

 toolshed

 v0.3.1

 Table of contents

 	Toolshed

 	Changelog

 	Modules

 	Toolshed

Toolshed

[image: CircleCI]
[image: Hex version]
Toolshed improves the Elixir shell experience by adding a number of IEx helpers.
This helps when a normal Unix shell prompt isn't easily accessible like on
Nerves. It doesn't require Nerves, though, and all
Nerves-specific commands aren't even compiled if you're not using it.
Here's a sample list of helpers:
	cmd - run a command and print out the output
	ping and tcping - check if a remote host is using ICMP or TCP
	ifconfig - list network interfaces
	weather - get the current weather from wttr.in
	speed_test - run a simple speed test to guage network throughput
	top - get a list of the top processes and their OTP applications based on
CPU and memory
	tree - list directory contents as a tree
	lsusb - list USB devices

To get a complete list:
iex> h Toolshed
To try it out, add this project to your deps:
def deps do
 [
 {:toolshed, "~> 0.2"}
]
end
Rebuild and run in whatever way you prefer. At the IEx prompt, run:
iex> use Toolshed
Toolshed imported. Run h(Toolshed) for more info.
:ok

iex> cmd("echo hello world")
hello world
0

iex> ping "nerves-project.org"
Press enter to stop
Response from nerves-project.org (185.199.108.153): time=4.155ms
Response from nerves-project.org (185.199.108.153): time=10.385ms
Response from nerves-project.org (185.199.108.153): time=12.458ms

iex> top
OTP Application Name or PID Reds/Δ Mbox/Δ Total/Δ Heap/Δ Stack/Δ
nerves_runtime Nerves.Runtime.Kernel.UE 72M/10M 157/-32 384K/-4642 192K/73K 86/52
system_registry SystemRegistry.Global 41M/6134K 0/0 694K/192K 192K/0 35/-11
system_registry SystemRegistry.Processor 61M/6075K 0/0 73K/-1215 73K/0 10/0
system_registry SystemRegistry.Registrat 1623K/293K 1/1 211K/109K 73K/0 10/0
system_registry SystemRegistry.Processor 790K/197K 59/3 1011K/4461 502K/0 38/0
undefined #PID<0.1793.0> 221K/68K 0/0 21K/0 6772/0 504/0
system_registry SystemRegistry.Processor 382K/58K 0/0 16K/-1227 4185/-1354 22/0
ssh #PID<0.1786.0> 133K/52K 0/0 4184/1599 2586/1599 10/0
nerves_init_gadg #PID<0.1432.0> 213K/39K 0/0 192K/101K 73K/0 10/0
When you get tired of typing use Toolshed, add it to your
.iex.exs.
FAQ
I have some IEx helpers. Would you consider adding them?
Based on using and maintaining Toolshed the past several years, here's what ends
up working best:
	Wrappers for OTP functions that make them easier to remember or format their
output nicer for interactive use
	Simple implementations of shell commands that have strong muscle memory for
Linux users
	Shortcuts to Linux system features (e.g., things that read /sys or /proc)

This project is not a Busybox replacement project or an effort to replicate all
of the functionality in shell commands. Erlang/OTP contains an awful lot of
built-in functionality. It's not identical to that provided by shell commands,
but if there's an easy way to get at it in an IEx helper, that's what we'd like
to do.
A lot of these look like Unix commands? Why not run a proper shell?
Yeah, I miss many Unix commands when I'm at the IEx prompt. Switching to a shell
is easy on my laptop, but on Nerves devices, it's a pain. Getting a shell prompt
on Nerves is possible, but it's limited due to Nerves not containing a full set
of commands and it having to be run through Erlang's job control.
Why is everything compiled to toolshed.beam?
When using Toolshed, the helpers are all imported into the IEx shell context for
ease of use. It looks like they're all defined in the Toolshed module. In
fact, if you don't import Toolshed (or use Toolshed), you can still access
the helpers by calling Toolshed.helper(). The problem defining all of the
helpers in one module is that it makes toolshed.ex very hard to maintain.
We've experimented with many ways of maintaining the helpers, like using
defdelegate and importing all of the helpers into toolshed.ex. There were
several problems with these ways including function docs not being in the
expected place, code being duplicated, and manual steps. The most annoying issue
was that keeping helpers in lots of .beam files had an impact on load time on
Nerves devices. The load-time issue is being addressed in OTP 26 more
generally.
The end result is that we finally settled on merging all of the helpers at
compile-time. The downside to this is that line numbers are wrong in stack
traces. Given the history of this issue, this seemed like a good compromise.
You can do so much more with some of these helpers
Definitely. There's so much that I'd like to explore, but time gets in the way.
I'm not sold on many decisions that I made, but something was better than
nothing. Please help me improve this or make your own IEx helpers library. I'm
quite happy to use it too or pull it in as a dependency.
I want to use one of the functions in my program. Is the API stable?
This isn't a normal hex.pm library. Use it for the helpers. If you want
some code, copy and paste it or incorporate it into a library. I'd like the
flexibility to change the API to improve interactive use.
It would be better if you changed the colors
This also isn't a question, and you've now made me regret naming the project
toolshed. Please file your grievances
here.

