

 Tower

 v0.8.2

 Table of contents

 	Changelog

 	
 Modules

 	Tower

 	Tower.EphemeralReporter

 	Tower.Event

 	Tower.Reporter

 	Tower.Utils

 	Exceptions

 	Tower.ReportEventError

 	Tower.TestException

 	
 Mix Tasks

 	mix tower.test

Changelog

All notable changes to this project will be documented in this file.
The format is based on Keep a Changelog,
and this project adheres to Semantic Versioning.

 0.8.2 - 2025-04-03

 Added

	includes application data in Tower.Event.metadata by default (#130)

 Fixed

	No longer specify restrictive version requirement on plug (a.k.a "optional dependency") (#143)

 0.8.1 - 2025-02-28

 Added

	Ability to report directly a Tower.Event with Tower.report/1 (#118, thanks @msutkowski)

 Fixed

	Tower.test/0 and mix tower.test fixed when verifying if async reporters work (#129).

 0.8.0 - 2025-01-31

 Changed

	No longer call reporter's report_event function in fresh spawned task/process. Call it in the same process as the one originating the exception. This way, reporters can read any process state in the erroring process dictionary if they want. They can still, if considered worthy, spawn new async tasks, e.g. to make HTTP requests to 3rd parties, as part of their report_event implementation.

 0.7.5 - 2024-12-18

 Fixed

	No longer wrongly use event metadata for Tower.Event.similarity_id calculated value

 0.7.4 - 2024-12-12

 Added

	Ability to include contents of Logger.metadata in exception report by explicitly listing keys with config :tower, logger_metadata: [...]

 0.7.3 - 2024-11-25

 Fixed

	Small workaround specific to TowerErrorTracker reporter package, to fix reporting of ErrorTracker.set_context.

 0.7.2 - 2024-11-19

 Fixed

	Fixes (by removing) unnecessary compile-time dependency on plug from inside Tower.LoggerHandler

 0.7.1 - 2024-11-19

 Fixed

	Fixes an error inside Tower when reporting non normalized exceptions (e.g. :badarith) when using Bandit

 0.7.0 - 2024-11-19

 Fixed

	Properly report uncaught throw as a :throw event (instead of :exit) when using Bandit.

 Changed

	Updates optional dependency on bandit version requirement from "~> 1.5.0" to "~> 1.6".

 0.6.5 - 2024-11-18

 Added

	Tower.Event includes new field called by that states what was the source of the event.

 Fixed

	Declares optional dependency on bandit (with proper version range requiremente) to make sure tower is running with a compatible version of bandit.

 0.6.4 - 2024-11-11

 Fixed

	Properly don't report non-5xx (e.g. 400 bad request) status code exceptions when using Bandit.

 0.6.3 - 2024-10-24

 Fixed

	Properly report runtime exceptions in Phoenix controller actions when using Bandit.PhoenixAdapter in Phoenix.Endpoint.

 0.6.2 - 2024-10-16

 Changed

	Renamed functions:	Tower.handle_exception/2,3 to Tower.report_exception/2,3
	Tower.handle_exit/2,3 to Tower.report_exit/2,3
	Tower.handle_throw/2,3 to Tower.report_throw/2,3
	Tower.handle_caught/3,4 to Tower.report/3,4

Non-breaking change. Original functions still work, but deprecated.

 0.6.1 - 2024-10-08

 Fixed

	Properly report (don't ignore) messages that should be reported per their log level that have the
:logger format of {format, format_args}, sometimes coming from Erlang/OTP code, when using log
functions that pass format and arguments instead of strings (see https://www.erlang.org/doc/apps/kernel/logger.html#log/3).

 0.6.0 - 2024-10-04

 Added

	New utility to test :tower is well configured and working. Either by invoking mix task mix tower.test or
directly calling function Tower.test/0. It will generate a test exception and report it to whichever reporters
you have configured.

