

 Tokenizers

 v0.4.0

 Table of contents

 	Pretrained tokenizers

 	Training custom tokenizer

 	LICENSE

 	Modules

 	Tokenizers

 	Tokenizers.Decoder

 	Tokenizers.Encoding

 	Tokenizers.Encoding.Transformation

 	Tokenizers.Tokenizer

 	Tokenizers.Normalizer

 	Tokenizers.PostProcessor

 	Tokenizers.PreTokenizer

 	Tokenizers.AddedToken

 	Tokenizers.Model

 	Tokenizers.Model.BPE

 	Tokenizers.Model.Unigram

 	Tokenizers.Model.WordLevel

 	Tokenizers.Model.WordPiece

 	Tokenizers.Trainer

 	Tokenizers.HTTPClient

Pretrained tokenizers

Mix.install([
 {:kino, "~> 0.10.0"},
 {:scidata, "~> 0.1.5"},
 {:tokenizers, "~> 0.4.0"},
 {:nx, "~> 0.5"}
])
Setup
This Livebook will demonstrate how to use Tokenizers with pretrained tokenizers available on the Hugging Face Hub.
We'll install Kino for user input and SciData for real data to tokenize.
Check Notebook dependencies and setup section at the beginning of this notebook
We'll alias modules in Tokenizers for readability. For now, the two main entry points into Tokenizers are the Tokenizer and Encoding modules.
alias Tokenizers.Tokenizer
alias Tokenizers.Encoding
Get a tokenizer
The first thing to do is get a tokenizer from the hub. I've chosen bert-base-cased here as it's commonly used in Hugging Face examples. This call will download the tokenizer from the hub and load it into memory.
{:ok, tokenizer} = Tokenizer.from_pretrained("bert-base-cased")
Save and load
You can save and load models. That means you can load in tokenizers you may have trained locally!
You can choose the path with the Kino input below.
input = Kino.Input.text("Path")
path = Kino.Input.read(input)
Tokenizer.save(tokenizer, path)
{:ok, tokenizer} = Tokenizer.from_file(path)
Check the tokenizer
Let's see what we can do with the tokenizer. First, let's have a look at the vocab. It's represented as a map of tokens to ids.
vocab = Tokenizer.get_vocab(tokenizer)
We can access an id using the vocab, but we don't need to extract the vocab. Tokenizer.token_to_id/2 does the job for us.
vocab["Jaguar"]
Tokenizer.token_to_id(tokenizer, "Jaguar")
And if we want to go back the other way...
Tokenizer.id_to_token(tokenizer, 21694)
We can also see the vocab size.
Tokenizer.get_vocab_size(tokenizer)
Encode and decode
When you tokenize some text you get an encoding. This is represented as Tokenizers.Encoding.t(). Because Tokenizers relies on Rust bindings, the encoding itself appears opaque.
{:ok, encoding} = Tokenizer.encode(tokenizer, "Hello there!")
However, we can get the ids for the encoding as an Elixir list.
ids = Encoding.get_ids(encoding)
And we can decode those back into tokens.
Tokenizer.decode(tokenizer, ids)
Passing a batch of text as a list of strings returns a batch of encodings.
{:ok, encodings} = Tokenizer.encode_batch(tokenizer, ["Hello there!", "This is a test."])
And we can see the list of ids and decode them again.
list_of_ids = Enum.map(encodings, &Encoding.get_ids/1)
Tokenizer.decode_batch(tokenizer, list_of_ids)
Get a tensor
Typically the reason we're tokenizing text is to use it as an input in a machine learning model. For that, we'll need tensors.
In order to get a tensor, we need sequences that are all of the same length. We'll get some data from Scidata and use Tokenizers.Encoding.pad/3 and Tokenizers.Encoding.truncate/3 to yield a tensor.
%{review: reviews} = Scidata.YelpPolarityReviews.download_test()
{:ok, encoding_batch} =
 reviews
 |> Enum.take(10)
 |> then(&Tokenizer.encode_batch(tokenizer, &1))

tensor =
 encoding_batch
 |> Enum.map(fn encoding ->
 encoding
 |> Encoding.pad(200)
 |> Encoding.truncate(200)
 |> Encoding.get_ids()
 end)
 |> Nx.tensor()
And we can reverse the operation to see our data. Note the [PAD] tokens.
tensor
|> Nx.to_batched(1)
|> Enum.map(&Nx.to_flat_list/1)
|> then(&Tokenizer.decode_batch(tokenizer, &1))

Training custom tokenizer

Mix.install([
 {:tokenizers, "~> 0.4.0"},
 {:req, "~> 0.3.8"}
])
Intro
Let’s have a quick look at the 🤗 Tokenizers library features. The library provides an implementation of today’s most used tokenizers that is both easy to use and blazing fast.
Downloading the data
To illustrate how fast the 🤗 Tokenizers library is, let’s train a new tokenizer on wikitext-103 (516M of text) in just a few seconds. First things first, you will need to download this dataset and unzip it with:
wget https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-103-raw-v1.zip
unzip wikitext-103-raw-v1.zip

Alternatively you can run this code:
Req.get!("https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-103-raw-v1.zip").body
|> Enum.each(fn {filename, data} ->
 filename = to_string(filename)
 path = Path.join(__DIR__, filename)
 IO.puts("Writing #{filename} to path #{path}")

 :ok = File.mkdir_p!(Path.dirname(path))
 File.write!(path, data, [:write])
end)
Training the tokenizer from scratch
alias Tokenizers.Tokenizer
alias Tokenizers.Trainer
alias Tokenizers.PostProcessor
alias Tokenizers.PreTokenizer
alias Tokenizers.Model
alias Tokenizers.Encoding
In this tour, we will build and train a Byte-Pair Encoding (BPE) tokenizer. For more information about the different type of tokenizers, check out this guide in the 🤗 Transformers documentation. Here, training the tokenizer means it will learn merge rules by:
	Start with all the characters present in the training corpus as tokens.
	Identify the most common pair of tokens and merge it into one token.
	Repeat until the vocabulary (e.g., the number of tokens) has reached the size we want.

The main API of the library is the class Tokenizer, here is how we instantiate one with a BPE model:
{:ok, model} = Model.BPE.init(%{}, [], unk_token: "[UNK]")
{:ok, tokenizer} = Tokenizer.init(model)
To train our tokenizer on the wikitext files, we will need to instantiate a trainer, in this case a BPE trainer:
{:ok, trainer} = Trainer.bpe(special_tokens: ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]"])
We can set the training arguments like vocab_size or min_frequency (here left at their default values of 30,000 and 0), but the most important part is to give the special_tokens we plan to use later on (they are not used at all during training) so that they get inserted in the vocabulary.
The order in which you write the special tokens list matters: here "[UNK]" will get the ID 0, "[CLS]" will get the ID 1 and so forth.