Changelog

v0.3.1
	Updates	speed_test - Added new helper for running a quick network speed test by
downloading a large file from a CDN. It automatically stops after a timeout
or max number of bytes so that it can be used on metered connections.

v0.3.0
This is a major update in how the Toolshed source code gets compiled. If you are
calling any Toolshed functions in your programs, you may need to update the
calls. All enabled functions get compiled to be in the Toolshed module now.
	Backwards-incompatible updates
	Removed file path completion. This was improved and added to Elixir 1.13.0
in December, 2021.
	Moved all helper functions to Toolshed. They are no longer accessible in
other modules. This should go unnoticed if you're using Toolshed at the IEx
prompt.

	Improvements
	ping - Changed ping command to use Erlang's relatively new support for
sending ICMP echo requests. Previously ping made TCP connection requests.
The old way is now available via the tcping helper. Thanks to @amclain for
the ICMP update.
	ping - ping and tcping repeat 3 times by default instead of repeating
forever. The new :count option can be used to repeat more.
	inspect_bits - Added inspect_bits helper to easily print a number in
multiple bases. It also handles negative numbers and gives hex and binary
representations that are more familiar to those coming from languages with
fixed size integers.
	(Nerves-only) poweroff -Added helper to gracefully power off Nerves
devices that support it.
	httpget - Increased the timeout for downloads and added :timeout option
to change it at runtime.
	Nerves helpers are completely compiled out when not using Nerves. This can
be extended to remove or selectively enable helpers in the future.

Thanks to @mnishiguchi for making Toolshed significantly easier to maintain by
improving the code organization and adding tests.
v0.2.26
	Improvements	Update weather to give a helpful error if the :ssl application isn't
included in the release.

v0.2.25
	Improvements	Remove path completion when using Elixir 1.13. Path completion was improved
and merged into Elixir, so you no longer need Toolshed to use it. The
function call to use it is now a no-op on Elixir 1.13. On previous Elixir
versions, it will add path completion so there's no need to change any code.

v0.2.24
	Improvements	Add :port option to ping. Ping also prints out the port number so it's
more obvious that 1. TCP "pings" are being used and 2. which port was used.

v0.2.23
	New features
	Added the history command. See what you typed.

	Bug fixes
	fw_validate calls Nerves.Runtime.validate_firmware rather than
validating firmware itself.

v0.2.22
	Bug fixes	top: fix flashing that was happening when top was automatically updating

v0.2.21
	New features	The ping command now supports IPv6 addresses. Thanks to Alex McLain for this
improvement.
	The top command automatically refreshes now.

v0.2.20
	New features	Add log_attach and log_detach convenience functions for directing log
messages to the current IEx session. These provide a simple way for seeing
log messages when you either aren't on the same console as the console logger or
you don't want to enable the console logger since it messes up the prompt.

v0.2.19
	Bug fixes
	cmd/1 won't crash if the command being run returns non-UTF8 data
	cat/1 no longer adds an extra newline at the end of its input

	Removed commands
	Removed the rarely used pastebin command

v0.2.18
	New features	Add httpget command for performing HTTP GET requests and printing the
response to stdout or saving it to the filesystem. Thanks to Jon Thacker for
this feature.

v0.2.17
	Bug fixes	Don't trigger autocompletion when in a string interpolation.

v0.2.16
	Bug fixes	Fix path completion issues when wildcard characters are in the string to be
completed.

v0.2.15
	New features	Add path autocompletion. Try it out by running use Toolshed at the IEx
prompt. Then type File.read("/e<tab>") for files in /etc or ls "li<tab>" if you have a lib directory under your current directory.

v0.2.14
	Bug fixes	Fix warnings when building with Elixir 1.11.

v0.2.13
	Bug fixes	Improve error message when :inets isn't available so that it says how to
add it to your mix.exs.

v0.2.12
	Bug fixes
	If help has been stripped, then don't tell the user that it's available.

