values.



    


    
      
        get_u32_ids(encoding)

      


        Same as get_ids/1, but returns binary with u32 values.



    


    
      
        get_u32_special_tokens_mask(encoding)

      


        Same as get_special_tokens_mask/1, but returns binary with u32 values.



    


    
      
        get_u32_type_ids(encoding)

      


        Same as get_type_ids/1, but returns binary with u32 values.



    


    
      
        n_tokens(encoding)

      


        Returns the number of tokens in an Encoding.t().



    


    
      
        pad(encoding, length, opts \\ [])

      


        Pad the encoding to the given length.



    


    
      
        truncate(encoding, max_len, opts \\ [])

      


        Truncate the encoding to the given length.



    





      


      
        
          
            
            Anchor for this section
          
Types
        

        


  
    
      
      Link to this type
    
    t()


      
       
       View Source
     


  


  

      

          @type t() :: %Tokenizers.Encoding{reference: reference(), resource: binary()}


      



  


        

      

      
        
          
            
            Anchor for this section
          
Functions
        

        


  
    
      
      Link to this function
    
    get_attention_mask(encoding)


      
       
       View Source
     


  


  

      

          @spec get_attention_mask(Encoding.t()) :: [integer()]


      


Get the attention mask from an encoding.

  



  
    
      
      Link to this function
    
    get_ids(encoding)


      
       
       View Source
     


  


  

      

          @spec get_ids(Encoding.t()) :: [integer()]


      


Get the ids from an encoding.

  



  
    
      
      Link to this function
    
    get_offsets(encoding)


      
       
       View Source
     


  


  

      

          @spec get_offsets(Encoding.t()) :: [{integer(), integer()}]


      


Get offsets from an encoding.
The offsets are expressed in terms of UTF-8 bytes.

  



  
    
      
      Link to this function
    
    get_special_tokens_mask(encoding)


      
       
       View Source
     


  


  

      

          @spec get_special_tokens_mask(Encoding.t()) :: [integer()]


      


Get special tokens mask from an encoding.

  



  
    
      
      Link to this function
    
    get_tokens(encoding)


      
       
       View Source
     


  


  

      

          @spec get_tokens(Encoding.t()) :: [binary()]


      


Get the tokens from an encoding.

  



  
    
      
      Link to this function
    
    get_type_ids(encoding)


      
       
       View Source
     


  


  

      

          @spec get_type_ids(Encoding.t()) :: [integer()]


      


Get token type ids from an encoding.

  



  
    
      
      Link to this function
    
    get_u32_attention_mask(encoding)


      
       
       View Source
     


  


  

      

          @spec get_u32_attention_mask(Encoding.t()) :: binary()


      


Same as get_attention_mask/1, but returns binary with u32 values.

  



  
    
      
      Link to this function
    
    get_u32_ids(encoding)


      
       
       View Source
     


  


  

      

          @spec get_u32_ids(Encoding.t()) :: binary()


      


Same as get_ids/1, but returns binary with u32 values.

  



  
    
      
      Link to this function
    
    get_u32_special_tokens_mask(encoding)


      
       
       View Source
     


  


  

      

          @spec get_u32_special_tokens_mask(Encoding.t()) :: binary()


      


Same as get_special_tokens_mask/1, but returns binary with u32 values.

  



  
    
      
      Link to this function
    
    get_u32_type_ids(encoding)


      
       
       View Source
     


  


  

      

          @spec get_u32_type_ids(Encoding.t()) :: binary()


      


Same as get_type_ids/1, but returns binary with u32 values.

  



  
    
      
      Link to this function
    
    n_tokens(encoding)


      
       
       View Source
     


  


  

      

          @spec n_tokens(encoding :: Encoding.t()) :: non_neg_integer()


      


Returns the number of tokens in an Encoding.t().

  



    

  
    
      
      Link to this function
    
    pad(encoding, length, opts \\ [])


      
       
       View Source
     


  


  

      

          @spec pad(encoding :: Encoding.t(), length :: pos_integer(), opts :: Keyword.t()) ::
  Encoding.t()


      


Pad the encoding to the given length.

  
  options

  
  Options


	direction - The padding direction. Can be :right or :left. Default: :right.
	pad_id - The id corresponding to the padding token. Default: 0.
	pad_token - The padding token to use. Default: "[PAD]".
	pad_type_id - The type ID corresponding to the padding token. Default: 0.