We could train our tokenizer right now, but it wouldn't be optimal. Without a pre-tokenizer that will split our inputs into words, we might get tokens that overlap several words: for instance we could get an "it is" token since those two words often appear next to each other. Using a pre-tokenizer will ensure no token is bigger than a word returned by the pre-tokenizer. Here we want to train a subword BPE tokenizer, and we will use the easiest pre-tokenizer possible by splitting on whitespace.
tokenizer = Tokenizer.set_pre_tokenizer(tokenizer, PreTokenizer.whitespace())
Now, we can just call the Tokenizer.train_from_files/3 function with the list of files we want to train on:
{:ok, tokenizer} =
 [
 "wikitext-103-raw/wiki.test.raw",
 "wikitext-103-raw/wiki.train.raw",
 "wikitext-103-raw/wiki.valid.raw"
]
 |> Enum.map(&Path.join(__DIR__, &1))
 |> then(&Tokenizer.train_from_files(tokenizer, &1, trainer: trainer))
This should only take a few seconds to train our tokenizer on the full wikitext dataset! To save the tokenizer in one file that contains all its configuration and vocabulary, just use the Tokenizer.save/2 function:
Tokenizer.save(tokenizer, Path.join(__DIR__, "tokenizer-wiki.json"))
and you can reload your tokenizer from that file with the Tokenizer.from_file/1 function:
{:ok, tokenizer} = Tokenizer.from_file(Path.join(__DIR__, "tokenizer-wiki.json"))
Using the tokenizer
Now that we have trained a tokenizer, we can use it on any text we want with the Tokenizer.encode/1 function:
{:ok, encoding} = Tokenizer.encode(tokenizer, "Hello, y'all! How are you 😁 ?")
This applied the full pipeline of the tokenizer on the text, returning an encoding. To learn more about this pipeline, and how to apply (or customize) parts of it, check out this page.
This encoding then has all the attributes you need for your deep learning model (or other). The tokens attribute contains the segmentation of your text in tokens:
Encoding.get_tokens(encoding)
Similarly, the ids attribute will contain the index of each of those tokens in the tokenizer’s vocabulary:
Encoding.get_ids(encoding)
An important feature of the 🤗 Tokenizers library is that it comes with full alignment tracking, meaning you can always get the part of your original sentence that corresponds to a given token. Those are stored in the offsets attribute of our Encoding object. For instance, let’s assume we would want to find back what caused the "[UNK]" token to appear, which is the token at index 9 in the list, we can just ask for the offset at the index:
{emoji_offset_start, emoji_offset_end} = Encoding.get_offsets(encoding) |> Enum.at(9)
and those are the indices that correspond to the emoji in the original sentence:
:binary.part(
 "Hello, y'all! How are you 😁 ?",
 emoji_offset_start,
 # Length
 emoji_offset_end - emoji_offset_start
)
Post-processing
We might want our tokenizer to automatically add special tokens, like [CLS] or [SEP]. To do this, we use a post-processor. Template post-processing is the most commonly used, you just have to specify a template for the processing of single sentences and pairs of sentences, along with the special tokens and their IDs.
When we built our tokenizer, we set [CLS] and [SEP] in positions 1 and 2 of our list of special tokens, so this should be their IDs. To double-check, we can use the Tokenizer.token_to_id/2 function:
Tokenizer.token_to_id(tokenizer, "[SEP]")
Here is how we can set the post-processing to give us the traditional BERT inputs:
tokenizer =
 Tokenizer.set_post_processor(
 tokenizer,
 PostProcessor.template(
 single: "[CLS] $A [SEP]",
 pair: "[CLS] $A [SEP] $B:1 [SEP]:1",
 special_tokens: [
 {"[CLS]", Tokenizer.token_to_id(tokenizer, "[CLS]")},
 {"[SEP]", Tokenizer.token_to_id(tokenizer, "[SEP]")}
]
)
)
Let's go over this snippet of code in more details. First we specify the template for single sentences: those should have the form "[CLS] $A [SEP]" where $A represents our sentence.
Then, we specify the template for sentence pairs, which should have the form "[CLS] $A [SEP] $B [SEP]" where $A represents the first sentence and $B the second one. The :1 added in the template represent the type IDs we want for each part of our input: it defaults to 0 for everything (which is why we don't have $A:0) and here we set it to 1 for the tokens of the second sentence and the last "[SEP]" token.
Lastly, we specify the special tokens we used and their IDs in our tokenizer's vocabulary.
To check out this worked properly, let's try to encode the same sentence as before:
{:ok, encoding} = Tokenizer.encode(tokenizer, "Hello, y'all! How are you 😁 ?")
Encoding.get_tokens(encoding)
To check the results on a pair of sentences, we just pass the two sentences to Tokenizer.encode/2:
{:ok, encoding} = Tokenizer.encode(tokenizer, {"Hello, y'all!", "How are you 😁 ?"})
Encoding.get_tokens(encoding)
You can then check the type IDs attributed to each token is correct with
Encoding.get_type_ids(encoding)
If you save your tokenizer with Tokenizer.save/2, the post-processor will be saved along.
Encoding multiple sentences in a batch
To get the full speed of the 🤗 Tokenizers library, it's best to process your texts by batches by using the Tokenizer.encode_batch/2 function:
{:ok, encoding} = Tokenizer.encode_batch(tokenizer, ["Hello, y'all!", "How are you 😁 ?"])
The output is then a list of encodings like the ones we saw before. You can process together as many texts as you like, as long as it fits in memory.
To process a batch of sentence pairs, pass a list of tuples to the Tokenizer.encode_batch/2 function:
{:ok, encoding} =
 Tokenizer.encode_batch(tokenizer, [
 {"Hello, y'all!", "How are you 😁 ?"},
 {
 "Hello to you too!",
 "I'm fine, thank you!"
 }
])
When encoding multiple sentences, you can automatically pad the outputs to the longest sentence present by using Tokenizer.set_padding/2, with the pad_token and its ID (which we can double-check the id for the padding token with Tokenizer.token_to_id/2 like before):
tokenizer = Tokenizer.set_padding(tokenizer, pad_id: 3, pad_token: "[PAD]")
We can set the direction of the padding (defaults to the right) or a given length if we want to pad every sample to that specific number (here we leave it unset to pad to the size of the longest text).
{:ok, encoding} = Tokenizer.encode_batch(tokenizer, ["Hello, y'all!", "How are you 😁 ?"])

encoding
|> Enum.at(1)
|> Encoding.get_tokens()
In this case, the attention mask generated by the tokenizer takes the padding into account:
encoding
|> Enum.at(1)
|> Encoding.get_attention_mask()

LICENSE

 Apache License
 Version 2.0, January 2004
 http://www.apache.org/licenses/

 TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

 1. Definitions.

 "License" shall mean the terms and conditions for use, reproduction,
 and distribution as defined by Sections 1 through 9 of this document.

 "Licensor" shall mean the copyright owner or entity authorized by
 the copyright owner that is granting the License.

 "Legal Entity" shall mean the union of the acting entity and all
 other entities that control, are controlled by, or are under common
 control with that entity. For the purposes of this definition,
 "control" means (i) the power, direct or indirect, to cause the
 direction or management of such entity, whether by contract or
 otherwise, or (ii) ownership of fifty percent (50%) or more of the
 outstanding shares, or (iii) beneficial ownership of such entity.

 "You" (or "Your") shall mean an individual or Legal Entity
 exercising permissions granted by this License.

 "Source" form shall mean the preferred form for making modifications,
 including but not limited to software source code, documentation
 source, and configuration files.

 "Object" form shall mean any form resulting from mechanical
 transformation or translation of a Source form, including but
 not limited to compiled object code, generated documentation,
 and conversions to other media types.

 "Work" shall mean the work of authorship, whether in Source or
 Object form, made available under the License, as indicated by a
 copyright notice that is included in or attached to the work
 (an example is provided in the Appendix below).

 "Derivative Works" shall mean any work, whether in Source or Object
 form, that is based on (or derived from) the Work and for which the
 editorial revisions, annotations, elaborations, or other modifications
 represent, as a whole, an original work of authorship. For the purposes
 of this License, Derivative Works shall not include works that remain
 separable from, or merely link (or bind by name) to the interfaces of,
 the Work and Derivative Works thereof.

 "Contribution" shall mean any work of authorship, including
 the original version of the Work and any modifications or additions
 to that Work or Derivative Works thereof, that is intentionally
 submitted to Licensor for inclusion in the Work by the copyright owner
 or by an individual or Legal Entity authorized to submit on behalf of
 the copyright owner. For the purposes of this definition, "submitted"
 means any form of electronic, verbal, or written communication sent
 to the Licensor or its representatives, including but not limited to
 communication on electronic mailing lists, source code control systems,
 and issue tracking systems that are managed by, or on behalf of, the
 Licensor for the purpose of discussing and improving the Work, but
 excluding communication that is conspicuously marked or otherwise
 designated in writing by the copyright owner as "Not a Contribution."

 "Contributor" shall mean Licensor and any individual or Legal Entity
 on behalf of whom a Contribution has been received by Licensor and
 subsequently incorporated within the Work.

 2. Grant of Copyright License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 copyright license to reproduce, prepare Derivative Works of,
 publicly display, publicly perform, sublicense, and distribute the
 Work and such Derivative Works in Source or Object form.

 3. Grant of Patent License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 (except as stated in this section) patent license to make, have made,
 use, offer to sell, sell, import, and otherwise transfer the Work,
 where such license applies only to those patent claims licensable
 by such Contributor that are necessarily infringed by their
 Contribution(s) alone or by combination of their Contribution(s)
 with the Work to which such Contribution(s) was submitted. If You
 institute patent litigation against any entity (including a
 cross-claim or counterclaim in a lawsuit) alleging that the Work
 or a Contribution incorporated within the Work constitutes direct
 or contributory patent infringement, then any patent licenses
 granted to You under this License for that Work shall terminate
 as of the date such litigation is filed.

 4. Redistribution. You may reproduce and distribute copies of the
 Work or Derivative Works thereof in any medium, with or without
 modifications, and in Source or Object form, provided that You
 meet the following conditions:

 (a) You must give any other recipients of the Work or
 Derivative Works a copy of this License; and

 (b) You must cause any modified files to carry prominent notices
 stating that You changed the files; and

 (c) You must retain, in the Source form of any Derivative Works
 that You distribute, all copyright, patent, trademark, and
 attribution notices from the Source form of the Work,
 excluding those notices that do not pertain to any part of
 the Derivative Works; and

 (d) If the Work includes a "NOTICE" text file as part of its
 distribution, then any Derivative Works that You distribute must
 include a readable copy of the attribution notices contained
 within such NOTICE file, excluding those notices that do not
 pertain to any part of the Derivative Works, in at least one
 of the following places: within a NOTICE text file distributed
 as part of the Derivative Works; within the Source form or
 documentation, if provided along with the Derivative Works; or,
 within a display generated by the Derivative Works, if and
 wherever such third-party notices normally appear. The contents
 of the NOTICE file are for informational purposes only and
 do not modify the License. You may add Your own attribution
 notices within Derivative Works that You distribute, alongside
 or as an addendum to the NOTICE text from the Work, provided
 that such additional attribution notices cannot be construed
 as modifying the License.

 You may add Your own copyright statement to Your modifications and
 may provide additional or different license terms and conditions
 for use, reproduction, or distribution of Your modifications, or
 for any such Derivative Works as a whole, provided Your use,
 reproduction, and distribution of the Work otherwise complies with
 the conditions stated in this License.