	New features
	Add multicast_addresses command for listing multicast addresses being
listened to on each network interface. This is helpful if you're debugging
lost multicast subscriptions or just seeing what applications are listening
on.

v0.2.11
	New features	Add date command for quickly checking the current date and time in UTC

v0.2.10
	New features	Validate firmware using nerves_runtime v0.10.0's Nerves.Runtime.KV.put/2
function if available

v0.2.9
	New features	Add simple HTTP request shortcuts: weather, qr_encode, and pastebin

v0.2.8
	New features	Add ping to ping a remote IP address repeatedly and add some
support for setting the interface to use.

v0.2.7
	New features	Add lsmod for returning loaded kernel modules on Nerves

v0.2.6
	New features	Add uname for getting running firmware information on Nerves

v0.2.5
	New features	Add lsof

v0.2.4
	Bug fixes	Fix warning due to missing Nerves.Runtime

v0.2.3
	Bug fixes	Fix cmd/1 to capture and print stderr as well. This fixes an issue where
stderr prints would go somewhere else and you couldn't see them. This
affected IEx sessions running over ssh.

v0.2.2
	Bug fixes
	Fix ifconfig crash on sit interfaces
	Improve printout of unnamed pids with top

	New features
	Add uptime helper

v0.2.1
	New features	Add exit for exiting an IEx session

v0.2.0
	New features
	top displays deltas by default

	Bug fixes
	Fixed inclusion of Nerves utilities on Nerves

v0.1.0
Initial release

Toolshed

Making the IEx console friendlier one command at a time
To use the helpers, run:
iex> use Toolshed
Add this to your .iex.exs to load automatically.
The following is a list of helpers:
	cat/1 - print out a file
	cmd/1 - run a system command and print the output
	date/0 - print out the current date and time
	dmesg/0 - print kernel messages (Nerves-only)
	exit/0 - exit out of an IEx session
	fw_validate/0 - marks the current image as valid (check Nerves system if supported)
	grep/2 - print out lines that match a regular expression
	hex/1 - print a number as hex
	history/0 - print out the IEx shell history
	httpget/2 - print or download the results of a HTTP GET request
	hostname/0 - print our hostname
	ifconfig/0 - print info on network interfaces
	inspect_bits/1 - pretty print numbers in hex, octal, and binary
	load_term!/1 - load a term that was saved by save_term!/2
	log_attach/1 - send log messages to the current group leader
	log_detach/0 - stop sending log messages to the current group leader
	lsof/0 - print out open file handles by OS process
	lsmod/0 - print out what kernel modules have been loaded (Nerves-only)
	lsusb/0 - print info on USB devices
	multicast_addresses/0 - print out all multicast addresses
	nslookup/1 - query DNS to find an IP address
	ping/2 - ping a remote host
	qr_encode/1 - create a QR code (requires networking)
	reboot/0 - reboots gracefully (Nerves-only)
	reboot!/0 - reboots immediately (Nerves-only)
	save_value/3 - save a value to a file as Elixir terms (uses inspect)
	save_term!/2 - save a term as a binary
	top/2 - list out the top processes
	tcping/2 - check if a host can be reached (like ping, but uses TCP)
	tree/1 - pretty print a directory tree
	uptime/0 - print out the current Erlang VM uptime
	uname/0 - print information about the running system (Nerves-only)
	weather/0 - get the local weather (requires networking)

 Anchor for this section

 Summary

 Types

 speed_test_options()

 Options for speed_test/1

 Functions

 cat(path)

 Reads and prints out the contents of a file

 cmd(str)

 Run a command and return the exit code. This function is intended to be run
interactively.

 date()

 Return the date and time in UTC

 dmesg()

 Print out kernel log messages

 exit()

 Exit the current IEx session

 fw_validate()

 Validate a firmware image

 grep(regex, path)

 Run a regular expression on a file and print the matching lines.

 hex(value)

 Inspect a value with all integers printed out in hex. This is useful for
one-off hex conversions. If you're doing a lot of work that requires
hexadecimal output, you should consider running

 history(gl \\ Process.group_leader())

 Print out the IEx shell history

 hostname()