  



    

  
    
      
      Link to this function
    
    truncate(encoding, max_len, opts \\ [])


      
       
       View Source
     


  


  

      

          @spec truncate(encoding :: Encoding.t(), length :: integer(), opts :: Keyword.t()) ::
  Encoding.t()


      


Truncate the encoding to the given length.

  
  options

  
  Options


	direction - The truncation direction. Can be :right or :left. Default: :right.
	stride - The length of previous content to be included in each overflowing piece. Default: 0.


  


        

      



  

    
Tokenizers.HTTPClient 
    



      
A simple implementation of an HTTP client.
This is using the built-in :httpc module, configured to use SSL.
The request/1 function is similar to Req.request/1.

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    Functions
  


    
      
        request(opts)

      


        Make an HTTP(s) requests.



    





      


      
        
          
            
            Anchor for this section
          
Functions
        

        


  
    
      
      Link to this function
    
    request(opts)


      
       
       View Source
     


  


  

Make an HTTP(s) requests.

  
  options

  
  Options


	:method - An HTTP method. By default it uses the :get method.

	:base_url - The base URL to make requests. By default is "https://huggingface.io". 

	:url - A path to a resource. By default is "".

	:headers - A list of tuples representing HTTP headers. By default it's empty.



  


        

      



  

    
Tokenizers.Model 
    



      
The struct and associated functions for the tokenizer model.

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    Types
  


    
      
        t()

      


    





  
    Functions
  


    
      
        get_model_details(model)

      


        Retrieves information about the model.



    





      


      
        
          
            
            Anchor for this section
          
Types
        

        


  
    
      
      Link to this type
    
    t()


      
       
       View Source
     


  


  

      

          @type t() :: %Tokenizers.Model{reference: reference(), resource: binary()}


      



  


        

      

      
        
          
            
            Anchor for this section
          
Functions
        

        


  
    
      
      Link to this function
    
    get_model_details(model)


      
       
       View Source
     


  


  

      

          @spec get_model_details(model :: t()) :: map()


      


Retrieves information about the model.
Information retrieved differs per model but all include model_type.

  


        

      



  

    
Tokenizers.Native 
    




      
        
          
            
            Anchor for this section
          
          Summary
        


  
    Functions
  


    
      
        decode(tokenizer, ids, skip_special_tokens)

      


    


    
      
        decode_batch(tokenizer, ids, skip_special_tokens)

      


    


    
      
        encode(tokenizer, input, add_special_tokens)

      


    


    
      
        encode_batch(tokenizer, input, add_special_tokens)

      


    


    
      
        from_file(path, additional_special_tokens)

      


    


    
      
        get_attention_mask(encoding)

      


    


    
      
        get_ids(encoding)

      


    


    
      
        get_model(tokenizer)

      


    


    
      
        get_model_details(model)

      


    


    
      
        get_offsets(encoding)

      


    


    
      
        get_special_tokens_mask(encoding)

      


    


    
      
        get_tokens(encoding)

      


    


    
      
        get_type_ids(encoding)

      


    


    
      
        get_u32_attention_mask(encoding)

      


    


    
      
        get_u32_ids(encoding)

      


    


    
      
        get_u32_special_tokens_mask(encoding)

      


    


    
      
        get_u32_type_ids(encoding)

      


    


    
      
        get_vocab(tokenizer, with_added_tokens)

      


    


    
      
        get_vocab_size(tokenizer, with_added_tokens)

      


    


    
      
        id_to_token(tokenizer, id)

      


    


    
      
        n_tokens(encoding)

      


    


    
      
        pad(encoding, target_length, pad_id, pad_type_id, pad_token, direction)

      


    


    
      
        save(tokenizer, path, pretty)

      


    


    
      
        token_to_id(tokenizer, token)

      


    


    
      
        truncate(encoding, max_len, stride, direction)

      


    





      


      
        
          
            
            Anchor for this section
          
Functions
        

        


  
    
