

    

        Tz

        v0.26.5



    



  

    Table of contents

    
      



            	Tz





  	Modules
    

    	Tz


    	Tz.HTTP


    	Tz.HTTP.HTTPClient


    	Tz.UpdatePeriodically


    	Tz.Updater


    	Tz.WatchPeriodically


    

  



  	Mix Tasks
    

    	mix tz.download


    

  


      

    


  

    
Tz
    

Time zone support for Elixir.
The Elixir standard library does not ship with a time zone database. As a result, the functions in the DateTime
module can, by default, only operate on datetimes in the UTC time zone. Alternatively (and
deliberately), the standard library relies on
third-party libraries, such as tz, to bring in time zone support and deal with datetimes in other time zones than UTC.
The tz library relies on the time zone database maintained by
IANA. As of version 0.26.5, tz uses version tzdata2023c of the IANA time zone database.
	Installation and usage
	Core principles
	Automatic updates
	Manual updates
	Automatic vs manual updates
	Disable updates in test env
	Default HTTP client
	Custom HTTP client
	Performance tweaks
	Custom storage location
	Get the IANA version
	Time zone utility functions
	Other libraries
	Acknowledgments

Installation and usage
Add tz for Elixir as a dependency in your mix.exs file:
def deps do
  [
    {:tz, "~> 0.26.5"}
  ]
end
To use the tz database, either configure it via configuration:
config :elixir, :time_zone_database, Tz.TimeZoneDatabase
or by calling Calendar.put_time_zone_database/1:
Calendar.put_time_zone_database(Tz.TimeZoneDatabase)
or by passing the module name Tz.TimeZoneDatabase directly to the functions that need a time zone database:
DateTime.now("America/Sao_Paulo", Tz.TimeZoneDatabase)
Refer to the DateTime API for more details
about handling datetimes with time zones.
Core principles
Battle-tested
The tz library is tested against nearly 10 million past dates, which includes most of all possible edge cases.
The repo tzdb_test compares the output of the different available libraries (tz, time_zone_info, tzdata and zoneinfo), and gives some idea of the difference in performance.
Pre-compiled time zone data
Time zone periods are deducted from the IANA time zone data. A period is a
period of time where a certain offset is observed. For example, in Belgium from 31 March 2019 until 27 October 2019, clock
went forward by 1 hour; as Belgium has a base offset from UTC of 1 hour, this means that during this period, Belgium observed a total offset of 2 hours from UTC time (base UTC offset of 1 hour + DST offset of 1 hour).
The time zone periods are computed and made available in Elixir maps during compilation time, to be consumed by the
DateTime module.
Automatic time zone data updates
tz can watch for IANA time zone database updates and automatically recompile the time zone periods.
To enable automatic updates, add Tz.UpdatePeriodically as a child in your supervisor:
{Tz.UpdatePeriodically, []}
You may pass the option :interval_in_days in order to configure the frequency of the updates:
{Tz.UpdatePeriodically, [interval_in_days: 5]}
Manual time zone data updates
If you do not wish to update automatically, but still wish to be alerted for new upcoming IANA updates, add
Tz.WatchPeriodically as a child in your supervisor:
{Tz.WatchPeriodically, []}
Tz.WatchPeriodically simply logs to your server when a new time zone database is available.
You may pass the options:
	:interval_in_days: frequency of the checks
	:on_update: a user callback executed when an update is available

For updating IANA data manually, there are 2 options:
	just update the tz library in the mix.exs file, which hopefully includes the latest IANA time zone database (if not, wait for the library maintainer to include the latest version or send a pull request on GitHub).

	download the files and recompile:
	Configure a custom directory with the :data_dir option. For example:     config :tz, :data_dir, Path.join(Path.dirname(__DIR__), "priv")
     ```

	Download the files manually by running the mix task below:     mix tz.download
     ```


	Recompile the dependency:     mix deps.compile tz --force
     ```
Or from an iex session to recompile at runtime:

     iex -S mix
     iex> Tz.Compiler.compile() ```
Note that recompilation at runtime is not persistent, run mix deps.compile tz --force in addition.
	Check that the version is the one expected:     iex> Tz.iana_version()
     ```





To force a specific IANA version:
	Configure a custom directory with the :data_dir option. For example:     config :tz, :data_dir, Path.join(Path.dirname(__DIR__), "priv")
     ```

	Download the files by running the mix task below (say we want the 2021a version):     mix tz.download 2021a
     ```


	Add the :iana_version option:     config :tz, :iana_version, "2021a"
     ```

	Recompile the dependency:     mix deps.compile tz --force
     ```


	Check that the version is the one expected:     iex> Tz.iana_version()
     ```



Automatic vs manual updates
Some users prefer to use Tz.WatchPeriodically (over Tz.UpdatePeriodically) to watch and update manually. Example cases:
	Memory-limited systems: small containers or embedded devices may not afford to recompile the time zone data at runtime.
	Restricted environments: the request may be blocked because of security policies.
	Security concerns: some users may prefer to analyze the files coming from external sources (https://data.iana.org in this case) before processing.
	Systems interoperability: a user may use some other systems using an older version of the IANA database, and  so the user may want to keep a lower version of the IANA data with tz to ensure IANA versions match.