 5. Submission of Contributions. Unless You explicitly state otherwise,
 any Contribution intentionally submitted for inclusion in the Work
 by You to the Licensor shall be under the terms and conditions of
 this License, without any additional terms or conditions.
 Notwithstanding the above, nothing herein shall supersede or modify
 the terms of any separate license agreement you may have executed
 with Licensor regarding such Contributions.

 6. Trademarks. This License does not grant permission to use the trade
 names, trademarks, service marks, or product names of the Licensor,
 except as required for reasonable and customary use in describing the
 origin of the Work and reproducing the content of the NOTICE file.

 7. Disclaimer of Warranty. Unless required by applicable law or
 agreed to in writing, Licensor provides the Work (and each
 Contributor provides its Contributions) on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
 implied, including, without limitation, any warranties or conditions
 of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
 PARTICULAR PURPOSE. You are solely responsible for determining the
 appropriateness of using or redistributing the Work and assume any
 risks associated with Your exercise of permissions under this License.

 8. Limitation of Liability. In no event and under no legal theory,
 whether in tort (including negligence), contract, or otherwise,
 unless required by applicable law (such as deliberate and grossly
 negligent acts) or agreed to in writing, shall any Contributor be
 liable to You for damages, including any direct, indirect, special,
 incidental, or consequential damages of any character arising as a
 result of this License or out of the use or inability to use the
 Work (including but not limited to damages for loss of goodwill,
 work stoppage, computer failure or malfunction, or any and all
 other commercial damages or losses), even if such Contributor
 has been advised of the possibility of such damages.

 9. Accepting Warranty or Additional Liability. While redistributing
 the Work or Derivative Works thereof, You may choose to offer,
 and charge a fee for, acceptance of support, warranty, indemnity,
 or other liability obligations and/or rights consistent with this
 License. However, in accepting such obligations, You may act only
 on Your own behalf and on Your sole responsibility, not on behalf
 of any other Contributor, and only if You agree to indemnify,
 defend, and hold each Contributor harmless for any liability
 incurred by, or claims asserted against, such Contributor by reason
 of your accepting any such warranty or additional liability.

 END OF TERMS AND CONDITIONS

Tokenizers

Elixir bindings to Hugging Face Tokenizers.
Hugging Face describes the Tokenizers library as:
Fast State-of-the-art tokenizers, optimized for both research and
production
🤗 Tokenizers provides an implementation of today’s most used
tokenizers, with a focus on performance and versatility. These
tokenizers are also used in 🤗 Transformers.

A tokenizer is effectively a pipeline of transformations that take
a text input and return an encoded version of that text (Tokenizers.Encoding.t/0).
The main entrypoint to this library is the Tokenizers.Tokenizer
module, which defines the Tokenizers.Tokenizer.t/0 struct, a
container holding the constituent parts of the pipeline. Most
functionality is in that module.

Tokenizers.Decoder

Decoders and decoding functions.
Decoder transforms a sequence of token ids back to a readable piece
of text.
Some normalizers and pre-tokenizers use special characters or
identifiers that need special logic to be reverted.

 Summary

 Types

 t()

 Functions

 bpe(opts \\ [])

 Creates a BPE decoder.

 byte_fallback()

 Creates a ByteFallback decoder.

 byte_level()

 Creates a ByteLevel decoder.

 ctc(opts \\ [])

 Creates a CTC decoder.

 decode(decoder, tokens)

 Decodes tokens into string with provided decoder.

 fuse()

 Creates a Fuse decoder.

 metaspace(opts \\ [])

 Creates a Metaspace decoder.

 replace(pattern, content)

 Creates a Replace decoder.

 sequence(decoders)

 Combines a list of decoders into a single sequential decoder.

 strip(content, left, right)

 Creates a Strip decoder.

 word_piece(opts \\ [])

 Creates a WordPiece decoder.

Types

 Link to this type

 t()

 View Source

 @type t() :: %Tokenizers.Decoder{resource: reference()}

Functions

 Link to this function

 bpe(opts \\ [])

 View Source

 @spec bpe(keyword()) :: t()

Creates a BPE decoder.

 Options

	suffix - the suffix to add to the end of each word. Defaults
to </w>

 Link to this function

 byte_fallback()

 View Source

 @spec byte_fallback() :: t()

Creates a ByteFallback decoder.

 Link to this function

 byte_level()

 View Source

 @spec byte_level() :: t()

Creates a ByteLevel decoder.

 Link to this function

 ctc(opts \\ [])

 View Source

 @spec ctc(keyword()) :: t()

Creates a CTC decoder.

 Options

	pad_token - the token used for padding. Defaults to <pad>

	word_delimiter_token - the token used for word delimiter.
Defaults to |

	cleanup - whether to cleanup tokenization artifacts, defaults
to true

 Link to this function

 decode(decoder, tokens)

 View Source

 @spec decode(t(), [String.t()]) :: {:ok, String.t()} | {:error, any()}

Decodes tokens into string with provided decoder.

 Link to this function

 fuse()

 View Source

 @spec fuse() :: t()

Creates a Fuse decoder.

 Link to this function

 metaspace(opts \\ [])

 View Source

 @spec metaspace(keyword()) :: t()

Creates a Metaspace decoder.

 Options

	replacement - the replacement character. Defaults to ▁
(as char)

	add_prefix_space - whether to add a space to the first word.
Defaults to true

 Link to this function

 replace(pattern, content)

 View Source

 @spec replace(String.t(), String.t()) :: t()

Creates a Replace decoder.

 Link to this function

 sequence(decoders)

 View Source

 @spec sequence(decoders :: [t()]) :: t()

Combines a list of decoders into a single sequential decoder.

 Link to this function

 strip(content, left, right)

 View Source

 @spec strip(char(), non_neg_integer(), non_neg_integer()) :: t()

Creates a Strip decoder.
It expects a character and the number of times to strip the
character on left and right sides.

 Link to this function

 word_piece(opts \\ [])

 View Source

 @spec word_piece(keyword()) :: t()

Creates a WordPiece decoder.

 Options

	prefix - The prefix to use for subwords. Defaults to ##

	cleanup - Whether to cleanup tokenization artifacts. Defaults
to true

Tokenizers.Encoding

Encoding is the result of passing a text through tokenization pipeline.
This function defines a struct and a number of functions to retrieve
information about the encoded text.
For further machine learning processing you most likely want to
access the encoded token ids via get_ids/1. If you want to convert
the ids to a tensor, use get_u32_ids/1 to get a zero-copy binary.

 Summary

 Types

 padding_opts()

 Padding configuration.

 t()

 truncation_opts()

 Truncation configuration.

 Functions

 char_to_token(encoding, position, seq_id)

 Returns the token that contains the given char.

 char_to_word(encoding, position, seq_id)

 Returns the word that contains the given char.

 get_attention_mask(encoding)

 Returns the attention mask from encoding.

 get_ids(encoding)

 Returns the ids from encoding.

 get_length(encoding)

 Returns the number of tokens in encoding.

 get_n_sequences(encoding)

 Returns the number of sequences combined in encoding.

 get_offsets(encoding)

 Returns offsets from encoding.

 get_overflowing(encoding)

 Returns the overflow from encoding.

 get_sequence_ids(encoding)

 Returns sequence ids from encoding.

 get_special_tokens_mask(encoding)

 Returns the special tokens mask from encoding.

 get_tokens(encoding)

 Returns the tokens from encoding.

 get_type_ids(encoding)

 Returns token type ids from encoding.

 get_u32_attention_mask(encoding)

 Same as get_attention_mask/1, but returns binary with u32 values.

 get_u32_ids(encoding)

 Same as get_ids/1, but returns binary with u32 values.

 get_u32_special_tokens_mask(encoding)

 Same as get_special_tokens_mask/1, but returns binary with u32 values.

 get_u32_type_ids(encoding)

 Same as get_type_ids/1, but returns binary with u32 values.

 get_word_ids(encoding)

 Returns word ids from encoding.

 n_tokens(encoding)

 Returns the number of tokens in encoding.

 pad(encoding, target_length, opts \\ [])

 Pad the encoding to the given length.

 set_sequence_id(encoding, id)

 Sets the given sequence id for all tokens contained in encoding.

 token_to_chars(encoding, token)

 Returns the offsets of the token at the given index.

 token_to_sequence(encoding, token)

 Returns the index of the sequence containing the given token.

 token_to_word(encoding, token)

 Returns the word that contains the token at the given index.

 transform(encoding, transformations)

 Performs set of transformations to given encoding, creating a new one.
Transformations are applied in order they are given.

 truncate(encoding, max_length, opts \\ [])

 Truncate the encoding to the given length.

 word_to_chars(encoding, word, seq_id)

 Returns the offsets of the word at the given index in the input
sequence.

 word_to_tokens(encoding, word, seq_id)

 Returns the encoded tokens corresponding to the word at the given
index in the input sequence, with the form {start_token, end_token + 1}.

