

 Typster

 v0.7.1

 Table of contents

 	Typster

 	
 Modules

 	Core API

 	Typster

 	Exceptions

 	Typster.CompileError

 	Native Interface

 	Typster.Native

 Typster

Typster is an Elixir wrapper for the Typst document preparation system, providing powerful and ergonomic functions for rendering Typst templates to PDF, SVG, and PNG formats.
[image: CI]
[image: Hex.pm]
[image: Documentation]
Features
	Multiple Output Formats: Render to PDF, SVG, or PNG
	Variable Binding: Inject Elixir data into templates with deep nesting support
	Package Support: Use Typst packages from the official registry
	PDF Metadata: Embed title, author, keywords, and more
	Type-Safe: Full typespecs for all public functions
	Fast: Powered by Rust via NIFs
	Ergonomic API: Simple, consistent interface with bang (!) variants
	Well-Tested: 58 comprehensive tests including property-based testing

Installation
Add typster to your list of dependencies in mix.exs:
def deps do
 [
 {:typster, "~> 0.4.0"}
]
end
Then run:
mix deps.get

Note: Precompiled binaries are available for macOS (ARM64/x86_64) and Linux (ARM64/x86_64). If a precompiled binary is not available for your platform, Typster will automatically compile from source, which requires Rust to be installed (see rustup.rs). You can force compilation from source by setting TYPSTER_BUILD=1.
Quick Start
Simple PDF Rendering
Create a simple template
template = """
#set page(width: 8.5in, height: 11in)
#set text(size: 11pt)

= Hello from Typster!

This is a simple document rendered with Typster.
"""

Render to PDF
{:ok, pdf} = Typster.render_pdf(template)

Save to file
File.write!("output.pdf", pdf)

Or use the convenience function
Typster.render_to_file(template, "output.pdf")
Variable Binding
template = """
= Invoice for #customer_name

Date: #invoice_date
Amount: \\$#amount

Thank you for your business!
"""

variables = %{
 customer_name: "Acme Corp",
 invoice_date: "2025-10-03",
 amount: 1234.56
}

{:ok, pdf} = Typster.render_pdf(template, variables: variables)
Nested Data Structures
template = """
= #user.name's Profile

Email: #user.email
Location: #user.address.city, #user.address.state
"""

variables = %{
 user: %{
 name: "Alice Johnson",
 email: "alice@example.com",
 address: %{
 city: "Portland",
 state: "OR"
 }
 }
}

{:ok, pdf} = Typster.render_pdf(template, variables: variables)
Lists and Iteration
template = """
= Shopping List

#for item in items [
 - #item.name: \\$#item.price
]

Total Items: #items.len()
"""

variables = %{
 items: [
 %{name: "Apples", price: 3.99},
 %{name: "Bread", price: 2.49},
 %{name: "Milk", price: 4.29}
]
}

{:ok, pdf} = Typster.render_pdf(template, variables: variables)
PDF Metadata
metadata = %{
 title: "Annual Report 2025",
 author: "Analytics Team",
 description: "Comprehensive performance analysis",
 keywords: "report, analytics, 2025",
 date: "auto" # Use current date
}

{:ok, pdf} = Typster.render_pdf(template, variables: variables, metadata: metadata)
SVG and PNG Output
Render to SVG (returns list of SVG strings, one per page)
{:ok, svg_pages} = Typster.render_svg(template)

Render to PNG with custom resolution
{:ok, png_pages} = Typster.render_png(template, pixel_per_pt: 4.0)

Save first page
File.write!("page1.png", List.first(png_pages))
Using Typst Packages
Use packages from the Typst registry
template = """
#import "@preview/tiaoma:0.3.0": qrcode

= Contact Information

#qrcode("https://example.com", width: 3cm)
"""

Packages are automatically downloaded and cached
{:ok, pdf} = Typster.render_pdf(template)

Use multiple packages together
template = """
#import "@preview/tiaoma:0.3.0": qrcode
#import "@preview/cetz:0.3.2": canvas, draw

= Document with Packages

#qrcode("https://example.com", width: 2cm)

#canvas({
 import draw: *
 rect((0, 0), (3, 2), fill: blue.lighten(80%))
})
"""

{:ok, pdf} = Typster.render_pdf(template)
Package Features:
	Automatic download from the Typst package registry
	Local caching for fast subsequent renders
	Concurrent download protection with mutex locks
	Support for all packages in the @preview namespace

Bang Functions
Use bang (!) versions for cleaner code
(raises Typster.CompileError on failure)

try do
 pdf = Typster.render_pdf!(template, variables: variables)
 File.write!("output.pdf", pdf)
rescue
 e in Typster.CompileError ->
 IO.puts("Compilation failed: #{e.message}")
end
API Reference
Core Functions
	Typster.render_pdf(source, opts \\ []) - Render to PDF
	Typster.render_svg(source, opts \\ []) - Render to SVG (multi-page)
	Typster.render_png(source, opts \\ []) - Render to PNG (multi-page)
	Typster.render_to_file(source, path, opts \\ []) - Save to file