Disable updates in test environment
To avoid the updater to run while executing tests, you may conditionally add the child worker in your supervisor. For example:
children = [
  MyApp.Repo,
  MyApp.Endpoint,
  #...
]
|> append_if(Application.get_env(:my_app, :env) != :test, {Tz.UpdatePeriodically, []})
defp append_if(list, condition, item) do
  if condition, do: list ++ [item], else: list
end
In config.exs, add config :my_app, env: Mix.env().
Default HTTP client
Lastly, add the http client mint and ssl certificate store castore into your mix.exs file:
defp deps do
  [
    {:castore, "~> 0.1"},
    {:mint, "~> 1.4"},
    {:tz, "~> 0.26.5"}
  ]
end
You may also add custom options for the http client mint:
config :tz, Tz.HTTP.Mint.HTTPClient,
  proxy: {:http, proxy_host, proxy_port, []}
Custom HTTP client
You may implement the Tz.HTTP.HTTPClient behaviour in order to use another HTTP client.
Example using Finch:
defmodule MyApp.Tz.HTTPClient do
  @behaviour Tz.HTTP.HTTPClient

  alias Tz.HTTP.HTTPResponse
  alias MyApp.MyFinch

  @impl Tz.HTTP.HTTPClient
  def request(hostname, path) do
    {:ok, response} =
      Finch.build(:get, "https://" <> Path.join(hostname, path))
      |> Finch.request(MyFinch)

    %HTTPResponse{
      status_code: response.status,
      body: response.body
    }
  end
end
A Tz.HTTP.HTTPResponse struct must be returned with fields :status_code and :body.
The custom module must then be passed into the config:
config :tz, :http_client, MyApp.Tz.HTTPClient
Performance tweaks
tz accepts two environment options to tweak performance.
Reducing period lookup time
For time zones that have ongoing DST changes, period lookups for dates far in the future result in periods being
dynamically computed based on the IANA data. For example, what is the period for 20 March 2040 for New York (let's
assume that the last rules for New York still mention an ongoing DST change as you read this)? We can't compile periods
indefinitely in the future; by default, such periods are computed until 5 years from compilation time. Dynamic period
computations is a slow operation.
You can decrease period lookup time for time zones affected by DST changes, by specifying until what year those periods have to be computed:
config :tz, build_dst_periods_until_year: 20 + NaiveDateTime.utc_now().year
Note that increasing the year will also slightly increase compilation time, as it generates more periods to compile.
The default setting computes periods for a period of 5 years from the time the code is compiled. Note that if you have added the automatic updater, the periods will be recomputed with every update, which occurs multiple times throughout the year.
Rejecting old time zone periods
You can slightly decrease memory usage and compilation time, by rejecting time zone periods before a given year:
config :tz, reject_periods_before_year: 2010
Note that this option is aimed towards embedded devices as the difference should be insignificant for ordinary servers.
By default, no periods are rejected.
Custom storage location of time zone data
By default, the files are stored in the priv directory of the tz library. You may customize the directory that will hold all of the IANA timezone data. For example, if you want to store the files in your project's priv dir instead:
config :tz, :data_dir, Path.join(Path.dirname(__DIR__), "priv")
Get the IANA time zone database version
Tz.iana_version() == "2023c"
Time zone utility functions
Tz's API is intentionally kept as minimal as possible to implement Calendar.TimeZoneDatabase's behaviour. Utility functions
around time zones are provided by TzExtra.
	TzExtra.countries_time_zones/1: returns a list of time zone data by country
	TzExtra.time_zone_identifiers/1: returns a list of time zone identifiers
	TzExtra.civil_time_zone_identifiers/1: returns a list of time zone identifiers that are tied to a country
	TzExtra.countries/0: returns a list of ISO country codes with their English name
	TzExtra.get_canonical_time_zone_identifier/1: returns the canonical time zone identifier for the given time zone identifier
	TzExtra.Changeset.validate_time_zone_identifier/3: an Ecto Changeset validator, validating that the user input is a valid time zone
	TzExtra.Changeset.validate_civil_time_zone_identifier/3: an Ecto Changeset validator, validating that the user input is a valid civil time zone
	TzExtra.Changeset.validate_iso_country_code/3: an Ecto Changeset validator, validating that the user input is a valid ISO country code

