

 TzWorld

 v1.3.2

 Table of contents

 	TzWorld

 	LICENSE

 	CHANGELOG

 	Modules

 	TzWorld

 	TzWorld.Backend

 	TzWorld.Backend.Memory

 	TzWorld.Downloader

 	Mix Tasks

 	mix tz_world.update

TzWorld

[image: hex.pm]
[image: hex.pm]
[image: hex.pm]
[image: github.com]
Resolve timezones from a location using data from the
timezone-boundary-builder
project.

 Installation

Add tz_world to your list of dependencies in mix.exs:
def deps do
 [
 {:tz_world, "~> 1.2.1"}
]
end
After adding TzWorld as a dependency, run mix deps.get to install it. Then run mix tz_world.update to install the timezone data.
NOTE No data is installed with the package and until the data is installed
with mix tz_world.update all calls to TzWorld.timezone_at/1 will return
{:error, :time_zone_not_found}.

 Configuration

There is no mandatory configuration required however three options may be configured in config.exs:
config :tz_world,
 # The default is the `priv` directory of `:tz_world`
 data_dir: "geodata/directory",
 # The default is either the trust store included in the
 # libraries `CAStore` or `certifi` or the platform
 # trust store.
 cacertfile: "path/to/ca_trust_store",
 # The default is no options, however one can set any `httpc` client options.
 httpc_opts: [
 proxy: {{String.to_charlist(proxy_host), proxy_port}, []}
]

 Backend selection

TzWorld provides alternative strategies for managing access to the backend data. Each backend is implemented as a GenServer that needs to be either manually started with BackendModule.start_link/1 or preferably added to your application's supervision tree.
The recommended backend is TzWorld.Backend.EtsWithIndexCache unless the host system is memory constrained in which case TzWorld.Backend.DetsWithIndexCache is recommended.
For example:
defmodule MyApp.Application do
 @moduledoc false

 use Application

 def start(_type, _args) do
 children = [
 ...
 TzWorld.Backend.EtsWithIndexCache
]

 opts = [strategy: :one_for_one, name: MyApp.Supervisor]
 Supervisor.start_link(children, opts)
 end
end
The following backends are available:
	TzWorld.Backend.Memory which retains all data in memory for fast (but not
fastest) performance at the expense of using approximately 1GB of memory

	TzWorld.Backend.Dets which uses Erlang's :dets data store. This uses
negligible memory at the expense of slow access times (approximately 500ms in
testing)

	TzWorld.Backend.DetsWithIndexCache which balances memory usage and
performance. This backend is recommended in most situations since its
performance is similar to TzWorld.Backend.Memory (about 5% slower in
testing) and uses about 25Mb of memory

	TzWorld.Backend.Ets which uses :ets for storage. With the default
settings of :compressed for the :ets table its memory consumption is
about 512Mb but with access that is over 20 times slower than
TzWorld.Backend.DetsWithIndexCache

	TzWorld.Backend.EtsWithIndexCache which uses :ets for storage with an
additional in-memory cache of the bounding boxes. This still uses about 512Mb
but is faster than any of the other backends by about 40%

 Installing the Timezones Geo JSON data

Installing tz_world from source or from hex does not include the timezones
Geo JSON data. The data is required and to install or update it run:
mix tz_world.update
This task will download, transform, zip and store the timezones Geo data. Depending on internet and computer speed this may take a few minutes.
By default mix tz_world.update will download geojson data that does not include time zone information for the oceans. There are two optional parameters that are accepted by mix tz_world.update that can be used to configure the desired behaviour:
	--include-oceans will download the geojson data, including data for the oceans. This give almost complete global coverage of time zone data. The default is --no-include-oceans which does not include data that covers the oceans. The geojson data including the oceans is about 10% larger than the data that does not include the oceans.

	--force will force an update to the geojson data even if the installed data is the latest release. This option can be useful if you choose to switch from the data without ocean coverage to the data with ocean coverage (and the reverse). The default is --no-force.

 Updating the Timezone data

From time-to-time the timezones Geo JSON data is updated in the upstream project. The mix task mix tz_world.update will update the data if it is available.
A running application can also be instructed to reload the data by executing TzWorld.reload_timezone_data.