Bang Variants
	Typster.render_pdf!(source, opts \\ []) - Raises on error
	Typster.render_svg!(source, opts \\ []) - Raises on error
	Typster.render_png!(source, opts \\ []) - Raises on error
	Typster.render_to_file!(source, path, opts \\ []) - Raises on error

Options
All render functions accept the following options:
	:metadata - Map of PDF metadata (%{title:, author:, description:, keywords:, date:})
	:package_paths - List of local package directories (for custom packages)
	:pixel_per_pt - PNG resolution multiplier (default: 2.0, higher = better quality)
	:variables - Map of variables to be used in the template

Examples
See the examples/ directory for complete working examples:
	examples/invoice.exs - Generate invoices with calculations
	examples/report.exs - Multi-page reports with charts
	examples/qrcode.exs - Generate QR codes using packages
	examples/reusable_templates.exs - Reusable template components without filesystem dependencies

Documentation
Full documentation is available at HexDocs or can be generated locally:
mix docs
open doc/index.html

Testing
Run the test suite:
mix test

The test suite includes:
	42 unit and integration tests
	9 property-based tests using StreamData
	9 concurrent rendering tests (thread safety)
	7 package download and import tests
	Realistic fixtures (invoice, report templates)
	Comprehensive error handling tests

Run concurrent tests separately:
mix test test/concurrent_test.exs

Performance
Typster uses native Rust code via NIFs for high performance:
	Typical invoice rendering: < 50ms
	Multi-page reports: < 200ms
	Package downloads are cached locally

Concurrency
Typster is fully thread-safe and designed for concurrent use:
Render multiple documents in parallel
tasks = for i <- 1..10 do
 Task.async(fn ->
 template = get_template(i)
 Typster.render_pdf(template, variables: %{id: i})
 end)
end

results = Task.await_many(tasks)
Tested Performance:
	50 concurrent renders: All successful
	100 concurrent renders: Completed in ~22ms total
	Mixed format rendering (PDF/SVG/PNG): No conflicts

Thread Safety:
	Multiple processes can render simultaneously
	Concurrent package downloads are safely handled with mutex locks
	No resource conflicts or race conditions
	Suitable for Phoenix applications with multiple concurrent users

Typst Resources
	Typst Documentation
	Typst Package Universe
	Typst Syntax Reference

Contributing
Contributions are welcome! Please feel free to submit a Pull Request.
Acknowledgments
	Built on Typst - A modern typesetting system
	Uses Rustler for Elixir-Rust interop

Typster

High-level API for rendering Typst templates to PDF, SVG, and PNG formats.
Typster is an Elixir wrapper for the Typst document preparation system,
providing easy-to-use functions for compiling Typst templates with variable
binding, package support, and metadata injection.
Quick Start
Simple PDF rendering
source = "#set page(width: 200pt, height: 100pt)\n= Hello World"
{:ok, pdf} = Typster.render_pdf(source)
File.write!("output.pdf", pdf)

With variables
template = "= Invoice for #customer_name"
{:ok, pdf} = Typster.render_pdf(template, %{customer_name: "Acme Corp"})

With metadata
{:ok, pdf} = Typster.render_pdf(template, %{},
 metadata: %{title: "Invoice", author: "Billing System"})
Formats
Typster supports three output formats:
	PDF: Single binary output
	SVG: List of SVG strings (one per page)
	PNG: List of PNG binaries (one per page)

Options
All render functions accept an options keyword list:
	:variables - Map of variables to bind into the template
	:package_paths - List of local package directories
	:metadata - Map of PDF metadata (title, author, description, keywords, date)
	:pixel_per_pt - PNG resolution (default: 2.0)

Concurrency
Typster is fully thread-safe and supports concurrent rendering from multiple processes.
The underlying Rust NIFs can handle parallel execution efficiently:
Render multiple documents concurrently
tasks = for i <- 1..10 do
 Task.async(fn ->
 Typster.render_pdf(template, %{id: i})
 end)
end

results = Task.await_many(tasks)
Performance: Tested with 100 concurrent renders completing in ~22ms total.
Package Downloads: Concurrent downloads of the same package are safely handled
with a mutex lock to prevent race conditions. The first process downloads, subsequent
processes wait and then use the cached package.