      
      Link to this function
    
    decode(tokenizer, ids, skip_special_tokens)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    decode_batch(tokenizer, ids, skip_special_tokens)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    encode(tokenizer, input, add_special_tokens)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    encode_batch(tokenizer, input, add_special_tokens)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    from_file(path, additional_special_tokens)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    get_attention_mask(encoding)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    get_ids(encoding)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    get_model(tokenizer)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    get_model_details(model)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    get_offsets(encoding)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    get_special_tokens_mask(encoding)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    get_tokens(encoding)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    get_type_ids(encoding)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    get_u32_attention_mask(encoding)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    get_u32_ids(encoding)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    get_u32_special_tokens_mask(encoding)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    get_u32_type_ids(encoding)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    get_vocab(tokenizer, with_added_tokens)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    get_vocab_size(tokenizer, with_added_tokens)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    id_to_token(tokenizer, id)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    n_tokens(encoding)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    pad(encoding, target_length, pad_id, pad_type_id, pad_token, direction)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    save(tokenizer, path, pretty)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    token_to_id(tokenizer, token)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    truncate(encoding, max_len, stride, direction)


      
       
       View Source
     


  


  


  


        

      



  

    
Tokenizers.Tokenizer 
    



      
The struct and associated functions for a tokenizer.
A Tokenizers.Tokenizer.t() is a container that holds the constituent parts of the tokenization pipeline.
When you call Tokenizers.Tokenizer.encode/3, the input text goes through the following pipeline:
	normalization
	pre-tokenization
	model
	post-processing

This returns a Tokenizers.Encoding.t(), which can then give you the token ids for each token in the input text. These token ids are usually used as the input for natural language processing machine learning models.

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    Types
  


    
      
        encode_input()

      


        An input being a subject to tokenization.



    


    
      
        t()

      


    





  
    Functions
  


    
      
        decode(tokenizer, ids, opts \\ [])

      


        Decode the given list of ids or list of lists of ids back to strings.



    


    
      
        encode(tokenizer, input, opts \\ [])

      


        Encode the given sequence or batch of sequences to a Tokenizers.Encoding.t().



    


    
      
        from_file(path, opts \\ [])

      


        Instantiate a new tokenizer from the file at the given path.



    


    
      
        from_pretrained(identifier, opts \\ [])

      


        Instantiate a new tokenizer from an existing file on the Hugging Face Hub.



    


    
      
        get_model(tokenizer)

      


        Get the Tokenizer's Model.



    


    
      
        get_vocab(tokenizer)

      


        Get the tokenizer's vocabulary as a map of token to id.



    


    
      
        get_vocab_size(tokenizer)

      


        Get the number of tokens in the vocabulary.



    


    
      
        id_to_token(tokenizer, id)

      


        Convert a given id to its token.



    


    
      
        save(tokenizer, path)

      


        Save the tokenizer to the provided path.



    


    
      
        token_to_id(tokenizer, token)

      


        Convert a given token to its id.



    





      


      
        
          
            
            Anchor for this section
          
Types
        

        


  
    
      
      Link to this type
    
    encode_input()


      
       
       View Source
     


  


  

      

          @type encode_input() :: String.t() | {String.t(), String.t()}


      


An input being a subject to tokenization.
Can be either a single sequence, or a pair of sequences.

  



  
    
      
      Link to this type
    
    t()


      
       
       View Source
     


  


  

      

          @type t() :: %Tokenizers.Tokenizer{reference: reference(), resource: binary()}


      



  


        

      

      
        
          
            
            Anchor for this section
          
Functions
        

        


    

  
    
      
      Link to this function
    
    decode(tokenizer, ids, opts \\ [])


      
       
       View Source
     


  


  

      

          @spec decode(Tokenizer.t(), non_neg_integer() | [non_neg_integer()], Keyword.t()) ::
  {:ok, String.t() | [String.t()]} | {:error, term()}


      


Decode the given list of ids or list of lists of ids back to strings.

  
  options

  
  Options


	:skip_special_tokens - whether the special tokens should be removed from the decoded string. Defaults to true.