 Usage

The primary API is TzWorld.timezone_at. It takes either a Geo.Point struct or a longitude and latitude in degrees. Note the parameter order: longitude, latitude. It also takes and optional second parameter, backend, which must be one of the configured and running backend modules. By default timezone_at/2 will detect a running backend and will raise an exception if no running backend is found.
iex> TzWorld.timezone_at(%Geo.Point{coordinates: {3.2, 45.32}})
{:ok, "Europe/Paris"}

iex> TzWorld.timezone_at({3.2, 45.32})
{:ok, "Europe/Paris"}

iex> TzWorld.timezone_at(%Geo.PointZ{coordinates: {-74.006, 40.7128, 0.0}})
{:ok, "America/New_York"}

Assumes that the downloaded data does not include
data for the oceans (the default)
iex> TzWorld.timezone_at(%Geo.Point{coordinates: {1.3, 65.62}})
{:error, :time_zone_not_found}

LICENSE

MIT License
Copyright (c) 2017 kimlai
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

CHANGELOG

 Changelog for Tz_World

 Tz_World v1.3.2

This is the changelog for Tz_World v1.3.2 released on December 2nd 2023. For older changelogs please consult the release tag on GitHub

 Bug Fixes

	Fixes compiler warnings for Elixir 1.16

 Tz_World v1.3.1

This is the changelog for Tz_World v1.3.1 released on August 17th, 2023. For older changelogs please consult the release tag on GitHub

 Bug Fixes

Thanks to @mjquinlan2000 for the report of issues on Elixir 1.15 and OTP 26.
	Always send a User-Agent header to the Github API to avoid 403 responses.

	Add :ssl to :extra_applications to support Elixir 1.15 and OTP 26.

	Update TzWorld.Downloader.get_url/1 to follow the erlef security guidelines.

 Tz_World v1.3.0

This is the changelog for Tz_World v1.3.0 released on April 5th, 2023. For older changelogs please consult the release tag on GitHub

 Enhancements

	Add httpc set_options/1 support. Thanks to @gabrielgiordan for the PR (and the PR for fixing CI).

 Tz_World v1.2.0

This is the changelog for Tz_World v1.2.0 released on October 12th, 2022. For older changelogs please consult the release tag on GitHub

 Bug Fixes

	Fix TzWorld.Backend.Dets to not raise an exception if there is no timezone data available.

 Enhancements

	Adds options to mix tzworld.update mix task:	--include_oceans will download a 10% larger geojson data set that covers the worlds oceans
	--force will force a data update, even if the data is the latest release. This can be used
to switch between data that includes oceans and that which does not.
	Thanks to @lguminski for the feedback and suggestion.

 Tz_World v1.1.0

This is the changelog for Tz_World v1.1.0 released on August 26th, 2022. For older changelogs please consult the release tag on GitHub

 Enhancements

	Replace Application.get_env/2 with Application.compile_env/2 to remove warnings on Elixir 1.14. Now requires Elixir 1.10 as a minimum version.

 Tz_World v1.0.0

This is the changelog for Tz_World v1.0.0 released on October 19th, 2021. For older changelogs please consult the release tag on GitHub

 Enhancements

	Update to version 1.0.0 since the API has been stable for a year.

 Tz_World v0.7.1

This is the changelog for Tz_World v0.7.1 released on November 6th, 2020. For older changelogs please consult the release tag on GitHub

 Bug Fixes

	Don't use tests for the external data version since that changes outside of the code lifesycle

 Tz_World v0.7.0

This is the changelog for Tz_World v0.7.0 released on October 10th, 2020. For older changelogs please consult the release tag on GitHub

 Bug Fixes

	Add :inets and :public_key to :extra_applications in mix.exs to make Elixir 1.11 happy.

 Tz_World v0.6.0

This is the changelog for Tz_World v0.6.0 released on June 10th, 2020. For older changelogs please consult the release tag on GitHub

 Bug Fixes

	Honour the configuration for :data_dir. Thanks to @superhawk610. Fixes #12

	Be more resilient if the :dets file is not in place

 Tz_World v0.5.0

This is the changelog for Tz_World v0.5.0 released on May 23rd, 2020. For older changelogs please consult the release tag on GitHub

 Bug Fixes

	Move compile time configuration of the data directory to runtime and remove hard-coded default path

	Start :inets and :ssl applications in the downloader mix task

	Add certificate verification when downloading updates to the geo data

 Enhancements

	Document the :data_dir and :cacertfile configuration options it the README.md file

	The backends :dets and :dets_with_index_cache now open the :dets file as access: :read which prevents errors if the file is abnormally closed.