 Summary

 Types

 metadata()

 package_paths()

 pdf_binary()

 png_pages()

 render_options()

 root_path()

 svg_pages()

 variables()

 Functions

 check(source, opts \\ [])

 Check the syntax of a Typst template without rendering.

 check!(source, opts \\ [])

 Check the syntax of a Typst template, raising on error.

 render_pdf(source, opts \\ [])

 Render a Typst template to PDF format.

 render_pdf!(source, opts \\ [])

 Render a Typst template to PDF format, raising on error.

 render_png(source, opts \\ [])

 Render a Typst template to PNG format.

 render_png!(source, opts \\ [])

 Render a Typst template to PNG format, raising on error.

 render_svg(source, opts \\ [])

 Render a Typst template to SVG format.

 render_svg!(source, opts \\ [])

 Render a Typst template to SVG format, raising on error.

 render_to_file(source, output_path, opts \\ [])

 Render a Typst template and save to a file.

 render_to_file!(source, output_path, opts \\ [])

 Render a Typst template to a file, raising on error.

 Types

 metadata()

 @type metadata() :: %{
 optional(:title) => String.t(),
 optional(:author) => String.t(),
 optional(:description) => String.t(),
 optional(:keywords) => String.t(),
 optional(:date) => String.t()
}

 package_paths()

 @type package_paths() :: [String.t()]

 pdf_binary()

 @type pdf_binary() :: binary()

 png_pages()

 @type png_pages() :: [binary()]

 render_options()

 @type render_options() :: [
 metadata: metadata(),
 package_paths: package_paths(),
 pixel_per_pt: float(),
 root_path: root_path(),
 variables: variables()
]

 root_path()

 @type root_path() :: String.t()

 svg_pages()

 @type svg_pages() :: [String.t()]

 variables()

 @type variables() :: map()

 Functions

 check(source, opts \\ [])

 @spec check(String.t(), render_options()) :: :ok | {:error, [String.t()]}

Check the syntax of a Typst template without rendering.
This function validates the template syntax by attempting to compile it,
but doesn't produce any output. It's useful for validating templates before
rendering or providing syntax feedback to users.
Parameters
	source - The Typst template source code
	opts - Keyword list of options

Options
	:package_paths - List of local package directories (default: [])
	:root_path - Root path for resolving relative imports (default: ".")
	:variables - Map of variables to bind (default: %{})

Returns
	:ok if the template syntax is valid
	{:error, errors} where errors is a list of error messages

Examples
Valid template
:ok = Typster.check("= Hello World")

Invalid template
{:error, errors} = Typster.check("= Unclosed #for")
errors will contain a list of error messages

With variables
template = "= Report for #year"
:ok = Typster.check(template, %{year: 2025})

With packages
template = ~S(#import "@preview/tiaoma:0.3.0": qrcode)
:ok = Typster.check(template, %{}, package_paths: [])

 check!(source, opts \\ [])

 @spec check!(String.t(), render_options()) :: :ok

Check the syntax of a Typst template, raising on error.
Same as check/3 but raises Typster.CompileError if there are syntax errors.
Examples
Valid template
:ok = Typster.check!("= Hello World")

Invalid template - raises
try do
 Typster.check!("= Invalid #syntax")
rescue
 e in Typster.CompileError ->
 IO.puts("Syntax error: #{e.message}")
end

 render_pdf(source, opts \\ [])

 @spec render_pdf(String.t(), render_options()) ::
 {:ok, pdf_binary()} | {:error, String.t()}

Render a Typst template to PDF format.
Parameters
	source - The Typst template source code
	opts - Keyword list of options

Options
	:metadata - Map of PDF metadata (default: %{})
	:package_paths - List of local package directories (default: [])
	:root_path - Root path for resolving relative imports (default: ".")
	:variables - Map of variables to bind (default: %{})

Examples
Simple rendering
{:ok, pdf} = Typster.render_pdf("= Hello World")

With variables
template = "= Report for #year"
{:ok, pdf} = Typster.render_pdf(template, variables: %{year: 2025})

With metadata
{:ok, pdf} = Typster.render_pdf(
 template,
 variables: %{year: 2025},
 metadata: %{title: "Annual Report", author: "Corp"}
)

With packages
template = ~S(#import "@preview/tiaoma:0.3.0": qrcode
#qrcode("https://example.com"))
{:ok, pdf} = Typster.render_pdf(template, package_paths: [])

 render_pdf!(source, opts \\ [])

 @spec render_pdf!(String.t(), render_options()) :: pdf_binary()

Render a Typst template to PDF format, raising on error.
Same as render_pdf/3 but raises Typster.CompileError on failure.
Examples
pdf = Typster.render_pdf!(template)
pdf = Typster.render_pdf!(template, %{year: 2025})

 render_png(source, opts \\ [])

 @spec render_png(String.t(), render_options()) ::
 {:ok, png_pages()} | {:error, String.t()}

Render a Typst template to PNG format.
Returns a list of PNG binaries, one for each page in the document.
Parameters
	source - The Typst template source code
	opts - Keyword list of options