 Changed

	Tower.EphemeralReporter is now automatically started as a child of Tower.Supervisor. If you were including it as
a child of your application supervisor, you can safely remove it.
	Tower.EphemeralReporter now keeps only the 50 most recent events to be light on resource consumption, as initially
intened.
	Tower.attach() is now automatically called during Tower start. You no longer need to manually call it as part of
your application start function. Keeping it won't fail but it is a no-operation. You can safely remove it.

 0.5.3 - 2024-09-24

 Added

	Tower.ReportEventError improved error message prints original exception message also. Helps when building and
debugging errors in reporters implementing Tower.Reporter behavior.

 0.5.2 - 2024-09-16

 Added

	Tower.is_normal_exit function and guard for use when manually catching exits

 Fixed

	Bug/error in one reporter doesn't affect other reporters

 0.5.1 - 2024-08-23

 Added

	Documentation improvements

 0.5.0 - 2024-08-20

 Added

	Oban support	I.e: Automatic handling of errors occurring inside an Oban job perform.

	Bandit support	I.e: Automatic handling of errors occurring inside plug dispatch call when using Bandit adapter.

 Fixed

	Properly handle exits ocurring inside a plug dispatch call when using Plug.Cowboy adapter.

 0.4.0 - 2024-08-16

 Added

	Tower.Event plug_conn field with a Plug.Conn if available during handling.

 Removed

	Drop support for elixir 1.13 and 1.14 which were not yet fully integrated with :logger handlers, which
is the main way tower handles errors. Keep elixir 1.15+ for now.

 0.3.0 - 2024-08-15

 Added

	Tower.Event datetime field with a DateTime value with microseconds precision.

 Removed

	Tower.Event time field.

 Changed

	Tower.Event time field replaced with datetime field.

 0.2.0 - 2024-08-09

 Added

	New Tower.Event struct to represent and encapsulate any exception, exit, throw or message.
	New time field of Tower.Event struct, including the timestamp with microseconds precision.
	New id field of Tower.Event struct, including a timed-based sortable unique value (UUIDv7).
	Ablility to manually handle/report exceptions, exits and throws	Tower.handle_exception/2,3
	Tower.handle_exit/2,3
	Tower.handle_throw/2,3

	metadata field supporting user reported metadata
	Tower.handle_caught/3,4 for easier handling of catch kind, reason
	Tower.equal_or_greater_level?/2 to aid reporters in comparing log level, e.g. supporting per-reporter reporting level.

 Changed

	Reporters (those implementing Tower.Reporter behaviour) can now handle events with just one callback: report_event/1, in replacement of report_exception/2,3, report_exit/2,3, report_throw/2,3 and report_message/2,3 callbacks.

Tower

Tower is a flexible error tracker for elixir applications.
It listens for errors in an elixir application and informs about them to
the configured list of reporters (one or many).
You can either:
	include tower package directly and write your own custom reporter(s)

Or:
	include one (or many) of the following reporters (separate packages) that build on top of and depend on tower:	tower_bugsnag
	tower_email
	tower_error_tracker
	tower_honeybadger
	tower_rollbar
	tower_sentry
	tower_slack

 Motivation

Decoupled error capturing and error reporting in Elixir.

Say you need to add exception tracking to your elixir app:
	You decide what service you will use to send your errors to
	You look for a good elixir library for that service
	You configure it, deploy and start receiving errors there

Normally these libraries have to take care of a few responsibilities:
	Capturing of errors (specific to language and runtime, i.e. Elixir and BEAM)	Automatic capturing via (at least one of):	Logger backend
	Logger handler
	Error logger handler
	Telemetry event handler
	Plugs

	Manual capturing by providing a few public API functions the programmer to call if needed

	Transform these errors into some format for the remote service (specific to remote service), e.g.	JSON for an HTTP API request
	Subject and body for an e-mail message