Types

 Link to this type

 padding_opts()

 View Source

 @type padding_opts() :: [
 pad_id: non_neg_integer(),
 pad_type_id: non_neg_integer(),
 pad_token: String.t(),
 direction: :left | :right
]

Padding configuration.
	:direction - the padding direction. Defaults to :right

	:pad_id - the id corresponding to the padding token. Defaults
to 0

	:pad_type_id - the type ID corresponding to the padding token.
Defaults to 0

	:pad_token - the padding token to use. Defaults to "[PAD]"

 Link to this type

 t()

 View Source

 @type t() :: %Tokenizers.Encoding{resource: reference()}

 Link to this type

 truncation_opts()

 View Source

 @type truncation_opts() :: [stride: non_neg_integer(), direction: :left | :right]

Truncation configuration.
	:stride - the length of previous content to be included in each
overflowing piece. Defaults to 0

	:direction - the truncation direction. Defaults to :right

Functions

 Link to this function

 char_to_token(encoding, position, seq_id)

 View Source

 @spec char_to_token(t(), non_neg_integer(), non_neg_integer()) ::
 non_neg_integer() | nil

Returns the token that contains the given char.

 Link to this function

 char_to_word(encoding, position, seq_id)

 View Source

 @spec char_to_word(t(), non_neg_integer(), non_neg_integer()) ::
 non_neg_integer() | nil

Returns the word that contains the given char.

 Link to this function

 get_attention_mask(encoding)

 View Source

 @spec get_attention_mask(t()) :: [integer()]

Returns the attention mask from encoding.

 Link to this function

 get_ids(encoding)

 View Source

 @spec get_ids(t()) :: [integer()]

Returns the ids from encoding.

 Link to this function

 get_length(encoding)

 View Source

 @spec get_length(t()) :: non_neg_integer()

Returns the number of tokens in encoding.

 Link to this function

 get_n_sequences(encoding)

 View Source

 @spec get_n_sequences(t()) :: non_neg_integer()

Returns the number of sequences combined in encoding.

 Link to this function

 get_offsets(encoding)

 View Source

 @spec get_offsets(t()) :: [{integer(), integer()}]

Returns offsets from encoding.
The offsets are expressed in terms of UTF-8 bytes.

 Link to this function

 get_overflowing(encoding)

 View Source

 @spec get_overflowing(t()) :: [t()]

Returns the overflow from encoding.

 Link to this function

 get_sequence_ids(encoding)

 View Source

 @spec get_sequence_ids(t()) :: [non_neg_integer() | nil]

Returns sequence ids from encoding.

 Link to this function

 get_special_tokens_mask(encoding)

 View Source

 @spec get_special_tokens_mask(t()) :: [integer()]

Returns the special tokens mask from encoding.

 Link to this function

 get_tokens(encoding)

 View Source

 @spec get_tokens(t()) :: [binary()]

Returns the tokens from encoding.

 Link to this function

 get_type_ids(encoding)

 View Source

 @spec get_type_ids(t()) :: [integer()]

Returns token type ids from encoding.

 Link to this function

 get_u32_attention_mask(encoding)

 View Source

 @spec get_u32_attention_mask(t()) :: binary()

Same as get_attention_mask/1, but returns binary with u32 values.

 Link to this function

 get_u32_ids(encoding)

 View Source

 @spec get_u32_ids(t()) :: binary()

Same as get_ids/1, but returns binary with u32 values.

 Link to this function

 get_u32_special_tokens_mask(encoding)

 View Source

 @spec get_u32_special_tokens_mask(t()) :: binary()

Same as get_special_tokens_mask/1, but returns binary with u32 values.

 Link to this function

 get_u32_type_ids(encoding)

 View Source

 @spec get_u32_type_ids(t()) :: binary()

Same as get_type_ids/1, but returns binary with u32 values.

 Link to this function

 get_word_ids(encoding)

 View Source

 @spec get_word_ids(t()) :: [non_neg_integer() | nil]

Returns word ids from encoding.

 Link to this function

 n_tokens(encoding)

 View Source

 @spec n_tokens(encoding :: t()) :: non_neg_integer()

Returns the number of tokens in encoding.

 Link to this function

 pad(encoding, target_length, opts \\ [])

 View Source

 @spec pad(t(), non_neg_integer(), opts :: padding_opts()) :: t()

Pad the encoding to the given length.
For available options see padding_opts/0.

 Link to this function

 set_sequence_id(encoding, id)

 View Source

 @spec set_sequence_id(t(), non_neg_integer()) :: t()

Sets the given sequence id for all tokens contained in encoding.

 Link to this function

 token_to_chars(encoding, token)

 View Source

 @spec token_to_chars(t(), non_neg_integer()) ::
 {non_neg_integer(), {non_neg_integer(), non_neg_integer()}} | nil

Returns the offsets of the token at the given index.

 Link to this function

 token_to_sequence(encoding, token)

 View Source

 @spec token_to_sequence(t(), non_neg_integer()) :: non_neg_integer() | nil

Returns the index of the sequence containing the given token.

 Link to this function

 token_to_word(encoding, token)

 View Source

 @spec token_to_word(t(), non_neg_integer()) ::
 {non_neg_integer(), non_neg_integer()} | nil

Returns the word that contains the token at the given index.

 Link to this function

 transform(encoding, transformations)

 View Source

Performs set of transformations to given encoding, creating a new one.
Transformations are applied in order they are given.
While all these transformations can be done one by one, this function
is more efficient as it avoids multiple allocations and Garbage Collection
for intermediate encodings.
Check the module Tokenizers.Encoding.Transformation for handy functions,
that can be used to build the transformations list.
Also, you can build this list manually, as long as it follows the format.

 Link to this function

 truncate(encoding, max_length, opts \\ [])

 View Source

 @spec truncate(t(), non_neg_integer(), opts :: truncation_opts()) :: t()

Truncate the encoding to the given length.
For available options see truncation_opts/0.

 Link to this function

 word_to_chars(encoding, word, seq_id)

 View Source

 @spec word_to_chars(t(), non_neg_integer(), non_neg_integer()) ::
 {non_neg_integer(), non_neg_integer()} | nil

Returns the offsets of the word at the given index in the input
sequence.

 Link to this function

 word_to_tokens(encoding, word, seq_id)

 View Source

 @spec word_to_tokens(t(), non_neg_integer(), non_neg_integer()) ::
 {non_neg_integer(), non_neg_integer()} | nil

Returns the encoded tokens corresponding to the word at the given
index in the input sequence, with the form {start_token, end_token + 1}.

Tokenizers.Encoding.Transformation

Module containing handy functions to build the transformations list.
This list is aplied to an encoding using Tokenizers.Encoding.transform/2.

 Summary

 Types

 t()

 Functions

 pad(target_length, opts \\ [])

 Generates the padding transformation.

 set_sequence_id(id)

 Generates the set_sequence_id transformation.

 truncate(max_length, opts \\ [])

 Generates the truncation transformation.

Types

 Link to this type

 t()

 View Source

 @type t() :: [
 pad: {non_neg_integer(), Tokenizers.Encoding.padding_opts()},
 truncate: {non_neg_integer(), Tokenizers.Encoding.truncation_opts()},
 set_sequence_id: non_neg_integer()
]

Functions

 Link to this function

 pad(target_length, opts \\ [])

 View Source

 @spec pad(non_neg_integer(), Tokenizers.Encoding.padding_opts()) ::
 {:pad, {non_neg_integer(), Tokenizers.Encoding.padding_opts()}}

Generates the padding transformation.
Check Tokenizers.Encoding.pad/3 for more information.

 Link to this function

 set_sequence_id(id)

 View Source

 @spec set_sequence_id(non_neg_integer()) :: {:set_sequence_id, non_neg_integer()}

Generates the set_sequence_id transformation.
Check Tokenizers.Encoding.set_sequence_id/2 for more information.

 Link to this function

 truncate(max_length, opts \\ [])

 View Source

 @spec truncate(non_neg_integer(), Tokenizers.Encoding.truncation_opts()) ::
 {:truncate, {non_neg_integer(), Tokenizers.Encoding.truncation_opts()}}

Generates the truncation transformation.
Check Tokenizers.Encoding.truncate/3 for more information.

Tokenizers.Tokenizer

Functions to load, apply and train tokenizers.
The Tokenizers.Tokenizer.t/0 struct represents the tokenization
pipeline. When you call Tokenizers.Tokenizer.encode/3, the input
text goes through the following steps:
	normalization
	pre-tokenization
	model
	post-processing

This pipeline returns a Tokenizers.Encoding.t/0, which can then
give you the token ids representing the input text. These token ids
are usually used as the input for natural language processing (NLP)
machine learning models.

 Summary

 Types

 encode_input()

 An input being a subject to tokenization.

 t()

 Loading

 from_buffer(data, opts \\ [])

 Instantiate a new tokenizer from the buffer.

 from_file(path, opts \\ [])

 Instantiate a new tokenizer from the file at the given path.

 from_pretrained(identifier, opts \\ [])

 Loads a new tokenizer from a repository on Hugging Face Hub.

 save(tokenizer, path, opts \\ [])

 Save the tokenizer to the provided path.

 Inference

 decode(tokenizer, ids, opts \\ [])

 Decodes the given list of ids back to a string.

 decode_batch(tokenizer, sentences, opts \\ [])

 Batched version of decode/3.

 encode(tokenizer, input, opts \\ [])

 Encode the given sequence to a Tokenizers.Encoding.t().

 encode_batch(tokenizer, input, opts \\ [])

 Batched version of encode/3.

 id_to_token(tokenizer, id)

 Convert a given id to its token.

 token_to_id(tokenizer, token)

 Convert a given token to its id.