Options
	:package_paths - List of local package directories (default: [])
	:pixel_per_pt - Resolution in pixels per point (default: 2.0, higher = better quality)
	:root_path - Root path for resolving relative imports (default: ".")
	:variables - Map of variables to bind (default: %{})

Examples
{:ok, png_pages} = Typster.render_png("= Hello World")

High resolution
{:ok, png_pages} = Typster.render_png(template, pixel_per_pt: 4.0)

Multi-page document
template = "= Page 1\n#pagebreak()\n= Page 2"
{:ok, [png1, png2]} = Typster.render_png(template)

 render_png!(source, opts \\ [])

 @spec render_png!(String.t(), render_options()) :: png_pages()

Render a Typst template to PNG format, raising on error.
Same as render_png/3 but raises Typster.CompileError on failure.

 render_svg(source, opts \\ [])

 @spec render_svg(String.t(), render_options()) ::
 {:ok, svg_pages()} | {:error, String.t()}

Render a Typst template to SVG format.
Returns a list of SVG strings, one for each page in the document.
Parameters
	source - The Typst template source code
	opts - Keyword list of options

Options
	:package_paths - List of local package directories (default: [])
	:root_path - Root path for resolving relative imports (default: ".")
	:variables - Map of variables to bind (default: %{})

Examples
{:ok, svg_pages} = Typster.render_svg("= Hello World")
svg_pages is a list like ["<svg>...</svg>"]

Multi-page document
template = "= Page 1\n#pagebreak()\n= Page 2"
{:ok, [svg1, svg2]} = Typster.render_svg(template)

 render_svg!(source, opts \\ [])

 @spec render_svg!(String.t(), render_options()) :: svg_pages()

Render a Typst template to SVG format, raising on error.
Same as render_svg/3 but raises Typster.CompileError on failure.

 render_to_file(source, output_path, opts \\ [])

 @spec render_to_file(String.t(), String.t(), render_options()) ::
 :ok | {:error, String.t()}

Render a Typst template and save to a file.
The output format is determined by the file extension:
	.pdf - PDF format
	.svg - SVG format (first page only for multi-page documents)
	.png - PNG format (first page only for multi-page documents)

Parameters
	source - The Typst template source code
	output_path - Path to save the output file
	opts - Keyword list of options (same as format-specific functions)

Examples
Typster.render_to_file(template, "output.pdf")
Typster.render_to_file(template, "output.svg", variables: %{title: "Report"})
Typster.render_to_file(template, "output.png", pixel_per_pt: 4.0)

 render_to_file!(source, output_path, opts \\ [])

 @spec render_to_file!(String.t(), String.t(), render_options()) :: :ok

Render a Typst template to a file, raising on error.
Same as render_to_file/4 but raises on failure.

Typster.CompileError exception

Exception raised when Typst compilation fails.
This exception is raised by the bang (!) versions of rendering functions
when compilation or rendering fails.
Examples
try do
 Typster.render_pdf!("invalid typst syntax")
rescue
 e in Typster.CompileError ->
 IO.puts("Compilation failed: " <> e.message)
end

Typster.Native

Native Implemented Functions (NIFs) for Typster.
This module provides the low-level Rust NIF interface for Typst compilation
and rendering. Most users should use the high-level Typster module instead,
which provides a more ergonomic API with better error handling.
Available NIFs
	test_nif/0 - Basic connectivity test
	compile_to_pdf/1 - Simple PDF compilation
	compile_to_pdf_with_variables/2 - PDF with variable binding
	compile_to_pdf_with_options/3 - PDF with packages
	compile_to_pdf_with_full_options/4 - PDF with metadata
	compile_to_svg_with_options/3 - Multi-page SVG
	compile_to_png_with_options/4 - Multi-page PNG
	check_syntax/3 - Syntax validation without rendering

Note
These functions return raw results from the Rust layer and should not be
called directly unless you need low-level control. Use the Typster module
for the recommended API.

 Summary

 Functions

 check_syntax(source, opts)

 compile_to_pdf(source, opts)

 compile_to_png(source, opts)

 compile_to_svg(source, opts)

 test_nif()

 Functions

 check_syntax(source, opts)

 compile_to_pdf(source, opts)

 compile_to_png(source, opts)

 compile_to_svg(source, opts)

 test_nif()

 OEBPS/dist/epub-4WIP524F.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);function r(e){document.readyState!=="loading"?e():document.addEventListener("DOMContentLoaded",e)}var l="hll";window.addEventListener("exdoc:loaded",t);function t(){o("[data-group-id]").forEach(e=>{e.addEventListener("mouseenter",i),e.addEventListener("mouseleave",i)})}function i(e){let n=e.currentTarget,a=e.type==="mouseenter",c=n.getAttribute("data-group-id");n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach(u=>{u.classList.toggle(l,a)})}r(()=>{t()});})();