	Make a remote call (e.g. an HTTP request with the payload) to the remote service (specific to remote service)

flowchart LR
 A(Elixir App) --> B(Capture)
 subgraph Service Library
 B --> C("Format")
 C --> D("Report")
 end
 D --> E("ErrorTrackingService")
Tower, instead, takes care of capturing errors (number 1), giving them a well defined shape (Tower.Event struct)
and pass along this event to pre-configured but separate reporters which take care of the error reporting steps
(number 2 and 3) depending on which service or remote system they report to.
flowchart LR
 A(Elixir App) --> B(Capture)
 subgraph Tower
 B --> C("Build
Tower.Event")
 end
 subgraph A Tower.Reporter
 C --> D("Format")
 D --> E("Report")
 end
 E --> F("ErrorTrackingService")

 Consequences of this approach

1. Capture once, report many
You can capture once and report to as many places as you want.
Possibly most will end up with just one reporter. But that doesn't mean you shouldn't be able to
easily have many, either temporarily or permanently if you need it.
Maybe you just need to have a backup in case one service goes downs or something unexpected happens.
Maybe you're trying out different providers and you want to report to the two for a while and compare
how they work, what features they have and how they display the information for you.
Maybe you're planning to switch, and you want to configure the new one without stopping to report to the
old one, at least for a while.
flowchart LR
 A(Elixir App) --> B(Capture)
 subgraph Tower
 B --> C("Build
Tower.Event")
 end
 subgraph Tower.Reporter 1
 C --> D("Format")
 D --> E("Report")
 end
 subgraph Tower.Reporter 2
 C --> F("Format")
 F --> G("Report")
 end
 E --> H("ErrorTrackingService 1")
 G --> I("ErrorTrackingService 2")
2. Ease of switching services
You can switch from Error Tracking service provider without making any changes to your application error
capturing configuration or expect any change or regression with respect with capturing behavior.
You switch the reporter package, but tower still part of your application, and all the configuration specific
to tower and error capturing tactics is still valid and unchanged.
3. Response to changes in Elixir and BEAM
Necessary future changes caused by deprecations and/or changes in error handling behavior in the BEAM or Elixir can be just
made in Tower without need to change any of the service specific reporters.

 Reporters

As explained in the Motivation section, any captured errors by Tower will be passed along to the list of
configured reporters, which can be set in
config :tower, :reporters, [...] # Defaults to [Tower.EphemeralReporter]
So, in summary, you can either
	Depend on tower package directly	play with the default built-in toy reporter Tower.EphemeralReporter, useful for dev and test
	at some point for production write your own custom reporter

or
	depend on one (or many) of the following reporters (separate packages) that build on top and depend on tower:	TowerBugsnag (tower_bugsnag)
	TowerEmail (tower_email)
	TowerErrorTracker (tower_error_tracker)
	TowerHoneybadger (tower_honeybadger)
	TowerRollbar (tower_rollbar)
	TowerSentry (tower_sentry)
	TowerSlack (tower_slack)

	and properly set the config :tower, :reporters, [...] configuration key

 Manual reporting

If either, for whatever reason when using automated exception handling, an exception condition is
not reaching Tower handling, or you just need or want to manually handle and report errors, you can
manually ask Tower to report exceptions, throws or exits.
try do
 # possibly crashing code
rescue
 exception ->
 Tower.report_exception(exception, __STACKTRACE__)
catch
 :throw, value ->
 Tower.report_throw(value, __STACKTRACE__)
 :exit, reason when not Tower.is_normal_exit(reason) ->
 Tower.report_exit(reason, __STACKTRACE__)
end
or more generally
try do
 # possibly crashing code
catch
 kind, reason ->
 Tower.report(kind, reason, __STACKTRACE__)
end
which will in turn call the appropriate function based on the caught kind and reason values

 Writing a custom reporter

lib/my_app/error_reporter.ex
defmodule MyApp.ErrorReporter do
 @behaviour Tower.Reporter

 @impl true
 def report_event(%Tower.Event{} = event) do
 # do something with event

 # A `Tower.Event` is a struct with the following typespec:
 #
 # %Tower.Event{
 # id: UUIDv7.t(),
 # datetime: DateTime.t(),
 # level: :logger.level(),
 # kind: :error | :exit | :throw | :message,
 # reason: Exception.t() | term(),
 # stacktrace: Exception.stacktrace() | nil,
 # log_event: :logger.log_event() | nil,
 # plug_conn: struct() | nil,
 # metadata: map()
 # }
 end
end

in some config/*.exs
config :tower, reporters: [MyApp.ErrorReporter]