 Configuration

 add_special_tokens(tokenizer, tokens)

 Adds special tokens to tokenizer's vocabulary.

 add_tokens(tokenizer, tokens)

 Adds tokens to tokenizer's vocabulary.

 disable_padding(tokenizer)

 Disable padding on tokenizer.

 disable_truncation(tokenizer)

 Disable truncation on tokenizer.

 get_decoder(tokenizer)

 Returns the decoder currently used by tokenizer.

 get_model(tokenizer)

 Returns the model currently used by tokenizer.

 get_normalizer(tokenizer)

 Returns the normalizer currently used by tokenizer.

 get_post_processor(tokenizer)

 Returns the post-processor currently used by tokenizer.

 get_pre_tokenizer(tokenizer)

 Returns the pre-tokenizer currently used by tokenizer.

 get_vocab(tokenizer, opts \\ [])

 Get the tokenizer's vocabulary as a map of token to id.

 get_vocab_size(tokenizer, opts \\ [])

 Get the number of tokens in the vocabulary.

 init(model)

 Instantiate a new tokenizer from an existing model.

 set_decoder(tokenizer, decoder)

 Sets tokenizer's decoder.

 set_model(tokenizer, model)

 Sets tokenizer's model.

 set_normalizer(tokenizer, normalizer)

 Sets tokenizer's normalizer.

 set_padding(tokenizer, opts)

 Configures tokenizer with padding.

 set_post_processor(tokenizer, post_processor)

 Sets tokenizer's post-processor.

 set_pre_tokenizer(tokenizer, pre_tokenizer)

 Sets tokenizer's pre-tokenizer.

 set_truncation(tokenizer, opts \\ [])

 Configures tokenizer with truncation.

 Training

 train_from_files(tokenizer, paths, opts \\ [])

 Train the tokenizer on the given files.

Types

 Link to this type

 encode_input()

 View Source

 @type encode_input() :: String.t() | {String.t(), String.t()}

An input being a subject to tokenization.
Can be either a single sequence, or a pair of sequences.

 Link to this type

 t()

 View Source

 @type t() :: %Tokenizers.Tokenizer{resource: reference()}

Loading

 Link to this function

 from_buffer(data, opts \\ [])

 View Source

 @spec from_buffer(
 data :: String.t(),
 keyword()
) :: {:ok, t()} | {:error, term()}

Instantiate a new tokenizer from the buffer.

 Link to this function

 from_file(path, opts \\ [])

 View Source

 @spec from_file(
 path :: String.t(),
 keyword()
) :: {:ok, t()} | {:error, term()}

Instantiate a new tokenizer from the file at the given path.

 Link to this function

 from_pretrained(identifier, opts \\ [])

 View Source

 @spec from_pretrained(String.t(), Keyword.t()) :: {:ok, t()} | {:error, term()}

Loads a new tokenizer from a repository on Hugging Face Hub.
This is going to download a tokenizer file, save it to disk and load
that file.

 Options

	:http_client - a tuple with a module and options. This module
should implement the request/1 function, accepting a keyword
list with the options for a request. This is inspired by
Req.request/1: https://hexdocs.pm/req/Req.html#request/1
The default HTTP client config is: {Tokenizers.HTTPClient, []}.
Since it's inspired by Req, it's possible to use that client
without any adjustments.
When making request, the options :url and :method are going
to be overridden. :headers contains the "user-agent" set by
default.

	:revision - the revision name that should be used for fetching
the tokenizers from the Hugging Face repository

	:use_cache - tells if it should read from cache when the file
already exists. Defaults to true

	:cache_dir - the directory where cache is saved. Files are
written to cache even if :use_cache is false. By default
it uses :filename.basedir/3 to get a cache dir based in the
"tokenizers_elixir" application name

 Link to this function

 save(tokenizer, path, opts \\ [])

 View Source

Save the tokenizer to the provided path.

 Options

	:pretty - whether to pretty print the JSON file. Defaults to true

Inference

 Link to this function

 decode(tokenizer, ids, opts \\ [])

 View Source

 @spec decode(t(), [non_neg_integer()], keyword()) ::
 {:ok, String.t()} | {:error, term()}

Decodes the given list of ids back to a string.

 Options

	:skip_special_tokens - whether to exclude special tokens from
the decoded string. Defaults to true

 Link to this function

 decode_batch(tokenizer, sentences, opts \\ [])

 View Source

 @spec decode_batch(t(), [[non_neg_integer()]], keyword()) ::
 {:ok, [String.t()]} | {:error, term()}

Batched version of decode/3.

 Link to this function

 encode(tokenizer, input, opts \\ [])

 View Source

 @spec encode(t(), encode_input(), keyword()) ::
 {:ok, Tokenizers.Encoding.t()} | {:error, term()}

Encode the given sequence to a Tokenizers.Encoding.t().

 Options

	:add_special_tokens - whether to add special tokens to the
sequence. Defaults to true

	:encoding_transformations - a list of Tokenizers.Encoding.Transformation.t/0
to apply to the encoding. Check Tokenizers.Encoding.transform/2
for more information. Defaults to []

 Link to this function

 encode_batch(tokenizer, input, opts \\ [])

 View Source

 @spec encode_batch(t(), [encode_input()], keyword()) ::
 {:ok, [Tokenizers.Encoding.t()]} | {:error, term()}

Batched version of encode/3.

 Link to this function

 id_to_token(tokenizer, id)

 View Source

 @spec id_to_token(t(), integer()) :: String.t() | nil

Convert a given id to its token.

 Link to this function

 token_to_id(tokenizer, token)

 View Source

 @spec token_to_id(t(), String.t()) :: non_neg_integer() | nil

Convert a given token to its id.

Configuration

 Link to this function

 add_special_tokens(tokenizer, tokens)

 View Source

 @spec add_special_tokens(tokenizer :: t(), tokens :: [String.t()]) ::
 non_neg_integer()

Adds special tokens to tokenizer's vocabulary.
These tokens are special. To add regular tokens use add_tokens/2.

 Link to this function

 add_tokens(tokenizer, tokens)

 View Source

 @spec add_tokens(tokenizer :: t(), tokens :: [String.t()]) :: non_neg_integer()

Adds tokens to tokenizer's vocabulary.
These tokens are not special. To add special tokens use
add_special_tokens/2.

 Link to this function

 disable_padding(tokenizer)

 View Source

 @spec disable_padding(tokenizer :: t()) :: t()

Disable padding on tokenizer.

 Link to this function

 disable_truncation(tokenizer)

 View Source

 @spec disable_truncation(t()) :: t()

Disable truncation on tokenizer.

 Link to this function

 get_decoder(tokenizer)

 View Source

 @spec get_decoder(t()) :: Tokenizers.Decoder.t() | nil

Returns the decoder currently used by tokenizer.

 Link to this function

 get_model(tokenizer)

 View Source

 @spec get_model(t()) :: Tokenizers.Model.t()

Returns the model currently used by tokenizer.

 Link to this function

 get_normalizer(tokenizer)

 View Source

 @spec get_normalizer(t()) :: Tokenizers.Normalizer.t() | nil

Returns the normalizer currently used by tokenizer.

 Link to this function

 get_post_processor(tokenizer)

 View Source

 @spec get_post_processor(t()) :: Tokenizers.PostProcessor.t() | nil

Returns the post-processor currently used by tokenizer.

 Link to this function

 get_pre_tokenizer(tokenizer)

 View Source

 @spec get_pre_tokenizer(t()) :: Tokenizers.PreTokenizer.t() | nil

Returns the pre-tokenizer currently used by tokenizer.

 Link to this function

 get_vocab(tokenizer, opts \\ [])

 View Source

 @spec get_vocab(
 t(),
 keyword()
) :: %{required(String.t()) => integer()}

Get the tokenizer's vocabulary as a map of token to id.

 Options

	:with_added_tokens - whether to include the tokens explicitly
added to the tokenizer. Defaults to true

 Link to this function

 get_vocab_size(tokenizer, opts \\ [])

 View Source

 @spec get_vocab_size(
 t(),
 keyword()
) :: non_neg_integer()

Get the number of tokens in the vocabulary.

 Options

	:with_added_tokens - whether to include the tokens explicitly
added to the tokenizer. Defaults to true

 Link to this function

 init(model)

 View Source

 @spec init(Tokenizers.Model.t()) :: {:ok, t()} | {:error, any()}

Instantiate a new tokenizer from an existing model.

 Link to this function

 set_decoder(tokenizer, decoder)

 View Source

 @spec set_decoder(t(), Tokenizers.Decoder.t()) :: t()

Sets tokenizer's decoder.

 Link to this function

 set_model(tokenizer, model)

 View Source

 @spec set_model(t(), Tokenizers.Model.t()) :: t()

Sets tokenizer's model.

 Link to this function

 set_normalizer(tokenizer, normalizer)

 View Source

 @spec set_normalizer(t(), Tokenizers.Normalizer.t()) :: t()

Sets tokenizer's normalizer.