 Tz_World v0.4.0

This is the changelog for Tz_World v0.4.0 released on May 12th, 2020. For older changelogs please consult the release tag on GitHub
	Adds configurable backends. Each backend is a GenServer that must be added to an applications supervision tree or started manually.

 Breaking change

	When specifying a lng, lat to TzWorld.timezone_at/2 the coordinates must be wrapped in a tuple. For example TzWorld.timezone_at({3.2, 45.32}) making it consistent with the Geo.Point and Geo.PointZ strategies.

 Configurable backends

	TzWorld.Backend.Memory which retains all data in memory for fast (but not fastest) performance at the expense of using approximately 1Gb of memory
	TzWorld.Backend.Dets which uses Erlang's :dets data store. This uses negligible memory at the expense of slow access times (approximaltey 500ms in testing)
	TzWorld.Backend.DetsWithIndexCache which balances memory usage and performance. This backend is recommended in most situations since its performance is similar to TzWorld.Backend.Memory (about 5% slower in testing) and uses about 25Mb of memory
	TzWorld.Backend.Ets which uses :ets for storage. With the default settings of :compressed for the :ets table its memory consumption is about 512Mb but with access that is over 20 times slower than TzWorld.Backend.DetsWithIndexCache
	TzWorld.Backend.EtsWithIndexCache which uses :ets for storage with an additional in-memory cache of the bounding boxes. This still uses about 512Mb but is faster than any of the other backends by about 40%

 Enhancements

	Add TzWorld.all_timezones_at/2 to return all timezones for a given location. In rare cases, usually disputed territory, multiple timezones may be declared for overlapping regions. TzWorld.all_timezones_at/2 returns a (potentially empty) list of all time zones known for a given point. Futher testing of this function is required and will be completed before version 1.0.

 Tz_World v0.3.0

This is the changelog for Tz_World v0.3.0 released on December 4th, 2019. For older changelogs please consult the release tag on GitHub

 Breaking Changes

	Changes the error return from {:error, :timezone_not_found} to {:error, :time_zone_not_found} since both Elixir and Tzdata use time_zone.

 Enhancements

	Allows both %Geo.Point{} and %Geo.PointZ{} as parameters to TzWorld.timezone_at/1

 Tz_World v0.2.0

This is the changelog for Tz_World v0.2.0 released on November 28th, 2019. For older changelogs please consult the release tag on GitHub

 Breaking Changes

	Requires OTP 21 and Elixir 1.6 or later due to the use of GenServer's handle_continue/2

	timezone_at/1 returns tagged tuples {:ok, result} or {:error, reason}. There can be at least two reasons for an error: no data file is available or no timezone is found. These return {:error, :enoent} and {:error, :timezone_not_found} respectively

	The timezone geojson data is no longer included in the package. Run mix tz_world.update to install or update it.

	No longer uses Ecto or PostGIS for calculations.

 Enhancements

	Updated to latest shape data. Takes the geo JSON shape data directly from timezone-boundary-builder releases

	Conforms TzWorker to the modern child_spec/1 including using handle_continue/2 to load the data file if it exists.

	Updated dependencies including geo to allow 1.x, 2.x or 3.x

	Added Jason as an optional dependency to facilitate decoding the GeoJSON from timezone_boundary_builder

	The timezone geojson data is no longer included in the package. Its size isn't supported on hex and it bloats the repo too. A mix task tz_world.update downloads and processes the data. The function TzWorld.Downloader.update_release/0 can be called at any time to look for a new release, download it and load it into the running server with no downtime.

	timezone_at/1 supports simple lng, lat arguments as well as %Geo.Point{} structs

	Added CHANGELOG.md

	Added SRID to the GeoJSON

	Updated package and ran dialyzer

	Added a config option :data_dir specifies the location of the compressed etf. Default is ./priv

	Updated README, package and docs

TzWorld

Resolve a timezone name from coordinates.