 Configuration

 reporters

List of reporters Tower should report events to.
Default: [Tower.EphemeralReporter]
Example:
config :tower, reporters: [TowerEmail]

 log_level

Logger messages this level and above will be reported.
Possible values are any of defined Logger levels (https://hexdocs.pm/logger/Logger.html#module-levels) or
:none to disable reporting of Logger messages.
Default: :critical
Example:
config :tower, log_level: :error

 ignored_exceptions

List of exceptions that Tower should ignore and not report.
Default: []
Example:
config :tower, ignored_exceptions: [DBConnection.ConnectionError]

 logger_metadata

List of keys that Tower should pick up from the current process Logger.metadata when reporting events.
Default: []
Example:
A common use case is setting Logger.metadata(user_id: user.id) at the start of your plugs or controller actions and
configure Tower:
config :tower, logger_metadata: [:user_id]
so that it's included in the reported exception or message event as extra metadata.
Also if using Phoenix you can
config :tower, logger_metadata: [:request_id]
so that you can co-relate your exceptions reports to the request id in your application logs.
More about Logger metadata:
	https://hexdocs.pm/logger/Logger.html#module-metadata
	https://hexdocs.pm/logger/Logger.html#metadata/1

 Summary

 Functions

 attach()

 Attaches the necessary handlers to automatically listen for application errors.

 detach()

 Detaches the handlers.

 equal_or_greater_level?(level1, level2)

 Compares event level severity.

 handle_caught(kind, reason, stacktrace, options \\ [])

 deprecated

 See Tower.report/4.

 handle_exception(exception, stacktrace, options \\ [])

 deprecated

 See Tower.report_exception/3.

 handle_exit(reason, stacktrace, options \\ [])

 deprecated

 See Tower.report_exit/3.

 handle_message(level, message, options \\ [])

 deprecated

 See Tower.report_message/3.

 handle_throw(reason, stacktrace, options \\ [])

 deprecated

 See Tower.report_throw/3.

 is_normal_exit(reason)

 Determines if a process exit reason is "normal".

 report(event)

 Asks Tower to report an event.

 report(kind, reason, stacktrace, options \\ [])

 Asks Tower to report a manually handled error.

 report_exception(exception, stacktrace, options \\ [])

 Asks Tower to report a manually handled exception.

 report_exit(reason, stacktrace, options \\ [])

 Asks Tower to report a manually handled exit.

 report_message(level, message, options \\ [])

 Asks Tower to report a message of certain level.

 report_throw(reason, stacktrace, options \\ [])

 Asks Tower to report a manually handled throw.

 test()

 Generates an exception and lets Tower handle it.

 Functions

 attach()

 @spec attach() :: :ok | {:error, reason :: term()}

Attaches the necessary handlers to automatically listen for application errors.
It is automatically called during application start.
Adds a new
logger_handler, which listens for all
uncaught exceptions, uncaught throws, abnormal process exits, among other log events of interest.
Additionally adds other handlers specifically tailored for some packages that
do catch errors and have their own specific error handling and emit events instead
of letting errors get to the logger handler, like oban or bandit.

 detach()

 @spec detach() :: :ok | {:error, reason :: term()}

Detaches the handlers.
That means it stops the automatic handling of errors.
You can still manually call Tower report_* functions and reporters will be informed about
those events.

 equal_or_greater_level?(level1, level2)

 @spec equal_or_greater_level?(
 Tower.Event.t() | Tower.Event.level(),
 Tower.Event.level()
) :: boolean()

Compares event level severity.
Returns true if level1 severity is equal or greater than level2 severity.

 Examples

iex> Tower.equal_or_greater_level?(:emergency, :error)
true
iex> Tower.equal_or_greater_level?(%Tower.Event{level: :info}, :info)
true
iex> Tower.equal_or_greater_level?(:warning, :critical)
false

 handle_caught(kind, reason, stacktrace, options \\ [])

 This function is deprecated. Use Tower.report/3,4 instead..