 Link to this function

 set_padding(tokenizer, opts)

 View Source

 @spec set_padding(tokenizer :: t(), opts) :: t()
when opts: [
 strategy: :batch_longest | {:fixed, non_neg_integer()},
 direction: :left | :right,
 pad_to_multiple_of: non_neg_integer(),
 pad_id: non_neg_integer(),
 pad_type_id: non_neg_integer(),
 pad_token: String.t()
]

Configures tokenizer with padding.
To disable padding use disable_padding/1.

 Options

	:strategy (default: :batch_longest) - the strategy to use
when padding

	:direction (default: :right) - the direction to use when
padding

	:pad_to_multiple_of (default: 0) - the multiple to pad to

	:pad_id (default: 0) - the id of the token to use for padding

	:pad_type_id (default: 0) - the id of the token type to use
for padding

	:pad_token (default: "[PAD]") - the token to use for padding

 Link to this function

 set_post_processor(tokenizer, post_processor)

 View Source

 @spec set_post_processor(t(), Tokenizers.PostProcessor.t()) :: t()

Sets tokenizer's post-processor.

 Link to this function

 set_pre_tokenizer(tokenizer, pre_tokenizer)

 View Source

 @spec set_pre_tokenizer(t(), Tokenizers.PreTokenizer.t()) :: t()

Sets tokenizer's pre-tokenizer.

 Link to this function

 set_truncation(tokenizer, opts \\ [])

 View Source

 @spec set_truncation(t(), opts) :: t()
when opts: [
 max_length: non_neg_integer(),
 stride: non_neg_integer(),
 strategy: :longest_first | :only_first | :only_second,
 direction: :left | :right
]

Configures tokenizer with truncation.
To disable truncation use disable_truncation/1.

 Options

	:max_length (default: 512) - the maximum length to truncate
the model's input to

	:stride (default: 0) - the stride to use when overflowing
the model's input

	:strategy (default: :longest_first) - the strategy to use
when overflowing the model's input

	:direction (default: :right) - the direction to use when
overflowing the model's input

Training

 Link to this function

 train_from_files(tokenizer, paths, opts \\ [])

 View Source

 @spec train_from_files(t(), [String.t()], keyword()) :: {:ok, t()} | {:error, term()}

Train the tokenizer on the given files.

 Options

	:trainer - the trainer to use. Defaults to the default trainer
corresponding to tokenizers's model

Tokenizers.Normalizer

Normalizers and normalization functions.
A normalizer is in charge of pre-processing the input string in
order to normalize it as relevant for the given use case.
Some common examples of normalization are the Unicode normalization
algorithms (NFD, NFKD, NFC & NFKC) or lowercasing. The specificity
of tokenizers is that we keep track of the alignment while
normalizing. This is essential to allow mapping from the generated
tokens back to the input text.

 Summary

 Types

 t()

 Functions

 bert_normalizer(opts \\ [])

 Takes care of normalizing raw text before giving it to a Bert model.

 lowercase()

 Replaces all uppercase to lowercase

 nfc()

 Creates a NFC Unicode normalizer.

 nfd()

 Creates a NFD Unicode normalizer.

 nfkc()

 Creates a NFKC Unicode normalizer.

 nfkd()

 Creates a NFKD Unicode normalizer.

 nmt()

 Creates a Nmt normalizer.

 normalize(normalizer, input)

 Normalizes the given text input.

 precompiled(data)

 Precompiled normalizer.

 prepend(prepend)

 Creates a Prepend normalizer.

 replace(pattern, content)

 Replaces a custom string or regexp and changes it with given content.

 sequence(normalizers)

 Composes multiple normalizers that will run in the provided order.

 strip(opts \\ [])

 Creates a Strip normalizer.

 strip_accents()

 Creates a Strip Accent normalizer.

Types

 Link to this type

 t()

 View Source

 @type t() :: %Tokenizers.Normalizer{resource: reference()}

Functions

 Link to this function

 bert_normalizer(opts \\ [])

 View Source

 @spec bert_normalizer(keyword()) :: t()

Takes care of normalizing raw text before giving it to a Bert model.
This includes cleaning the text, handling accents, chinese chars and
lowercasing.

 Options

	:clean_text - whether to clean the text, by removing any
control characters and replacing all whitespaces by the classic
one. Defaults to true

	:handle_chinese_chars - whether to handle chinese chars by
putting spaces around them. Default true

	:strip_accents - whether to strip all accents. If this option
is not specified, then it will be determined by the value for
lowercase (as in the original Bert)

	:lowercase - whether to lowercase. Default true

 Link to this function

 lowercase()

 View Source

 @spec lowercase() :: t()

Replaces all uppercase to lowercase

 Link to this function

 nfc()

 View Source

 @spec nfc() :: t()

Creates a NFC Unicode normalizer.

 Link to this function

 nfd()

 View Source

 @spec nfd() :: t()

Creates a NFD Unicode normalizer.

 Link to this function

 nfkc()

 View Source

 @spec nfkc() :: t()

Creates a NFKC Unicode normalizer.

 Link to this function

 nfkd()

 View Source

 @spec nfkd() :: t()

Creates a NFKD Unicode normalizer.

 Link to this function

 nmt()

 View Source

 @spec nmt() :: t()

Creates a Nmt normalizer.

 Link to this function

 normalize(normalizer, input)

 View Source

 @spec normalize(t(), String.t()) :: {:ok, String.t()}

Normalizes the given text input.

 Link to this function

 precompiled(data)

 View Source

 @spec precompiled(binary()) :: {:ok, t()} | {:error, any()}

Precompiled normalizer.
Don’t use manually it is used for compatibility with SentencePiece.

 Link to this function

 prepend(prepend)

 View Source

 @spec prepend(prepend :: String.t()) :: t()

Creates a Prepend normalizer.

 Link to this function

 replace(pattern, content)

 View Source

 @spec replace(String.t(), String.t()) :: t()

Replaces a custom string or regexp and changes it with given content.

 Link to this function

 sequence(normalizers)

 View Source

 @spec sequence([t()]) :: t()

Composes multiple normalizers that will run in the provided order.

 Link to this function

 strip(opts \\ [])

 View Source

 @spec strip(keyword()) :: t()

Creates a Strip normalizer.
Removes all whitespace characters on the specified sides (left,
right or both) of the input

 Options

	:left - whether to strip left side. Defaults to true

	:right - whether to strip right side. Defaults to true

 Link to this function

 strip_accents()

 View Source

 @spec strip_accents() :: t()

Creates a Strip Accent normalizer.
Removes all accent symbols in unicode (to be used with NFD for
consistency).

Tokenizers.PostProcessor

Post-processors.
After the whole pipeline, we sometimes want to insert some special
tokens before we feed the encoded text into a model like
”[CLS] My horse is amazing [SEP]”, we can do that with a post-processor.

 Summary

 Types

 t()

 Functions

 bert(sep, cls)

 Creates a Bert post-processor with the given tokens.

 byte_level(opts \\ [])

 Creates a ByteLevel post-processor.

 roberta(sep, cls, opts \\ [])

 Creates a Roberta post-processor.

 sequence(post_processors)

 Instantiate a new Sequence post-processor

 template(opts \\ [])

 Creates a Template post-processor.

Types

 Link to this type

 t()

 View Source

 @type t() :: %Tokenizers.PostProcessor{resource: reference()}

Functions

 Link to this function

 bert(sep, cls)

 View Source

 @spec bert({String.t(), integer()}, {String.t(), integer()}) :: t()

Creates a Bert post-processor with the given tokens.

 Link to this function

 byte_level(opts \\ [])

 View Source

 @spec byte_level(keyword()) :: t()

Creates a ByteLevel post-processor.

 Options

	:trim_offsets - whether to trim the whitespaces in the produced
offsets. Defaults to true

 Link to this function

 roberta(sep, cls, opts \\ [])

 View Source

 @spec roberta({String.t(), integer()}, {String.t(), integer()}, keyword()) :: t()

Creates a Roberta post-processor.

 Options

	:trim_offest - whether to trim the whitespaces in the produced
offsets. Defaults to true

	:add_prefix_space - whether add_prefix_space was ON during the
pre-tokenization. Defaults to true

 Link to this function

 sequence(post_processors)

 View Source

 @spec sequence(post_processors :: [t()]) :: t()

Instantiate a new Sequence post-processor

 Link to this function

 template(opts \\ [])

 View Source

 @spec template(keyword()) :: t()

Creates a Template post-processor.
Let’s you easily template the post processing, adding special tokens
and specifying the type id for each sequence/special token. The
template is given two strings representing the single sequence and
the pair of sequences, as well as a set of special tokens to use.
For example, when specifying a template with these values:
	single: "[CLS] $A [SEP]"
	pair: "[CLS] $A [SEP] $B [SEP]"
	special tokens:	"[CLS]"
	"[SEP]"

Input: ("I like this", "but not this")
Output: "[CLS] I like this [SEP] but not this [SEP]"

 Options

	:single - a string describing the template for a single
sequence

	:pair - a string describing the template for a pair of
sequences

	:special_tokens - a list of special tokens to use in the
template. Must be a list of {token, token_id} tuples

Tokenizers.PreTokenizer

Pre-tokenizers.
A pre-tokenizer takes care of splitting the input according to a set
of rules. This pre-processing lets you ensure that the underlying
model does not build tokens across multiple “splits”. For example
if you don’t want to have whitespaces inside a token, then you can
have a pre-tokenizer that splits on these whitespaces.
You can easily combine multiple pre-tokenizers together using
sequence/1.
A pre-tokenizer is also allowed to modify the string, just like a
normalizer does. This is necessary to allow some complicated
algorithms that require to split before normalizing (e.g. ByteLevel).