 Summary

 Types

 backend()

 Functions

 all_timezones_at(point, backend \\ fetch_backend())

 Returns all timezone name found for the given
coordinates specified as either a Geo.Point,
a Geo.PointZ or a tuple {lng, lat}

 app_name()

 Returns the OTP app name of :tz_world

 fetch_backend()

 reload_timezone_data()

 Reload the timezone geometry data.

 timezone_at(point, backend \\ fetch_backend())

 Returns the first timezone name found for the given
coordinates specified as either a Geo.Point,
a Geo.PointZ or a tuple {lng, lat}

 version()

 Returns the installed version of time
zone data

 Types

 Link to this type

 backend()

 View Source

 @type backend() :: module()

 Functions

 Link to this function

 all_timezones_at(point, backend \\ fetch_backend())

 View Source

 @spec all_timezones_at(Geo.Point.t(), backend()) :: {:ok, [String.t()]}

 @spec all_timezones_at(Geo.PointZ.t(), backend()) :: {:ok, [String.t()]}

 @spec all_timezones_at(
 {lng :: number(), lat :: number()},
 backend()
) :: {:ok, [String.t()]}

Returns all timezone name found for the given
coordinates specified as either a Geo.Point,
a Geo.PointZ or a tuple {lng, lat}

 Arguments

	point is a Geo.Point.t() a Geo.PointZ.t() or
a tuple {lng, lat}

	backend is any backend access module.

 Returns

	{:ok, timezone} or

	{:error, :time_zone_not_found}

 Notes

Note that the point is always expressed as
lng followed by lat.

 Examples

iex> TzWorld.all_timezones_at(%Geo.Point{coordinates: {3.2, 45.32}})
{:ok, ["Europe/Paris"]}

iex> TzWorld.all_timezones_at({3.2, 45.32})
{:ok, ["Europe/Paris"]}

iex> TzWorld.all_timezones_at({0.0, 0.0})
{:ok, []}
The algorithm starts by filtering out timezones whose bounding
box does not contain the given point.
Once filtered, all timezones which contains the given
point is returned, or an error tuple if none of the
timezones match.
In rare cases, typically due to territorial disputes,
one or more timezones may apply to a given location.
This function returns all time zones that match.

 Link to this function

 app_name()

 View Source

Returns the OTP app name of :tz_world

 Link to this function

 fetch_backend()

 View Source

 Link to this function

 reload_timezone_data()

 View Source

Reload the timezone geometry data.
This allows for the data to be reloaded,
typically with a new release, without
restarting the application.

 Link to this function

 timezone_at(point, backend \\ fetch_backend())

 View Source

 @spec timezone_at(Geo.Point.t(), backend()) :: {:ok, String.t()} | {:error, atom()}

 @spec timezone_at(Geo.PointZ.t(), backend()) :: {:ok, String.t()} | {:error, atom()}

 @spec timezone_at(
 {lng :: number(), lat :: number()},
 backend()
) :: {:ok, String.t()} | {:error, atom()}

Returns the first timezone name found for the given
coordinates specified as either a Geo.Point,
a Geo.PointZ or a tuple {lng, lat}

 Arguments

	point is a Geo.Point.t() a Geo.PointZ.t() or
a tuple {lng, lat}

	backend is any backend access module.

 Returns

	{:ok, timezone} or

	{:error, :time_zone_not_found}

 Notes

Note that the point is always expressed as
lng followed by lat.

 Examples

iex> TzWorld.timezone_at(%Geo.Point{coordinates: {3.2, 45.32}})
{:ok, "Europe/Paris"}

iex> TzWorld.timezone_at({3.2, 45.32})
{:ok, "Europe/Paris"}

iex> TzWorld.timezone_at({0.0, 0.0})
{:error, :time_zone_not_found}
The algorithm starts by filtering out timezones whose bounding
box does not contain the given point.
Once filtered, the first timezone which contains the given
point is returned, or an error tuple if none of the
timezones match.
In rare cases, typically due to territorial disputes,
one or more timezones may apply to a given location.
This function returns the first time zone that matches.