See Tower.report/4.

 handle_exception(exception, stacktrace, options \\ [])

 This function is deprecated. Use Tower.report_exception/2,3 instead..

See Tower.report_exception/3.

 handle_exit(reason, stacktrace, options \\ [])

 This function is deprecated. Use Tower.report_exit/2,3 instead..

See Tower.report_exit/3.

 handle_message(level, message, options \\ [])

 This function is deprecated. Use Tower.report_message/2,3 instead..

See Tower.report_message/3.

 handle_throw(reason, stacktrace, options \\ [])

 This function is deprecated. Use Tower.report_throw/2,3 instead..

See Tower.report_throw/3.

 is_normal_exit(reason)

 (macro)

Determines if a process exit reason is "normal".
Those are :normal, :shutdown or {:shutdown, _}.
Any other value is considered "non-normal" or "abnormal".
Allowed in guard clauses.

 Examples

iex> Tower.is_normal_exit(:normal)
true

iex> Tower.is_normal_exit(:shutdown)
true

iex> Tower.is_normal_exit({:shutdown, :whatever})
true

iex> Tower.is_normal_exit(:other_reason)
false

 report(event)

 @spec report(%Tower.Event{
 by: term(),
 datetime: term(),
 id: term(),
 kind: term(),
 level: term(),
 log_event: term(),
 metadata: term(),
 plug_conn: term(),
 reason: term(),
 similarity_id: term(),
 stacktrace: term()
}) :: :ok

Asks Tower to report an event.
This can be useful if you have the need to manually run the reporter pipeline for a given Tower.Event.

 Example

Tower.report(%Tower.Event{})

 report(kind, reason, stacktrace, options \\ [])

 @spec report(
 Exception.kind(),
 Tower.Event.reason(),
 Exception.stacktrace(),
 Keyword.t()
) :: :ok

Asks Tower to report a manually handled error.

 Example

try do
 # possibly crashing code
catch
 # Note this will also catch and handle normal (`:normal` and `:shutdown`) exits
 kind, reason ->
 Tower.report(kind, reason, __STACKTRACE__)
end

 Options

	:plug_conn - a Plug.Conn relevant to the event, if available, that may be used
by reporters to report useful context information. Be aware that the Plug.Conn may contain
user and/or system sensitive information, and it's up to each reporter to be cautious about
what to report or not.
	:metadata - a Map with additional information you want to provide about the event. It's
up to each reporter if and how to handle it.

 report_exception(exception, stacktrace, options \\ [])

 @spec report_exception(Exception.t(), Exception.stacktrace(), Keyword.t()) :: :ok

Asks Tower to report a manually handled exception.

 Example

try do
 # possibly crashing code
rescue
 exception ->
 Tower.report_exception(exception, __STACKTRACE__)
end

 Options

	Accepts same options as report/4.

 report_exit(reason, stacktrace, options \\ [])

 @spec report_exit(term(), Exception.stacktrace(), Keyword.t()) :: :ok

Asks Tower to report a manually handled exit.

 Example

try do
 # possibly exiting code
catch
 :exit, reason when not Tower.is_normal_exit(reason) ->
 Tower.report_exit(reason, __STACKTRACE__)
end

 Options

	Accepts same options as report/4.

 report_message(level, message, options \\ [])

 @spec report_message(Tower.Event.level(), term(), Keyword.t()) :: :ok

Asks Tower to report a message of certain level.

 Examples

Tower.report_message(:emergency, "System is falling apart")

Tower.report_message(:error, "Unknown error has occurred", metadata: %{any_key: "here"})

Tower.report_message(:info, "Just something interesting", metadata: %{interesting: "additional data"})

 Options

	Accepts same options as report/4.

 report_throw(reason, stacktrace, options \\ [])

 @spec report_throw(term(), Exception.stacktrace(), Keyword.t()) :: :ok

Asks Tower to report a manually handled throw.