 Summary

 Types

 split_delimiter_behaviour()

 Specifies how delimiter should behave for several pretokenizers.

 t()

 Functions

 bert_pre_tokenizer()

 Creates a BertPreTokenizer pre-tokenizer.

 byte_level(opts \\ [])

 Creates a ByteLevel pre-tokenizer.

 byte_level_alphabet()

 Gets ByteLevel pre-tokenizer's alphabet.

 char_delimiter_split(delimiter)

 Creates a CharDelimiterSplit pre-tokenizer.

 digits(opts \\ [])

 Creates a Digits pre-tokenizer.

 metaspace(opts \\ [])

 Creates Metaspace pre-tokenizer.

 pre_tokenize(pre_tokenizer, input)

 Converts a string into a sequence of pre-tokens.

 punctuation(behaviour)

 Creates a Punctuation pre-tokenizer.

 sequence(pre_tokenizers)

 Creates a Sequence pre-tokenizer.

 split(pattern, behavior, opts \\ [])

 Creates a Split pre-tokenizer.

 whitespace()

 Creates a Whitespace pre-tokenizer.

 whitespace_split()

 Creates a WhitespaceSplit pre-tokenizer.

Types

 Link to this type

 split_delimiter_behaviour()

 View Source

 @type split_delimiter_behaviour() ::
 :removed | :isolated | :merged_with_previous | :merged_with_next | :contiguous

Specifies how delimiter should behave for several pretokenizers.

 Link to this type

 t()

 View Source

 @type t() :: %Tokenizers.PreTokenizer{resource: reference()}

Functions

 Link to this function

 bert_pre_tokenizer()

 View Source

 @spec bert_pre_tokenizer() :: t()

Creates a BertPreTokenizer pre-tokenizer.
Splits for use in Bert models.

 Link to this function

 byte_level(opts \\ [])

 View Source

 @spec byte_level(keyword()) :: t()

Creates a ByteLevel pre-tokenizer.
Splits on whitespaces while remapping all the bytes to a set of
visible characters. This technique has been introduced by OpenAI
with GPT-2 and has some more or less nice properties:
	Since it maps on bytes, a tokenizer using this only requires
256 characters as initial alphabet (the number of values a byte
can have), as opposed to the 130,000+ Unicode characters.

	A consequence of the previous point is that it is absolutely
unnecessary to have an unknown token using this since we can
represent anything with 256 tokens (Youhou!! 🎉🎉)

	For non ascii characters, it gets completely unreadable, but it
works nonetheless!

 Options

	:add_prefix_space - whether to add a space to the first word
if there isn’t already one. This lets us treat hello exactly
like say hello. Defaults to true

	:use_regex - set this to false to prevent this pre-tokenizer
from using the GPT2 specific regexp for splitting on whitespace.
Defaults to true

 Link to this function

 byte_level_alphabet()

 View Source

 @spec byte_level_alphabet() :: charlist()

Gets ByteLevel pre-tokenizer's alphabet.

 Link to this function

 char_delimiter_split(delimiter)

 View Source

 @spec char_delimiter_split(char()) :: t()

Creates a CharDelimiterSplit pre-tokenizer.
This pre-tokenizer simply splits on the provided delimiter. Works
almost like simple split function, except that it accounts for
multiple consecutive spaces.

 Link to this function

 digits(opts \\ [])

 View Source

 @spec digits(keyword()) :: t()

Creates a Digits pre-tokenizer.
Splits the numbers from any other characters.

 Options

	:individual_digits - whether to split individual digits or not.
Defaults to false

 Link to this function

 metaspace(opts \\ [])

 View Source

 @spec metaspace(keyword()) :: t()

Creates Metaspace pre-tokenizer.
Splits on whitespaces and replaces them with a special char “▁”
(U+2581).

 Options

	:replacement - the replacement character to use. Defaults to "▁"

	:add_prefix_space - whether to add a space to the first word
if there isn’t already one. This lets us treat hello exactly
like say hello. Defaults to true

 Link to this function

 pre_tokenize(pre_tokenizer, input)

 View Source

 @spec pre_tokenize(t(), String.t()) :: {:ok, [{String.t(), {integer(), integer()}}]}

Converts a string into a sequence of pre-tokens.

 Link to this function

 punctuation(behaviour)

 View Source

 @spec punctuation(split_delimiter_behaviour()) :: t()

Creates a Punctuation pre-tokenizer.
Will isolate all punctuation characters.

 Link to this function

 sequence(pre_tokenizers)

 View Source

 @spec sequence([t()]) :: t()

Creates a Sequence pre-tokenizer.
Lets you compose multiple pre-tokenizers that will be run in the
given order.

 Link to this function

 split(pattern, behavior, opts \\ [])

 View Source

 @spec split(String.t(), split_delimiter_behaviour(), keyword()) :: t()

Creates a Split pre-tokenizer.
Versatile pre-tokenizer that splits on provided pattern and according
to provided behavior. The pattern can be inverted if necessary.

 Options

	:invert - whether to invert the split or not. Defaults to false

 Link to this function

 whitespace()

 View Source

 @spec whitespace() :: t()

Creates a Whitespace pre-tokenizer.
Splits on word boundaries. Uses the following regular expression:
w+|[^w]+.

 Link to this function

 whitespace_split()

 View Source

 @spec whitespace_split() :: t()

Creates a WhitespaceSplit pre-tokenizer.
Splits on any whitespace character.

Tokenizers.AddedToken

This struct represents a token added to tokenizer vocabulary.

 Summary

 Types

 t()

 Functions

 info(model)

 Retrieves information about added token.

 new(token, opts \\ [])

 Builds a new added token.

Types

 Link to this type

 t()

 View Source

 @type t() :: %Tokenizers.AddedToken{resource: reference()}

Functions

 Link to this function

 info(model)

 View Source

 @spec info(added_token :: t()) :: map()

Retrieves information about added token.

 Link to this function

 new(token, opts \\ [])

 View Source

 @spec new(
 token :: String.t(),
 keyword()
) :: t()

Builds a new added token.

 Options

	:special - defines whether this token is a special token.
Defaults to false

	:single_word - defines whether this token should only match
single words. If true, this token will never match inside of a
word. For example the token ing would match on tokenizing if
this option is false. The notion of ”inside of a word” is
defined by the word boundaries pattern in regular expressions
(i.e. the token should start and end with word boundaries).
Defaults to false

	:lstrip - defines whether this token should strip all potential
whitespace on its left side. If true, this token will greedily
match any whitespace on its left. For example if we try to match
the token [MASK] with lstrip=true, in the text "I saw a [MASK]",
we would match on " [MASK]". (Note the space on the left).
Defaults to false

	:rstrip - defines whether this token should strip all potential
whitespaces on its right side. If true, this token will greedily
match any whitespace on its right. It works just like :lstrip,
but on the right. Defaults to false

	:normalized - defines whether this token should match against
the normalized version of the input text. For example, with the
added token "yesterday", and a normalizer in charge of
lowercasing the text, the token could be extract from the input
"I saw a lion Yesterday". If true, the token will be extracted
from the normalized input "i saw a lion yesterday". If false,
the token will be extracted from the original input
"I saw a lion Yesterday". Defaults to false for special tokens
and true otherwise

Tokenizers.Model

The struct and associated functions for the tokenizer model.

 Summary

 Types

 t()

 Represents different kind of models that can be used across the library.

 Functions

 info(model)

 Retrieves information about the model.

 save(model, directory, opts \\ [])

 Saves the given model in the given directory.

Types

 Link to this type

 t()

 View Source

 @type t() :: %Tokenizers.Model{resource: reference()}

Represents different kind of models that can be used across the library.

Functions

 Link to this function

 info(model)

 View Source

 @spec info(t()) :: map()

Retrieves information about the model.
Information retrieved differs per model but all include model_type.

 Link to this function

 save(model, directory, opts \\ [])

 View Source

 @spec save(t(), String.t(), keyword()) ::
 {:ok, file_paths :: [String.t()]} | {:error, any()}

Saves the given model in the given directory.
This function generates a couple files with predefined names, you
can specify :prefix to scope them. Existing files with the same
names in this directory will be overridden.

 Options

	:prefix - the prefix to use for all the files that will get
created. Defaults to ""

Tokenizers.Model.BPE

 Summary

 Types

 options()

 Options for model initialisation.

 Functions

 empty()

 Instantiate an empty BPE model.

 from_file(vocab_path, merges_path, options \\ [])

 Instantiate a BPE model from the given vocab and merges files.

 init(vocab, merges, options \\ [])

 Instantiate a BPE model from the given vocab and merges.