 Link to this function

 version()

 View Source

 @spec version() :: {:ok, String.t()} | {:error, :enoent}

Returns the installed version of time
zone data

 Example

TzWorld.version
=> {:ok, "2020d"}

TzWorld.Backend behaviour

Defines the callbacks for the TzWorld.Backend
behaviour

 Summary

 Types

 geo()

 A point

 lat()

 Latitude in degrees

 lng()

 Longitude in degrees

 Callbacks

 all_timezones_at(t)

 Returns all timezones at a specified point

 reload_timezone_data()

 Reloads the (potentially updated) timezone data

 timezone_at(geo)

 Returns the time zone at a specified point

 Types

 Link to this type

 geo()

 View Source

 @type geo() :: Geo.Point.t()

A point

 Link to this type

 lat()

 View Source

 @type lat() :: -90..90

Latitude in degrees

 Link to this type

 lng()

 View Source

 @type lng() :: -180..180

Longitude in degrees

 Callbacks

 Link to this callback

 all_timezones_at(t)

 View Source

 @callback all_timezones_at(Geo.Point.t()) :: {:ok, [String.t()]} | {:error, atom()}

Returns all timezones at a specified point

 Link to this callback

 reload_timezone_data()

 View Source

 @callback reload_timezone_data() :: {:ok, term()}

Reloads the (potentially updated) timezone data

 Link to this callback

 timezone_at(geo)

 View Source

 @callback timezone_at(geo()) :: {:ok, String.t()} | {:error, atom()}

Returns the time zone at a specified point

TzWorld.Backend.Memory

 Summary

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 Functions

 Link to this function

 child_spec(init_arg)

 View Source

Returns a specification to start this module under a supervisor.
See Supervisor.

TzWorld.Downloader

Function to support downloading the latest
timezones geo JSON data

 Summary

 Functions

 certificate_locations()

 current_release()

 Returns the current installed timezones geo JSON
data.

 get(url, options \\ [])

 Securely download https content from
a URL.

 get_and_load_latest_release(latest_release, asset_url)

 get_latest_release(latest_release, asset_url)

 get_url(url)

 get_with_headers(request, options \\ [])

 Securely download https content from
a URL.

 latest_release(include_oceans? \\ false)

 Return the {release_number, download_url} of
the latest timezones geo JSON data

 otp_version()

 update_release(options \\ [])

 Updates the timezone geo JSON data if there
is a more recent release.

 update_release(include_oceans?, force_update?)

 Functions

 Link to this function

 certificate_locations()

 View Source

 Link to this function

 current_release()

 View Source

Returns the current installed timezones geo JSON
data.

 Link to this function

 get(url, options \\ [])

 View Source

 @spec get(String.t() | {String.t(), list()}, options :: Keyword.t()) ::
 {:ok, binary()} | {:not_modified, any()} | {:error, any()}

Securely download https content from
a URL.
This function uses the built-in :httpc
client but enables certificate verification
which is not enabled by :httc by default.
See also https://erlef.github.io/security-wg/secure_coding_and_deployment_hardening/ssl

 Arguments

	url is a binary URL or a {url, list_of_headers} tuple. If
provided the headers are a list of {'header_name', 'header_value'}
tuples. Note that the name and value are both charlists, not
strings.

	options is a keyword list of options.

 Options

	:verify_peer is a boolean value indicating
if peer verification should be done for this request.
The default is true in which case the default
:ssl options follow the erlef guidelines
noted above.

	:timeout is the number of milliseconds available
for the request to complete. The default is
"120000". This option may also be
set with the CLDR_HTTP_TIMEOUT environment variable.

	:connection_timeout is the number of milliseconds
available for the a connection to be estabklished to
the remote host. The default is "60000".
This option may also be set with the
CLDR_HTTP_CONNECTION_TIMEOUT environment variable.

 Returns

	{:ok, body} if the return is successful.

	{:not_modified, headers} if the request would result in
returning the same results as one matching an etag.

	{:error, error} if the download is
 unsuccessful. An error will also be logged
 in these cases.

 Unsafe HTTPS

If the environment variable CLDR_UNSAFE_HTTPS is
set to anything other than FALSE, false, nil
or NIL then no peer verification of certificates
is performed. Setting this variable is not recommended
but may be required is where peer verification for
unidentified reasons. Please open an issue
if this occurs.