 Return the hostname

 httpget(url, options \\ [])

 Perform a HTTP GET request for the specified URL

 ifconfig()

 Print out the network interfaces and their addresses.

 inspect_bits(value)

 Pretty prints a number in hex, octal and binary

 load_term!(path)

 Load an Erlang term from the filesystem.

 log_attach(options \\ [])

 Attach the current session to the Elixir logger

 log_detach()

 Detach the current session from the Elixir logger

 lsmod()

 Print out the loaded kernel modules

 lsof()

 List out open files by process

 lsusb()

 Print out information on all of the connected USB devices.

 multicast_addresses()

 List all active multicast addresses

 nslookup(name)

 Lookup the specified hostname in the DNS and print out the addresses.

 ping(address, options \\ [])

 Ping an IP address using ICMP.

 poweroff()

 Helper for gracefully powering off

 qr_encode(message)

 Generate an ASCII art QR code

 reboot()

 Shortcut to reboot a board. This is a graceful reboot, so it takes some time
before the real reboot.

 reboot!()

 Reboot immediately without a graceful shutdown. This is for the impatient.

 save_term!(value, path)

 Save an Erlang term to the filesystem for easy loading later

 save_value(value, path, inspect_opts \\ [])

 Save a value to a file as Elixir terms

 speed_test(options \\ [])

 Perform a download speed test

 tcping(address, options \\ [])

 Ping an IP address using TCP

 top(opts \\ [])

 Interactively show the top Elixir processes

 tree(path \\ ".")

 Print out directories and files in tree form.

 uname()

 Print out information about the running software

 uptime()

 Print out the current uptime.

 weather()

 Display the local weather

 Anchor for this section

Types

 Link to this type

 speed_test_options()

 @type speed_test_options() :: [
 duration: pos_integer(),
 ifname: String.t(),
 url: String.t() | URI.t()
]

Options for speed_test/1

 Anchor for this section

Functions

 Link to this function

 cat(path)

 @spec cat(Path.t()) :: :"do not show this result in output"

Reads and prints out the contents of a file

 Link to this function

 cmd(str)

 @spec cmd(String.t() | charlist()) :: integer()

Run a command and return the exit code. This function is intended to be run
interactively.

 Link to this function

 date()

 @spec date() :: String.t()

Return the date and time in UTC

 Link to this function

 dmesg()

 @spec dmesg() :: :"do not show this result in output"

Print out kernel log messages

 Link to this function

 exit()

 @spec exit() :: true

Exit the current IEx session

 Link to this function

 fw_validate()

 @spec fw_validate() :: :ok | {:error, String.t()}

Validate a firmware image
All official Nerves Systems automatically validate newly installed firmware.
For some systems, it's possible to disable this so that new firmware gets
one chance to boot. If it's not "validated" before a reboot, then the device
reverts to the old firmware.

 Link to this function

 grep(regex, path)

 @spec grep(Regex.t(), Path.t()) :: :"do not show this result in output"

Run a regular expression on a file and print the matching lines.
iex> grep ~r/video/, "/etc/mime.types"
If colored is enabled for the shell, the matches will be highlighted red.

 Link to this function

 hex(value)

 @spec hex(integer()) :: String.t()

Inspect a value with all integers printed out in hex. This is useful for
one-off hex conversions. If you're doing a lot of work that requires
hexadecimal output, you should consider running:
IEx.configure(inspect: [base: :hex])
The drawback of doing the above is that strings print out as hex binaries.

 Link to this function

 history(gl \\ Process.group_leader())

 @spec history(pid()) :: :"do not show this result in output"

Print out the IEx shell history
The default is to print the history from the current group leader, but
any group leader can be passed in if desired.

 Link to this function

 hostname()

 @spec hostname() :: String.t()

Return the hostname

 examples

 Examples

iex> hostname
"nerves-1234"

 Link to this function

 httpget(url, options \\ [])

 @spec httpget(String.t(), dest: Path.t(), verbose: boolean()) ::
 :"do not show this result in output"

Perform a HTTP GET request for the specified URL
By default, the results are printed or you can optionally choose to download
it to a specific location on the file system.
Options:
	:dest - File path to write the response to. Defaults to printing to the terminal.
	:verbose - Display request and response headers. Disabled by default.
	:timeout - Download timeout. Defaults to 30_000 ms

 Link to this function

 ifconfig()

 @spec ifconfig() :: :"do not show this result in output"

Print out the network interfaces and their addresses.