Types

 Link to this type

 options()

 View Source

 @type options() :: [
 cache_capacity: number(),
 dropout: float(),
 unk_token: String.t(),
 continuing_subword_prefix: String.t(),
 end_of_word_suffix: String.t(),
 fuse_unk: boolean(),
 byte_fallback: boolean()
]

Options for model initialisation.
	:cache_capacity - the number of words that the BPE cache can
contain. The cache allows to speed-up the process by keeping
the result of the merge operations for a number of words.
Defaults to 10_000

	:dropout - The BPE dropout to use. Must be an float between
0 and 1

	:unk_token - The unknown token to be used by the model

	:continuing_subword_prefix - The prefix to attach to subword
units that don't represent a beginning of word

	:end_of_word_suffix - The suffix to attach to subword units
that represent an end of word

Functions

 Link to this function

 empty()

 View Source

 @spec empty() :: {:ok, Tokenizers.Model.t()}

Instantiate an empty BPE model.

 Link to this function

 from_file(vocab_path, merges_path, options \\ [])

 View Source

 @spec from_file(String.t(), String.t(), options()) :: {:ok, Tokenizers.Model.t()}

Instantiate a BPE model from the given vocab and merges files.

 Link to this function

 init(vocab, merges, options \\ [])

 View Source

 @spec init(
 %{required(String.t()) => integer()},
 [{String.t(), String.t()}],
 options()
) :: {:ok, Tokenizers.Model.t()}

Instantiate a BPE model from the given vocab and merges.

Tokenizers.Model.Unigram

 Summary

 Types

 options()

 Options for model initialisation.

 Functions

 empty()

 Instantiate an empty Unigram model

 init(vocab, options \\ [])

 Instantiate a Unigram model from the given vocab.

Types

 Link to this type

 options()

 View Source

 @type options() :: [{:unk_id, float()}]

Options for model initialisation.
	:unk_id- the unknown token id to be used by the model

Functions

 Link to this function

 empty()

 View Source

 @spec empty() :: {:ok, Tokenizers.Model.t()}

Instantiate an empty Unigram model

 Link to this function

 init(vocab, options \\ [])

 View Source

 @spec init([{String.t(), number()}], options()) :: {:ok, Tokenizers.Model.t()}

Instantiate a Unigram model from the given vocab.

Tokenizers.Model.WordLevel

 Summary

 Types

 options()

 Options for model initialisation.

 Functions

 empty()

 Instantiate an empty WordLevel model.

 from_file(vocab_path, options \\ [])

 Instantiate a WordLevel model from the given vocab file.

 init(vocab, options \\ [])

 Instantiate a WordLevel model from the given vocab.

Types

 Link to this type

 options()

 View Source

 @type options() :: [{:unk_token, String.t()}]

Options for model initialisation.
	:unk_token - the unknown token to be used by the model. Defaults
to "[UNK]"

Functions

 Link to this function

 empty()

 View Source

 @spec empty() :: {:ok, Tokenizers.Model.t()}

Instantiate an empty WordLevel model.

 Link to this function

 from_file(vocab_path, options \\ [])

 View Source

 @spec from_file(String.t(), options()) :: {:ok, Tokenizers.Model.t()}

Instantiate a WordLevel model from the given vocab file.

 Link to this function

 init(vocab, options \\ [])

 View Source

 @spec init(
 vocab :: %{required(String.t()) => integer()},
 options :: options()
) :: {:ok, Tokenizers.Model.t()}

Instantiate a WordLevel model from the given vocab.

Tokenizers.Model.WordPiece

 Summary

 Types

 options()

 Options for model initialisation.

 Functions

 empty()

 Instantiate an empty WordPiece model.

 from_file(vocab_path, options \\ [])

 Instantiate a WordPiece model from the given vocab file.

 init(vocab, options \\ [])

 Instantiate a WordPiece model from the given vocab.

Types

 Link to this type

 options()

 View Source

 @type options() :: [
 unk_token: String.t(),
 max_input_chars_per_word: number(),
 continuing_subword_prefix: String.t()
]

Options for model initialisation.
	:unk_token - the unknown token to be used by the model.
Defaults to "[UNK]"

	:max_input_chars_per_word - the maximum number of characters
to authorize in a single word. Defaults to 100

	:continuing_subword_prefix - the prefix to attach to subword
units that don't represent a beginning of word Defaults to "##"

Functions

 Link to this function

 empty()

 View Source

 @spec empty() :: {:ok, Tokenizers.Model.t()}

Instantiate an empty WordPiece model.

 Link to this function

 from_file(vocab_path, options \\ [])

 View Source

 @spec from_file(String.t(), options()) :: {:ok, Tokenizers.Model.t()}

Instantiate a WordPiece model from the given vocab file.

 Link to this function

 init(vocab, options \\ [])

 View Source

 @spec init(%{required(String.t()) => integer()}, options()) ::
 {:ok, Tokenizers.Model.t()}

Instantiate a WordPiece model from the given vocab.

Tokenizers.Trainer

A Trainer has the responsibility to train a model.
We feed it with lines/sentences and then it can train the given Model.

 Summary

 Types

 bpe_options()

 Options for BPE trainer initialisation. All options can be ommited.

 t()

 unigram_options()

 Options for Unigram trainer initialisation. All options can be ommited.

 wordlevel_options()

 Options for WordLevel trainer initialisation. All options can be ommited.

 wordpiece_options()

 Options for WordPiece trainer initialisation. All options can be ommited.

 Functions

 bpe(options \\ [])

 Creates a new BPE Trainer.

 info(trainer)

 Get trainer info

 unigram(options \\ [])

 Creates a new Unigram Trainer.

 wordlevel(options \\ [])

 Creates a new WordLevel Trainer.

 wordpiece(options \\ [])

 Creates a new WordPiece Trainer.

Types

 Link to this type

 bpe_options()

 View Source

 @type bpe_options() :: [
 vocab_size: non_neg_integer(),
 min_frequency: non_neg_integer(),
 special_tokens: [String.t()],
 limit_alphabet: non_neg_integer(),
 initial_alphabet: [char()],
 show_progress: boolean(),
 continuing_subword_prefix: String.t(),
 end_of_word_suffix: String.t()
]

Options for BPE trainer initialisation. All options can be ommited.

 Link to this type

 t()

 View Source

 @type t() :: %Tokenizers.Trainer{resource: reference()}

 Link to this type

 unigram_options()

 View Source

 @type unigram_options() :: [
 vocab_size: non_neg_integer(),
 n_sub_iterations: non_neg_integer(),
 shrinking_factor: float(),
 special_tokens: [String.t()],
 initial_alphabet: [char()],
 uni_token: String.t(),
 max_piece_length: non_neg_integer(),
 seed_size: non_neg_integer(),
 show_progress: boolean()
]

Options for Unigram trainer initialisation. All options can be ommited.

 Link to this type

 wordlevel_options()

 View Source

 @type wordlevel_options() :: [
 vocab_size: non_neg_integer(),
 min_frequency: non_neg_integer(),
 special_tokens: [String.t()],
 show_progress: boolean()
]

Options for WordLevel trainer initialisation. All options can be ommited.

 Link to this type

 wordpiece_options()

 View Source

 @type wordpiece_options() :: [
 vocab_size: non_neg_integer(),
 min_frequency: non_neg_integer(),
 special_tokens: [String.t()],
 limit_alphabet: non_neg_integer(),
 initial_alphabet: [char()],
 show_progress: boolean(),
 continuing_subword_prefix: String.t(),
 end_of_word_suffix: String.t()
]

Options for WordPiece trainer initialisation. All options can be ommited.

Functions

 Link to this function

 bpe(options \\ [])

 View Source

 @spec bpe(bpe_options()) :: {:ok, t()} | {:error, any()}

Creates a new BPE Trainer.

 Link to this function

 info(trainer)

 View Source

 @spec info(t()) :: map()

Get trainer info

 Link to this function

 unigram(options \\ [])

 View Source

 @spec unigram(unigram_options()) :: {:ok, t()} | {:error, any()}

Creates a new Unigram Trainer.

 Link to this function

 wordlevel(options \\ [])

 View Source

 @spec wordlevel(wordlevel_options()) :: {:ok, t()} | {:error, any()}

Creates a new WordLevel Trainer.

 Link to this function

 wordpiece(options \\ [])

 View Source

 @spec wordpiece(wordpiece_options()) :: {:ok, t()} | {:error, any()}

Creates a new WordPiece Trainer.

Tokenizers.HTTPClient

A simple implementation of an HTTP client.
This is using the built-in :httpc module, configured to use SSL.
The request/1 function is similar to Req.request/1.

 Summary

 Functions

 request(opts)

 Make an HTTP(s) requests.

Functions

 Link to this function

 request(opts)

 View Source

Make an HTTP(s) requests.

 Options

	:method - An HTTP method. By default it uses the :get method.

	:base_url - The base URL to make requests. By default is "https://huggingface.io".

	:url - A path to a resource. By default is "".

	:headers - A list of tuples representing HTTP headers. By default it's empty.

 OEBPS/dist/epub-75RCTLK3.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);var a="hll";function c(){u()}function u(){o("[data-group-id]").forEach(e=>{let t=e.getAttribute("data-group-id");e.addEventListener("mouseenter",n=>{i(t,!0)}),e.addEventListener("mouseleave",n=>{i(t,!1)})})}function i(r,e){o(`[data-group-id="${r}"]`).forEach(n=>{n.classList.toggle(a,e)})}c();})();