Other time zone database implementations
Based on IANA time zone data
	time_zone_info
	tzdata (not recommended due to bugs)

Based on OS-supplied zoneinfo files
Recommended for embedded devices.
	zoneinfo

Acknowledgments
The current state of Tz wouldn't have been possible to achieve without the work of the following contributors related to time zones:
	contributors adding time zone support to Elixir (call for proposal, initial proposal, final proposal);
	contributors to the time_zone_info library, based on which Tz could compare its speed and drastically improve performance;
	contributors to the Java java.time package, against which Tz is testing its output.




  

    
Tz 
    




      
        
          
            
            Anchor for this section
          
          Summary
        


  
    Functions
  


    
      
        iana_version()

      


        Returns the IANA time zone database version.



    





      


      
        
          
            
            Anchor for this section
          
Functions
        

        


  
    
      
      Link to this function
    
    iana_version()


      
       
       View Source
     


  


  

Returns the IANA time zone database version.

  


        

      



  

    
Tz.HTTP 
    




      
        
          
            
            Anchor for this section
          
          Summary
        


  
    Functions
  


    
      
        get_http_client!()

      


        Return the http client module configured for tz.



    





      


      
        
          
            
            Anchor for this section
          
Functions
        

        


  
    
      
      Link to this function
    
    get_http_client!()


      
       
       View Source
     


  


  

Return the http client module configured for tz.

  


        

      



  

    
Tz.HTTP.HTTPClient behaviour
    



      
A behaviour allowing to plug in any HTTP client.

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    Callbacks
  


    
      
        request(t, t)

      


    





      


      
        
          
            
            Anchor for this section
          
Callbacks
        

        


  
    
      
      Link to this callback
    
    request(t, t)


      
       
       View Source
     


  


  

      

          @callback request(String.t(), String.t()) :: struct() | nil


      



  


        

      



  

    
Tz.UpdatePeriodically 
    



      
A process enabling automatic IANA data updates periodically.

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    Functions
  


    
      
        child_spec(init_arg)

      


        Returns a specification to start this module under a supervisor.



    





      


      
        
          
            
            Anchor for this section
          
Functions
        

        


  
    
      
      Link to this function
    
    child_spec(init_arg)


      
       
       View Source
     


  


  

Returns a specification to start this module under a supervisor.
See Supervisor.

  


        

      



  

    
Tz.Updater 
    




      
        
          
            
            Anchor for this section
          
          Summary
        


  
    Functions
  


    
      
        maybe_recompile()

      


        Recompiles the period maps only if more recent IANA data is available.



    





      


      
        
          
            
            Anchor for this section
          
Functions
        

        


  
    
      
      Link to this function
    
    maybe_recompile()


      
       
       View Source
     


  


  

Recompiles the period maps only if more recent IANA data is available.

  


        

      



  

    
Tz.WatchPeriodically 
    



      
A process watching for IANA data updates periodically.

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    Functions
  


    
      
        child_spec(init_arg)

      


        Returns a specification to start this module under a supervisor.



    





      


      
        
          
            
            Anchor for this section
          
Functions
        

        


  
    
      
      Link to this function
    
    child_spec(init_arg)


      
       
       View Source
     


  


  

Returns a specification to start this module under a supervisor.
See Supervisor.

  


        

      



  

    
mix tz.download 
    




      
        
          
            
            Anchor for this section
          
          Summary
        


  
    Functions
  


    
      
        run(command_line_args)

      


        Callback implementation for Mix.Task.run/1.



    





      


      
        
          
            
            Anchor for this section
          
Functions
        

        


  
    
      
      Link to this function
    
    run(command_line_args)


      
       
       View Source
     


  


  

Callback implementation for Mix.Task.run/1.

  


        

      



  OEBPS/dist/epub-75RCTLK3.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);var a="hll";function c(){u()}function u(){o("[data-group-id]").forEach(e=>{let t=e.getAttribute("data-group-id");e.addEventListener("mouseenter",n=>{i(t,!0)}),e.addEventListener("mouseleave",n=>{i(t,!1)})})}function i(r,e){o(`[data-group-id="${r}"]`).forEach(n=>{n.classList.toggle(a,e)})}c();})();