  



    

  
    
      
      Link to this function
    
    encode(tokenizer, input, opts \\ [])


      
       
       View Source
     


  


  

      

          @spec encode(Tokenizer.t(), encode_input() | [encode_input()], Keyword.t()) ::
  {:ok, Encoding.t() | [Encoding.t()]} | {:error, term()}


      


Encode the given sequence or batch of sequences to a Tokenizers.Encoding.t().

  
  options

  
  Options


	:add_special_tokens - whether to add special tokens to the encoding. Defaults to true.


  



    

  
    
      
      Link to this function
    
    from_file(path, opts \\ [])


      
       
       View Source
     


  


  

      

          @spec from_file(String.t(), Keyword.t()) :: {:ok, Tokenizer.t()} | {:error, term()}


      


Instantiate a new tokenizer from the file at the given path.

  
  options

  
  Options


	:additional_special_tokens - A list of special tokens to append to the tokenizer.
Defaults to [].


  



    

  
    
      
      Link to this function
    
    from_pretrained(identifier, opts \\ [])


      
       
       View Source
     


  


  

      

          @spec from_pretrained(String.t(), Keyword.t()) ::
  {:ok, Tokenizer.t()} | {:error, term()}


      


Instantiate a new tokenizer from an existing file on the Hugging Face Hub.
This is going to download a tokenizer file, save it to disk and load that file.

  
  options

  
  Options


	:http_client - A tuple with a module and options. This module should implement
the request/1 function, accepting a keyword list with the options for a request.
This is inspired by Req.request/1: https://hexdocs.pm/req/Req.html#request/1
The default HTTP client config is: {Tokenizers.HTTPClient, []}.
Since it's inspired by Req, it's possible to use that client without any adjustments.
When making request, the options :url and :method are going to be overridden.
:headers contains the "user-agent" set by default.

	:revision - The revision name that should be used for fetching the tokenizers
from Hugging Face.

	:use_cache - Tells if it should read from cache when the file already exists.
Defaults to true.

	:cache_dir - The directory where cache is saved. Files are written to cache
even if :use_cache is false. By default it uses :filename.basedir/3 to get
a cache dir based in the "tokenizers_elixir" application name.

	:additional_special_tokens - A list of special tokens to append to the tokenizer.
Defaults to [].



  



  
    
      
      Link to this function
    
    get_model(tokenizer)


      
       
       View Source
     


  


  

      

          @spec get_model(Tokenizer.t()) :: Tokenizers.Model.t()


      


Get the Tokenizer's Model.

  



  
    
      
      Link to this function
    
    get_vocab(tokenizer)


      
       
       View Source
     


  


  

      

          @spec get_vocab(Tokenizer.t()) :: %{required(binary()) => integer()}


      


Get the tokenizer's vocabulary as a map of token to id.

  



  
    
      
      Link to this function
    
    get_vocab_size(tokenizer)


      
       
       View Source
     


  


  

      

          @spec get_vocab_size(Tokenizer.t()) :: non_neg_integer()


      


Get the number of tokens in the vocabulary.

  



  
    
      
      Link to this function
    
    id_to_token(tokenizer, id)


      
       
       View Source
     


  


  

      

          @spec id_to_token(Tokenizer.t(), integer()) :: String.t()


      


Convert a given id to its token.

  



  
    
      
      Link to this function
    
    save(tokenizer, path)


      
       
       View Source
     


  


  

      

          @spec save(Tokenizer.t(), String.t()) :: {:ok, String.t()} | {:error, term()}


      


Save the tokenizer to the provided path.

  



  
    
      
      Link to this function
    
    token_to_id(tokenizer, token)


      
       
       View Source
     


  


  

      

          @spec token_to_id(Tokenizer.t(), binary()) :: non_neg_integer()


      


Convert a given token to its id.

  


        

      



  OEBPS/dist/epub-75RCTLK3.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);var a="hll";function c(){u()}function u(){o("[data-group-id]").forEach(e=>{let t=e.getAttribute("data-group-id");e.addEventListener("mouseenter",n=>{i(t,!0)}),e.addEventListener("mouseleave",n=>{i(t,!1)})})}function i(r,e){o(`[data-group-id="${r}"]`).forEach(n=>{n.classList.toggle(a,e)})}c();})();