 Link to this function

 inspect_bits(value)

 @spec inspect_bits(number() | binary()) :: :"do not show this result in output"

Pretty prints a number in hex, octal and binary
Example:
iex> Toolshed.inspect_bits(123)
Decimal : 123
Hexadecimal : 0000_007B
Octal : 173
Binary : 01111011

 Link to this function

 load_term!(path)

 @spec load_term!(Path.t()) :: term()

Load an Erlang term from the filesystem.

 examples

 Examples

iex> save_term!({:some_interesting_atom, ["some", "list"]}, "/root/some_atom.term")
{:some_interesting_atom, ["some", "list"]}
iex> load_term!("/root/some_atom.term")
{:some_interesting_atom, ["some", "list"]}

 Link to this function

 log_attach(options \\ [])

 @spec log_attach(keyword()) :: {:error, any()} | {:ok, :undefined | pid()}

Attach the current session to the Elixir logger
This forwards incoming log messages to the terminal. Call detach/0 to stop
the messages.
Behind the scenes, this uses Elixir's built-in console logger and can be
configured similarly. See the Logger console backend
documentation
for details. The following are useful options:
	:level - the minimum log level to report. E.g., specify level: :warning
to only see warnings and errors.
	:metadata - a list of metadata keys to show or :all

Unspecified options use either the console backend's default or those found
in the application environment for the :console Logger backend.

 Link to this function

 log_detach()

 @spec log_detach() :: :ok | {:error, :not_attached | :not_found}

Detach the current session from the Elixir logger

 Link to this function

 lsmod()

 @spec lsmod() :: :"do not show this result in output"

Print out the loaded kernel modules
Aside from printing out whether the kernel has been tainted, the
Linux utility of the same name just dump the contents of "/proc/modules"
like this one.
Some kernel modules may be built-in to the kernel image. To see
those, run cat "/lib/modules/x.y.z/modules.builtin" where x.y.z is
the kernel's version number.

 Link to this function

 lsof()

 @spec lsof() :: :ok

List out open files by process
This is an simple version of lsof that works on Linux and
Nerves. While running the normal version of lsof provides
more information, this can be convenient when lsof isn't
easily available or can't be run due to :emfile errors
from starting port processes due to too many files being open..

 Link to this function

 lsusb()

 @spec lsusb() :: :"do not show this result in output"

Print out information on all of the connected USB devices.

 Link to this function

 multicast_addresses()

 @spec multicast_addresses() :: :ok

List all active multicast addresses
This lists out multicast addresses by network interface
similar to ip maddr show. It currently only works on
Linux.

 Link to this function

 nslookup(name)

 @spec nslookup(String.t()) :: :"do not show this result in output"

Lookup the specified hostname in the DNS and print out the addresses.

 examples

 Examples

iex> nslookup "google.com"
Name: google.com
Address: 172.217.7.238
Address: 2607:f8b0:4004:804::200e

 Link to this function

 ping(address, options \\ [])

 @spec ping(
 String.t(),
 keyword()
) :: :"do not show this result in output"

Ping an IP address using ICMP.
NOTE: Specifying an :ifname only sets the source IP address for the
connection. This is only a hint to use the specified interface and not a
guarantee. For example, if you have two interfaces on the same LAN, the OS
routing tables may send traffic out one interface in preference to the one
that you want. On Linux, you can enable policy-based routing and add source
routes to guarantee that packets go out the desired interface.
Options:
	:count - number of pings to send (defaults to 3)
	:identifier - the identifier to use in the ICMP packets (default is to generate one)
	:ifname - network interface to use (e.g., "eth0")
	:timeout - time in seconds to wait for a host to respond (defaults to 10 seconds)

 examples

 Examples

iex> ping "nerves-project.org"
Response from nerves-project.org (185.199.108.153): icmp_seq=0 time=14.908ms
Response from nerves-project.org (185.199.108.153): icmp_seq=1 time=9.057ms
Response from nerves-project.org (185.199.108.153): icmp_seq=2 time=21.099ms

iex> ping "google.com", ifname: "wlp5s0"
Response from google.com (172.217.7.206): icmp_seq=0 time=88.602ms

 Link to this function

 poweroff()

 @spec poweroff() :: no_return()

Helper for gracefully powering off
Not all Nerves devices support powering themselves off. These devices reboot
instead.