 Certificate stores

In order to keep dependencies to a minimum,
get/1 attempts to locate an already installed
certificate store. It will try to locate a
store in the following order which is intended
to satisfy most host systems. The certificate
store is expected to be a path name on the
host system.
A certificate store configured by the
developer
Application.get_env(:ex_cldr, :cacertfile)

Populated if hex package `CAStore` is configured
CAStore.file_path()

Populated if hex package `certfi` is configured
:certifi.cacertfile()

Debian/Ubuntu/Gentoo etc.
"/etc/ssl/certs/ca-certificates.crt",

Fedora/RHEL 6
"/etc/pki/tls/certs/ca-bundle.crt",

OpenSUSE
"/etc/ssl/ca-bundle.pem",

OpenELEC
"/etc/pki/tls/cacert.pem",

CentOS/RHEL 7
"/etc/pki/ca-trust/extracted/pem/tls-ca-bundle.pem",

Open SSL on MacOS
"/usr/local/etc/openssl/cert.pem",

MacOS & Alpine Linux
"/etc/ssl/cert.pem"

 Link to this function

 get_and_load_latest_release(latest_release, asset_url)

 View Source

 Link to this function

 get_latest_release(latest_release, asset_url)

 View Source

 Link to this function

 get_url(url)

 View Source

 Link to this function

 get_with_headers(request, options \\ [])

 View Source

 (since 2.21.0)

 @spec get_with_headers(String.t() | {String.t(), list()}, options :: Keyword.t()) ::
 {:ok, list(), binary()} | {:not_modified, any()} | {:error, any()}

Securely download https content from
a URL.
This function uses the built-in :httpc
client but enables certificate verification
which is not enabled by :httc by default.
See also https://erlef.github.io/security-wg/secure_coding_and_deployment_hardening/ssl

 Arguments

	url is a binary URL or a {url, list_of_headers} tuple. If
provided the headers are a list of {'header_name', 'header_value'}
tuples. Note that the name and value are both charlists, not
strings.

	options is a keyword list of options.

 Options

	:verify_peer is a boolean value indicating
if peer verification should be done for this request.
The default is true in which case the default
:ssl options follow the erlef guidelines
noted above.

	:timeout is the number of milliseconds available
for the request to complete. The default is
"120000". This option may also be
set with the CLDR_HTTP_TIMEOUT environment variable.

	:connection_timeout is the number of milliseconds
available for the a connection to be estabklished to
the remote host. The default is "60000".
This option may also be set with the
CLDR_HTTP_CONNECTION_TIMEOUT environment variable.

	:https_proxy is the URL of an https proxy to be used. The
default is nil.

 Returns

	{:ok, body, headers} if the return is successful.

	{:not_modified, headers} if the request would result in
returning the same results as one matching an etag.

	{:error, error} if the download is
 unsuccessful. An error will also be logged
 in these cases.

 Unsafe HTTPS

If the environment variable CLDR_UNSAFE_HTTPS is
set to anything other than FALSE, false, nil
or NIL then no peer verification of certificates
is performed. Setting this variable is not recommended
but may be required is where peer verification for
unidentified reasons. Please open an issue
if this occurs.

 Https Proxy

Cldr.Http.get/2 will look for a proxy URL in the following
locales in the order presented:
	options[:https_proxy]
	ex_cldr compile-time configuration under the
key :ex_cldr[:https_proxy]
	The environment variable HTTPS_PROXY
	The environment variable https_proxy

 Certificate stores

In order to keep dependencies to a minimum,
get/1 attempts to locate an already installed
certificate store. It will try to locate a
store in the following order which is intended
to satisfy most host systems. The certificate
store is expected to be a path name on the
host system.
A certificate store configured by the
developer
Application.get_env(:ex_cldr, :cacertfile)

Populated if hex package `CAStore` is configured
CAStore.file_path()

Populated if hex package `certfi` is configured
:certifi.cacertfile()

Debian/Ubuntu/Gentoo etc.
"/etc/ssl/certs/ca-certificates.crt",

Fedora/RHEL 6
"/etc/pki/tls/certs/ca-bundle.crt",

OpenSUSE
"/etc/ssl/ca-bundle.pem",

OpenELEC
"/etc/pki/tls/cacert.pem",

CentOS/RHEL 7
"/etc/pki/ca-trust/extracted/pem/tls-ca-bundle.pem",

Open SSL on MacOS
"/usr/local/etc/openssl/cert.pem",

MacOS & Alpine Linux
"/etc/ssl/cert.pem"

 Link to this function

 latest_release(include_oceans? \\ false)

 View Source

Return the {release_number, download_url} of
the latest timezones geo JSON data

 Link to this function

 otp_version()

 View Source

 Link to this function

 update_release(options \\ [])

 View Source

Updates the timezone geo JSON data if there
is a more recent release.