 Example

try do
 # possibly throwing code
catch
 thrown_value ->
 Tower.report_throw(thrown_value, __STACKTRACE__)
end

 Options

	Accepts same options as report/4.

 test()

 @spec test() :: :ok

Generates an exception and lets Tower handle it.
Useful for testing Tower is well configuring and reporting errors during development.

Tower.EphemeralReporter

A very slim and naive built-in reporter, that just stores Tower events as process state.
It keeps only the last 50 events.
Possibly useful for development or testing.

 Example

iex> Tower.EphemeralReporter.events()
[]
iex> Application.put_env(:tower, :reporters, [Tower.EphemeralReporter])
iex> spawn(fn -> 1 / 0 end)
iex> Process.sleep(200)
:ok
iex> [event] = Tower.EphemeralReporter.events()
iex> event.kind
:error
iex> event.reason
%ArithmeticError{message: "bad argument in arithmetic expression"}
iex> Tower.EphemeralReporter.reset()

 Summary

 Functions

 child_spec(arg)

 Returns a specification to start this module under a supervisor.

 events()

 Returns the list of all stored events.

 reset()

 start_link(opts)

 stop(pid)

 Functions

 child_spec(arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 events()

 @spec events() :: [Tower.Event.t()]

Returns the list of all stored events.

 reset()

 @spec reset() :: :ok

 start_link(opts)

 stop(pid)

Tower.Event

A struct representing a captured event.
Tower converts every captured error and message into a struct of this type
before passing along to reporters.

 Summary

 Types

 error_kind()

 level()

 non_error_kind()

 reason()

 t()

 A struct representing a captured event.

 Types

 error_kind()

 @type error_kind() :: :error | :exit | :throw

 level()

 @type level() :: :logger.level()

 non_error_kind()

 @type non_error_kind() :: :message

 reason()

 @type reason() :: Exception.t() | term()

 t()

 @type t() :: %Tower.Event{
 by: atom() | nil,
 datetime: DateTime.t(),
 id: UUIDv7.t(),
 kind: error_kind() | non_error_kind(),
 level: level(),
 log_event: :logger.log_event() | nil,
 metadata: map(),
 plug_conn: struct() | nil,
 reason: reason(),
 similarity_id: non_neg_integer(),
 stacktrace: Exception.stacktrace() | nil
}

A struct representing a captured event.
Tower converts every captured error and message into a struct of this type
before passing along to reporters.

Tower.Reporter behaviour

Behaviour that can be implemented to write Tower reporters.
Tower comes built-in with a very naive Tower.EphemeralReporter, that implements
this behavior, which can be useful for development and testing purposes.
Separate packages that implement this behaviour:
	tower_bugsnag (TowerBugsnag)
	tower_email (TowerEmail)
	tower_error_tracker (TowerErrorTracker)
	tower_honeybadger (TowerHoneybadger)
	tower_rollbar (TowerRollbar)
	tower_sentry (TowerSentry)
	tower_slack (TowerSlack)

 Summary

 Callbacks

 report_event(event)

 Function that will be called with every event handled by Tower.

 Callbacks

 report_event(event)

 @callback report_event(event :: Tower.Event.t()) :: :ok

Function that will be called with every event handled by Tower.

Tower.Utils

 Summary

 Functions

 application_data(pid_or_module)

 Functions

 application_data(pid_or_module)

Tower.ReportEventError exception

 Summary

 Functions

 message(report_event_error)

 Callback implementation for Exception.message/1.

 Functions

 message(report_event_error)

Callback implementation for Exception.message/1.

Tower.TestException exception

mix tower.test

 OEBPS/dist/epub-4WIP524F.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);function r(e){document.readyState!=="loading"?e():document.addEventListener("DOMContentLoaded",e)}var l="hll";window.addEventListener("exdoc:loaded",t);function t(){o("[data-group-id]").forEach(e=>{e.addEventListener("mouseenter",i),e.addEventListener("mouseleave",i)})}function i(e){let n=e.currentTarget,a=e.type==="mouseenter",c=n.getAttribute("data-group-id");n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach(u=>{u.classList.toggle(l,a)})}r(()=>{t()});})();