 Link to this function

 qr_encode(message)

 @spec qr_encode(String.t()) :: :"do not show this result in output"

Generate an ASCII art QR code
See https://github.com/chubin/qrenco.de for more information.

 Link to this function

 reboot()

 @spec reboot() :: no_return()

Shortcut to reboot a board. This is a graceful reboot, so it takes some time
before the real reboot.

 Link to this function

 reboot!()

 @spec reboot!() :: no_return()

Reboot immediately without a graceful shutdown. This is for the impatient.

 Link to this function

 save_term!(value, path)

 @spec save_term!(term(), Path.t()) :: term()

Save an Erlang term to the filesystem for easy loading later
This function returns the value passed in to allow easy piping.

 examples

 Examples

iex> :sys.get_state(MyServer) |> save_term!("/root/my_server.term")
Reboot board
iex> :sys.replace_state(&load_term!("/root/my_server.term"))

 Link to this function

 save_value(value, path, inspect_opts \\ [])

 @spec save_value(any(), Path.t(), keyword()) :: :ok | {:error, File.posix()}

Save a value to a file as Elixir terms

 examples

 Examples

Save the contents of SystemRegistry to a file
iex> SystemRegistry.match(:_) |> save_value("/root/sr.txt")
:ok

 Link to this function

 speed_test(options \\ [])

 @spec speed_test(speed_test_options()) :: :ok

Perform a download speed test
Calling this with no options measures the download speed of a small test
file. The test file may not be large enough or close enough to you to
produce a good measurement. To fix this, pass a :url to a better file. To
change the default, add the following to your application environment:
config :toolshed, speed_test_url: "http://my_company.com/speed_test_file.bin"
Commercial users are encouraged to specify their own files to minimize our
bandwidth costs.
Please be aware that this function is somewhat simplistic in how it measures
download performance.
Options:
	:duration - Maximum duration in milliseconds (defaults to 5 seconds)
	:ifname - Interface to use (e.g., "wwan0" or "eth0")
	:url - File to download for the test

 Link to this function

 tcping(address, options \\ [])

 @spec tcping(
 String.t(),
 keyword()
) :: :"do not show this result in output"

Ping an IP address using TCP
This tries to connect to the remote host using TCP instead of sending an ICMP
echo request like normal ping. This sometimes works better than ping
if the remote server or any machine in between drops ICMP messages.
Options:
	:count - number of pings to send (defaults to 3)
	:ifname - Specify a network interface to use. (e.g., "eth0")
	:port - Which TCP port to try (defaults to 80)

 examples

 Examples

iex> tcping "nerves-project.org"
Response from nerves-project.org (185.199.108.153:80): time=4.155ms
Response from nerves-project.org (185.199.108.153:80): time=10.385ms
Response from nerves-project.org (185.199.108.153:80): time=12.458ms

iex> tcping "google.com", ifname: "wlp5s0"
Response from google.com (172.217.7.206:80): time=88.602ms

 Link to this function

 top(opts \\ [])

 @spec top(keyword()) :: :"do not show this result in output"

Interactively show the top Elixir processes
This is intended to be called from the IEx prompt and will periodically
update the console with the top processes. Press enter to exit.
Options:
	:order - the sort order for the results (:reductions, :delta_reductions,
:mailbox, :delta_mailbox, :total_heap_size, :delta_total_heap_size, :heap_size,
:delta_heap_size, :stack_size, :delta_stack_size)

 Link to this function

 tree(path \\ ".")

 @spec tree(Path.t()) :: :"do not show this result in output"

Print out directories and files in tree form.

 Link to this function

 uname()

 @spec uname() :: :"do not show this result in output"

Print out information about the running software
This is similar to the Linux uname to help people remember what to type.

 Link to this function

 uptime()

 @spec uptime() :: :"do not show this result in output"

Print out the current uptime.

 Link to this function

 weather()

 @spec weather() :: :"do not show this result in output"

Display the local weather
See http://wttr.in/:help for more information.

 OEBPS/dist/epub-75RCTLK3.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);var a="hll";function c(){u()}function u(){o("[data-group-id]").forEach(e=>{let t=e.getAttribute("data-group-id");e.addEventListener("mouseenter",n=>{i(t,!0)}),e.addEventListener("mouseleave",n=>{i(t,!1)})})}function i(r,e){o(`[data-group-id="${r}"]`).forEach(n=>{n.classList.toggle(a,e)})}c();})();