 Arguments

	options is a keyword list of options. The
default is [include_oceans: false, force: false].

 Options

	:include_oceans is a boolean that indicates whether
to include time zone data for the world's oceans. The
default is false.

	:force is a boolean that indicates whether to force
an update of the data, even if the current data is the
latest release. This option is useful when switching
from the data without oceans to the data with oceans
(or the other way arouond).

 Link to this function

 update_release(include_oceans?, force_update?)

 View Source

mix tz_world.update

Downloads and installs the latest Timezone GeoJSON data.

 Argument

	--include-oceans Will include the geojson for
oceans in the downloaded data.

	--force will force an update even if the data is
current. This can be used to force downloading data
including (or not including) time zone data for the oceans.

 Summary

 Functions

 run(args)

 Callback implementation for Mix.Task.run/1.

 update(include_oceans?, force_update?)

 Functions

 Link to this function

 run(args)

 View Source

Callback implementation for Mix.Task.run/1.

 Link to this function

 update(include_oceans?, force_update?)

 View Source

 OEBPS/dist/epub-TCI3LGHF.js
(()=>{var d=document.querySelector.bind(document),i=document.querySelectorAll.bind(document);function r(o){document.readyState!=="loading"?o():document.addEventListener("DOMContentLoaded",o)}var c="ex_doc:settings",h={tooltips:!0,theme:null,livebookUrl:null},s=class{constructor(){this._subscribers=[],this._settings=h,this._loadSettings()}get(){return this._settings}update(t){let e=this._settings;this._settings={...this._settings,...t},this._subscribers.forEach(n=>n(this._settings,e)),this._storeSettings()}getAndSubscribe(t){this._subscribers.push(t),t(this._settings)}_loadSettings(){try{let t=localStorage.getItem(c);if(t){let e=JSON.parse(t);this._settings={...this._settings,...e}}this._loadSettingsLegacy()}catch(t){console.error(`Failed to load settings: ${t}`)}}_storeSettings(){try{this._storeSettingsLegacy(),localStorage.setItem(c,JSON.stringify(this._settings))}catch(t){console.error(`Failed to persist settings: ${t}`)}}_loadSettingsLegacy(){localStorage.getItem("tooltipsDisabled")!==null&&(this._settings={...this._settings,tooltips:!1}),localStorage.getItem("night-mode")==="true"&&(this._settings={...this._settings,nightMode:!0}),this._settings.nightMode===!0&&(this._settings={...this._settings,theme:"dark"})}_storeSettingsLegacy(){this._settings.tooltips?localStorage.removeItem("tooltipsDisabled"):localStorage.setItem("tooltipsDisabled","true"),this._settings.nightMode!==null?localStorage.setItem("night-mode",this._settings.nightMode===!0?"true":"false"):localStorage.removeItem("night-mode"),this._settings.theme!==null?(localStorage.setItem("night-mode",this._settings.theme==="dark"?"true":"false"),this._settings.nightMode=this._settings.theme==="dark"):(delete this._settings.nightMode,localStorage.removeItem("night-mode"))}},f=new s;function l(){["warning","info","error","neutral","tip"].forEach(t=>{i(`blockquote h3.${t}, blockquote h4.${t}`).forEach(e=>{e.closest("blockquote").classList.add(t)})})}document.addEventListener("click",function(o){if(window.innerWidth<=768){let t=o.target.closest('a[href^="#"]');if(t){o.preventDefault();let e=t.getAttribute("href").substring(1),n=document.getElementById(e);if(n){let u=n.getBoundingClientRect().top+window.scrollY-45;window.scrollTo({top:u,behavior:"smooth"})}}}});var m="hll";function g(){p()}function p(){i("[data-group-id]").forEach(t=>{let e=t.getAttribute("data-group-id");t.addEventListener("mouseenter",n=>{a(e,!0)}),t.addEventListener("mouseleave",n=>{a(e,!1)})})}function a(o,t){i(`[data-group-id="${o}"]`).forEach(n=>{n.classList.toggle(m,t)})}r(()=>{g(),l()});})();

